1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "nir_builder_opcodes.h"
27 #include "nir_vla.h"
28
29 /*
30 * This file implements an out-of-SSA pass as described in "Revisiting
31 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
32 * Boissinot et al.
33 */
34
35 struct from_ssa_state {
36 nir_builder builder;
37 void *dead_ctx;
38 struct exec_list dead_instrs;
39 bool phi_webs_only;
40 struct hash_table *merge_node_table;
41 nir_instr *instr;
42 bool consider_divergence;
43 bool progress;
44 };
45
46 /* Returns if def @a comes after def @b.
47 *
48 * The core observation that makes the Boissinot algorithm efficient
49 * is that, given two properly sorted sets, we can check for
50 * interference in these sets via a linear walk. This is accomplished
51 * by doing single combined walk over union of the two sets in DFS
52 * order. It doesn't matter what DFS we do so long as we're
53 * consistent. Fortunately, the dominance algorithm we ran prior to
54 * this pass did such a walk and recorded the pre- and post-indices in
55 * the blocks.
56 *
57 * We treat SSA undefs as always coming before other instruction types.
58 */
59 static bool
def_after(nir_def * a,nir_def * b)60 def_after(nir_def *a, nir_def *b)
61 {
62 if (a->parent_instr->type == nir_instr_type_undef)
63 return false;
64
65 if (b->parent_instr->type == nir_instr_type_undef)
66 return true;
67
68 /* If they're in the same block, we can rely on whichever instruction
69 * comes first in the block.
70 */
71 if (a->parent_instr->block == b->parent_instr->block)
72 return a->parent_instr->index > b->parent_instr->index;
73
74 /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */
75 return a->parent_instr->block->dom_pre_index >
76 b->parent_instr->block->dom_pre_index;
77 }
78
79 /* Returns true if a dominates b */
80 static bool
ssa_def_dominates(nir_def * a,nir_def * b)81 ssa_def_dominates(nir_def *a, nir_def *b)
82 {
83 if (a->parent_instr->type == nir_instr_type_undef) {
84 /* SSA undefs always dominate */
85 return true;
86 }
87 if (def_after(a, b)) {
88 return false;
89 } else if (a->parent_instr->block == b->parent_instr->block) {
90 return def_after(b, a);
91 } else {
92 return nir_block_dominates(a->parent_instr->block,
93 b->parent_instr->block);
94 }
95 }
96
97 /* The following data structure, which I have named merge_set is a way of
98 * representing a set registers of non-interfering registers. This is
99 * based on the concept of a "dominance forest" presented in "Fast Copy
100 * Coalescing and Live-Range Identification" by Budimlic et al. but the
101 * implementation concept is taken from "Revisiting Out-of-SSA Translation
102 * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
103 *
104 * Each SSA definition is associated with a merge_node and the association
105 * is represented by a combination of a hash table and the "def" parameter
106 * in the merge_node structure. The merge_set stores a linked list of
107 * merge_nodes, ordered by a pre-order DFS walk of the dominance tree. (Since
108 * the liveness analysis pass indexes the SSA values in dominance order for
109 * us, this is an easy thing to keep up.) It is assumed that no pair of the
110 * nodes in a given set interfere. Merging two sets or checking for
111 * interference can be done in a single linear-time merge-sort walk of the
112 * two lists of nodes.
113 */
114 struct merge_set;
115
116 typedef struct {
117 struct exec_node node;
118 struct merge_set *set;
119 nir_def *def;
120 } merge_node;
121
122 typedef struct merge_set {
123 struct exec_list nodes;
124 unsigned size;
125 bool divergent;
126 nir_def *reg_decl;
127 } merge_set;
128
129 #if 0
130 static void
131 merge_set_dump(merge_set *set, FILE *fp)
132 {
133 NIR_VLA(nir_def *, dom, set->size);
134 int dom_idx = -1;
135
136 foreach_list_typed(merge_node, node, node, &set->nodes) {
137 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
138 dom_idx--;
139
140 for (int i = 0; i <= dom_idx; i++)
141 fprintf(fp, " ");
142
143 fprintf(fp, "ssa_%d\n", node->def->index);
144
145 dom[++dom_idx] = node->def;
146 }
147 }
148 #endif
149
150 static merge_node *
get_merge_node(nir_def * def,struct from_ssa_state * state)151 get_merge_node(nir_def *def, struct from_ssa_state *state)
152 {
153 struct hash_entry *entry =
154 _mesa_hash_table_search(state->merge_node_table, def);
155 if (entry)
156 return entry->data;
157
158 merge_set *set = rzalloc(state->dead_ctx, merge_set);
159 exec_list_make_empty(&set->nodes);
160 set->size = 1;
161 set->divergent = state->consider_divergence && def->divergent;
162
163 merge_node *node = ralloc(state->dead_ctx, merge_node);
164 node->set = set;
165 node->def = def;
166 exec_list_push_head(&set->nodes, &node->node);
167
168 _mesa_hash_table_insert(state->merge_node_table, def, node);
169
170 return node;
171 }
172
173 static bool
merge_nodes_interfere(merge_node * a,merge_node * b)174 merge_nodes_interfere(merge_node *a, merge_node *b)
175 {
176 /* There's no need to check for interference within the same set,
177 * because we assume, that sets themselves are already
178 * interference-free.
179 */
180 if (a->set == b->set)
181 return false;
182
183 return nir_defs_interfere(a->def, b->def);
184 }
185
186 /* Merges b into a
187 *
188 * This algorithm uses def_after to ensure that the sets always stay in the
189 * same order as the pre-order DFS done by the liveness algorithm.
190 */
191 static merge_set *
merge_merge_sets(merge_set * a,merge_set * b)192 merge_merge_sets(merge_set *a, merge_set *b)
193 {
194 struct exec_node *an = exec_list_get_head(&a->nodes);
195 struct exec_node *bn = exec_list_get_head(&b->nodes);
196 while (!exec_node_is_tail_sentinel(bn)) {
197 merge_node *a_node = exec_node_data(merge_node, an, node);
198 merge_node *b_node = exec_node_data(merge_node, bn, node);
199
200 if (exec_node_is_tail_sentinel(an) ||
201 def_after(a_node->def, b_node->def)) {
202 struct exec_node *next = bn->next;
203 exec_node_remove(bn);
204 exec_node_insert_node_before(an, bn);
205 exec_node_data(merge_node, bn, node)->set = a;
206 bn = next;
207 } else {
208 an = an->next;
209 }
210 }
211
212 a->size += b->size;
213 b->size = 0;
214 a->divergent |= b->divergent;
215
216 return a;
217 }
218
219 /* Checks for any interference between two merge sets
220 *
221 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
222 * Translation for Correctness, Code Quality, and Efficiency" by
223 * Boissinot et al.
224 */
225 static bool
merge_sets_interfere(merge_set * a,merge_set * b)226 merge_sets_interfere(merge_set *a, merge_set *b)
227 {
228 /* List of all the nodes which dominate the current node, in dominance
229 * order.
230 */
231 NIR_VLA(merge_node *, dom, a->size + b->size);
232 int dom_idx = -1;
233
234 struct exec_node *an = exec_list_get_head(&a->nodes);
235 struct exec_node *bn = exec_list_get_head(&b->nodes);
236 while (!exec_node_is_tail_sentinel(an) ||
237 !exec_node_is_tail_sentinel(bn)) {
238
239 /* We walk the union of the two sets in the same order as the pre-order
240 * DFS done by liveness analysis.
241 */
242 merge_node *current;
243 if (exec_node_is_tail_sentinel(an)) {
244 current = exec_node_data(merge_node, bn, node);
245 bn = bn->next;
246 } else if (exec_node_is_tail_sentinel(bn)) {
247 current = exec_node_data(merge_node, an, node);
248 an = an->next;
249 } else {
250 merge_node *a_node = exec_node_data(merge_node, an, node);
251 merge_node *b_node = exec_node_data(merge_node, bn, node);
252
253 if (def_after(b_node->def, a_node->def)) {
254 current = a_node;
255 an = an->next;
256 } else {
257 current = b_node;
258 bn = bn->next;
259 }
260 }
261
262 /* Because our walk is a pre-order DFS, we can maintain the list of
263 * dominating nodes as a simple stack, pushing every node onto the list
264 * after we visit it and popping any non-dominating nodes off before we
265 * visit the current node.
266 */
267 while (dom_idx >= 0 &&
268 !ssa_def_dominates(dom[dom_idx]->def, current->def))
269 dom_idx--;
270
271 /* There are three invariants of this algorithm that are important here:
272 *
273 * 1. There is no interference within either set a or set b.
274 * 2. None of the nodes processed up until this point interfere.
275 * 3. All the dominators of `current` have been processed
276 *
277 * Because of these invariants, we only need to check the current node
278 * against its minimal dominator. If any other node N in the union
279 * interferes with current, then N must dominate current because we are
280 * in SSA form. If N dominates current then it must also dominate our
281 * minimal dominator dom[dom_idx]. Since N is live at current it must
282 * also be live at the minimal dominator which means N interferes with
283 * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above,
284 * the algorithm would have already terminated. Therefore, if we got
285 * here, the only node that can possibly interfere with current is the
286 * minimal dominator dom[dom_idx].
287 *
288 * This is what allows us to do a interference check of the union of the
289 * two sets with a single linear-time walk.
290 */
291 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
292 return true;
293
294 dom[++dom_idx] = current;
295 }
296
297 return false;
298 }
299
300 static bool
add_parallel_copy_to_end_of_block(nir_shader * shader,nir_block * block,void * dead_ctx)301 add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx)
302 {
303 bool need_end_copy = false;
304 if (block->successors[0]) {
305 nir_instr *instr = nir_block_first_instr(block->successors[0]);
306 if (instr && instr->type == nir_instr_type_phi)
307 need_end_copy = true;
308 }
309
310 if (block->successors[1]) {
311 nir_instr *instr = nir_block_first_instr(block->successors[1]);
312 if (instr && instr->type == nir_instr_type_phi)
313 need_end_copy = true;
314 }
315
316 if (need_end_copy) {
317 /* If one of our successors has at least one phi node, we need to
318 * create a parallel copy at the end of the block but before the jump
319 * (if there is one).
320 */
321 nir_parallel_copy_instr *pcopy =
322 nir_parallel_copy_instr_create(shader);
323
324 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
325 }
326
327 return true;
328 }
329
330 static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block * block)331 get_parallel_copy_at_end_of_block(nir_block *block)
332 {
333 nir_instr *last_instr = nir_block_last_instr(block);
334 if (last_instr == NULL)
335 return NULL;
336
337 /* The last instruction may be a jump in which case the parallel copy is
338 * right before it.
339 */
340 if (last_instr->type == nir_instr_type_jump)
341 last_instr = nir_instr_prev(last_instr);
342
343 if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
344 return nir_instr_as_parallel_copy(last_instr);
345 else
346 return NULL;
347 }
348
349 /** Isolate phi nodes with parallel copies
350 *
351 * In order to solve the dependency problems with the sources and
352 * destinations of phi nodes, we first isolate them by adding parallel
353 * copies to the beginnings and ends of basic blocks. For every block with
354 * phi nodes, we add a parallel copy immediately following the last phi
355 * node that copies the destinations of all of the phi nodes to new SSA
356 * values. We also add a parallel copy to the end of every block that has
357 * a successor with phi nodes that, for each phi node in each successor,
358 * copies the corresponding sorce of the phi node and adjust the phi to
359 * used the destination of the parallel copy.
360 *
361 * In SSA form, each value has exactly one definition. What this does is
362 * ensure that each value used in a phi also has exactly one use. The
363 * destinations of phis are only used by the parallel copy immediately
364 * following the phi nodes and. Thanks to the parallel copy at the end of
365 * the predecessor block, the sources of phi nodes are are the only use of
366 * that value. This allows us to immediately assign all the sources and
367 * destinations of any given phi node to the same register without worrying
368 * about interference at all. We do coalescing to get rid of the parallel
369 * copies where possible.
370 *
371 * Before this pass can be run, we have to iterate over the blocks with
372 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
373 * the ends of blocks exist. We can create the ones at the beginnings as
374 * we go, but the ones at the ends of blocks need to be created ahead of
375 * time because of potential back-edges in the CFG.
376 */
377 static bool
isolate_phi_nodes_block(nir_shader * shader,nir_block * block,struct from_ssa_state * state)378 isolate_phi_nodes_block(nir_shader *shader, nir_block *block, struct from_ssa_state *state)
379 {
380 /* If we don't have any phis, then there's nothing for us to do. */
381 nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
382 if (last_phi == NULL)
383 return true;
384
385 /* If we have phi nodes, we need to create a parallel copy at the
386 * start of this block but after the phi nodes.
387 */
388 nir_parallel_copy_instr *block_pcopy =
389 nir_parallel_copy_instr_create(shader);
390 nir_instr_insert_after(&last_phi->instr, &block_pcopy->instr);
391
392 nir_foreach_phi(phi, block) {
393 nir_foreach_phi_src(src, phi) {
394 if (nir_src_is_undef(src->src))
395 continue;
396
397 nir_parallel_copy_instr *pcopy =
398 get_parallel_copy_at_end_of_block(src->pred);
399 assert(pcopy);
400
401 nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
402 nir_parallel_copy_entry);
403
404 entry->dest_is_reg = false;
405 nir_def_init(&pcopy->instr, &entry->dest.def,
406 phi->def.num_components, phi->def.bit_size);
407 entry->dest.def.divergent = state->consider_divergence && nir_src_is_divergent(&src->src);
408
409 /* We're adding a source to a live instruction so we need to use
410 * nir_instr_init_src()
411 */
412 entry->src_is_reg = false;
413 nir_instr_init_src(&pcopy->instr, &entry->src, src->src.ssa);
414
415 exec_list_push_tail(&pcopy->entries, &entry->node);
416
417 nir_src_rewrite(&src->src, &entry->dest.def);
418 }
419
420 nir_parallel_copy_entry *entry = rzalloc(state->dead_ctx,
421 nir_parallel_copy_entry);
422
423 entry->dest_is_reg = false;
424 nir_def_init(&block_pcopy->instr, &entry->dest.def,
425 phi->def.num_components, phi->def.bit_size);
426 entry->dest.def.divergent = state->consider_divergence && phi->def.divergent;
427
428 nir_def_rewrite_uses(&phi->def, &entry->dest.def);
429
430 /* We're adding a source to a live instruction so we need to use
431 * nir_instr_init_src().
432 *
433 * Note that we do this after we've rewritten all uses of the phi to
434 * entry->def, ensuring that entry->src will be the only remaining use
435 * of the phi.
436 */
437 entry->src_is_reg = false;
438 nir_instr_init_src(&block_pcopy->instr, &entry->src, &phi->def);
439
440 exec_list_push_tail(&block_pcopy->entries, &entry->node);
441 }
442
443 return true;
444 }
445
446 static bool
coalesce_phi_nodes_block(nir_block * block,struct from_ssa_state * state)447 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
448 {
449 nir_foreach_phi(phi, block) {
450 merge_node *dest_node = get_merge_node(&phi->def, state);
451
452 nir_foreach_phi_src(src, phi) {
453 if (nir_src_is_undef(src->src))
454 continue;
455
456 merge_node *src_node = get_merge_node(src->src.ssa, state);
457 if (src_node->set != dest_node->set)
458 merge_merge_sets(dest_node->set, src_node->set);
459 }
460 }
461
462 return true;
463 }
464
465 static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)466 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
467 struct from_ssa_state *state)
468 {
469 nir_foreach_parallel_copy_entry(entry, pcopy) {
470 assert(!entry->src_is_reg);
471 assert(!entry->dest_is_reg);
472 assert(entry->dest.def.num_components ==
473 entry->src.ssa->num_components);
474
475 /* Since load_const instructions are SSA only, we can't replace their
476 * destinations with registers and, therefore, can't coalesce them.
477 */
478 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
479 continue;
480
481 merge_node *src_node = get_merge_node(entry->src.ssa, state);
482 merge_node *dest_node = get_merge_node(&entry->dest.def, state);
483
484 if (src_node->set == dest_node->set)
485 continue;
486
487 /* TODO: We can probably do better here but for now we should be safe if
488 * we just don't coalesce things with different divergence.
489 */
490 if (dest_node->set->divergent != src_node->set->divergent)
491 continue;
492
493 if (!merge_sets_interfere(src_node->set, dest_node->set))
494 merge_merge_sets(src_node->set, dest_node->set);
495 }
496 }
497
498 static bool
aggressive_coalesce_block(nir_block * block,struct from_ssa_state * state)499 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
500 {
501 nir_parallel_copy_instr *start_pcopy = NULL;
502 nir_foreach_instr(instr, block) {
503 /* Phi nodes only ever come at the start of a block */
504 if (instr->type != nir_instr_type_phi) {
505 if (instr->type != nir_instr_type_parallel_copy)
506 break; /* The parallel copy must be right after the phis */
507
508 start_pcopy = nir_instr_as_parallel_copy(instr);
509
510 aggressive_coalesce_parallel_copy(start_pcopy, state);
511
512 break;
513 }
514 }
515
516 nir_parallel_copy_instr *end_pcopy =
517 get_parallel_copy_at_end_of_block(block);
518
519 if (end_pcopy && end_pcopy != start_pcopy)
520 aggressive_coalesce_parallel_copy(end_pcopy, state);
521
522 return true;
523 }
524
525 static nir_def *
decl_reg_for_ssa_def(nir_builder * b,nir_def * def)526 decl_reg_for_ssa_def(nir_builder *b, nir_def *def)
527 {
528 return nir_decl_reg(b, def->num_components, def->bit_size, 0);
529 }
530
531 static void
set_reg_divergent(nir_def * reg,bool divergent)532 set_reg_divergent(nir_def *reg, bool divergent)
533 {
534 nir_intrinsic_instr *decl = nir_reg_get_decl(reg);
535 nir_intrinsic_set_divergent(decl, divergent);
536 }
537
538 void
nir_rewrite_uses_to_load_reg(nir_builder * b,nir_def * old,nir_def * reg)539 nir_rewrite_uses_to_load_reg(nir_builder *b, nir_def *old,
540 nir_def *reg)
541 {
542 nir_foreach_use_including_if_safe(use, old) {
543 b->cursor = nir_before_src(use);
544
545 /* If this is a parallel copy, it can just take the register directly */
546 if (!nir_src_is_if(use) &&
547 nir_src_parent_instr(use)->type == nir_instr_type_parallel_copy) {
548
549 nir_parallel_copy_entry *copy_entry =
550 list_entry(use, nir_parallel_copy_entry, src);
551
552 assert(!copy_entry->src_is_reg);
553 copy_entry->src_is_reg = true;
554 nir_src_rewrite(©_entry->src, reg);
555 continue;
556 }
557
558 /* If the immediate preceding instruction is a load_reg from the same
559 * register, use it instead of creating a new load_reg. This helps when
560 * a register is referenced in multiple sources in the same instruction,
561 * which otherwise would turn into piles of unnecessary moves.
562 */
563 nir_def *load = NULL;
564 if (b->cursor.option == nir_cursor_before_instr) {
565 nir_instr *prev = nir_instr_prev(b->cursor.instr);
566
567 if (prev != NULL && prev->type == nir_instr_type_intrinsic) {
568 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(prev);
569 if (intr->intrinsic == nir_intrinsic_load_reg &&
570 intr->src[0].ssa == reg &&
571 nir_intrinsic_base(intr) == 0)
572 load = &intr->def;
573 }
574 }
575
576 if (load == NULL)
577 load = nir_load_reg(b, reg);
578
579 nir_src_rewrite(use, load);
580 }
581 }
582
583 static bool
def_replace_with_reg(nir_def * def,nir_function_impl * impl)584 def_replace_with_reg(nir_def *def, nir_function_impl *impl)
585 {
586 /* These are handled elsewhere */
587 assert(def->parent_instr->type != nir_instr_type_undef &&
588 def->parent_instr->type != nir_instr_type_load_const);
589
590 nir_builder b = nir_builder_create(impl);
591
592 nir_def *reg = decl_reg_for_ssa_def(&b, def);
593 nir_rewrite_uses_to_load_reg(&b, def, reg);
594
595 if (def->parent_instr->type == nir_instr_type_phi)
596 b.cursor = nir_before_block_after_phis(def->parent_instr->block);
597 else
598 b.cursor = nir_after_instr(def->parent_instr);
599
600 nir_store_reg(&b, def, reg);
601 return true;
602 }
603
604 static nir_def *
reg_for_ssa_def(nir_def * def,struct from_ssa_state * state)605 reg_for_ssa_def(nir_def *def, struct from_ssa_state *state)
606 {
607 struct hash_entry *entry =
608 _mesa_hash_table_search(state->merge_node_table, def);
609 if (entry) {
610 /* In this case, we're part of a phi web. Use the web's register. */
611 merge_node *node = (merge_node *)entry->data;
612
613 /* If it doesn't have a register yet, create one. Note that all of
614 * the things in the merge set should be the same so it doesn't
615 * matter which node's definition we use.
616 */
617 if (node->set->reg_decl == NULL) {
618 node->set->reg_decl = decl_reg_for_ssa_def(&state->builder, def);
619 set_reg_divergent(node->set->reg_decl, node->set->divergent);
620 }
621
622 return node->set->reg_decl;
623 } else {
624 assert(state->phi_webs_only);
625 return NULL;
626 }
627 }
628
629 static void
remove_no_op_phi(nir_instr * instr,struct from_ssa_state * state)630 remove_no_op_phi(nir_instr *instr, struct from_ssa_state *state)
631 {
632 #ifndef NDEBUG
633 nir_phi_instr *phi = nir_instr_as_phi(instr);
634
635 struct hash_entry *entry =
636 _mesa_hash_table_search(state->merge_node_table, &phi->def);
637 assert(entry != NULL);
638 merge_node *node = (merge_node *)entry->data;
639
640 nir_foreach_phi_src(src, phi) {
641 if (nir_src_is_undef(src->src))
642 continue;
643
644 entry = _mesa_hash_table_search(state->merge_node_table, src->src.ssa);
645 assert(entry != NULL);
646 merge_node *src_node = (merge_node *)entry->data;
647 assert(src_node->set == node->set);
648 }
649 #endif
650
651 nir_instr_remove(instr);
652 }
653
654 static bool
rewrite_ssa_def(nir_def * def,void * void_state)655 rewrite_ssa_def(nir_def *def, void *void_state)
656 {
657 struct from_ssa_state *state = void_state;
658
659 nir_def *reg = reg_for_ssa_def(def, state);
660 if (reg == NULL)
661 return true;
662
663 assert(nir_def_is_unused(def));
664
665 /* At this point we know a priori that this SSA def is part of a
666 * nir_dest. We can use exec_node_data to get the dest pointer.
667 */
668 assert(def->parent_instr->type != nir_instr_type_load_const);
669 nir_store_reg(&state->builder, def, reg);
670
671 state->progress = true;
672 return true;
673 }
674
675 static bool
rewrite_src(nir_src * src,void * void_state)676 rewrite_src(nir_src *src, void *void_state)
677 {
678 struct from_ssa_state *state = void_state;
679
680 nir_def *reg = reg_for_ssa_def(src->ssa, state);
681 if (reg == NULL)
682 return true;
683
684 nir_src_rewrite(src, nir_load_reg(&state->builder, reg));
685
686 state->progress = true;
687 return true;
688 }
689
690 /* Resolves ssa definitions to registers. While we're at it, we also
691 * remove phi nodes.
692 */
693 static void
resolve_registers_impl(nir_function_impl * impl,struct from_ssa_state * state)694 resolve_registers_impl(nir_function_impl *impl, struct from_ssa_state *state)
695 {
696 nir_foreach_block_reverse(block, impl) {
697 /* Remove successor phis in case there's a back edge. */
698 for (unsigned i = 0; i < 2; i++) {
699 nir_block *succ = block->successors[i];
700 if (succ == NULL)
701 continue;
702
703 nir_foreach_instr_safe(instr, succ) {
704 if (instr->type != nir_instr_type_phi)
705 break;
706
707 remove_no_op_phi(instr, state);
708 }
709 }
710
711 /* The following if is right after the block, handle its condition as the
712 * last source "in" the block.
713 */
714 nir_if *nif = nir_block_get_following_if(block);
715 if (nif) {
716 state->builder.cursor = nir_before_src(&nif->condition);
717 rewrite_src(&nif->condition, state);
718 }
719
720 nir_foreach_instr_reverse_safe(instr, block) {
721 switch (instr->type) {
722 case nir_instr_type_phi:
723 remove_no_op_phi(instr, state);
724 break;
725
726 case nir_instr_type_parallel_copy: {
727 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr);
728
729 nir_foreach_parallel_copy_entry(entry, pcopy) {
730 assert(!entry->dest_is_reg);
731
732 /* Parallel copy destinations will always be registers */
733 nir_def *reg = reg_for_ssa_def(&entry->dest.def, state);
734 assert(reg != NULL);
735
736 /* We're switching from the nir_def to the nir_src in the dest
737 * union so we need to use nir_instr_init_src() here.
738 */
739 assert(nir_def_is_unused(&entry->dest.def));
740 entry->dest_is_reg = true;
741 nir_instr_init_src(&pcopy->instr, &entry->dest.reg, reg);
742 }
743
744 nir_foreach_parallel_copy_entry(entry, pcopy) {
745 assert(!entry->src_is_reg);
746 nir_def *reg = reg_for_ssa_def(entry->src.ssa, state);
747 if (reg == NULL)
748 continue;
749
750 entry->src_is_reg = true;
751 nir_src_rewrite(&entry->src, reg);
752 }
753 break;
754 }
755
756 default:
757 state->builder.cursor = nir_after_instr(instr);
758 nir_foreach_def(instr, rewrite_ssa_def, state);
759 state->builder.cursor = nir_before_instr(instr);
760 nir_foreach_src(instr, rewrite_src, state);
761 }
762 }
763 }
764 }
765
766 /* Resolves a single parallel copy operation into a sequence of movs
767 *
768 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
769 * Correctness, Code Quality, and Efficiency" by Boissinot et al.
770 * However, I never got the algorithm to work as written, so this version
771 * is slightly modified.
772 *
773 * The algorithm works by playing this little shell game with the values.
774 * We start by recording where every source value is and which source value
775 * each destination value should receive. We then grab any copy whose
776 * destination is "empty", i.e. not used as a source, and do the following:
777 * - Find where its source value currently lives
778 * - Emit the move instruction
779 * - Set the location of the source value to the destination
780 * - Mark the location containing the source value
781 * - Mark the destination as no longer needing to be copied
782 *
783 * When we run out of "empty" destinations, we have a cycle and so we
784 * create a temporary register, copy to that register, and mark the value
785 * we copied as living in that temporary. Now, the cycle is broken, so we
786 * can continue with the above steps.
787 */
788 struct copy_value {
789 bool is_reg;
790 nir_def *ssa;
791 };
792
793 static bool
copy_values_equal(struct copy_value a,struct copy_value b)794 copy_values_equal(struct copy_value a, struct copy_value b)
795 {
796 return a.is_reg == b.is_reg && a.ssa == b.ssa;
797 }
798
799 static bool
copy_value_is_divergent(struct copy_value v)800 copy_value_is_divergent(struct copy_value v)
801 {
802 if (!v.is_reg)
803 return v.ssa->divergent;
804
805 nir_intrinsic_instr *decl = nir_reg_get_decl(v.ssa);
806 return nir_intrinsic_divergent(decl);
807 }
808
809 static void
copy_values(struct from_ssa_state * state,struct copy_value dest,struct copy_value src)810 copy_values(struct from_ssa_state *state, struct copy_value dest, struct copy_value src)
811 {
812 nir_def *val = src.is_reg ? nir_load_reg(&state->builder, src.ssa) : src.ssa;
813
814 assert(!state->consider_divergence || !copy_value_is_divergent(src) || copy_value_is_divergent(dest));
815
816 assert(dest.is_reg);
817 nir_store_reg(&state->builder, val, dest.ssa);
818 }
819
820 static void
resolve_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)821 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
822 struct from_ssa_state *state)
823 {
824 unsigned num_copies = 0;
825 nir_foreach_parallel_copy_entry(entry, pcopy) {
826 /* Sources may be SSA but destinations are always registers */
827 assert(entry->dest_is_reg);
828 if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa)
829 continue;
830
831 num_copies++;
832 }
833
834 if (num_copies == 0) {
835 /* Hooray, we don't need any copies! */
836 nir_instr_remove(&pcopy->instr);
837 exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
838 return;
839 }
840
841 /* The register/source corresponding to the given index */
842 NIR_VLA_ZERO(struct copy_value, values, num_copies * 2);
843
844 /* The current location of a given piece of data. We will use -1 for "null" */
845 NIR_VLA_FILL(int, loc, num_copies * 2, -1);
846
847 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
848 NIR_VLA_FILL(int, pred, num_copies * 2, -1);
849
850 /* The destinations we have yet to properly fill */
851 NIR_VLA(int, to_do, num_copies * 2);
852 int to_do_idx = -1;
853
854 state->builder.cursor = nir_before_instr(&pcopy->instr);
855
856 /* Now we set everything up:
857 * - All values get assigned a temporary index
858 * - Current locations are set from sources
859 * - Predecessors are recorded from sources and destinations
860 */
861 int num_vals = 0;
862 nir_foreach_parallel_copy_entry(entry, pcopy) {
863 /* Sources may be SSA but destinations are always registers */
864 if (entry->src_is_reg && entry->src.ssa == entry->dest.reg.ssa)
865 continue;
866
867 struct copy_value src_value = {
868 .is_reg = entry->src_is_reg,
869 .ssa = entry->src.ssa,
870 };
871
872 int src_idx = -1;
873 for (int i = 0; i < num_vals; ++i) {
874 if (copy_values_equal(values[i], src_value))
875 src_idx = i;
876 }
877 if (src_idx < 0) {
878 src_idx = num_vals++;
879 values[src_idx] = src_value;
880 }
881
882 assert(entry->dest_is_reg);
883 struct copy_value dest_value = {
884 .is_reg = true,
885 .ssa = entry->dest.reg.ssa,
886 };
887
888 int dest_idx = -1;
889 for (int i = 0; i < num_vals; ++i) {
890 if (copy_values_equal(values[i], dest_value)) {
891 /* Each destination of a parallel copy instruction should be
892 * unique. A destination may get used as a source, so we still
893 * have to walk the list. However, the predecessor should not,
894 * at this point, be set yet, so we should have -1 here.
895 */
896 assert(pred[i] == -1);
897 dest_idx = i;
898 }
899 }
900 if (dest_idx < 0) {
901 dest_idx = num_vals++;
902 values[dest_idx] = dest_value;
903 }
904
905 loc[src_idx] = src_idx;
906 pred[dest_idx] = src_idx;
907
908 to_do[++to_do_idx] = dest_idx;
909 }
910
911 /* Currently empty destinations we can go ahead and fill */
912 NIR_VLA(int, ready, num_copies * 2);
913 int ready_idx = -1;
914
915 /* Mark the ones that are ready for copying. We know an index is a
916 * destination if it has a predecessor and it's ready for copying if
917 * it's not marked as containing data.
918 */
919 for (int i = 0; i < num_vals; i++) {
920 if (pred[i] != -1 && loc[i] == -1)
921 ready[++ready_idx] = i;
922 }
923
924 while (1) {
925 while (ready_idx >= 0) {
926 int b = ready[ready_idx--];
927 int a = pred[b];
928 copy_values(state, values[b], values[loc[a]]);
929
930 /* b has been filled, mark it as not needing to be copied */
931 pred[b] = -1;
932
933 /* The next bit only applies if the source and destination have the
934 * same divergence. If they differ (it must be convergent ->
935 * divergent), then we can't guarantee we won't need the convergent
936 * version of it again.
937 */
938 if (!state->consider_divergence ||
939 copy_value_is_divergent(values[a]) == copy_value_is_divergent(values[b])) {
940 /* If a needs to be filled... */
941 if (pred[a] != -1) {
942 /* If any other copies want a they can find it at b */
943 loc[a] = b;
944
945 /* It's ready for copying now */
946 ready[++ready_idx] = a;
947 }
948 }
949 }
950
951 assert(ready_idx < 0);
952 if (to_do_idx < 0)
953 break;
954
955 int b = to_do[to_do_idx--];
956 if (pred[b] == -1)
957 continue;
958
959 /* If we got here, then we don't have any more trivial copies that we
960 * can do. We have to break a cycle, so we create a new temporary
961 * register for that purpose. Normally, if going out of SSA after
962 * register allocation, you would want to avoid creating temporary
963 * registers. However, we are going out of SSA before register
964 * allocation, so we would rather not create extra register
965 * dependencies for the backend to deal with. If it wants, the
966 * backend can coalesce the (possibly multiple) temporaries.
967 *
968 * We can also get here in the case where there is no cycle but our
969 * source value is convergent, is also used as a destination by another
970 * element of the parallel copy, and all the destinations of the
971 * parallel copy which copy from it are divergent. In this case, the
972 * above loop cannot detect that the value has moved due to all the
973 * divergent destinations and we'll end up emitting a copy to a
974 * temporary which never gets used. We can avoid this with additional
975 * tracking or we can just trust the back-end to dead-code the unused
976 * temporary (which is trivial).
977 */
978 assert(num_vals < num_copies * 2);
979 nir_def *reg;
980 if (values[b].is_reg) {
981 nir_intrinsic_instr *decl = nir_reg_get_decl(values[b].ssa);
982 uint8_t num_components = nir_intrinsic_num_components(decl);
983 uint8_t bit_size = nir_intrinsic_bit_size(decl);
984 reg = nir_decl_reg(&state->builder, num_components, bit_size, 0);
985 } else {
986 reg = decl_reg_for_ssa_def(&state->builder, values[b].ssa);
987 }
988 if (state->consider_divergence)
989 set_reg_divergent(reg, copy_value_is_divergent(values[b]));
990
991 values[num_vals] = (struct copy_value){
992 .is_reg = true,
993 .ssa = reg,
994 };
995 copy_values(state, values[num_vals], values[b]);
996 loc[b] = num_vals;
997 ready[++ready_idx] = b;
998 num_vals++;
999 }
1000
1001 nir_instr_remove(&pcopy->instr);
1002 exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
1003 }
1004
1005 /* Resolves the parallel copies in a block. Each block can have at most
1006 * two: One at the beginning, right after all the phi noces, and one at
1007 * the end (or right before the final jump if it exists).
1008 */
1009 static bool
resolve_parallel_copies_block(nir_block * block,struct from_ssa_state * state)1010 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
1011 {
1012 /* At this point, we have removed all of the phi nodes. If a parallel
1013 * copy existed right after the phi nodes in this block, it is now the
1014 * first instruction.
1015 */
1016 nir_instr *first_instr = nir_block_first_instr(block);
1017 if (first_instr == NULL)
1018 return true; /* Empty, nothing to do. */
1019
1020 /* There can be load_reg in the way of the copies... don't be clever. */
1021 nir_foreach_instr_safe(instr, block) {
1022 if (instr->type == nir_instr_type_parallel_copy) {
1023 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(instr);
1024
1025 resolve_parallel_copy(pcopy, state);
1026 }
1027 }
1028
1029 return true;
1030 }
1031
1032 static bool
nir_convert_from_ssa_impl(nir_function_impl * impl,bool phi_webs_only,bool consider_divergence)1033 nir_convert_from_ssa_impl(nir_function_impl *impl,
1034 bool phi_webs_only, bool consider_divergence)
1035 {
1036 nir_shader *shader = impl->function->shader;
1037
1038 struct from_ssa_state state;
1039
1040 state.builder = nir_builder_create(impl);
1041 state.dead_ctx = ralloc_context(NULL);
1042 state.phi_webs_only = phi_webs_only;
1043 state.merge_node_table = _mesa_pointer_hash_table_create(NULL);
1044 state.consider_divergence = consider_divergence;
1045 state.progress = false;
1046 exec_list_make_empty(&state.dead_instrs);
1047
1048 nir_foreach_block(block, impl) {
1049 add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx);
1050 }
1051
1052 nir_foreach_block(block, impl) {
1053 isolate_phi_nodes_block(shader, block, &state);
1054 }
1055
1056 /* Mark metadata as dirty before we ask for liveness analysis */
1057 nir_metadata_preserve(impl, nir_metadata_control_flow);
1058
1059 nir_metadata_require(impl, nir_metadata_instr_index |
1060 nir_metadata_live_defs |
1061 nir_metadata_dominance);
1062
1063 nir_foreach_block(block, impl) {
1064 coalesce_phi_nodes_block(block, &state);
1065 }
1066
1067 nir_foreach_block(block, impl) {
1068 aggressive_coalesce_block(block, &state);
1069 }
1070
1071 resolve_registers_impl(impl, &state);
1072
1073 nir_foreach_block(block, impl) {
1074 resolve_parallel_copies_block(block, &state);
1075 }
1076
1077 nir_metadata_preserve(impl, nir_metadata_control_flow);
1078
1079 /* Clean up dead instructions and the hash tables */
1080 nir_instr_free_list(&state.dead_instrs);
1081 _mesa_hash_table_destroy(state.merge_node_table, NULL);
1082 ralloc_free(state.dead_ctx);
1083 return state.progress;
1084 }
1085
1086 bool
nir_convert_from_ssa(nir_shader * shader,bool phi_webs_only,bool consider_divergence)1087 nir_convert_from_ssa(nir_shader *shader,
1088 bool phi_webs_only, bool consider_divergence)
1089 {
1090 bool progress = false;
1091
1092 nir_foreach_function_impl(impl, shader) {
1093 progress |= nir_convert_from_ssa_impl(impl, phi_webs_only, consider_divergence);
1094 }
1095
1096 return progress;
1097 }
1098
1099 static void
place_phi_read(nir_builder * b,nir_def * reg,nir_def * def,nir_block * block,struct set * visited_blocks)1100 place_phi_read(nir_builder *b, nir_def *reg,
1101 nir_def *def, nir_block *block, struct set *visited_blocks)
1102 {
1103 /* Search already visited blocks to avoid back edges in tree */
1104 if (_mesa_set_search(visited_blocks, block) == NULL) {
1105 /* Try to go up the single-successor tree */
1106 bool all_single_successors = true;
1107 set_foreach(block->predecessors, entry) {
1108 nir_block *pred = (nir_block *)entry->key;
1109 if (pred->successors[0] && pred->successors[1]) {
1110 all_single_successors = false;
1111 break;
1112 }
1113 }
1114
1115 if (all_single_successors) {
1116 /* All predecessors of this block have exactly one successor and it
1117 * is this block so they must eventually lead here without
1118 * intersecting each other. Place the reads in the predecessors
1119 * instead of this block.
1120 */
1121 _mesa_set_add(visited_blocks, block);
1122
1123 set_foreach(block->predecessors, entry) {
1124 place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks);
1125 }
1126 return;
1127 }
1128 }
1129
1130 b->cursor = nir_after_block_before_jump(block);
1131 nir_store_reg(b, def, reg);
1132 }
1133
1134 /** Lower all of the phi nodes in a block to movs to and from a register
1135 *
1136 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
1137 * single block to convert all of its phis to a register and some movs.
1138 * The code that is generated, while not optimal for actual codegen in a
1139 * back-end, is easy to generate, correct, and will turn into the same set of
1140 * phis after you call regs_to_ssa and do some copy propagation. For each phi
1141 * node we do the following:
1142 *
1143 * 1. For each phi instruction in the block, create a new nir_register
1144 *
1145 * 2. Insert movs at the top of the destination block for each phi and
1146 * rewrite all uses of the phi to use the mov.
1147 *
1148 * 3. For each phi source, insert movs in the predecessor block from the phi
1149 * source to the register associated with the phi.
1150 *
1151 * Correctness is guaranteed by the fact that we create a new register for
1152 * each phi and emit movs on both sides of the control-flow edge. Because all
1153 * the phis have SSA destinations (we assert this) and there is a separate
1154 * temporary for each phi, all movs inserted in any particular block have
1155 * unique destinations so the order of operations does not matter.
1156 *
1157 * The one intelligent thing this pass does is that it places the moves from
1158 * the phi sources as high up the predecessor tree as possible instead of in
1159 * the exact predecessor. This means that, in particular, it will crawl into
1160 * the deepest nesting of any if-ladders. In order to ensure that doing so is
1161 * safe, it stops as soon as one of the predecessors has multiple successors.
1162 */
1163 bool
nir_lower_phis_to_regs_block(nir_block * block)1164 nir_lower_phis_to_regs_block(nir_block *block)
1165 {
1166 nir_builder b = nir_builder_create(nir_cf_node_get_function(&block->cf_node));
1167 struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer,
1168 _mesa_key_pointer_equal);
1169
1170 bool progress = false;
1171 nir_foreach_phi_safe(phi, block) {
1172 nir_def *reg = decl_reg_for_ssa_def(&b, &phi->def);
1173 set_reg_divergent(reg, phi->def.divergent);
1174
1175 b.cursor = nir_after_instr(&phi->instr);
1176 nir_def_rewrite_uses(&phi->def, nir_load_reg(&b, reg));
1177
1178 nir_foreach_phi_src(src, phi) {
1179
1180 _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block);
1181 place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks);
1182 _mesa_set_clear(visited_blocks, NULL);
1183 }
1184
1185 nir_instr_remove(&phi->instr);
1186
1187 progress = true;
1188 }
1189
1190 _mesa_set_destroy(visited_blocks, NULL);
1191
1192 return progress;
1193 }
1194
1195 struct ssa_def_to_reg_state {
1196 nir_function_impl *impl;
1197 bool progress;
1198 };
1199
1200 static bool
def_replace_with_reg_state(nir_def * def,void * void_state)1201 def_replace_with_reg_state(nir_def *def, void *void_state)
1202 {
1203 struct ssa_def_to_reg_state *state = void_state;
1204 state->progress |= def_replace_with_reg(def, state->impl);
1205 return true;
1206 }
1207
1208 static bool
ssa_def_is_local_to_block(nir_def * def,UNUSED void * state)1209 ssa_def_is_local_to_block(nir_def *def, UNUSED void *state)
1210 {
1211 nir_block *block = def->parent_instr->block;
1212 nir_foreach_use_including_if(use_src, def) {
1213 if (nir_src_is_if(use_src) ||
1214 nir_src_parent_instr(use_src)->block != block ||
1215 nir_src_parent_instr(use_src)->type == nir_instr_type_phi) {
1216 return false;
1217 }
1218 }
1219
1220 return true;
1221 }
1222
1223 static bool
instr_is_load_new_reg(nir_instr * instr,unsigned old_num_ssa)1224 instr_is_load_new_reg(nir_instr *instr, unsigned old_num_ssa)
1225 {
1226 if (instr->type != nir_instr_type_intrinsic)
1227 return false;
1228
1229 nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr);
1230 if (load->intrinsic != nir_intrinsic_load_reg)
1231 return false;
1232
1233 nir_def *reg = load->src[0].ssa;
1234
1235 return reg->index >= old_num_ssa;
1236 }
1237
1238 /** Lower all of the SSA defs in a block to registers
1239 *
1240 * This performs the very simple operation of blindly replacing all of the SSA
1241 * defs in the given block with registers. If not used carefully, this may
1242 * result in phi nodes with register sources which is technically invalid.
1243 * Fortunately, the register-based into-SSA pass handles them anyway.
1244 */
1245 bool
nir_lower_ssa_defs_to_regs_block(nir_block * block)1246 nir_lower_ssa_defs_to_regs_block(nir_block *block)
1247 {
1248 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
1249 nir_builder b = nir_builder_create(impl);
1250
1251 struct ssa_def_to_reg_state state = {
1252 .impl = impl,
1253 .progress = false,
1254 };
1255
1256 /* Save off the current number of SSA defs so we can detect which regs
1257 * we've added vs. regs that were already there.
1258 */
1259 const unsigned num_ssa = impl->ssa_alloc;
1260
1261 nir_foreach_instr_safe(instr, block) {
1262 if (instr->type == nir_instr_type_undef) {
1263 /* Undefs are just a read of something never written. */
1264 nir_undef_instr *undef = nir_instr_as_undef(instr);
1265 nir_def *reg = decl_reg_for_ssa_def(&b, &undef->def);
1266 nir_rewrite_uses_to_load_reg(&b, &undef->def, reg);
1267 } else if (instr->type == nir_instr_type_load_const) {
1268 nir_load_const_instr *load = nir_instr_as_load_const(instr);
1269 nir_def *reg = decl_reg_for_ssa_def(&b, &load->def);
1270 nir_rewrite_uses_to_load_reg(&b, &load->def, reg);
1271
1272 b.cursor = nir_after_instr(instr);
1273 nir_store_reg(&b, &load->def, reg);
1274 } else if (instr_is_load_new_reg(instr, num_ssa)) {
1275 /* Calls to nir_rewrite_uses_to_load_reg() may place new load_reg
1276 * intrinsics in this block with new SSA destinations. To avoid
1277 * infinite recursion, we don't want to lower any newly placed
1278 * load_reg instructions to yet anoter load/store_reg.
1279 */
1280 } else if (nir_foreach_def(instr, ssa_def_is_local_to_block, NULL)) {
1281 /* If the SSA def produced by this instruction is only in the block
1282 * in which it is defined and is not used by ifs or phis, then we
1283 * don't have a reason to convert it to a register.
1284 */
1285 } else {
1286 nir_foreach_def(instr, def_replace_with_reg_state, &state);
1287 }
1288 }
1289
1290 return state.progress;
1291 }
1292