• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  * SPDX-License-Identifier: MIT
5  *
6  * based in part on anv driver which is:
7  * Copyright © 2015 Intel Corporation
8  */
9 
10 #include "tu_cmd_buffer.h"
11 
12 #include "vk_common_entrypoints.h"
13 #include "vk_render_pass.h"
14 #include "vk_util.h"
15 
16 #include "tu_buffer.h"
17 #include "tu_clear_blit.h"
18 #include "tu_cs.h"
19 #include "tu_event.h"
20 #include "tu_image.h"
21 #include "tu_tracepoints.h"
22 
23 #include "common/freedreno_gpu_event.h"
24 #include "common/freedreno_lrz.h"
25 
26 static void
tu_clone_trace_range(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace_iterator begin,struct u_trace_iterator end)27 tu_clone_trace_range(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
28                      struct u_trace_iterator begin, struct u_trace_iterator end)
29 {
30    if (u_trace_iterator_equal(begin, end))
31       return;
32 
33    tu_cs_emit_wfi(cs);
34    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
35    u_trace_clone_append(begin, end, &cmd->trace, cs, tu_copy_buffer);
36 }
37 
38 static void
tu_clone_trace(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct u_trace * trace)39 tu_clone_trace(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
40                struct u_trace *trace)
41 {
42    tu_clone_trace_range(cmd, cs, u_trace_begin_iterator(trace),
43          u_trace_end_iterator(trace));
44 }
45 
46 template <chip CHIP>
47 void
tu_emit_raw_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum vgt_event_type event,bool needs_seqno)48 tu_emit_raw_event_write(struct tu_cmd_buffer *cmd,
49                         struct tu_cs *cs,
50                         enum vgt_event_type event,
51                         bool needs_seqno)
52 {
53    if (CHIP == A6XX) {
54       tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, needs_seqno ? 4 : 1);
55       tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(event));
56    } else {
57       tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, needs_seqno ? 4 : 1);
58       tu_cs_emit(cs,
59          CP_EVENT_WRITE7_0(.event = event,
60                            .write_src = EV_WRITE_USER_32B,
61                            .write_dst = EV_DST_RAM,
62                            .write_enabled = needs_seqno).value);
63    }
64 
65    if (needs_seqno) {
66       tu_cs_emit_qw(cs, global_iova(cmd, seqno_dummy));
67       tu_cs_emit(cs, 0);
68    }
69 }
70 TU_GENX(tu_emit_raw_event_write);
71 
72 template <chip CHIP>
73 void
tu_emit_event_write(struct tu_cmd_buffer * cmd,struct tu_cs * cs,enum fd_gpu_event event)74 tu_emit_event_write(struct tu_cmd_buffer *cmd,
75                     struct tu_cs *cs,
76                     enum fd_gpu_event event)
77 {
78    struct fd_gpu_event_info event_info = fd_gpu_events<CHIP>[event];
79    tu_emit_raw_event_write<CHIP>(cmd, cs, event_info.raw_event,
80                                  event_info.needs_seqno);
81 }
82 TU_GENX(tu_emit_event_write);
83 
84 /* Emits the tessfactor address to the top-level CS if it hasn't been already.
85  * Updating this register requires a WFI if outstanding drawing is using it, but
86  * tu6_init_hardware() will have WFIed before we started and no other draws
87  * could be using the tessfactor address yet since we only emit one per cmdbuf.
88  */
89 template <chip CHIP>
90 static void
tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer * cmd)91 tu6_lazy_emit_tessfactor_addr(struct tu_cmd_buffer *cmd)
92 {
93    if (cmd->state.tessfactor_addr_set)
94       return;
95 
96    tu_cs_emit_regs(&cmd->cs, PC_TESSFACTOR_ADDR(CHIP, .qword = cmd->device->tess_bo->iova));
97    /* Updating PC_TESSFACTOR_ADDR could race with the next draw which uses it. */
98    cmd->state.cache.flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
99    cmd->state.tessfactor_addr_set = true;
100 }
101 
102 static void
tu6_lazy_init_vsc(struct tu_cmd_buffer * cmd)103 tu6_lazy_init_vsc(struct tu_cmd_buffer *cmd)
104 {
105    struct tu_device *dev = cmd->device;
106    uint32_t num_vsc_pipes = dev->physical_device->info->num_vsc_pipes;
107 
108    /* VSC buffers:
109     * use vsc pitches from the largest values used so far with this device
110     * if there hasn't been overflow, there will already be a scratch bo
111     * allocated for these sizes
112     *
113     * if overflow is detected, the stream size is increased by 2x
114     */
115    mtx_lock(&dev->mutex);
116 
117    struct tu6_global *global = dev->global_bo_map;
118 
119    uint32_t vsc_draw_overflow = global->vsc_draw_overflow;
120    uint32_t vsc_prim_overflow = global->vsc_prim_overflow;
121 
122    if (vsc_draw_overflow >= dev->vsc_draw_strm_pitch)
123       dev->vsc_draw_strm_pitch = (dev->vsc_draw_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
124 
125    if (vsc_prim_overflow >= dev->vsc_prim_strm_pitch)
126       dev->vsc_prim_strm_pitch = (dev->vsc_prim_strm_pitch - VSC_PAD) * 2 + VSC_PAD;
127 
128    cmd->vsc_prim_strm_pitch = dev->vsc_prim_strm_pitch;
129    cmd->vsc_draw_strm_pitch = dev->vsc_draw_strm_pitch;
130 
131    mtx_unlock(&dev->mutex);
132 
133    struct tu_bo *vsc_bo;
134    uint32_t size0 = cmd->vsc_prim_strm_pitch * num_vsc_pipes +
135                     cmd->vsc_draw_strm_pitch * num_vsc_pipes;
136 
137    tu_get_scratch_bo(dev, size0 + num_vsc_pipes * 4, &vsc_bo);
138 
139    cmd->vsc_draw_strm_va = vsc_bo->iova + cmd->vsc_prim_strm_pitch * num_vsc_pipes;
140    cmd->vsc_draw_strm_size_va = vsc_bo->iova + size0;
141    cmd->vsc_prim_strm_va = vsc_bo->iova;
142 }
143 
144 template <chip CHIP>
145 static void
tu_emit_vsc(struct tu_cmd_buffer * cmd,struct tu_cs * cs)146 tu_emit_vsc(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
147 {
148    if (CHIP == A6XX) {
149       tu_cs_emit_regs(cs,
150                      A6XX_VSC_DRAW_STRM_SIZE_ADDRESS(.qword = cmd->vsc_draw_strm_size_va));
151       tu_cs_emit_regs(cs,
152                      A6XX_VSC_PRIM_STRM_ADDRESS(.qword = cmd->vsc_prim_strm_va));
153       tu_cs_emit_regs(
154          cs, A6XX_VSC_DRAW_STRM_ADDRESS(.qword = cmd->vsc_draw_strm_va));
155    } else {
156       tu_cs_emit_pkt7(cs, CP_SET_PSEUDO_REG, 3 * 3);
157       tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(DRAW_STRM_ADDRESS));
158       tu_cs_emit_qw(cs, cmd->vsc_draw_strm_va);
159       tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(DRAW_STRM_SIZE_ADDRESS));
160       tu_cs_emit_qw(cs, cmd->vsc_draw_strm_size_va);
161       tu_cs_emit(cs, A6XX_CP_SET_PSEUDO_REG__0_PSEUDO_REG(PRIM_STRM_ADDRESS));
162       tu_cs_emit_qw(cs, cmd->vsc_prim_strm_va);
163    }
164 
165    cmd->vsc_initialized = true;
166 }
167 
168 /* This workaround, copied from the blob, seems to ensure that the BVH node
169  * cache is invalidated so that we don't read stale values when multiple BVHs
170  * share the same address.
171  */
172 static void
tu_emit_rt_workaround(struct tu_cmd_buffer * cmd,struct tu_cs * cs)173 tu_emit_rt_workaround(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
174 {
175    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
176    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_RT_WA_START);
177 
178    tu_cs_emit_regs(cs, A7XX_SP_CS_UNKNOWN_A9BE(.dword = 0x10000));
179    tu_cs_emit_regs(cs, A7XX_SP_FS_UNKNOWN_A9AB(.dword = 0x10000));
180    tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
181    tu_cs_emit_regs(cs, A7XX_SP_CS_UNKNOWN_A9BE(.dword = 0));
182    tu_cs_emit_regs(cs, A7XX_SP_FS_UNKNOWN_A9AB(.dword = 0));
183    tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
184    tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
185    tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
186    tu_emit_event_write<A7XX>(cmd, cs, FD_DUMMY_EVENT);
187 
188    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
189    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_RT_WA_END);
190 }
191 
192 template <chip CHIP>
193 static void
tu6_emit_flushes(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,struct tu_cache_state * cache)194 tu6_emit_flushes(struct tu_cmd_buffer *cmd_buffer,
195                  struct tu_cs *cs,
196                  struct tu_cache_state *cache)
197 {
198    BITMASK_ENUM(tu_cmd_flush_bits) flushes = cache->flush_bits;
199    cache->flush_bits = 0;
200 
201    if (TU_DEBUG(FLUSHALL))
202       flushes |= TU_CMD_FLAG_ALL_CLEAN | TU_CMD_FLAG_ALL_INVALIDATE;
203 
204    if (TU_DEBUG(SYNCDRAW))
205       flushes |= TU_CMD_FLAG_WAIT_MEM_WRITES |
206                  TU_CMD_FLAG_WAIT_FOR_IDLE |
207                  TU_CMD_FLAG_WAIT_FOR_ME;
208 
209    /* Experiments show that invalidating CCU while it still has data in it
210     * doesn't work, so make sure to always flush before invalidating in case
211     * any data remains that hasn't yet been made available through a barrier.
212     * However it does seem to work for UCHE.
213     */
214    if (flushes & (TU_CMD_FLAG_CCU_CLEAN_COLOR |
215                   TU_CMD_FLAG_CCU_INVALIDATE_COLOR))
216       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_COLOR);
217    if (flushes & (TU_CMD_FLAG_CCU_CLEAN_DEPTH |
218                   TU_CMD_FLAG_CCU_INVALIDATE_DEPTH))
219       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_DEPTH);
220    if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_COLOR)
221       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_COLOR);
222    if (flushes & TU_CMD_FLAG_CCU_INVALIDATE_DEPTH)
223       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_INVALIDATE_DEPTH);
224    if (flushes & TU_CMD_FLAG_CACHE_CLEAN)
225       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_CLEAN);
226    if (flushes & TU_CMD_FLAG_CACHE_INVALIDATE)
227       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CACHE_INVALIDATE);
228    if (flushes & TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE) {
229       tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
230             .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
231             .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,
232       ));
233    }
234    if (CHIP >= A7XX && flushes & TU_CMD_FLAG_BLIT_CACHE_CLEAN)
235       /* On A7XX, blit cache flushes are required to ensure blit writes are visible
236        * via UCHE. This isn't necessary on A6XX, all writes should be visible implictly.
237        */
238       tu_emit_event_write<CHIP>(cmd_buffer, cs, FD_CCU_CLEAN_BLIT_CACHE);
239    if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_CCHE_INVALIDATE) &&
240        /* Invalidating UCHE seems to also invalidate CCHE */
241        !(flushes & TU_CMD_FLAG_CACHE_INVALIDATE))
242       tu_cs_emit_pkt7(cs, CP_CCHE_INVALIDATE, 0);
243    if (CHIP >= A7XX && (flushes & TU_CMD_FLAG_RTU_INVALIDATE) &&
244        cmd_buffer->device->physical_device->info->a7xx.has_rt_workaround)
245       tu_emit_rt_workaround(cmd_buffer, cs);
246    if (flushes & TU_CMD_FLAG_WAIT_MEM_WRITES)
247       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
248    if (flushes & TU_CMD_FLAG_WAIT_FOR_IDLE)
249       tu_cs_emit_wfi(cs);
250    if (flushes & TU_CMD_FLAG_WAIT_FOR_ME)
251       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
252 }
253 
254 /* "Normal" cache flushes outside the renderpass, that don't require any special handling */
255 template <chip CHIP>
256 void
tu_emit_cache_flush(struct tu_cmd_buffer * cmd_buffer)257 tu_emit_cache_flush(struct tu_cmd_buffer *cmd_buffer)
258 {
259    tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->cs, &cmd_buffer->state.cache);
260 }
261 TU_GENX(tu_emit_cache_flush);
262 
263 /* Renderpass cache flushes inside the draw_cs */
264 template <chip CHIP>
265 void
tu_emit_cache_flush_renderpass(struct tu_cmd_buffer * cmd_buffer)266 tu_emit_cache_flush_renderpass(struct tu_cmd_buffer *cmd_buffer)
267 {
268    if (!cmd_buffer->state.renderpass_cache.flush_bits &&
269        likely(!tu_env.debug))
270       return;
271    tu6_emit_flushes<CHIP>(cmd_buffer, &cmd_buffer->draw_cs,
272                     &cmd_buffer->state.renderpass_cache);
273    if (cmd_buffer->state.renderpass_cache.flush_bits &
274        TU_CMD_FLAG_BLIT_CACHE_CLEAN) {
275       cmd_buffer->state.blit_cache_cleaned = true;
276    }
277 }
278 TU_GENX(tu_emit_cache_flush_renderpass);
279 
280 template <chip CHIP>
281 static void
emit_rb_ccu_cntl(struct tu_cs * cs,struct tu_device * dev,bool gmem)282 emit_rb_ccu_cntl(struct tu_cs *cs, struct tu_device *dev, bool gmem)
283 {
284    /* The CCUs are a cache that allocates memory from GMEM while facilitating
285     * framebuffer caching for sysmem rendering. The CCU is split into two parts,
286     * one for color and one for depth. The size and offset of these in GMEM can
287     * be configured separately.
288     *
289     * The most common configuration for the CCU is to occupy as much as possible
290     * of GMEM (CACHE_SIZE_FULL) during sysmem rendering as GMEM is unused. On
291     * the other hand, when rendering to GMEM, the CCUs can be left enabled at
292     * any configuration as they don't interfere with GMEM rendering and only
293     * overwrite GMEM when sysmem operations are performed.
294     *
295     * The vast majority of GMEM rendering doesn't need any sysmem operations
296     * but there are some cases where it is required. For example, when the
297     * framebuffer isn't aligned to the tile size or with certain MSAA resolves.
298     *
299     * To correctly handle these cases, we need to be able to switch between
300     * sysmem and GMEM rendering. We do this by allocating a carveout at the
301     * end of GMEM for the color CCU (as none of these operations are depth)
302     * which the color CCU offset is set to and the GMEM size available to the
303     * GMEM layout calculations is adjusted accordingly.
304     */
305    uint32_t color_offset = gmem ? dev->physical_device->ccu_offset_gmem
306                                 : dev->physical_device->ccu_offset_bypass;
307 
308    uint32_t color_offset_hi = color_offset >> 21;
309    color_offset &= 0x1fffff;
310 
311    uint32_t depth_offset = gmem ? 0
312                                 : dev->physical_device->ccu_depth_offset_bypass;
313 
314    uint32_t depth_offset_hi = depth_offset >> 21;
315    depth_offset &= 0x1fffff;
316 
317    enum a6xx_ccu_cache_size color_cache_size = !gmem ? CCU_CACHE_SIZE_FULL : !gmem ? CCU_CACHE_SIZE_FULL :
318       (a6xx_ccu_cache_size)(dev->physical_device->info->a6xx.gmem_ccu_color_cache_fraction);
319 
320    if (CHIP == A7XX) {
321       tu_cs_emit_regs(cs, A7XX_RB_CCU_CNTL2(
322          .depth_offset_hi = depth_offset_hi,
323          .color_offset_hi = color_offset_hi,
324          .depth_cache_size = CCU_CACHE_SIZE_FULL,
325          .depth_offset = depth_offset,
326          .color_cache_size = color_cache_size,
327          .color_offset = color_offset
328       ));
329 
330       if (dev->physical_device->info->a7xx.has_gmem_vpc_attr_buf) {
331          tu_cs_emit_regs(cs,
332             A7XX_VPC_ATTR_BUF_SIZE_GMEM(
333                   .size_gmem =
334                      gmem ? dev->physical_device->vpc_attr_buf_size_gmem
335                           : dev->physical_device->vpc_attr_buf_size_bypass),
336             A7XX_VPC_ATTR_BUF_BASE_GMEM(
337                   .base_gmem =
338                      gmem ? dev->physical_device->vpc_attr_buf_offset_gmem
339                           : dev->physical_device->vpc_attr_buf_offset_bypass), );
340          tu_cs_emit_regs(cs,
341             A7XX_PC_ATTR_BUF_SIZE_GMEM(
342                   .size_gmem =
343                      gmem ? dev->physical_device->vpc_attr_buf_size_gmem
344                           : dev->physical_device->vpc_attr_buf_size_bypass), );
345       }
346    } else {
347       tu_cs_emit_regs(cs, RB_CCU_CNTL(CHIP,
348          .gmem_fast_clear_disable =
349             !dev->physical_device->info->a6xx.has_gmem_fast_clear,
350          .concurrent_resolve =
351             dev->physical_device->info->a6xx.concurrent_resolve,
352          .depth_offset_hi = 0,
353          .color_offset_hi = color_offset_hi,
354          .depth_cache_size = CCU_CACHE_SIZE_FULL,
355          .depth_offset = 0,
356          .color_cache_size = color_cache_size,
357          .color_offset = color_offset
358       ));
359    }
360 }
361 
362 /* Cache flushes for things that use the color/depth read/write path (i.e.
363  * blits and draws). This deals with changing CCU state as well as the usual
364  * cache flushing.
365  */
366 template <chip CHIP>
367 void
tu_emit_cache_flush_ccu(struct tu_cmd_buffer * cmd_buffer,struct tu_cs * cs,enum tu_cmd_ccu_state ccu_state)368 tu_emit_cache_flush_ccu(struct tu_cmd_buffer *cmd_buffer,
369                         struct tu_cs *cs,
370                         enum tu_cmd_ccu_state ccu_state)
371 {
372    assert(ccu_state != TU_CMD_CCU_UNKNOWN);
373    /* It's unsafe to flush inside condition because we clear flush_bits */
374    assert(!cs->cond_stack_depth);
375 
376    /* Changing CCU state must involve invalidating the CCU. In sysmem mode,
377     * the CCU may also contain data that we haven't flushed out yet, so we
378     * also need to flush. Also, in order to program RB_CCU_CNTL, we need to
379     * emit a WFI as it isn't pipelined.
380     *
381     * Note: On A7XX, with the introduction of RB_CCU_CNTL2, we no longer need
382     * to emit a WFI when changing a subset of CCU state.
383     */
384    if (ccu_state != cmd_buffer->state.ccu_state) {
385       if (cmd_buffer->state.ccu_state != TU_CMD_CCU_GMEM) {
386          cmd_buffer->state.cache.flush_bits |=
387             TU_CMD_FLAG_CCU_CLEAN_COLOR |
388             TU_CMD_FLAG_CCU_CLEAN_DEPTH;
389          cmd_buffer->state.cache.pending_flush_bits &= ~(
390             TU_CMD_FLAG_CCU_CLEAN_COLOR |
391             TU_CMD_FLAG_CCU_CLEAN_DEPTH);
392       }
393       cmd_buffer->state.cache.flush_bits |=
394          TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
395          TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
396          (CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0);
397       cmd_buffer->state.cache.pending_flush_bits &= ~(
398          TU_CMD_FLAG_CCU_INVALIDATE_COLOR |
399          TU_CMD_FLAG_CCU_INVALIDATE_DEPTH |
400          (CHIP == A6XX ? TU_CMD_FLAG_WAIT_FOR_IDLE : 0));
401    }
402 
403    tu6_emit_flushes<CHIP>(cmd_buffer, cs, &cmd_buffer->state.cache);
404 
405    if (ccu_state != cmd_buffer->state.ccu_state) {
406       emit_rb_ccu_cntl<CHIP>(cs, cmd_buffer->device,
407                              ccu_state == TU_CMD_CCU_GMEM);
408       cmd_buffer->state.ccu_state = ccu_state;
409    }
410 }
411 TU_GENX(tu_emit_cache_flush_ccu);
412 
413 template <chip CHIP>
414 static void
tu6_emit_zs(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)415 tu6_emit_zs(struct tu_cmd_buffer *cmd,
416             const struct tu_subpass *subpass,
417             struct tu_cs *cs)
418 {
419    const uint32_t a = subpass->depth_stencil_attachment.attachment;
420    if (a == VK_ATTACHMENT_UNUSED) {
421       tu_cs_emit_regs(cs,
422                       RB_DEPTH_BUFFER_INFO(CHIP, .depth_format = DEPTH6_NONE),
423                       A6XX_RB_DEPTH_BUFFER_PITCH(0),
424                       A6XX_RB_DEPTH_BUFFER_ARRAY_PITCH(0),
425                       A6XX_RB_DEPTH_BUFFER_BASE(0),
426                       A6XX_RB_DEPTH_BUFFER_BASE_GMEM(0));
427 
428       tu_cs_emit_regs(cs,
429                       A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = DEPTH6_NONE));
430 
431       tu_cs_emit_regs(cs, RB_STENCIL_INFO(CHIP, 0));
432 
433       return;
434    }
435 
436    const struct tu_image_view *iview = cmd->state.attachments[a];
437    const struct tu_render_pass_attachment *attachment =
438       &cmd->state.pass->attachments[a];
439    enum a6xx_depth_format fmt = tu6_pipe2depth(attachment->format);
440 
441    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_BUFFER_INFO, 6);
442    tu_cs_emit(cs, RB_DEPTH_BUFFER_INFO(CHIP,
443                      .depth_format = fmt,
444                      .tilemode = TILE6_3,
445                      .losslesscompen = iview->view.ubwc_enabled,
446                      ).value);
447    if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT)
448       tu_cs_image_depth_ref(cs, iview, 0);
449    else
450       tu_cs_image_ref(cs, &iview->view, 0);
451    tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
452 
453    tu_cs_emit_regs(cs,
454                    A6XX_GRAS_SU_DEPTH_BUFFER_INFO(.depth_format = fmt));
455 
456    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_FLAG_BUFFER_BASE, 3);
457    tu_cs_image_flag_ref(cs, &iview->view, 0);
458 
459    if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
460        attachment->format == VK_FORMAT_S8_UINT) {
461 
462       tu_cs_emit_pkt4(cs, REG_A6XX_RB_STENCIL_INFO, 6);
463       tu_cs_emit(cs, RB_STENCIL_INFO(CHIP,
464                         .separate_stencil = true,
465                         .tilemode = TILE6_3,
466                         ).value);
467       if (attachment->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
468          tu_cs_image_stencil_ref(cs, iview, 0);
469          tu_cs_emit(cs, tu_attachment_gmem_offset_stencil(cmd, attachment, 0));
470       } else {
471          tu_cs_image_ref(cs, &iview->view, 0);
472          tu_cs_emit(cs, tu_attachment_gmem_offset(cmd, attachment, 0));
473       }
474    } else {
475       tu_cs_emit_regs(cs,
476                      RB_STENCIL_INFO(CHIP, 0));
477    }
478 }
479 
480 template <chip CHIP>
481 static void
tu6_emit_mrt(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)482 tu6_emit_mrt(struct tu_cmd_buffer *cmd,
483              const struct tu_subpass *subpass,
484              struct tu_cs *cs)
485 {
486    const struct tu_framebuffer *fb = cmd->state.framebuffer;
487 
488    enum a6xx_format mrt0_format = FMT6_NONE;
489 
490    uint32_t written = 0;
491    for (uint32_t i = 0; i < subpass->color_count; ++i) {
492       uint32_t a = subpass->color_attachments[i].attachment;
493       unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i];
494       if (a == VK_ATTACHMENT_UNUSED ||
495           remapped == MESA_VK_ATTACHMENT_UNUSED)
496          continue;
497 
498       const struct tu_image_view *iview = cmd->state.attachments[a];
499 
500       tu_cs_emit_regs(cs,
501          RB_MRT_BUF_INFO(CHIP, remapped, .dword = iview->view.RB_MRT_BUF_INFO),
502          A6XX_RB_MRT_PITCH(remapped, iview->view.pitch),
503          A6XX_RB_MRT_ARRAY_PITCH(remapped, iview->view.layer_size),
504          A6XX_RB_MRT_BASE(remapped, .qword = tu_layer_address(&iview->view, 0)),
505          A6XX_RB_MRT_BASE_GMEM(remapped,
506             tu_attachment_gmem_offset(cmd, &cmd->state.pass->attachments[a], 0)
507          ),
508       );
509 
510       tu_cs_emit_regs(cs,
511                       A6XX_SP_FS_MRT_REG(remapped, .dword = iview->view.SP_FS_MRT_REG));
512 
513       tu_cs_emit_pkt4(cs, REG_A6XX_RB_MRT_FLAG_BUFFER_ADDR(remapped), 3);
514       tu_cs_image_flag_ref(cs, &iview->view, 0);
515 
516       if (remapped == 0)
517          mrt0_format = (enum a6xx_format) (iview->view.SP_FS_MRT_REG & 0xff);
518 
519       written |= 1u << remapped;
520    }
521 
522    u_foreach_bit (i, ~written) {
523       if (i >= subpass->color_count)
524          break;
525 
526       /* From the VkPipelineRenderingCreateInfo definition:
527        *
528        *    Valid formats indicate that an attachment can be used - but it
529        *    is still valid to set the attachment to NULL when beginning
530        *    rendering.
531        *
532        * This means that with dynamic rendering, pipelines may write to
533        * some attachments that are UNUSED here. Setting the format to 0
534        * here should prevent them from writing to anything. This also seems
535        * to also be required for alpha-to-coverage which can use the alpha
536        * value for an otherwise-unused attachment.
537        */
538        tu_cs_emit_regs(cs,
539          RB_MRT_BUF_INFO(CHIP, i),
540          A6XX_RB_MRT_PITCH(i),
541          A6XX_RB_MRT_ARRAY_PITCH(i),
542          A6XX_RB_MRT_BASE(i),
543          A6XX_RB_MRT_BASE_GMEM(i),
544        );
545 
546        tu_cs_emit_regs(cs,
547                        A6XX_SP_FS_MRT_REG(i, .dword = 0));
548    }
549 
550    tu_cs_emit_regs(cs, A6XX_GRAS_LRZ_MRT_BUF_INFO_0(.color_format = mrt0_format));
551 
552    const bool dither = subpass->legacy_dithering_enabled;
553    const uint32_t dither_cntl =
554       A6XX_RB_DITHER_CNTL(
555             .dither_mode_mrt0 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
556             .dither_mode_mrt1 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
557             .dither_mode_mrt2 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
558             .dither_mode_mrt3 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
559             .dither_mode_mrt4 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
560             .dither_mode_mrt5 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
561             .dither_mode_mrt6 = dither ? DITHER_ALWAYS : DITHER_DISABLE,
562             .dither_mode_mrt7 = dither ? DITHER_ALWAYS : DITHER_DISABLE, )
563          .value;
564    tu_cs_emit_regs(cs, A6XX_RB_DITHER_CNTL(.dword = dither_cntl));
565    if (CHIP >= A7XX) {
566       tu_cs_emit_regs(cs, A7XX_SP_DITHER_CNTL(.dword = dither_cntl));
567    }
568 
569    tu_cs_emit_regs(cs,
570                    A6XX_RB_SRGB_CNTL(.dword = subpass->srgb_cntl));
571    tu_cs_emit_regs(cs,
572                    A6XX_SP_SRGB_CNTL(.dword = subpass->srgb_cntl));
573 
574    unsigned layers = MAX2(fb->layers, util_logbase2(subpass->multiview_mask) + 1);
575    tu_cs_emit_regs(cs, A6XX_GRAS_MAX_LAYER_INDEX(layers - 1));
576 }
577 
578 struct tu_bin_size_params {
579    enum a6xx_render_mode render_mode;
580    bool force_lrz_write_dis;
581    enum a6xx_buffers_location buffers_location;
582    enum a6xx_lrz_feedback_mask lrz_feedback_zmode_mask;
583 };
584 
585 template <chip CHIP>
586 static void
tu6_emit_bin_size(struct tu_cs * cs,uint32_t bin_w,uint32_t bin_h,struct tu_bin_size_params && p)587 tu6_emit_bin_size(struct tu_cs *cs,
588                   uint32_t bin_w,
589                   uint32_t bin_h,
590                   struct tu_bin_size_params &&p)
591 {
592    if (CHIP == A6XX) {
593       tu_cs_emit_regs(
594          cs, A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
595                                    .binh = bin_h,
596                                    .render_mode = p.render_mode,
597                                    .force_lrz_write_dis = p.force_lrz_write_dis,
598                                    .buffers_location = p.buffers_location,
599                                    .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
600    } else {
601       tu_cs_emit_regs(cs,
602                       A6XX_GRAS_BIN_CONTROL(.binw = bin_w,
603                                             .binh = bin_h,
604                                             .render_mode = p.render_mode,
605                                             .force_lrz_write_dis = p.force_lrz_write_dis,
606                                             .lrz_feedback_zmode_mask =
607                                                p.lrz_feedback_zmode_mask, ));
608    }
609 
610    tu_cs_emit_regs(cs, RB_BIN_CONTROL(CHIP,
611                         .binw = bin_w,
612                         .binh = bin_h,
613                         .render_mode = p.render_mode,
614                         .force_lrz_write_dis = p.force_lrz_write_dis,
615                         .buffers_location = p.buffers_location,
616                         .lrz_feedback_zmode_mask = p.lrz_feedback_zmode_mask, ));
617 
618    /* no flag for RB_BIN_CONTROL2... */
619    tu_cs_emit_regs(cs,
620                    A6XX_RB_BIN_CONTROL2(.binw = bin_w,
621                                         .binh = bin_h));
622 }
623 
624 template <chip CHIP>
625 static void
626 tu6_emit_render_cntl(struct tu_cmd_buffer *cmd,
627                      const struct tu_subpass *subpass,
628                      struct tu_cs *cs,
629                      bool binning);
630 
631 template <>
632 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)633 tu6_emit_render_cntl<A6XX>(struct tu_cmd_buffer *cmd,
634                      const struct tu_subpass *subpass,
635                      struct tu_cs *cs,
636                      bool binning)
637 {
638    /* doesn't RB_RENDER_CNTL set differently for binning pass: */
639    bool no_track = !cmd->device->physical_device->info->a6xx.has_cp_reg_write;
640    uint32_t cntl = 0;
641    cntl |= A6XX_RB_RENDER_CNTL_CCUSINGLECACHELINESIZE(2);
642    if (binning) {
643       if (no_track)
644          return;
645       cntl |= A6XX_RB_RENDER_CNTL_BINNING;
646    } else {
647       uint32_t mrts_ubwc_enable = 0;
648       for (uint32_t i = 0; i < subpass->color_count; ++i) {
649          uint32_t a = subpass->color_attachments[i].attachment;
650          unsigned remapped = cmd->vk.dynamic_graphics_state.cal.color_map[i];
651          if (a == VK_ATTACHMENT_UNUSED ||
652              remapped == MESA_VK_ATTACHMENT_UNUSED)
653             continue;
654 
655          const struct tu_image_view *iview = cmd->state.attachments[a];
656          if (iview->view.ubwc_enabled)
657             mrts_ubwc_enable |= 1 << remapped;
658       }
659 
660       cntl |= A6XX_RB_RENDER_CNTL_FLAG_MRTS(mrts_ubwc_enable);
661 
662       const uint32_t a = subpass->depth_stencil_attachment.attachment;
663       if (a != VK_ATTACHMENT_UNUSED) {
664          const struct tu_image_view *iview = cmd->state.attachments[a];
665          if (iview->view.ubwc_enabled)
666             cntl |= A6XX_RB_RENDER_CNTL_FLAG_DEPTH;
667       }
668 
669       if (no_track) {
670          tu_cs_emit_pkt4(cs, REG_A6XX_RB_RENDER_CNTL, 1);
671          tu_cs_emit(cs, cntl);
672          return;
673       }
674 
675       /* In the !binning case, we need to set RB_RENDER_CNTL in the draw_cs
676        * in order to set it correctly for the different subpasses. However,
677        * that means the packets we're emitting also happen during binning. So
678        * we need to guard the write on !BINNING at CP execution time.
679        */
680       tu_cs_reserve(cs, 3 + 4);
681       tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
682       tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
683                      CP_COND_REG_EXEC_0_GMEM | CP_COND_REG_EXEC_0_SYSMEM);
684       tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
685    }
686 
687    tu_cs_emit_pkt7(cs, CP_REG_WRITE, 3);
688    tu_cs_emit(cs, CP_REG_WRITE_0_TRACKER(TRACK_RENDER_CNTL));
689    tu_cs_emit(cs, REG_A6XX_RB_RENDER_CNTL);
690    tu_cs_emit(cs, cntl);
691 }
692 
693 template <>
694 void
tu6_emit_render_cntl(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs,bool binning)695 tu6_emit_render_cntl<A7XX>(struct tu_cmd_buffer *cmd,
696                      const struct tu_subpass *subpass,
697                      struct tu_cs *cs,
698                      bool binning)
699 {
700 }
701 
702 static void
tu6_emit_blit_scissor(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool align)703 tu6_emit_blit_scissor(struct tu_cmd_buffer *cmd, struct tu_cs *cs, bool align)
704 {
705    struct tu_physical_device *phys_dev = cmd->device->physical_device;
706    const VkRect2D *render_area = &cmd->state.render_area;
707 
708    /* Avoid assertion fails with an empty render area at (0, 0) where the
709     * subtraction below wraps around. Empty render areas should be forced to
710     * the sysmem path by use_sysmem_rendering(). It's not even clear whether
711     * an empty scissor here works, and the blob seems to force sysmem too as
712     * it sets something wrong (non-empty) for the scissor.
713     */
714    if (render_area->extent.width == 0 ||
715        render_area->extent.height == 0)
716       return;
717 
718    uint32_t x1 = render_area->offset.x;
719    uint32_t y1 = render_area->offset.y;
720    uint32_t x2 = x1 + render_area->extent.width - 1;
721    uint32_t y2 = y1 + render_area->extent.height - 1;
722 
723    if (align) {
724       x1 = x1 & ~(phys_dev->info->gmem_align_w - 1);
725       y1 = y1 & ~(phys_dev->info->gmem_align_h - 1);
726       x2 = ALIGN_POT(x2 + 1, phys_dev->info->gmem_align_w) - 1;
727       y2 = ALIGN_POT(y2 + 1, phys_dev->info->gmem_align_h) - 1;
728    }
729 
730    tu_cs_emit_regs(cs,
731                    A6XX_RB_BLIT_SCISSOR_TL(.x = x1, .y = y1),
732                    A6XX_RB_BLIT_SCISSOR_BR(.x = x2, .y = y2));
733 }
734 
735 void
tu6_emit_window_scissor(struct tu_cs * cs,uint32_t x1,uint32_t y1,uint32_t x2,uint32_t y2)736 tu6_emit_window_scissor(struct tu_cs *cs,
737                         uint32_t x1,
738                         uint32_t y1,
739                         uint32_t x2,
740                         uint32_t y2)
741 {
742    tu_cs_emit_regs(cs,
743                    A6XX_GRAS_SC_WINDOW_SCISSOR_TL(.x = x1, .y = y1),
744                    A6XX_GRAS_SC_WINDOW_SCISSOR_BR(.x = x2, .y = y2));
745 
746    tu_cs_emit_regs(cs,
747                    A6XX_GRAS_2D_RESOLVE_CNTL_1(.x = x1, .y = y1),
748                    A6XX_GRAS_2D_RESOLVE_CNTL_2(.x = x2, .y = y2));
749 }
750 
751 template <chip CHIP>
752 void
tu6_emit_window_offset(struct tu_cs * cs,uint32_t x1,uint32_t y1)753 tu6_emit_window_offset(struct tu_cs *cs, uint32_t x1, uint32_t y1)
754 {
755    tu_cs_emit_regs(cs,
756                    A6XX_RB_WINDOW_OFFSET(.x = x1, .y = y1));
757 
758    tu_cs_emit_regs(cs,
759                    A6XX_RB_WINDOW_OFFSET2(.x = x1, .y = y1));
760 
761    tu_cs_emit_regs(cs,
762                    SP_WINDOW_OFFSET(CHIP, .x = x1, .y = y1));
763 
764    tu_cs_emit_regs(cs,
765                    A6XX_SP_TP_WINDOW_OFFSET(.x = x1, .y = y1));
766 
767    tu_cs_emit_regs(cs,
768                    A7XX_SP_PS_2D_WINDOW_OFFSET(.x = x1, .y = y1));
769 }
770 
771 void
tu6_apply_depth_bounds_workaround(struct tu_device * device,uint32_t * rb_depth_cntl)772 tu6_apply_depth_bounds_workaround(struct tu_device *device,
773                                   uint32_t *rb_depth_cntl)
774 {
775    if (!device->physical_device->info->a6xx.depth_bounds_require_depth_test_quirk)
776       return;
777 
778    /* On some GPUs it is necessary to enable z test for depth bounds test when
779     * UBWC is enabled. Otherwise, the GPU would hang. FUNC_ALWAYS is required to
780     * pass z test. Relevant tests:
781     *  dEQP-VK.pipeline.extended_dynamic_state.two_draws_dynamic.depth_bounds_test_disable
782     *  dEQP-VK.dynamic_state.ds_state.depth_bounds_1
783     */
784    *rb_depth_cntl |= A6XX_RB_DEPTH_CNTL_Z_TEST_ENABLE |
785                      A6XX_RB_DEPTH_CNTL_ZFUNC(FUNC_ALWAYS);
786 }
787 
788 static void
tu_cs_emit_draw_state(struct tu_cs * cs,uint32_t id,struct tu_draw_state state)789 tu_cs_emit_draw_state(struct tu_cs *cs, uint32_t id, struct tu_draw_state state)
790 {
791    uint32_t enable_mask;
792    switch (id) {
793    case TU_DRAW_STATE_VS:
794    case TU_DRAW_STATE_FS:
795    case TU_DRAW_STATE_VPC:
796    /* The blob seems to not enable this (DESC_SETS_LOAD) for binning, even
797     * when resources would actually be used in the binning shader.
798     * Presumably the overhead of prefetching the resources isn't
799     * worth it.
800     */
801    case TU_DRAW_STATE_DESC_SETS_LOAD:
802       enable_mask = CP_SET_DRAW_STATE__0_GMEM |
803                     CP_SET_DRAW_STATE__0_SYSMEM;
804       break;
805    case TU_DRAW_STATE_VS_BINNING:
806    case TU_DRAW_STATE_GS_BINNING:
807       enable_mask = CP_SET_DRAW_STATE__0_BINNING;
808       break;
809    case TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM:
810       enable_mask = CP_SET_DRAW_STATE__0_GMEM;
811       break;
812    case TU_DRAW_STATE_PRIM_MODE_GMEM:
813       /* On a7xx the prim mode is the same for gmem and sysmem, and it no
814        * longer depends on dynamic state, so we reuse the gmem state for
815        * everything:
816        */
817       if (cs->device->physical_device->info->a6xx.has_coherent_ubwc_flag_caches) {
818          enable_mask = CP_SET_DRAW_STATE__0_GMEM |
819                        CP_SET_DRAW_STATE__0_SYSMEM |
820                        CP_SET_DRAW_STATE__0_BINNING;
821       } else {
822          enable_mask = CP_SET_DRAW_STATE__0_GMEM;
823       }
824       break;
825    case TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM:
826       enable_mask = CP_SET_DRAW_STATE__0_SYSMEM;
827       break;
828    case TU_DRAW_STATE_DYNAMIC + TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM:
829       if (!cs->device->physical_device->info->a6xx.has_coherent_ubwc_flag_caches) {
830          /* By also applying the state during binning we ensure that there
831          * is no rotation applied, by previous A6XX_GRAS_SC_CNTL::rotation.
832          */
833          enable_mask =
834             CP_SET_DRAW_STATE__0_SYSMEM | CP_SET_DRAW_STATE__0_BINNING;
835       } else {
836          static_assert(TU_DYNAMIC_STATE_PRIM_MODE_SYSMEM ==
837                        TU_DYNAMIC_STATE_A7XX_FRAGMENT_SHADING_RATE);
838          enable_mask = CP_SET_DRAW_STATE__0_GMEM |
839                        CP_SET_DRAW_STATE__0_SYSMEM |
840                        CP_SET_DRAW_STATE__0_BINNING;
841       }
842 
843       break;
844    default:
845       enable_mask = CP_SET_DRAW_STATE__0_GMEM |
846                     CP_SET_DRAW_STATE__0_SYSMEM |
847                     CP_SET_DRAW_STATE__0_BINNING;
848       break;
849    }
850 
851    STATIC_ASSERT(TU_DRAW_STATE_COUNT <= 32);
852 
853    /* We need to reload the descriptors every time the descriptor sets
854     * change. However, the commands we send only depend on the pipeline
855     * because the whole point is to cache descriptors which are used by the
856     * pipeline. There's a problem here, in that the firmware has an
857     * "optimization" which skips executing groups that are set to the same
858     * value as the last draw. This means that if the descriptor sets change
859     * but not the pipeline, we'd try to re-execute the same buffer which
860     * the firmware would ignore and we wouldn't pre-load the new
861     * descriptors. Set the DIRTY bit to avoid this optimization.
862     *
863     * We set the dirty bit for shader draw states because they contain
864     * CP_LOAD_STATE packets that are invalidated by the PROGRAM_CONFIG draw
865     * state, so if PROGRAM_CONFIG changes but one of the shaders stays the
866     * same then we still need to re-emit everything. The GLES blob which
867     * implements separate shader draw states does the same thing.
868     *
869     * We also need to set this bit for draw states which may be patched by the
870     * GPU, because their underlying memory may change between setting the draw
871     * state.
872     */
873    if (id == TU_DRAW_STATE_DESC_SETS_LOAD ||
874        id == TU_DRAW_STATE_VS ||
875        id == TU_DRAW_STATE_VS_BINNING ||
876        id == TU_DRAW_STATE_HS ||
877        id == TU_DRAW_STATE_DS ||
878        id == TU_DRAW_STATE_GS ||
879        id == TU_DRAW_STATE_GS_BINNING ||
880        id == TU_DRAW_STATE_FS ||
881        state.writeable)
882       enable_mask |= CP_SET_DRAW_STATE__0_DIRTY;
883 
884    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(state.size) |
885                   enable_mask |
886                   CP_SET_DRAW_STATE__0_GROUP_ID(id) |
887                   COND(!state.size || !state.iova, CP_SET_DRAW_STATE__0_DISABLE));
888    tu_cs_emit_qw(cs, state.iova);
889 }
890 
891 void
tu6_emit_msaa(struct tu_cs * cs,VkSampleCountFlagBits vk_samples,bool msaa_disable)892 tu6_emit_msaa(struct tu_cs *cs, VkSampleCountFlagBits vk_samples,
893               bool msaa_disable)
894 {
895    const enum a3xx_msaa_samples samples = tu_msaa_samples(vk_samples);
896    msaa_disable |= (samples == MSAA_ONE);
897    tu_cs_emit_regs(cs,
898                    A6XX_SP_TP_RAS_MSAA_CNTL(samples),
899                    A6XX_SP_TP_DEST_MSAA_CNTL(.samples = samples,
900                                              .msaa_disable = msaa_disable));
901 
902    tu_cs_emit_regs(cs,
903                    A6XX_GRAS_RAS_MSAA_CNTL(samples),
904                    A6XX_GRAS_DEST_MSAA_CNTL(.samples = samples,
905                                             .msaa_disable = msaa_disable));
906 
907    tu_cs_emit_regs(cs,
908                    A6XX_RB_RAS_MSAA_CNTL(samples),
909                    A6XX_RB_DEST_MSAA_CNTL(.samples = samples,
910                                           .msaa_disable = msaa_disable));
911 }
912 
913 static void
tu6_update_msaa(struct tu_cmd_buffer * cmd)914 tu6_update_msaa(struct tu_cmd_buffer *cmd)
915 {
916    VkSampleCountFlagBits samples =
917       cmd->vk.dynamic_graphics_state.ms.rasterization_samples;;
918 
919    /* The samples may not be set by the pipeline or dynamically if raster
920     * discard is enabled. We can set any valid value, but don't set the
921     * default invalid value of 0.
922     */
923    if (samples == 0)
924       samples = VK_SAMPLE_COUNT_1_BIT;
925    tu6_emit_msaa(&cmd->draw_cs, samples, cmd->state.msaa_disable);
926 }
927 
928 static void
tu6_update_msaa_disable(struct tu_cmd_buffer * cmd)929 tu6_update_msaa_disable(struct tu_cmd_buffer *cmd)
930 {
931    VkPrimitiveTopology topology =
932       (VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology;
933    bool is_line =
934       topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST ||
935       topology == VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY ||
936       topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP ||
937       topology == VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY ||
938       (topology == VK_PRIMITIVE_TOPOLOGY_PATCH_LIST &&
939        cmd->state.shaders[MESA_SHADER_TESS_EVAL] &&
940        cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant &&
941        cmd->state.shaders[MESA_SHADER_TESS_EVAL]->variant->key.tessellation == IR3_TESS_ISOLINES);
942    bool msaa_disable = is_line &&
943       cmd->vk.dynamic_graphics_state.rs.line.mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_KHR;
944 
945    if (cmd->state.msaa_disable != msaa_disable) {
946       cmd->state.msaa_disable = msaa_disable;
947       tu6_update_msaa(cmd);
948    }
949 }
950 
951 static bool
use_hw_binning(struct tu_cmd_buffer * cmd)952 use_hw_binning(struct tu_cmd_buffer *cmd)
953 {
954    const struct tu_framebuffer *fb = cmd->state.framebuffer;
955    const struct tu_tiling_config *tiling = &fb->tiling[cmd->state.gmem_layout];
956 
957    /* XFB commands are emitted for BINNING || SYSMEM, which makes it
958     * incompatible with non-hw binning GMEM rendering. this is required because
959     * some of the XFB commands need to only be executed once.
960     * use_sysmem_rendering() should have made sure we only ended up here if no
961     * XFB was used.
962     */
963    if (cmd->state.rp.xfb_used) {
964       assert(tiling->binning_possible);
965       return true;
966    }
967 
968    /* VK_QUERY_TYPE_PRIMITIVES_GENERATED_EXT emulates GL_PRIMITIVES_GENERATED,
969     * which wasn't designed to care about tilers and expects the result not to
970     * be multiplied by tile count.
971     * See https://gitlab.khronos.org/vulkan/vulkan/-/issues/3131
972     */
973    if (cmd->state.rp.has_prim_generated_query_in_rp ||
974        cmd->state.prim_generated_query_running_before_rp) {
975       assert(tiling->binning_possible);
976       return true;
977    }
978 
979    return tiling->binning;
980 }
981 
982 static bool
use_sysmem_rendering(struct tu_cmd_buffer * cmd,struct tu_renderpass_result ** autotune_result)983 use_sysmem_rendering(struct tu_cmd_buffer *cmd,
984                      struct tu_renderpass_result **autotune_result)
985 {
986    if (TU_DEBUG(SYSMEM))
987       return true;
988 
989    /* can't fit attachments into gmem */
990    if (!cmd->state.tiling->possible)
991       return true;
992 
993    if (cmd->state.framebuffer->layers > 1)
994       return true;
995 
996    /* Use sysmem for empty render areas */
997    if (cmd->state.render_area.extent.width == 0 ||
998        cmd->state.render_area.extent.height == 0)
999       return true;
1000 
1001    if (cmd->state.rp.has_tess)
1002       return true;
1003 
1004    if (cmd->state.rp.disable_gmem)
1005       return true;
1006 
1007    /* XFB is incompatible with non-hw binning GMEM rendering, see use_hw_binning */
1008    if (cmd->state.rp.xfb_used && !cmd->state.tiling->binning_possible)
1009       return true;
1010 
1011    /* QUERY_TYPE_PRIMITIVES_GENERATED is incompatible with non-hw binning
1012     * GMEM rendering, see use_hw_binning.
1013     */
1014    if ((cmd->state.rp.has_prim_generated_query_in_rp ||
1015         cmd->state.prim_generated_query_running_before_rp) &&
1016        !cmd->state.tiling->binning_possible)
1017       return true;
1018 
1019    if (TU_DEBUG(GMEM))
1020       return false;
1021 
1022    bool use_sysmem = tu_autotune_use_bypass(&cmd->device->autotune,
1023                                             cmd, autotune_result);
1024    if (*autotune_result) {
1025       list_addtail(&(*autotune_result)->node, &cmd->renderpass_autotune_results);
1026    }
1027 
1028    return use_sysmem;
1029 }
1030 
1031 /* Optimization: there is no reason to load gmem if there is no
1032  * geometry to process. COND_REG_EXEC predicate is set here,
1033  * but the actual skip happens in tu_load_gmem_attachment() and tile_store_cs,
1034  * for each blit separately.
1035  */
1036 static void
tu6_emit_cond_for_load_stores(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t pipe,uint32_t slot,bool skip_wfm)1037 tu6_emit_cond_for_load_stores(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
1038                               uint32_t pipe, uint32_t slot, bool skip_wfm)
1039 {
1040    if (cmd->state.tiling->binning_possible &&
1041        cmd->state.pass->has_cond_load_store) {
1042       tu_cs_emit_pkt7(cs, CP_REG_TEST, 1);
1043       tu_cs_emit(cs, A6XX_CP_REG_TEST_0_REG(REG_A6XX_VSC_STATE_REG(pipe)) |
1044                      A6XX_CP_REG_TEST_0_BIT(slot) |
1045                      COND(skip_wfm, A6XX_CP_REG_TEST_0_SKIP_WAIT_FOR_ME));
1046    } else {
1047       /* COND_REG_EXECs are not emitted in non-binning case */
1048    }
1049 }
1050 
1051 template <chip CHIP>
1052 static void
tu6_emit_tile_select(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)1053 tu6_emit_tile_select(struct tu_cmd_buffer *cmd,
1054                      struct tu_cs *cs,
1055                      uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
1056                      const struct tu_image_view *fdm)
1057 {
1058    struct tu_physical_device *phys_dev = cmd->device->physical_device;
1059    const struct tu_tiling_config *tiling = cmd->state.tiling;
1060    bool hw_binning = use_hw_binning(cmd);
1061 
1062    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1063    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_START) |
1064                   A6XX_CP_SET_MARKER_0_USES_GMEM);
1065 
1066    tu6_emit_bin_size<CHIP>(
1067       cs, tiling->tile0.width, tiling->tile0.height,
1068       {
1069          .render_mode = RENDERING_PASS,
1070          .force_lrz_write_dis = !phys_dev->info->a6xx.has_lrz_feedback,
1071          .buffers_location = BUFFERS_IN_GMEM,
1072          .lrz_feedback_zmode_mask =
1073             phys_dev->info->a6xx.has_lrz_feedback
1074                ? (hw_binning ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_LRZ_LATE_Z :
1075                   LRZ_FEEDBACK_EARLY_LRZ_LATE_Z)
1076                : LRZ_FEEDBACK_NONE,
1077       });
1078 
1079    tu_cs_emit_regs(cs,
1080                    A6XX_VFD_MODE_CNTL(RENDERING_PASS));
1081 
1082    const uint32_t x1 = tiling->tile0.width * tx;
1083    const uint32_t y1 = tiling->tile0.height * ty;
1084    const uint32_t x2 = MIN2(x1 + tiling->tile0.width, MAX_VIEWPORT_SIZE);
1085    const uint32_t y2 = MIN2(y1 + tiling->tile0.height, MAX_VIEWPORT_SIZE);
1086    tu6_emit_window_scissor(cs, x1, y1, x2 - 1, y2 - 1);
1087    tu6_emit_window_offset<CHIP>(cs, x1, y1);
1088 
1089    if (hw_binning) {
1090       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1091 
1092       tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1093       tu_cs_emit(cs, 0x0);
1094 
1095       tu_cs_emit_pkt7(cs, CP_SET_BIN_DATA5_OFFSET, 4);
1096       tu_cs_emit(cs, tiling->pipe_sizes[pipe] |
1097                      CP_SET_BIN_DATA5_0_VSC_N(slot));
1098       tu_cs_emit(cs, pipe * cmd->vsc_draw_strm_pitch);
1099       tu_cs_emit(cs, pipe * 4);
1100       tu_cs_emit(cs, pipe * cmd->vsc_prim_strm_pitch);
1101    }
1102 
1103    tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, hw_binning);
1104 
1105    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1106    tu_cs_emit(cs, !hw_binning);
1107 
1108    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1109    tu_cs_emit(cs, 0x0);
1110 
1111    if (fdm || (TU_DEBUG(FDM) && cmd->state.pass->has_fdm)) {
1112       unsigned views =
1113          cmd->state.pass->num_views ? cmd->state.pass->num_views : 1;
1114       const struct tu_framebuffer *fb = cmd->state.framebuffer;
1115       struct tu_frag_area raw_areas[views];
1116       if (fdm) {
1117          tu_fragment_density_map_sample(fdm,
1118                                         (x1 + MIN2(x2, fb->width)) / 2,
1119                                         (y1 + MIN2(y2, fb->height)) / 2,
1120                                         fb->width, fb->height, views,
1121                                         raw_areas);
1122       } else {
1123          for (unsigned i = 0; i < views; i++)
1124             raw_areas[i].width = raw_areas[i].height = 1.0f;
1125       }
1126 
1127       VkExtent2D frag_areas[views];
1128       for (unsigned i = 0; i < views; i++) {
1129          float floor_x, floor_y;
1130          float area = raw_areas[i].width * raw_areas[i].height;
1131          float frac_x = modff(raw_areas[i].width, &floor_x);
1132          float frac_y = modff(raw_areas[i].height, &floor_y);
1133          /* The spec allows rounding up one of the axes as long as the total
1134           * area is less than or equal to the original area. Take advantage of
1135           * this to try rounding up the number with the largest fraction.
1136           */
1137          if ((frac_x > frac_y ? (floor_x + 1.f) * floor_y :
1138                                  floor_x * (floor_y + 1.f)) <= area) {
1139             if (frac_x > frac_y)
1140                floor_x += 1.f;
1141             else
1142                floor_y += 1.f;
1143          }
1144          frag_areas[i].width = floor_x;
1145          frag_areas[i].height = floor_y;
1146 
1147          /* Make sure that the width/height divides the tile width/height so
1148           * we don't have to do extra awkward clamping of the edges of each
1149           * bin when resolving. Note that because the tile width is rounded to
1150           * a multiple of 32 any power of two 32 or less will work.
1151           *
1152           * TODO: Try to take advantage of the total area allowance here, too.
1153           */
1154          while (tiling->tile0.width % frag_areas[i].width != 0)
1155             frag_areas[i].width--;
1156          while (tiling->tile0.height % frag_areas[i].height != 0)
1157             frag_areas[i].height--;
1158       }
1159 
1160       /* If at any point we were forced to use the same scaling for all
1161        * viewports, we need to make sure that any users *not* using shared
1162        * scaling, including loads/stores, also consistently share the scaling.
1163        */
1164       if (cmd->state.rp.shared_viewport) {
1165          VkExtent2D frag_area = { UINT32_MAX, UINT32_MAX };
1166          for (unsigned i = 0; i < views; i++) {
1167             frag_area.width = MIN2(frag_area.width, frag_areas[i].width);
1168             frag_area.height = MIN2(frag_area.height, frag_areas[i].height);
1169          }
1170 
1171          for (unsigned i = 0; i < views; i++)
1172             frag_areas[i] = frag_area;
1173       }
1174 
1175       VkRect2D bin = { { x1, y1 }, { x2 - x1, y2 - y1 } };
1176       util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1177                              struct tu_fdm_bin_patchpoint, patch) {
1178          tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1179          tu_cs_emit_qw(cs, patch->iova);
1180          patch->apply(cmd, cs, patch->data, bin, views, frag_areas);
1181       }
1182 
1183       /* Make the CP wait until the CP_MEM_WRITE's to the command buffers
1184        * land. When loading FS params via UBOs, we also need to invalidate
1185        * UCHE because the FS param patchpoint is read through UCHE.
1186        */
1187       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1188       if (cmd->device->compiler->load_shader_consts_via_preamble) {
1189          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1190          tu_cs_emit_wfi(cs);
1191       }
1192       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1193    }
1194 }
1195 
1196 template <chip CHIP>
1197 static void
tu6_emit_sysmem_resolve(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t layer_mask,uint32_t a,uint32_t gmem_a)1198 tu6_emit_sysmem_resolve(struct tu_cmd_buffer *cmd,
1199                         struct tu_cs *cs,
1200                         uint32_t layer_mask,
1201                         uint32_t a,
1202                         uint32_t gmem_a)
1203 {
1204    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1205    const struct tu_image_view *dst = cmd->state.attachments[a];
1206    const struct tu_image_view *src = cmd->state.attachments[gmem_a];
1207 
1208    tu_resolve_sysmem<CHIP>(cmd, cs, src, dst, layer_mask, fb->layers, &cmd->state.render_area);
1209 }
1210 
1211 template <chip CHIP>
1212 static void
tu6_emit_sysmem_resolves(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_subpass * subpass)1213 tu6_emit_sysmem_resolves(struct tu_cmd_buffer *cmd,
1214                          struct tu_cs *cs,
1215                          const struct tu_subpass *subpass)
1216 {
1217    if (subpass->resolve_attachments) {
1218       /* From the documentation for vkCmdNextSubpass, section 7.4 "Render Pass
1219        * Commands":
1220        *
1221        *    End-of-subpass multisample resolves are treated as color
1222        *    attachment writes for the purposes of synchronization.
1223        *    This applies to resolve operations for both color and
1224        *    depth/stencil attachments. That is, they are considered to
1225        *    execute in the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT
1226        *    pipeline stage and their writes are synchronized with
1227        *    VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT. Synchronization between
1228        *    rendering within a subpass and any resolve operations at the end
1229        *    of the subpass occurs automatically, without need for explicit
1230        *    dependencies or pipeline barriers. However, if the resolve
1231        *    attachment is also used in a different subpass, an explicit
1232        *    dependency is needed.
1233        *
1234        * We use the CP_BLIT path for sysmem resolves, which is really a
1235        * transfer command, so we have to manually flush similar to the gmem
1236        * resolve case. However, a flush afterwards isn't needed because of the
1237        * last sentence and the fact that we're in sysmem mode.
1238        */
1239       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_COLOR);
1240       if (subpass->resolve_depth_stencil)
1241          tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_DEPTH);
1242 
1243       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1244 
1245       /* Wait for the flushes to land before using the 2D engine */
1246       tu_cs_emit_wfi(cs);
1247 
1248       for (unsigned i = 0; i < subpass->resolve_count; i++) {
1249          uint32_t a = subpass->resolve_attachments[i].attachment;
1250          if (a == VK_ATTACHMENT_UNUSED)
1251             continue;
1252 
1253          uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1254 
1255          tu6_emit_sysmem_resolve<CHIP>(cmd, cs, subpass->multiview_mask, a, gmem_a);
1256       }
1257    }
1258 }
1259 
1260 template <chip CHIP>
1261 static void
tu6_emit_tile_store(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1262 tu6_emit_tile_store(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1263 {
1264    const struct tu_render_pass *pass = cmd->state.pass;
1265    const struct tu_subpass *subpass = &pass->subpasses[pass->subpass_count-1];
1266    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1267 
1268    if (pass->has_fdm)
1269       tu_cs_set_writeable(cs, true);
1270 
1271    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1272    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RESOLVE) |
1273                   A6XX_CP_SET_MARKER_0_USES_GMEM);
1274 
1275    tu6_emit_blit_scissor(cmd, cs, true);
1276 
1277    struct tu_resolve_group resolve_group = {};
1278 
1279    /* Resolve should happen before store in case BLIT_EVENT_STORE_AND_CLEAR is
1280     * used for a store.
1281     */
1282    if (subpass->resolve_attachments) {
1283       for (unsigned i = 0; i < subpass->resolve_count; i++) {
1284          uint32_t a = subpass->resolve_attachments[i].attachment;
1285          if (a != VK_ATTACHMENT_UNUSED) {
1286             uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
1287             tu_store_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, gmem_a,
1288                                            fb->layers, subpass->multiview_mask, false);
1289          }
1290       }
1291    }
1292 
1293    for (uint32_t a = 0; a < pass->attachment_count; ++a) {
1294       if (pass->attachments[a].gmem) {
1295          const bool cond_exec_allowed = cmd->state.tiling->binning_possible &&
1296                                         cmd->state.pass->has_cond_load_store;
1297          tu_store_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, a,
1298                                   fb->layers, subpass->multiview_mask,
1299                                   cond_exec_allowed);
1300       }
1301    }
1302 
1303    tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group);
1304 
1305    if (pass->has_fdm)
1306       tu_cs_set_writeable(cs, false);
1307 }
1308 
1309 void
tu_disable_draw_states(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1310 tu_disable_draw_states(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1311 {
1312    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1313    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1314                      CP_SET_DRAW_STATE__0_DISABLE_ALL_GROUPS |
1315                      CP_SET_DRAW_STATE__0_GROUP_ID(0));
1316    tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1317    tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1318 
1319    cmd->state.dirty |= TU_CMD_DIRTY_DRAW_STATE;
1320 }
1321 
1322 template <chip CHIP>
1323 static void
tu6_init_static_regs(struct tu_device * dev,struct tu_cs * cs)1324 tu6_init_static_regs(struct tu_device *dev, struct tu_cs *cs)
1325 {
1326    const struct tu_physical_device *phys_dev = dev->physical_device;
1327 
1328    if (CHIP >= A7XX) {
1329       /* On A7XX, RB_CCU_CNTL was broken into two registers, RB_CCU_CNTL which has
1330        * static properties that can be set once, this requires a WFI to take effect.
1331        * While the newly introduced register RB_CCU_CNTL2 has properties that may
1332        * change per-RP and don't require a WFI to take effect, only CCU inval/flush
1333        * events are required.
1334        */
1335 
1336       enum a7xx_concurrent_resolve_mode resolve_mode = CONCURRENT_RESOLVE_MODE_2;
1337       if (TU_DEBUG(NO_CONCURRENT_RESOLVES))
1338          resolve_mode = CONCURRENT_RESOLVE_MODE_DISABLED;
1339 
1340       enum a7xx_concurrent_unresolve_mode unresolve_mode = CONCURRENT_UNRESOLVE_MODE_FULL;
1341       if (TU_DEBUG(NO_CONCURRENT_UNRESOLVES))
1342          unresolve_mode = CONCURRENT_UNRESOLVE_MODE_DISABLED;
1343 
1344       tu_cs_emit_regs(cs, RB_CCU_CNTL(A7XX,
1345          .gmem_fast_clear_disable =
1346            !dev->physical_device->info->a6xx.has_gmem_fast_clear,
1347          .concurrent_resolve_mode = resolve_mode,
1348          .concurrent_unresolve_mode = unresolve_mode,
1349       ));
1350    }
1351 
1352    for (size_t i = 0; i < ARRAY_SIZE(phys_dev->info->a6xx.magic_raw); i++) {
1353       auto magic_reg = phys_dev->info->a6xx.magic_raw[i];
1354       if (!magic_reg.reg)
1355          break;
1356 
1357       uint32_t value = magic_reg.value;
1358       switch(magic_reg.reg) {
1359          case REG_A6XX_TPL1_DBG_ECO_CNTL1:
1360             value = (value & ~A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT) |
1361                     (phys_dev->info->a7xx.enable_tp_ubwc_flag_hint
1362                         ? A6XX_TPL1_DBG_ECO_CNTL1_TP_UBWC_FLAG_HINT
1363                         : 0);
1364             break;
1365       }
1366 
1367       tu_cs_emit_write_reg(cs, magic_reg.reg, value);
1368    }
1369 
1370    tu_cs_emit_write_reg(cs, REG_A6XX_RB_DBG_ECO_CNTL,
1371                         phys_dev->info->a6xx.magic.RB_DBG_ECO_CNTL);
1372    tu_cs_emit_write_reg(cs, REG_A6XX_SP_FLOAT_CNTL, 0);
1373    tu_cs_emit_write_reg(cs, REG_A6XX_SP_DBG_ECO_CNTL,
1374                         phys_dev->info->a6xx.magic.SP_DBG_ECO_CNTL);
1375    tu_cs_emit_write_reg(cs, REG_A6XX_SP_PERFCTR_ENABLE, 0x3f);
1376    if (CHIP == A6XX)
1377       tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_UNKNOWN_B605, 0x44);
1378    tu_cs_emit_write_reg(cs, REG_A6XX_TPL1_DBG_ECO_CNTL,
1379                         phys_dev->info->a6xx.magic.TPL1_DBG_ECO_CNTL);
1380    if (CHIP == A6XX) {
1381       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE00, 0x80);
1382       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_UNKNOWN_BE01, 0);
1383    }
1384 
1385    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_DBG_ECO_CNTL,
1386                         phys_dev->info->a6xx.magic.VPC_DBG_ECO_CNTL);
1387    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_DBG_ECO_CNTL,
1388                         phys_dev->info->a6xx.magic.GRAS_DBG_ECO_CNTL);
1389    if (CHIP == A6XX) {
1390       tu_cs_emit_write_reg(cs, REG_A6XX_HLSQ_DBG_ECO_CNTL,
1391                            phys_dev->info->a6xx.magic.HLSQ_DBG_ECO_CNTL);
1392    }
1393    tu_cs_emit_write_reg(cs, REG_A6XX_SP_CHICKEN_BITS,
1394                         phys_dev->info->a6xx.magic.SP_CHICKEN_BITS);
1395    tu_cs_emit_write_reg(cs, REG_A6XX_SP_IBO_COUNT, 0); // 2 on a740 ???
1396    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B182, 0);
1397    if (CHIP == A6XX)
1398       tu_cs_emit_regs(cs, A6XX_HLSQ_SHARED_CONSTS(.enable = false));
1399    tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_UNKNOWN_0E12,
1400                         phys_dev->info->a6xx.magic.UCHE_UNKNOWN_0E12);
1401    tu_cs_emit_write_reg(cs, REG_A6XX_UCHE_CLIENT_PF,
1402                         phys_dev->info->a6xx.magic.UCHE_CLIENT_PF);
1403    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8E01,
1404                         phys_dev->info->a6xx.magic.RB_UNKNOWN_8E01);
1405    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_A9A8, 0);
1406    tu_cs_emit_regs(cs, A6XX_SP_MODE_CONTROL(.constant_demotion_enable = true,
1407                                             .isammode = ISAMMODE_GL,
1408                                             .shared_consts_enable = false));
1409 
1410    /* TODO: set A6XX_VFD_ADD_OFFSET_INSTANCE and fix ir3 to avoid adding base instance */
1411    tu_cs_emit_write_reg(cs, REG_A6XX_VFD_ADD_OFFSET, A6XX_VFD_ADD_OFFSET_VERTEX);
1412    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8811, 0x00000010);
1413    tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL,
1414                         phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1415 
1416    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_8110, 0);
1417 
1418    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8818, 0);
1419 
1420    if (CHIP == A6XX) {
1421       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_8819, 0);
1422       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881A, 0);
1423       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881B, 0);
1424       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881C, 0);
1425       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881D, 0);
1426       tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_881E, 0);
1427    }
1428 
1429    tu_cs_emit_write_reg(cs, REG_A6XX_RB_UNKNOWN_88F0, 0);
1430 
1431    tu_cs_emit_regs(cs, A6XX_VPC_POINT_COORD_INVERT(false));
1432    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9300, 0);
1433 
1434    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
1435 
1436    tu_cs_emit_write_reg(cs, REG_A6XX_SP_UNKNOWN_B183, 0);
1437 
1438    tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_UNKNOWN_80AF, 0);
1439    if (CHIP == A6XX) {
1440       tu_cs_emit_write_reg(cs, REG_A6XX_GRAS_SU_CONSERVATIVE_RAS_CNTL, 0);
1441       tu_cs_emit_regs(cs, A6XX_PC_DGEN_SU_CONSERVATIVE_RAS_CNTL());
1442 
1443       tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9210, 0);
1444       tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9211, 0);
1445    }
1446    tu_cs_emit_write_reg(cs, REG_A6XX_VPC_UNKNOWN_9602, 0);
1447    tu_cs_emit_write_reg(cs, REG_A6XX_PC_UNKNOWN_9E72, 0);
1448    tu_cs_emit_write_reg(cs, REG_A6XX_SP_TP_MODE_CNTL,
1449                         0x000000a0 |
1450                         A6XX_SP_TP_MODE_CNTL_ISAMMODE(ISAMMODE_GL));
1451    tu_cs_emit_regs(cs, HLSQ_CONTROL_5_REG(CHIP, .dword = 0xfc));
1452 
1453    tu_cs_emit_write_reg(cs, REG_A6XX_VFD_MODE_CNTL, 0x00000000);
1454 
1455    tu_cs_emit_write_reg(cs, REG_A6XX_PC_MODE_CNTL, phys_dev->info->a6xx.magic.PC_MODE_CNTL);
1456 
1457    tu_cs_emit_regs(cs, A6XX_RB_ALPHA_CONTROL()); /* always disable alpha test */
1458 
1459    tu_cs_emit_regs(cs,
1460                    A6XX_SP_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1461                                                      .bo_offset = gb_offset(bcolor_builtin)));
1462    tu_cs_emit_regs(cs,
1463                    A6XX_SP_PS_TP_BORDER_COLOR_BASE_ADDR(.bo = dev->global_bo,
1464                                                         .bo_offset = gb_offset(bcolor_builtin)));
1465 
1466    if (CHIP == A7XX) {
1467       tu_cs_emit_regs(cs, TPL1_BICUBIC_WEIGHTS_TABLE_0(CHIP, 0),
1468                       TPL1_BICUBIC_WEIGHTS_TABLE_1(CHIP, 0x3fe05ff4),
1469                       TPL1_BICUBIC_WEIGHTS_TABLE_2(CHIP, 0x3fa0ebee),
1470                       TPL1_BICUBIC_WEIGHTS_TABLE_3(CHIP, 0x3f5193ed),
1471                       TPL1_BICUBIC_WEIGHTS_TABLE_4(CHIP, 0x3f0243f0), );
1472    }
1473 
1474    if (CHIP >= A7XX) {
1475       /* Blob sets these two per draw. */
1476       tu_cs_emit_regs(cs, A7XX_PC_TESS_PARAM_SIZE(TU_TESS_PARAM_SIZE));
1477       /* Blob adds a bit more space ({0x10, 0x20, 0x30, 0x40} bytes)
1478        * but the meaning of this additional space is not known,
1479        * so we play safe and don't add it.
1480        */
1481       tu_cs_emit_regs(cs, A7XX_PC_TESS_FACTOR_SIZE(TU_TESS_FACTOR_SIZE));
1482    }
1483 
1484    /* There is an optimization to skip executing draw states for draws with no
1485     * instances. Instead of simply skipping the draw, internally the firmware
1486     * sets a bit in PC_DRAW_INITIATOR that seemingly skips the draw. However
1487     * there is a hardware bug where this bit does not always cause the FS
1488     * early preamble to be skipped. Because the draw states were skipped,
1489     * SP_FS_CTRL_REG0, SP_FS_OBJ_START and so on are never updated and a
1490     * random FS preamble from the last draw is executed. If the last visible
1491     * draw is from the same submit, it shouldn't be a problem because we just
1492     * re-execute the same preamble and preambles don't have side effects, but
1493     * if it's from another process then we could execute a garbage preamble
1494     * leading to hangs and faults. To make sure this doesn't happen, we reset
1495     * SP_FS_CTRL_REG0 here, making sure that the EARLYPREAMBLE bit isn't set
1496     * so any leftover early preamble doesn't get executed. Other stages don't
1497     * seem to be affected.
1498     */
1499    if (phys_dev->info->a6xx.has_early_preamble) {
1500       tu_cs_emit_regs(cs, A6XX_SP_FS_CTRL_REG0());
1501    }
1502 
1503    /* Workaround for draw state with constlen not being applied for
1504     * zero-instance draw calls. See IR3_CONST_ALLOC_DRIVER_PARAMS allocation
1505     * for more info.
1506     */
1507    tu_cs_emit_pkt4(
1508       cs, CHIP == A6XX ? REG_A6XX_HLSQ_VS_CNTL : REG_A7XX_HLSQ_VS_CNTL, 1);
1509    tu_cs_emit(cs, A6XX_HLSQ_VS_CNTL_CONSTLEN(8) | A6XX_HLSQ_VS_CNTL_ENABLED);
1510 }
1511 
1512 /* Set always-identical registers used specifically for GMEM */
1513 static void
tu7_emit_tile_render_begin_regs(struct tu_cs * cs)1514 tu7_emit_tile_render_begin_regs(struct tu_cs *cs)
1515 {
1516    tu_cs_emit_regs(cs,
1517                   A7XX_RB_UNKNOWN_8812(0x0));
1518    tu_cs_emit_regs(cs,
1519                 A7XX_RB_UNKNOWN_8E06(0x0));
1520 
1521    tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0));
1522 
1523    tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2));
1524    tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4));
1525 
1526    tu_cs_emit_regs(cs, A7XX_RB_BLIT_CLEAR_MODE(.clear_mode = CLEAR_MODE_GMEM));
1527 }
1528 
1529 /* Emit the bin restore preamble, which runs in between bins when L1
1530  * preemption with skipsaverestore happens and we switch back to this context.
1531  * We need to restore static registers normally programmed at cmdbuf start
1532  * which weren't saved, and we need to program the CCU state which is normally
1533  * programmed before rendering the bins and isn't saved/restored by the CP
1534  * because it is always the same for GMEM render passes.
1535  */
1536 template <chip CHIP>
1537 static void
tu_emit_bin_preamble(struct tu_device * dev,struct tu_cs * cs)1538 tu_emit_bin_preamble(struct tu_device *dev, struct tu_cs *cs)
1539 {
1540    struct tu_physical_device *phys_dev = dev->physical_device;
1541 
1542    tu6_init_static_regs<CHIP>(dev, cs);
1543    emit_rb_ccu_cntl<CHIP>(cs, dev, true);
1544 
1545    if (CHIP == A6XX) {
1546       tu_cs_emit_regs(cs,
1547                      A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1548 
1549       tu_cs_emit_regs(cs,
1550                      A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1551    }
1552 
1553    if (CHIP == A7XX) {
1554       tu7_emit_tile_render_begin_regs(cs);
1555    }
1556 
1557    /* TODO use CP_MEM_TO_SCRATCH_MEM on a7xx. The VSC scratch mem should be
1558     * automatically saved, unlike GPU registers, so we wouldn't have to
1559     * manually restore this state.
1560     */
1561    tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
1562    tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VSC_STATE(0)) |
1563                   CP_MEM_TO_REG_0_CNT(32));
1564    tu_cs_emit_qw(cs, dev->global_bo->iova + gb_offset(vsc_state));
1565 }
1566 
1567 VkResult
tu_init_bin_preamble(struct tu_device * device)1568 tu_init_bin_preamble(struct tu_device *device)
1569 {
1570    struct tu_cs preamble_cs;
1571    VkResult result = tu_cs_begin_sub_stream(&device->sub_cs, 256, &preamble_cs);
1572    if (result != VK_SUCCESS)
1573       return vk_startup_errorf(device->instance, result, "bin restore");
1574 
1575    TU_CALLX(device, tu_emit_bin_preamble)(device, &preamble_cs);
1576 
1577    device->bin_preamble_entry = tu_cs_end_sub_stream(&device->sub_cs, &preamble_cs);
1578 
1579    return VK_SUCCESS;
1580 }
1581 
1582 template <chip CHIP>
1583 static void
tu6_init_hw(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1584 tu6_init_hw(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1585 {
1586    struct tu_device *dev = cmd->device;
1587    const struct tu_physical_device *phys_dev = dev->physical_device;
1588 
1589    if (CHIP == A6XX) {
1590       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1591    } else {
1592       tu_cs_emit_pkt7(cs, CP_THREAD_CONTROL, 1);
1593       tu_cs_emit(cs, CP_THREAD_CONTROL_0_THREAD(CP_SET_THREAD_BR) |
1594                      CP_THREAD_CONTROL_0_CONCURRENT_BIN_DISABLE);
1595 
1596       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_COLOR);
1597       tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_INVALIDATE_DEPTH);
1598       tu_emit_raw_event_write<CHIP>(cmd, cs, UNK_40, false);
1599       tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
1600       tu_cs_emit_wfi(cs);
1601    }
1602 
1603    tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
1604          .vs_state = true,
1605          .hs_state = true,
1606          .ds_state = true,
1607          .gs_state = true,
1608          .fs_state = true,
1609          .cs_state = true,
1610          .cs_ibo = true,
1611          .gfx_ibo = true,
1612          .cs_shared_const = true,
1613          .gfx_shared_const = true,
1614          .cs_bindless = CHIP == A6XX ? 0x1f : 0xff,
1615          .gfx_bindless = CHIP == A6XX ? 0x1f : 0xff,));
1616 
1617    tu_cs_emit_wfi(cs);
1618 
1619    if (dev->dbg_cmdbuf_stomp_cs) {
1620       tu_cs_emit_call(cs, dev->dbg_cmdbuf_stomp_cs);
1621    }
1622 
1623    cmd->state.cache.pending_flush_bits &=
1624       ~(TU_CMD_FLAG_WAIT_FOR_IDLE | TU_CMD_FLAG_CACHE_INVALIDATE);
1625 
1626    tu6_init_static_regs<CHIP>(cmd->device, cs);
1627 
1628    emit_rb_ccu_cntl<CHIP>(cs, cmd->device, false);
1629    cmd->state.ccu_state = TU_CMD_CCU_SYSMEM;
1630 
1631    tu_disable_draw_states(cmd, cs);
1632 
1633    if (phys_dev->info->a7xx.cmdbuf_start_a725_quirk) {
1634       tu_cs_reserve(cs, 3 + 4);
1635       tu_cs_emit_pkt7(cs, CP_COND_REG_EXEC, 2);
1636       tu_cs_emit(cs, CP_COND_REG_EXEC_0_MODE(THREAD_MODE) |
1637                      CP_COND_REG_EXEC_0_BR | CP_COND_REG_EXEC_0_LPAC);
1638       tu_cs_emit(cs, RENDER_MODE_CP_COND_REG_EXEC_1_DWORDS(4));
1639       tu_cs_emit_ib(cs, &dev->cmdbuf_start_a725_quirk_entry);
1640    }
1641 
1642    tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
1643    tu_cs_emit_qw(cs, cmd->device->bin_preamble_entry.bo->iova +
1644                      cmd->device->bin_preamble_entry.offset);
1645    tu_cs_emit(cs, CP_SET_AMBLE_2_DWORDS(cmd->device->bin_preamble_entry.size /
1646                                         sizeof(uint32_t)) |
1647                   CP_SET_AMBLE_2_TYPE(BIN_PREAMBLE_AMBLE_TYPE));
1648 
1649    tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
1650    tu_cs_emit_qw(cs, 0);
1651    tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(PREAMBLE_AMBLE_TYPE));
1652 
1653    tu_cs_emit_pkt7(cs, CP_SET_AMBLE, 3);
1654    tu_cs_emit_qw(cs, 0);
1655    tu_cs_emit(cs, CP_SET_AMBLE_2_TYPE(POSTAMBLE_AMBLE_TYPE));
1656 
1657    tu_cs_sanity_check(cs);
1658 }
1659 
1660 static void
update_vsc_pipe(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t num_vsc_pipes)1661 update_vsc_pipe(struct tu_cmd_buffer *cmd,
1662                 struct tu_cs *cs,
1663                 uint32_t num_vsc_pipes)
1664 {
1665    const struct tu_tiling_config *tiling = cmd->state.tiling;
1666 
1667    tu_cs_emit_regs(cs,
1668                    A6XX_VSC_BIN_SIZE(.width = tiling->tile0.width,
1669                                      .height = tiling->tile0.height));
1670 
1671    tu_cs_emit_regs(cs,
1672                    A6XX_VSC_BIN_COUNT(.nx = tiling->tile_count.width,
1673                                       .ny = tiling->tile_count.height));
1674 
1675    tu_cs_emit_pkt4(cs, REG_A6XX_VSC_PIPE_CONFIG_REG(0), num_vsc_pipes);
1676    tu_cs_emit_array(cs, tiling->pipe_config, num_vsc_pipes);
1677 
1678    tu_cs_emit_regs(cs,
1679                    A6XX_VSC_PRIM_STRM_PITCH(cmd->vsc_prim_strm_pitch),
1680                    A6XX_VSC_PRIM_STRM_LIMIT(cmd->vsc_prim_strm_pitch - VSC_PAD));
1681 
1682    tu_cs_emit_regs(cs,
1683                    A6XX_VSC_DRAW_STRM_PITCH(cmd->vsc_draw_strm_pitch),
1684                    A6XX_VSC_DRAW_STRM_LIMIT(cmd->vsc_draw_strm_pitch - VSC_PAD));
1685 
1686    tu_cs_emit_regs(cs, A7XX_VSC_UNKNOWN_0D08(0));
1687 }
1688 
1689 static void
emit_vsc_overflow_test(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1690 emit_vsc_overflow_test(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1691 {
1692    const struct tu_tiling_config *tiling = cmd->state.tiling;
1693    const uint32_t used_pipe_count =
1694       tiling->pipe_count.width * tiling->pipe_count.height;
1695 
1696    for (int i = 0; i < used_pipe_count; i++) {
1697       tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1698       tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1699             CP_COND_WRITE5_0_WRITE_MEMORY);
1700       tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_DRAW_STRM_SIZE_REG(i)));
1701       tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1702       tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_draw_strm_pitch - VSC_PAD));
1703       tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1704       tu_cs_emit_qw(cs, global_iova(cmd, vsc_draw_overflow));
1705       tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_draw_strm_pitch));
1706 
1707       tu_cs_emit_pkt7(cs, CP_COND_WRITE5, 8);
1708       tu_cs_emit(cs, CP_COND_WRITE5_0_FUNCTION(WRITE_GE) |
1709             CP_COND_WRITE5_0_WRITE_MEMORY);
1710       tu_cs_emit(cs, CP_COND_WRITE5_1_POLL_ADDR_LO(REG_A6XX_VSC_PRIM_STRM_SIZE_REG(i)));
1711       tu_cs_emit(cs, CP_COND_WRITE5_2_POLL_ADDR_HI(0));
1712       tu_cs_emit(cs, CP_COND_WRITE5_3_REF(cmd->vsc_prim_strm_pitch - VSC_PAD));
1713       tu_cs_emit(cs, CP_COND_WRITE5_4_MASK(~0));
1714       tu_cs_emit_qw(cs, global_iova(cmd, vsc_prim_overflow));
1715       tu_cs_emit(cs, CP_COND_WRITE5_7_WRITE_DATA(cmd->vsc_prim_strm_pitch));
1716    }
1717 
1718    tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1719 }
1720 
1721 template <chip CHIP>
1722 static void
tu6_emit_binning_pass(struct tu_cmd_buffer * cmd,struct tu_cs * cs)1723 tu6_emit_binning_pass(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
1724 {
1725    struct tu_physical_device *phys_dev = cmd->device->physical_device;
1726    const struct tu_framebuffer *fb = cmd->state.framebuffer;
1727 
1728    /* If this command buffer may be executed multiple times, then
1729     * viewports/scissor states may have been changed by previous executions
1730     * and we need to reset them before executing the binning IB.
1731     */
1732    if (!(cmd->usage_flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT) &&
1733        cmd->fdm_bin_patchpoints.size != 0) {
1734       unsigned num_views = MAX2(cmd->state.pass->num_views, 1);
1735       VkExtent2D unscaled_frag_areas[num_views];
1736       for (unsigned i = 0; i < num_views; i++)
1737          unscaled_frag_areas[i] = (VkExtent2D) { 1, 1 };
1738       VkRect2D bin = { { 0, 0 }, { fb->width, fb->height } };
1739       util_dynarray_foreach (&cmd->fdm_bin_patchpoints,
1740                              struct tu_fdm_bin_patchpoint, patch) {
1741          tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + patch->size);
1742          tu_cs_emit_qw(cs, patch->iova);
1743          patch->apply(cmd, cs, patch->data, bin, num_views, unscaled_frag_areas);
1744       }
1745 
1746       tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
1747       tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1748    }
1749 
1750    tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
1751 
1752    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
1753    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_VISIBILITY));
1754 
1755    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1756    tu_cs_emit(cs, 0x1);
1757 
1758    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1759    tu_cs_emit(cs, 0x1);
1760 
1761    tu_cs_emit_wfi(cs);
1762 
1763    tu_cs_emit_regs(cs,
1764                    A6XX_VFD_MODE_CNTL(.render_mode = BINNING_PASS));
1765 
1766    update_vsc_pipe(cmd, cs, phys_dev->info->num_vsc_pipes);
1767 
1768    if (CHIP == A6XX) {
1769       tu_cs_emit_regs(cs,
1770                      A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1771 
1772       tu_cs_emit_regs(cs,
1773                      A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
1774    }
1775 
1776    tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1777    tu_cs_emit(cs, UNK_2C);
1778 
1779    tu_cs_emit_regs(cs,
1780                    A6XX_RB_WINDOW_OFFSET(.x = 0, .y = 0));
1781 
1782    tu_cs_emit_regs(cs,
1783                    A6XX_SP_TP_WINDOW_OFFSET(.x = 0, .y = 0));
1784 
1785    trace_start_binning_ib(&cmd->trace, cs);
1786 
1787    /* emit IB to binning drawcmds: */
1788    tu_cs_emit_call(cs, &cmd->draw_cs);
1789 
1790    trace_end_binning_ib(&cmd->trace, cs);
1791 
1792    /* switching from binning pass to GMEM pass will cause a switch from
1793     * PROGRAM_BINNING to PROGRAM, which invalidates const state (XS_CONST states)
1794     * so make sure these states are re-emitted
1795     * (eventually these states shouldn't exist at all with shader prologue)
1796     * only VS and GS are invalidated, as FS isn't emitted in binning pass,
1797     * and we don't use HW binning when tesselation is used
1798     */
1799    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
1800    tu_cs_emit(cs, CP_SET_DRAW_STATE__0_COUNT(0) |
1801                   CP_SET_DRAW_STATE__0_DISABLE |
1802                   CP_SET_DRAW_STATE__0_GROUP_ID(TU_DRAW_STATE_CONST));
1803    tu_cs_emit(cs, CP_SET_DRAW_STATE__1_ADDR_LO(0));
1804    tu_cs_emit(cs, CP_SET_DRAW_STATE__2_ADDR_HI(0));
1805 
1806    tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 1);
1807    tu_cs_emit(cs, UNK_2D);
1808 
1809    /* This flush is probably required because the VSC, which produces the
1810     * visibility stream, is a client of UCHE, whereas the CP needs to read the
1811     * visibility stream (without caching) to do draw skipping. The
1812     * WFI+WAIT_FOR_ME combination guarantees that the binning commands
1813     * submitted are finished before reading the VSC regs (in
1814     * emit_vsc_overflow_test) or the VSC_DATA buffer directly (implicitly as
1815     * part of draws).
1816     */
1817    tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_CLEAN);
1818 
1819    tu_cs_emit_wfi(cs);
1820 
1821    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
1822 
1823    emit_vsc_overflow_test(cmd, cs);
1824 
1825    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
1826    tu_cs_emit(cs, 0x0);
1827 
1828    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
1829    tu_cs_emit(cs, 0x0);
1830 }
1831 
1832 static struct tu_draw_state
tu_emit_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,bool gmem)1833 tu_emit_input_attachments(struct tu_cmd_buffer *cmd,
1834                           const struct tu_subpass *subpass,
1835                           bool gmem)
1836 {
1837    const struct tu_tiling_config *tiling = cmd->state.tiling;
1838 
1839    /* note: we can probably emit input attachments just once for the whole
1840     * renderpass, this would avoid emitting both sysmem/gmem versions
1841     *
1842     * emit two texture descriptors for each input, as a workaround for
1843     * d24s8/d32s8, which can be sampled as both float (depth) and integer (stencil)
1844     * tu_shader lowers uint input attachment loads to use the 2nd descriptor
1845     * in the pair
1846     * TODO: a smarter workaround
1847     */
1848 
1849    if (!subpass->input_count)
1850       return (struct tu_draw_state) {};
1851 
1852    struct tu_cs_memory texture;
1853    VkResult result = tu_cs_alloc(&cmd->sub_cs, subpass->input_count * 2,
1854                                  A6XX_TEX_CONST_DWORDS, &texture);
1855    if (result != VK_SUCCESS) {
1856       vk_command_buffer_set_error(&cmd->vk, result);
1857       return (struct tu_draw_state) {};
1858    }
1859 
1860    for (unsigned i = 0; i < subpass->input_count * 2; i++) {
1861       uint32_t a = subpass->input_attachments[i / 2].attachment;
1862       if (a == VK_ATTACHMENT_UNUSED)
1863          continue;
1864 
1865       const struct tu_image_view *iview = cmd->state.attachments[a];
1866       const struct tu_render_pass_attachment *att =
1867          &cmd->state.pass->attachments[a];
1868       uint32_t *dst = &texture.map[A6XX_TEX_CONST_DWORDS * i];
1869       uint32_t gmem_offset = tu_attachment_gmem_offset(cmd, att, 0);
1870       uint32_t cpp = att->cpp;
1871 
1872       memcpy(dst, iview->view.descriptor, A6XX_TEX_CONST_DWORDS * 4);
1873 
1874       /* Cube descriptors require a different sampling instruction in shader,
1875        * however we don't know whether image is a cube or not until the start
1876        * of a renderpass. We have to patch the descriptor to make it compatible
1877        * with how it is sampled in shader.
1878        */
1879       enum a6xx_tex_type tex_type =
1880          (enum a6xx_tex_type)((dst[2] & A6XX_TEX_CONST_2_TYPE__MASK) >>
1881                               A6XX_TEX_CONST_2_TYPE__SHIFT);
1882       if (tex_type == A6XX_TEX_CUBE) {
1883          dst[2] &= ~A6XX_TEX_CONST_2_TYPE__MASK;
1884          dst[2] |= A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D);
1885 
1886          uint32_t depth = (dst[5] & A6XX_TEX_CONST_5_DEPTH__MASK) >>
1887                           A6XX_TEX_CONST_5_DEPTH__SHIFT;
1888          dst[5] &= ~A6XX_TEX_CONST_5_DEPTH__MASK;
1889          dst[5] |= A6XX_TEX_CONST_5_DEPTH(depth * 6);
1890       }
1891 
1892       if (i % 2 == 1 && att->format == VK_FORMAT_D24_UNORM_S8_UINT) {
1893          /* note this works because spec says fb and input attachments
1894           * must use identity swizzle
1895           *
1896           * Also we clear swap to WZYX.  This is because the view might have
1897           * picked XYZW to work better with border colors.
1898           */
1899          dst[0] &= ~(A6XX_TEX_CONST_0_FMT__MASK |
1900             A6XX_TEX_CONST_0_SWAP__MASK |
1901             A6XX_TEX_CONST_0_SWIZ_X__MASK | A6XX_TEX_CONST_0_SWIZ_Y__MASK |
1902             A6XX_TEX_CONST_0_SWIZ_Z__MASK | A6XX_TEX_CONST_0_SWIZ_W__MASK);
1903          if (!cmd->device->physical_device->info->a6xx.has_z24uint_s8uint) {
1904             dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_8_8_8_UINT) |
1905                A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_W) |
1906                A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1907                A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1908                A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1909          } else {
1910             dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_Z24_UINT_S8_UINT) |
1911                A6XX_TEX_CONST_0_SWIZ_X(A6XX_TEX_Y) |
1912                A6XX_TEX_CONST_0_SWIZ_Y(A6XX_TEX_ZERO) |
1913                A6XX_TEX_CONST_0_SWIZ_Z(A6XX_TEX_ZERO) |
1914                A6XX_TEX_CONST_0_SWIZ_W(A6XX_TEX_ONE);
1915          }
1916       }
1917 
1918       if (i % 2 == 1 && att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) {
1919          dst[0] &= ~A6XX_TEX_CONST_0_FMT__MASK;
1920          dst[0] |= A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1921          dst[2] &= ~(A6XX_TEX_CONST_2_PITCHALIGN__MASK | A6XX_TEX_CONST_2_PITCH__MASK);
1922          dst[2] |= A6XX_TEX_CONST_2_PITCH(iview->stencil_pitch);
1923          dst[3] = 0;
1924          dst[4] = iview->stencil_base_addr;
1925          dst[5] = (dst[5] & 0xffff) | iview->stencil_base_addr >> 32;
1926 
1927          cpp = att->samples;
1928          gmem_offset = att->gmem_offset_stencil[cmd->state.gmem_layout];
1929       }
1930 
1931       if (!gmem || !subpass->input_attachments[i / 2].patch_input_gmem)
1932          continue;
1933 
1934       /* patched for gmem */
1935       dst[0] &= ~A6XX_TEX_CONST_0_TILE_MODE__MASK;
1936       if (!iview->view.is_mutable)
1937          dst[0] &= ~A6XX_TEX_CONST_0_SWAP__MASK;
1938       dst[0] |= A6XX_TEX_CONST_0_TILE_MODE(TILE6_2);
1939       dst[2] =
1940          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_2D) |
1941          A6XX_TEX_CONST_2_PITCH(tiling->tile0.width * cpp);
1942       /* Note: it seems the HW implicitly calculates the array pitch with the
1943        * GMEM tiling, so we don't need to specify the pitch ourselves.
1944        */
1945       dst[3] = 0;
1946       dst[4] = cmd->device->physical_device->gmem_base + gmem_offset;
1947       dst[5] &= A6XX_TEX_CONST_5_DEPTH__MASK;
1948       for (unsigned i = 6; i < A6XX_TEX_CONST_DWORDS; i++)
1949          dst[i] = 0;
1950    }
1951 
1952    struct tu_cs cs;
1953    struct tu_draw_state ds = tu_cs_draw_state(&cmd->sub_cs, &cs, 9);
1954 
1955    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3);
1956    tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(0) |
1957                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
1958                   CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
1959                   CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_TEX) |
1960                   CP_LOAD_STATE6_0_NUM_UNIT(subpass->input_count * 2));
1961    tu_cs_emit_qw(&cs, texture.iova);
1962 
1963    tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_CONST(.qword = texture.iova));
1964 
1965    tu_cs_emit_regs(&cs, A6XX_SP_FS_TEX_COUNT(subpass->input_count * 2));
1966 
1967    assert(cs.cur == cs.end); /* validate draw state size */
1968 
1969    return ds;
1970 }
1971 
1972 static void
tu_set_input_attachments(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass)1973 tu_set_input_attachments(struct tu_cmd_buffer *cmd, const struct tu_subpass *subpass)
1974 {
1975    struct tu_cs *cs = &cmd->draw_cs;
1976 
1977    tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 6);
1978    tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_GMEM,
1979                          tu_emit_input_attachments(cmd, subpass, true));
1980    tu_cs_emit_draw_state(cs, TU_DRAW_STATE_INPUT_ATTACHMENTS_SYSMEM,
1981                          tu_emit_input_attachments(cmd, subpass, false));
1982 }
1983 
1984 static void
tu_trace_start_render_pass(struct tu_cmd_buffer * cmd)1985 tu_trace_start_render_pass(struct tu_cmd_buffer *cmd)
1986 {
1987    if (!u_trace_enabled(&cmd->device->trace_context))
1988       return;
1989 
1990    uint32_t load_cpp = 0;
1991    uint32_t store_cpp = 0;
1992    uint32_t clear_cpp = 0;
1993    bool has_depth = false;
1994    char ubwc[MAX_RTS + 3];
1995    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; i++) {
1996       const struct tu_render_pass_attachment *attachment =
1997          &cmd->state.pass->attachments[i];
1998       if (attachment->load) {
1999          load_cpp += attachment->cpp;
2000       }
2001 
2002       if (attachment->store) {
2003          store_cpp += attachment->cpp;
2004       }
2005 
2006       if (attachment->clear_mask) {
2007          clear_cpp += attachment->cpp;
2008       }
2009 
2010       has_depth |= vk_format_has_depth(attachment->format);
2011    }
2012 
2013    uint8_t ubwc_len = 0;
2014    const struct tu_subpass *subpass = &cmd->state.pass->subpasses[0];
2015    for (uint32_t i = 0; i < subpass->color_count; i++) {
2016       uint32_t att = subpass->color_attachments[i].attachment;
2017       ubwc[ubwc_len++] = att == VK_ATTACHMENT_UNUSED ? '-'
2018                          : cmd->state.attachments[att]->view.ubwc_enabled
2019                             ? 'y'
2020                             : 'n';
2021    }
2022    if (subpass->depth_used) {
2023       ubwc[ubwc_len++] = '|';
2024       ubwc[ubwc_len++] =
2025          cmd->state.attachments[subpass->depth_stencil_attachment.attachment]
2026                ->view.ubwc_enabled
2027             ? 'y'
2028             : 'n';
2029    }
2030    ubwc[ubwc_len] = '\0';
2031 
2032    uint32_t max_samples = 0;
2033    for (uint32_t i = 0; i < cmd->state.pass->subpass_count; i++) {
2034       max_samples = MAX2(max_samples, cmd->state.pass->subpasses[i].samples);
2035    }
2036 
2037    trace_start_render_pass(&cmd->trace, &cmd->cs, cmd->state.framebuffer,
2038                            cmd->state.tiling, max_samples, clear_cpp,
2039                            load_cpp, store_cpp, has_depth, ubwc);
2040 }
2041 
2042 template <chip CHIP>
2043 static void
tu_trace_end_render_pass(struct tu_cmd_buffer * cmd,bool gmem)2044 tu_trace_end_render_pass(struct tu_cmd_buffer *cmd, bool gmem)
2045 {
2046    if (!u_trace_enabled(&cmd->device->trace_context))
2047       return;
2048 
2049    uint32_t avg_per_sample_bandwidth =
2050       cmd->state.rp.drawcall_bandwidth_per_sample_sum /
2051       MAX2(cmd->state.rp.drawcall_count, 1);
2052 
2053    struct u_trace_address addr = {};
2054    if (cmd->state.lrz.image_view) {
2055       struct tu_image *image = cmd->state.lrz.image_view->image;
2056       addr.bo = image->bo;
2057       addr.offset = (image->iova - image->bo->iova) +
2058                     image->lrz_layout.lrz_fc_offset +
2059                     offsetof(fd_lrzfc_layout<CHIP>, dir_track);
2060    }
2061 
2062    trace_end_render_pass(&cmd->trace, &cmd->cs, gmem,
2063                          cmd->state.rp.drawcall_count,
2064                          avg_per_sample_bandwidth, cmd->state.lrz.valid,
2065                          cmd->state.rp.lrz_disable_reason,
2066                          cmd->state.rp.lrz_disabled_at_draw, addr);
2067 }
2068 
2069 static void
tu_emit_renderpass_begin(struct tu_cmd_buffer * cmd)2070 tu_emit_renderpass_begin(struct tu_cmd_buffer *cmd)
2071 {
2072    /* We need to re-emit any draw states that are patched in order for them to
2073     * be correctly added to the per-renderpass patchpoint list, even if they
2074     * are the same as before.
2075     */
2076    if (cmd->state.pass->has_fdm)
2077       cmd->state.dirty |= TU_CMD_DIRTY_FDM;
2078 
2079    /* We need to re-emit MSAA at the beginning of every renderpass because it
2080     * isn't part of a draw state that gets automatically re-emitted.
2081     */
2082    BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
2083               MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES);
2084    /* PC_PRIMITIVE_CNTL_0 isn't a part of a draw state and may be changed
2085     * by blits.
2086     */
2087    BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
2088               MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
2089 }
2090 
2091 template <chip CHIP>
2092 static void
tu6_sysmem_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)2093 tu6_sysmem_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2094                         struct tu_renderpass_result *autotune_result)
2095 {
2096    const struct tu_framebuffer *fb = cmd->state.framebuffer;
2097 
2098    tu_lrz_sysmem_begin<CHIP>(cmd, cs);
2099 
2100    assert(fb->width > 0 && fb->height > 0);
2101    tu6_emit_window_scissor(cs, 0, 0, fb->width - 1, fb->height - 1);
2102    tu6_emit_window_offset<CHIP>(cs, 0, 0);
2103 
2104    tu6_emit_bin_size<CHIP>(cs, 0, 0, {
2105       .render_mode = RENDERING_PASS,
2106       .force_lrz_write_dis =
2107          !cmd->device->physical_device->info->a6xx.has_lrz_feedback,
2108       .buffers_location = BUFFERS_IN_SYSMEM,
2109       .lrz_feedback_zmode_mask =
2110          cmd->device->physical_device->info->a6xx.has_lrz_feedback
2111             ? LRZ_FEEDBACK_EARLY_Z_OR_EARLY_LRZ_LATE_Z
2112             : LRZ_FEEDBACK_NONE,
2113    });
2114 
2115    if (CHIP == A7XX) {
2116       tu_cs_emit_regs(cs,
2117                      A7XX_RB_UNKNOWN_8812(0x3ff)); // all buffers in sysmem
2118       tu_cs_emit_regs(cs,
2119          A7XX_RB_UNKNOWN_8E06(cmd->device->physical_device->info->a6xx.magic.RB_UNKNOWN_8E06));
2120 
2121       tu_cs_emit_regs(cs, A7XX_GRAS_UNKNOWN_8007(0x0));
2122 
2123       tu_cs_emit_regs(cs, A6XX_GRAS_UNKNOWN_8110(0x2));
2124       tu_cs_emit_regs(cs, A7XX_RB_UNKNOWN_8E09(0x4));
2125 
2126       tu_cs_emit_regs(cs, A7XX_RB_BLIT_CLEAR_MODE(.clear_mode = CLEAR_MODE_SYSMEM));
2127    }
2128 
2129    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
2130    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_DIRECT_RENDER));
2131 
2132    /* A7XX TODO: blob doesn't use CP_SKIP_IB2_ENABLE_* */
2133    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
2134    tu_cs_emit(cs, 0x0);
2135 
2136    tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_SYSMEM);
2137 
2138    tu_cs_emit_pkt7(cs, CP_SET_VISIBILITY_OVERRIDE, 1);
2139    tu_cs_emit(cs, 0x1);
2140 
2141    tu_cs_emit_pkt7(cs, CP_SET_MODE, 1);
2142    tu_cs_emit(cs, 0x0);
2143 
2144    tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
2145 
2146    tu_cs_sanity_check(cs);
2147 }
2148 
2149 template <chip CHIP>
2150 static void
tu6_sysmem_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)2151 tu6_sysmem_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2152                       struct tu_renderpass_result *autotune_result)
2153 {
2154    tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
2155 
2156    /* Do any resolves of the last subpass. These are handled in the
2157     * tile_store_cs in the gmem path.
2158     */
2159    tu6_emit_sysmem_resolves<CHIP>(cmd, cs, cmd->state.subpass);
2160 
2161    tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
2162 
2163    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
2164    tu_cs_emit(cs, 0x0);
2165 
2166    tu_lrz_sysmem_end<CHIP>(cmd, cs);
2167 
2168    tu_cs_sanity_check(cs);
2169 }
2170 
2171 template <chip CHIP>
2172 static void
tu6_tile_render_begin(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)2173 tu6_tile_render_begin(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2174                       struct tu_renderpass_result *autotune_result)
2175 {
2176    struct tu_physical_device *phys_dev = cmd->device->physical_device;
2177    const struct tu_tiling_config *tiling = cmd->state.tiling;
2178    tu_lrz_tiling_begin<CHIP>(cmd, cs);
2179 
2180    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
2181    tu_cs_emit(cs, 0x0);
2182 
2183    if (CHIP >= A7XX) {
2184       tu7_emit_tile_render_begin_regs(cs);
2185    }
2186 
2187    tu_emit_cache_flush_ccu<CHIP>(cmd, cs, TU_CMD_CCU_GMEM);
2188 
2189    if (use_hw_binning(cmd)) {
2190       if (!cmd->vsc_initialized) {
2191          tu6_lazy_init_vsc(cmd);
2192       }
2193 
2194       /* We always emit VSC before each renderpass, because due to
2195        * skipsaverestore the underlying VSC registers may have become
2196        * invalid. Normally we'd need to WFI before setting these non-context
2197        * registers, but we should be safe because we're only setting it to the
2198        * same value it had before.
2199        *
2200        * TODO: On a6xx, we have to emit this per-bin or make the amble include
2201        * these registers, because CP_SET_BIN_DATA5_OFFSET will use the
2202        * register instead of the pseudo register and its value won't survive
2203        * across preemptions. The blob seems to take the second approach and
2204        * emits the preamble lazily.
2205        */
2206       tu_emit_vsc<CHIP>(cmd, cs);
2207 
2208       tu6_emit_bin_size<CHIP>(cs, tiling->tile0.width, tiling->tile0.height,
2209                               {
2210                                  .render_mode = BINNING_PASS,
2211                                  .buffers_location = BUFFERS_IN_GMEM,
2212                                  .lrz_feedback_zmode_mask =
2213                                     phys_dev->info->a6xx.has_lrz_feedback
2214                                        ? LRZ_FEEDBACK_EARLY_LRZ_LATE_Z
2215                                        : LRZ_FEEDBACK_NONE
2216                               });
2217 
2218       tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, cs, true);
2219 
2220       tu6_emit_binning_pass<CHIP>(cmd, cs);
2221 
2222       if (CHIP == A6XX) {
2223          tu_cs_emit_regs(cs,
2224                         A6XX_PC_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
2225 
2226          tu_cs_emit_regs(cs,
2227                         A6XX_VFD_POWER_CNTL(phys_dev->info->a6xx.magic.PC_POWER_CNTL));
2228       }
2229 
2230       tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
2231       tu_cs_emit(cs, 0x1);
2232       tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_LOCAL, 1);
2233       tu_cs_emit(cs, 0x1);
2234    } else {
2235       if (tiling->binning_possible) {
2236          /* Mark all tiles as visible for tu6_emit_cond_for_load_stores(), since
2237           * the actual binner didn't run.
2238           */
2239          int pipe_count = tiling->pipe_count.width * tiling->pipe_count.height;
2240          tu_cs_emit_pkt4(cs, REG_A6XX_VSC_STATE_REG(0), pipe_count);
2241          for (int i = 0; i < pipe_count; i++)
2242             tu_cs_emit(cs, ~0);
2243       }
2244    }
2245 
2246    if (tiling->binning_possible) {
2247       /* Upload state regs to memory to be restored on skipsaverestore
2248        * preemption.
2249        */
2250       tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
2251       tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_VSC_STATE_REG(0)) |
2252                      CP_REG_TO_MEM_0_CNT(32));
2253       tu_cs_emit_qw(cs, global_iova(cmd, vsc_state));
2254    }
2255 
2256    tu_autotune_begin_renderpass<CHIP>(cmd, cs, autotune_result);
2257 
2258    tu_cs_sanity_check(cs);
2259 }
2260 
2261 template <chip CHIP>
2262 static void
tu6_render_tile(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t tx,uint32_t ty,uint32_t pipe,uint32_t slot,const struct tu_image_view * fdm)2263 tu6_render_tile(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2264                 uint32_t tx, uint32_t ty, uint32_t pipe, uint32_t slot,
2265                 const struct tu_image_view *fdm)
2266 {
2267    tu6_emit_tile_select<CHIP>(cmd, &cmd->cs, tx, ty, pipe, slot, fdm);
2268    tu_lrz_before_tile<CHIP>(cmd, &cmd->cs);
2269 
2270    trace_start_draw_ib_gmem(&cmd->trace, &cmd->cs);
2271 
2272    /* Primitives that passed all tests are still counted in in each
2273     * tile even with HW binning beforehand. Do not permit it.
2274     */
2275    if (cmd->state.prim_generated_query_running_before_rp)
2276       tu_emit_event_write<CHIP>(cmd, cs, FD_STOP_PRIMITIVE_CTRS);
2277 
2278    tu_cs_emit_call(cs, &cmd->draw_cs);
2279 
2280    if (cmd->state.prim_generated_query_running_before_rp)
2281       tu_emit_event_write<CHIP>(cmd, cs, FD_START_PRIMITIVE_CTRS);
2282 
2283    if (use_hw_binning(cmd)) {
2284       tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
2285       tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_END_OF_DRAWS) |
2286                      A6XX_CP_SET_MARKER_0_USES_GMEM);
2287    }
2288 
2289    /* Predicate is changed in draw_cs so we have to re-emit it */
2290    if (cmd->state.rp.draw_cs_writes_to_cond_pred)
2291       tu6_emit_cond_for_load_stores(cmd, cs, pipe, slot, false);
2292 
2293    tu_cs_emit_pkt7(cs, CP_SKIP_IB2_ENABLE_GLOBAL, 1);
2294    tu_cs_emit(cs, 0x0);
2295 
2296    tu_cs_emit_call(cs, &cmd->tile_store_cs);
2297 
2298    tu_clone_trace_range(cmd, cs, cmd->trace_renderpass_start,
2299          cmd->trace_renderpass_end);
2300 
2301    tu_cs_emit_wfi(cs);
2302 
2303    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
2304    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_BIN_RENDER_END));
2305 
2306    tu_cs_sanity_check(cs);
2307 
2308    trace_end_draw_ib_gmem(&cmd->trace, &cmd->cs);
2309 }
2310 
2311 template <chip CHIP>
2312 static void
tu6_tile_render_end(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_renderpass_result * autotune_result)2313 tu6_tile_render_end(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2314                     struct tu_renderpass_result *autotune_result)
2315 {
2316    tu_autotune_end_renderpass<CHIP>(cmd, cs, autotune_result);
2317 
2318    tu_cs_emit_call(cs, &cmd->draw_epilogue_cs);
2319 
2320    tu_lrz_tiling_end<CHIP>(cmd, cs);
2321 
2322    tu_emit_event_write<CHIP>(cmd, cs, FD_CCU_CLEAN_BLIT_CACHE);
2323 
2324    tu_cs_sanity_check(cs);
2325 }
2326 
2327 template <chip CHIP>
2328 static void
tu_cmd_render_tiles(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)2329 tu_cmd_render_tiles(struct tu_cmd_buffer *cmd,
2330                     struct tu_renderpass_result *autotune_result)
2331 {
2332    const struct tu_tiling_config *tiling = cmd->state.tiling;
2333    const struct tu_image_view *fdm = NULL;
2334 
2335    if (cmd->state.pass->fragment_density_map.attachment != VK_ATTACHMENT_UNUSED) {
2336       fdm = cmd->state.attachments[cmd->state.pass->fragment_density_map.attachment];
2337    }
2338 
2339    /* Create gmem stores now (at EndRenderPass time)) because they needed to
2340     * know whether to allow their conditional execution, which was tied to a
2341     * state that was known only at the end of the renderpass.  They will be
2342     * called from tu6_render_tile().
2343     */
2344    tu_cs_begin(&cmd->tile_store_cs);
2345    tu6_emit_tile_store<CHIP>(cmd, &cmd->tile_store_cs);
2346    tu_cs_end(&cmd->tile_store_cs);
2347 
2348    cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
2349 
2350    tu6_tile_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
2351 
2352    /* Note: we reverse the order of walking the pipes and tiles on every
2353     * other row, to improve texture cache locality compared to raster order.
2354     */
2355    for (uint32_t py = 0; py < tiling->pipe_count.height; py++) {
2356       uint32_t pipe_row = py * tiling->pipe_count.width;
2357       for (uint32_t pipe_row_i = 0; pipe_row_i < tiling->pipe_count.width; pipe_row_i++) {
2358          uint32_t px;
2359          if (py & 1)
2360             px = tiling->pipe_count.width - 1 - pipe_row_i;
2361          else
2362             px = pipe_row_i;
2363          uint32_t pipe = pipe_row + px;
2364          uint32_t tx1 = px * tiling->pipe0.width;
2365          uint32_t ty1 = py * tiling->pipe0.height;
2366          uint32_t tx2 = MIN2(tx1 + tiling->pipe0.width, tiling->tile_count.width);
2367          uint32_t ty2 = MIN2(ty1 + tiling->pipe0.height, tiling->tile_count.height);
2368          uint32_t tile_row_stride = tx2 - tx1;
2369          uint32_t slot_row = 0;
2370          for (uint32_t ty = ty1; ty < ty2; ty++) {
2371             for (uint32_t tile_row_i = 0; tile_row_i < tile_row_stride; tile_row_i++) {
2372                uint32_t tx;
2373                if (ty & 1)
2374                   tx = tile_row_stride - 1 - tile_row_i;
2375                else
2376                   tx = tile_row_i;
2377                uint32_t slot = slot_row + tx;
2378                tu6_render_tile<CHIP>(cmd, &cmd->cs, tx1 + tx, ty, pipe, slot, fdm);
2379             }
2380             slot_row += tile_row_stride;
2381          }
2382       }
2383    }
2384 
2385    tu6_tile_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
2386 
2387    tu_trace_end_render_pass<CHIP>(cmd, true);
2388 
2389    /* We have trashed the dynamically-emitted viewport, scissor, and FS params
2390     * via the patchpoints, so we need to re-emit them if they are reused for a
2391     * later render pass.
2392     */
2393    if (cmd->state.pass->has_fdm)
2394       cmd->state.dirty |= TU_CMD_DIRTY_FDM;
2395 
2396    /* tu6_render_tile has cloned these tracepoints for each tile */
2397    if (!u_trace_iterator_equal(cmd->trace_renderpass_start, cmd->trace_renderpass_end))
2398       u_trace_disable_event_range(cmd->trace_renderpass_start,
2399                                   cmd->trace_renderpass_end);
2400 
2401    /* Reset the gmem store CS entry lists so that the next render pass
2402     * does its own stores.
2403     */
2404    tu_cs_discard_entries(&cmd->tile_store_cs);
2405 }
2406 
2407 template <chip CHIP>
2408 static void
tu_cmd_render_sysmem(struct tu_cmd_buffer * cmd,struct tu_renderpass_result * autotune_result)2409 tu_cmd_render_sysmem(struct tu_cmd_buffer *cmd,
2410                      struct tu_renderpass_result *autotune_result)
2411 {
2412    cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
2413 
2414    tu6_sysmem_render_begin<CHIP>(cmd, &cmd->cs, autotune_result);
2415 
2416    trace_start_draw_ib_sysmem(&cmd->trace, &cmd->cs);
2417 
2418    tu_cs_emit_call(&cmd->cs, &cmd->draw_cs);
2419 
2420    trace_end_draw_ib_sysmem(&cmd->trace, &cmd->cs);
2421 
2422    tu6_sysmem_render_end<CHIP>(cmd, &cmd->cs, autotune_result);
2423 
2424    tu_trace_end_render_pass<CHIP>(cmd, false);
2425 }
2426 
2427 template <chip CHIP>
2428 void
tu_cmd_render(struct tu_cmd_buffer * cmd_buffer)2429 tu_cmd_render(struct tu_cmd_buffer *cmd_buffer)
2430 {
2431    if (cmd_buffer->state.rp.has_tess)
2432       tu6_lazy_emit_tessfactor_addr<CHIP>(cmd_buffer);
2433 
2434    struct tu_renderpass_result *autotune_result = NULL;
2435    if (use_sysmem_rendering(cmd_buffer, &autotune_result))
2436       tu_cmd_render_sysmem<CHIP>(cmd_buffer, autotune_result);
2437    else
2438       tu_cmd_render_tiles<CHIP>(cmd_buffer, autotune_result);
2439 
2440    /* Outside of renderpasses we assume all draw states are disabled. We do
2441     * this outside the draw CS for the normal case where 3d gmem stores aren't
2442     * used.
2443     */
2444    tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
2445 
2446 }
2447 
tu_reset_render_pass(struct tu_cmd_buffer * cmd_buffer)2448 static void tu_reset_render_pass(struct tu_cmd_buffer *cmd_buffer)
2449 {
2450    /* discard draw_cs and draw_epilogue_cs entries now that the tiles are
2451       rendered */
2452    tu_cs_discard_entries(&cmd_buffer->draw_cs);
2453    tu_cs_begin(&cmd_buffer->draw_cs);
2454    tu_cs_discard_entries(&cmd_buffer->draw_epilogue_cs);
2455    tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2456 
2457    cmd_buffer->state.pass = NULL;
2458    cmd_buffer->state.subpass = NULL;
2459    cmd_buffer->state.framebuffer = NULL;
2460    cmd_buffer->state.attachments = NULL;
2461    cmd_buffer->state.clear_values = NULL;
2462    cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* invalid value to prevent looking up gmem offsets */
2463    memset(&cmd_buffer->state.rp, 0, sizeof(cmd_buffer->state.rp));
2464 
2465    /* LRZ is not valid next time we use it */
2466    cmd_buffer->state.lrz.valid = false;
2467    cmd_buffer->state.dirty |= TU_CMD_DIRTY_LRZ;
2468 
2469    /* Patchpoints have been executed */
2470    util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2471    ralloc_free(cmd_buffer->patchpoints_ctx);
2472    cmd_buffer->patchpoints_ctx = NULL;
2473 }
2474 
2475 static VkResult
tu_create_cmd_buffer(struct vk_command_pool * pool,VkCommandBufferLevel level,struct vk_command_buffer ** cmd_buffer_out)2476 tu_create_cmd_buffer(struct vk_command_pool *pool,
2477                      VkCommandBufferLevel level,
2478                      struct vk_command_buffer **cmd_buffer_out)
2479 {
2480    struct tu_device *device =
2481       container_of(pool->base.device, struct tu_device, vk);
2482    struct tu_cmd_buffer *cmd_buffer;
2483 
2484    cmd_buffer = (struct tu_cmd_buffer *) vk_zalloc2(
2485       &device->vk.alloc, NULL, sizeof(*cmd_buffer), 8,
2486       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2487 
2488    if (cmd_buffer == NULL)
2489       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
2490 
2491    VkResult result = vk_command_buffer_init(pool, &cmd_buffer->vk,
2492                                             &tu_cmd_buffer_ops, level);
2493    if (result != VK_SUCCESS) {
2494       vk_free2(&device->vk.alloc, NULL, cmd_buffer);
2495       return result;
2496    }
2497 
2498    cmd_buffer->device = device;
2499 
2500    u_trace_init(&cmd_buffer->trace, &device->trace_context);
2501    list_inithead(&cmd_buffer->renderpass_autotune_results);
2502 
2503    tu_cs_init(&cmd_buffer->cs, device, TU_CS_MODE_GROW, 4096, "cmd cs");
2504    tu_cs_init(&cmd_buffer->draw_cs, device, TU_CS_MODE_GROW, 4096, "draw cs");
2505    tu_cs_init(&cmd_buffer->tile_store_cs, device, TU_CS_MODE_GROW, 2048, "tile store cs");
2506    tu_cs_init(&cmd_buffer->draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "draw epilogue cs");
2507    tu_cs_init(&cmd_buffer->sub_cs, device, TU_CS_MODE_SUB_STREAM, 2048, "draw sub cs");
2508    tu_cs_init(&cmd_buffer->pre_chain.draw_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw cs");
2509    tu_cs_init(&cmd_buffer->pre_chain.draw_epilogue_cs, device, TU_CS_MODE_GROW, 4096, "prechain draw epiligoue cs");
2510 
2511    for (unsigned i = 0; i < MAX_BIND_POINTS; i++)
2512       cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2513 
2514    *cmd_buffer_out = &cmd_buffer->vk;
2515 
2516    return VK_SUCCESS;
2517 }
2518 
2519 static void
tu_cmd_buffer_destroy(struct vk_command_buffer * vk_cmd_buffer)2520 tu_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer)
2521 {
2522    struct tu_cmd_buffer *cmd_buffer =
2523       container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2524 
2525    tu_cs_finish(&cmd_buffer->cs);
2526    tu_cs_finish(&cmd_buffer->draw_cs);
2527    tu_cs_finish(&cmd_buffer->tile_store_cs);
2528    tu_cs_finish(&cmd_buffer->draw_epilogue_cs);
2529    tu_cs_finish(&cmd_buffer->sub_cs);
2530    tu_cs_finish(&cmd_buffer->pre_chain.draw_cs);
2531    tu_cs_finish(&cmd_buffer->pre_chain.draw_epilogue_cs);
2532 
2533    u_trace_fini(&cmd_buffer->trace);
2534 
2535    tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2536 
2537    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2538       if (cmd_buffer->descriptors[i].push_set.layout)
2539          vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2540                                         &cmd_buffer->descriptors[i].push_set.layout->vk);
2541       vk_free(&cmd_buffer->device->vk.alloc,
2542               cmd_buffer->descriptors[i].push_set.mapped_ptr);
2543    }
2544 
2545    ralloc_free(cmd_buffer->patchpoints_ctx);
2546    ralloc_free(cmd_buffer->pre_chain.patchpoints_ctx);
2547    util_dynarray_fini(&cmd_buffer->fdm_bin_patchpoints);
2548    util_dynarray_fini(&cmd_buffer->pre_chain.fdm_bin_patchpoints);
2549 
2550    vk_command_buffer_finish(&cmd_buffer->vk);
2551    vk_free2(&cmd_buffer->device->vk.alloc, &cmd_buffer->vk.pool->alloc,
2552             cmd_buffer);
2553 }
2554 
2555 static void
tu_reset_cmd_buffer(struct vk_command_buffer * vk_cmd_buffer,UNUSED VkCommandBufferResetFlags flags)2556 tu_reset_cmd_buffer(struct vk_command_buffer *vk_cmd_buffer,
2557                     UNUSED VkCommandBufferResetFlags flags)
2558 {
2559    struct tu_cmd_buffer *cmd_buffer =
2560       container_of(vk_cmd_buffer, struct tu_cmd_buffer, vk);
2561 
2562    vk_command_buffer_reset(&cmd_buffer->vk);
2563 
2564    tu_cs_reset(&cmd_buffer->cs);
2565    tu_cs_reset(&cmd_buffer->draw_cs);
2566    tu_cs_reset(&cmd_buffer->tile_store_cs);
2567    tu_cs_reset(&cmd_buffer->draw_epilogue_cs);
2568    tu_cs_reset(&cmd_buffer->sub_cs);
2569    tu_cs_reset(&cmd_buffer->pre_chain.draw_cs);
2570    tu_cs_reset(&cmd_buffer->pre_chain.draw_epilogue_cs);
2571 
2572    tu_autotune_free_results(cmd_buffer->device, &cmd_buffer->renderpass_autotune_results);
2573 
2574    for (unsigned i = 0; i < MAX_BIND_POINTS; i++) {
2575       memset(&cmd_buffer->descriptors[i].sets, 0, sizeof(cmd_buffer->descriptors[i].sets));
2576       if (cmd_buffer->descriptors[i].push_set.layout) {
2577          vk_descriptor_set_layout_unref(&cmd_buffer->device->vk,
2578                                         &cmd_buffer->descriptors[i].push_set.layout->vk);
2579       }
2580       vk_free(&cmd_buffer->device->vk.alloc, cmd_buffer->descriptors[i].push_set.mapped_ptr);
2581       memset(&cmd_buffer->descriptors[i].push_set, 0, sizeof(cmd_buffer->descriptors[i].push_set));
2582       cmd_buffer->descriptors[i].push_set.base.type = VK_OBJECT_TYPE_DESCRIPTOR_SET;
2583       cmd_buffer->descriptors[i].max_sets_bound = 0;
2584       cmd_buffer->descriptors[i].max_dynamic_offset_size = 0;
2585    }
2586 
2587    u_trace_fini(&cmd_buffer->trace);
2588    u_trace_init(&cmd_buffer->trace, &cmd_buffer->device->trace_context);
2589 
2590    cmd_buffer->state.max_vbs_bound = 0;
2591 
2592    cmd_buffer->vsc_initialized = false;
2593    cmd_buffer->prev_fsr_is_null = false;
2594 
2595    ralloc_free(cmd_buffer->patchpoints_ctx);
2596    ralloc_free(cmd_buffer->pre_chain.patchpoints_ctx);
2597    cmd_buffer->patchpoints_ctx = NULL;
2598    cmd_buffer->pre_chain.patchpoints_ctx = NULL;
2599    util_dynarray_clear(&cmd_buffer->fdm_bin_patchpoints);
2600    util_dynarray_clear(&cmd_buffer->pre_chain.fdm_bin_patchpoints);
2601 }
2602 
2603 const struct vk_command_buffer_ops tu_cmd_buffer_ops = {
2604    .create = tu_create_cmd_buffer,
2605    .reset = tu_reset_cmd_buffer,
2606    .destroy = tu_cmd_buffer_destroy,
2607 };
2608 
2609 /* Initialize the cache, assuming all necessary flushes have happened but *not*
2610  * invalidations.
2611  */
2612 static void
tu_cache_init(struct tu_cache_state * cache)2613 tu_cache_init(struct tu_cache_state *cache)
2614 {
2615    cache->flush_bits = 0;
2616    cache->pending_flush_bits = TU_CMD_FLAG_ALL_INVALIDATE;
2617 }
2618 
2619 /* Unlike the public entrypoint, this doesn't handle cache tracking, and
2620  * tracking the CCU state. It's used for the driver to insert its own command
2621  * buffer in the middle of a submit.
2622  */
2623 VkResult
tu_cmd_buffer_begin(struct tu_cmd_buffer * cmd_buffer,const VkCommandBufferBeginInfo * pBeginInfo)2624 tu_cmd_buffer_begin(struct tu_cmd_buffer *cmd_buffer,
2625                     const VkCommandBufferBeginInfo *pBeginInfo)
2626 {
2627    vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo);
2628 
2629    memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state));
2630    vk_dynamic_graphics_state_init(&cmd_buffer->vk.dynamic_graphics_state);
2631    cmd_buffer->vk.dynamic_graphics_state.vi = &cmd_buffer->state.vi;
2632    cmd_buffer->vk.dynamic_graphics_state.ms.sample_locations = &cmd_buffer->state.sl;
2633    cmd_buffer->state.index_size = 0xff; /* dirty restart index */
2634    cmd_buffer->state.gmem_layout = TU_GMEM_LAYOUT_COUNT; /* dirty value */
2635 
2636    tu_cache_init(&cmd_buffer->state.cache);
2637    tu_cache_init(&cmd_buffer->state.renderpass_cache);
2638    cmd_buffer->usage_flags = pBeginInfo->flags;
2639 
2640    tu_cs_begin(&cmd_buffer->cs);
2641    tu_cs_begin(&cmd_buffer->draw_cs);
2642    tu_cs_begin(&cmd_buffer->draw_epilogue_cs);
2643 
2644    return VK_SUCCESS;
2645 }
2646 
2647 VKAPI_ATTR VkResult VKAPI_CALL
tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,const VkCommandBufferBeginInfo * pBeginInfo)2648 tu_BeginCommandBuffer(VkCommandBuffer commandBuffer,
2649                       const VkCommandBufferBeginInfo *pBeginInfo)
2650 {
2651    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
2652    VkResult result = tu_cmd_buffer_begin(cmd_buffer, pBeginInfo);
2653    if (result != VK_SUCCESS)
2654       return result;
2655 
2656    /* setup initial configuration into command buffer */
2657    if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
2658       trace_start_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs, cmd_buffer);
2659 
2660       switch (cmd_buffer->queue_family_index) {
2661       case TU_QUEUE_GENERAL:
2662          TU_CALLX(cmd_buffer->device, tu6_init_hw)(cmd_buffer, &cmd_buffer->cs);
2663          break;
2664       default:
2665          break;
2666       }
2667    } else if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
2668       const bool pass_continue =
2669          pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
2670 
2671       trace_start_cmd_buffer(&cmd_buffer->trace,
2672             pass_continue ? &cmd_buffer->draw_cs : &cmd_buffer->cs, cmd_buffer);
2673 
2674       assert(pBeginInfo->pInheritanceInfo);
2675 
2676       cmd_buffer->inherited_pipeline_statistics =
2677          pBeginInfo->pInheritanceInfo->pipelineStatistics;
2678 
2679       vk_foreach_struct_const(ext, pBeginInfo->pInheritanceInfo) {
2680          switch (ext->sType) {
2681          case VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT: {
2682             const VkCommandBufferInheritanceConditionalRenderingInfoEXT *cond_rend =
2683                (VkCommandBufferInheritanceConditionalRenderingInfoEXT *) ext;
2684             cmd_buffer->state.predication_active = cond_rend->conditionalRenderingEnable;
2685             break;
2686          }
2687          default:
2688             break;
2689          }
2690       }
2691 
2692       if (pass_continue) {
2693          const VkCommandBufferInheritanceRenderingInfo *rendering_info =
2694             vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
2695                                  COMMAND_BUFFER_INHERITANCE_RENDERING_INFO);
2696 
2697          if (TU_DEBUG(DYNAMIC)) {
2698             rendering_info =
2699                vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
2700                                                                 pBeginInfo);
2701          }
2702 
2703          if (rendering_info) {
2704             tu_setup_dynamic_inheritance(cmd_buffer, rendering_info);
2705             cmd_buffer->state.pass = &cmd_buffer->dynamic_pass;
2706             cmd_buffer->state.subpass = &cmd_buffer->dynamic_subpass;
2707 
2708             const VkRenderingAttachmentLocationInfoKHR *location_info =
2709                vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext,
2710                                     RENDERING_ATTACHMENT_LOCATION_INFO_KHR);
2711             if (location_info) {
2712                vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer,
2713                                                                location_info);
2714             }
2715          } else {
2716             cmd_buffer->state.pass = tu_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
2717             cmd_buffer->state.subpass =
2718                &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
2719          }
2720          tu_fill_render_pass_state(&cmd_buffer->state.vk_rp,
2721                                    cmd_buffer->state.pass,
2722                                    cmd_buffer->state.subpass);
2723          vk_cmd_set_cb_attachment_count(&cmd_buffer->vk,
2724                                         cmd_buffer->state.subpass->color_count);
2725          cmd_buffer->state.dirty |= TU_CMD_DIRTY_SUBPASS;
2726 
2727          cmd_buffer->patchpoints_ctx = ralloc_context(NULL);
2728 
2729          /* We can't set the gmem layout here, because the state.pass only has
2730           * to be compatible (same formats/sample counts) with the primary's
2731           * renderpass, rather than exactly equal.
2732           */
2733 
2734          tu_lrz_begin_secondary_cmdbuf(cmd_buffer);
2735       } else {
2736          /* When executing in the middle of another command buffer, the CCU
2737           * state is unknown.
2738           */
2739          cmd_buffer->state.ccu_state = TU_CMD_CCU_UNKNOWN;
2740       }
2741    }
2742 
2743    return VK_SUCCESS;
2744 }
2745 
2746 static struct tu_cs
tu_cmd_dynamic_state(struct tu_cmd_buffer * cmd,uint32_t id,uint32_t size)2747 tu_cmd_dynamic_state(struct tu_cmd_buffer *cmd, uint32_t id, uint32_t size)
2748 {
2749    struct tu_cs cs;
2750 
2751    assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2752    cmd->state.dynamic_state[id] = tu_cs_draw_state(&cmd->sub_cs, &cs, size);
2753 
2754    /* note: this also avoids emitting draw states before renderpass clears,
2755     * which may use the 3D clear path (for MSAA cases)
2756     */
2757    if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2758       return cs;
2759 
2760    tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2761    tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2762 
2763    return cs;
2764 }
2765 
2766 static void
tu_cmd_end_dynamic_state(struct tu_cmd_buffer * cmd,struct tu_cs * cs,uint32_t id)2767 tu_cmd_end_dynamic_state(struct tu_cmd_buffer *cmd, struct tu_cs *cs,
2768                          uint32_t id)
2769 {
2770    assert(id < ARRAY_SIZE(cmd->state.dynamic_state));
2771    cmd->state.dynamic_state[id] = tu_cs_end_draw_state(&cmd->sub_cs, cs);
2772 
2773    /* note: this also avoids emitting draw states before renderpass clears,
2774     * which may use the 3D clear path (for MSAA cases)
2775     */
2776    if (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)
2777       return;
2778 
2779    tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2780    tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DYNAMIC + id, cmd->state.dynamic_state[id]);
2781 }
2782 
2783 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes,const VkDeviceSize * pStrides)2784 tu_CmdBindVertexBuffers2(VkCommandBuffer commandBuffer,
2785                          uint32_t firstBinding,
2786                          uint32_t bindingCount,
2787                          const VkBuffer *pBuffers,
2788                          const VkDeviceSize *pOffsets,
2789                          const VkDeviceSize *pSizes,
2790                          const VkDeviceSize *pStrides)
2791 {
2792    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2793    struct tu_cs cs;
2794 
2795    cmd->state.max_vbs_bound = MAX2(
2796       cmd->state.max_vbs_bound, firstBinding + bindingCount);
2797 
2798    if (pStrides) {
2799       vk_cmd_set_vertex_binding_strides(&cmd->vk, firstBinding, bindingCount,
2800                                         pStrides);
2801    }
2802 
2803    cmd->state.vertex_buffers.iova =
2804       tu_cs_draw_state(&cmd->sub_cs, &cs, 4 * cmd->state.max_vbs_bound).iova;
2805 
2806    for (uint32_t i = 0; i < bindingCount; i++) {
2807       if (pBuffers[i] == VK_NULL_HANDLE) {
2808          cmd->state.vb[firstBinding + i].base = 0;
2809          cmd->state.vb[firstBinding + i].size = 0;
2810       } else {
2811          struct tu_buffer *buf = tu_buffer_from_handle(pBuffers[i]);
2812          cmd->state.vb[firstBinding + i].base = buf->iova + pOffsets[i];
2813          cmd->state.vb[firstBinding + i].size =
2814             vk_buffer_range(&buf->vk, pOffsets[i], pSizes ? pSizes[i] : VK_WHOLE_SIZE);
2815       }
2816    }
2817 
2818    for (uint32_t i = 0; i < cmd->state.max_vbs_bound; i++) {
2819       tu_cs_emit_regs(&cs,
2820                       A6XX_VFD_FETCH_BASE(i, .qword = cmd->state.vb[i].base),
2821                       A6XX_VFD_FETCH_SIZE(i, cmd->state.vb[i].size));
2822    }
2823 
2824    cmd->state.dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
2825 }
2826 
2827 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,VkBuffer buffer,VkDeviceSize offset,VkDeviceSize size,VkIndexType indexType)2828 tu_CmdBindIndexBuffer2KHR(VkCommandBuffer commandBuffer,
2829                           VkBuffer buffer,
2830                           VkDeviceSize offset,
2831                           VkDeviceSize size,
2832                           VkIndexType indexType)
2833 {
2834    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
2835    VK_FROM_HANDLE(tu_buffer, buf, buffer);
2836 
2837    size = buf ? vk_buffer_range(&buf->vk, offset, size) : 0;
2838 
2839    uint32_t index_size, index_shift;
2840    uint32_t restart_index = vk_index_to_restart(indexType);
2841 
2842    switch (indexType) {
2843    case VK_INDEX_TYPE_UINT16:
2844       index_size = INDEX4_SIZE_16_BIT;
2845       index_shift = 1;
2846       break;
2847    case VK_INDEX_TYPE_UINT32:
2848       index_size = INDEX4_SIZE_32_BIT;
2849       index_shift = 2;
2850       break;
2851    case VK_INDEX_TYPE_UINT8_KHR:
2852       index_size = INDEX4_SIZE_8_BIT;
2853       index_shift = 0;
2854       break;
2855    default:
2856       unreachable("invalid VkIndexType");
2857    }
2858 
2859    if (buf) {
2860       /* initialize/update the restart index */
2861       if (cmd->state.index_size != index_size)
2862          tu_cs_emit_regs(&cmd->draw_cs, A6XX_PC_RESTART_INDEX(restart_index));
2863 
2864       cmd->state.index_va = buf->iova + offset;
2865       cmd->state.max_index_count = size >> index_shift;
2866       cmd->state.index_size = index_size;
2867    } else {
2868       cmd->state.index_va = 0;
2869       cmd->state.max_index_count = 0;
2870       cmd->state.index_size = 0;
2871    }
2872 }
2873 
2874 template <chip CHIP>
2875 static void
tu6_emit_descriptor_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint bind_point)2876 tu6_emit_descriptor_sets(struct tu_cmd_buffer *cmd,
2877                          VkPipelineBindPoint bind_point)
2878 {
2879    struct tu_descriptor_state *descriptors_state =
2880       tu_get_descriptors_state(cmd, bind_point);
2881    uint32_t sp_bindless_base_reg, hlsq_bindless_base_reg;
2882    struct tu_cs *cs, state_cs;
2883 
2884    if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2885       sp_bindless_base_reg = __SP_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2886       hlsq_bindless_base_reg = REG_A6XX_HLSQ_BINDLESS_BASE(0);
2887 
2888       if (CHIP == A6XX) {
2889          cmd->state.desc_sets =
2890             tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2891                              4 + 4 * descriptors_state->max_sets_bound +
2892                              (descriptors_state->max_dynamic_offset_size ? 6 : 0));
2893       } else {
2894          cmd->state.desc_sets =
2895             tu_cs_draw_state(&cmd->sub_cs, &state_cs,
2896                              3 + 2 * descriptors_state->max_sets_bound +
2897                              (descriptors_state->max_dynamic_offset_size ? 3 : 0));
2898       }
2899       cs = &state_cs;
2900    } else {
2901       assert(bind_point == VK_PIPELINE_BIND_POINT_COMPUTE);
2902 
2903       sp_bindless_base_reg = __SP_CS_BINDLESS_BASE_DESCRIPTOR<CHIP>(0, {}).reg;
2904       hlsq_bindless_base_reg = REG_A6XX_HLSQ_CS_BINDLESS_BASE(0);
2905 
2906       cs = &cmd->cs;
2907    }
2908 
2909    tu_cs_emit_pkt4(cs, sp_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2910    tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2911    if (CHIP == A6XX) {
2912       tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg, 2 * descriptors_state->max_sets_bound);
2913       tu_cs_emit_array(cs, (const uint32_t*)descriptors_state->set_iova, 2 * descriptors_state->max_sets_bound);
2914    }
2915 
2916    /* Dynamic descriptors get the reserved descriptor set. */
2917    if (descriptors_state->max_dynamic_offset_size) {
2918       int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
2919       assert(reserved_set_idx >= 0); /* reserved set must be bound */
2920 
2921       tu_cs_emit_pkt4(cs, sp_bindless_base_reg + reserved_set_idx * 2, 2);
2922       tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2923       if (CHIP == A6XX) {
2924          tu_cs_emit_pkt4(cs, hlsq_bindless_base_reg + reserved_set_idx * 2, 2);
2925          tu_cs_emit_qw(cs, descriptors_state->set_iova[reserved_set_idx]);
2926       }
2927    }
2928 
2929    tu_cs_emit_regs(cs, HLSQ_INVALIDATE_CMD(CHIP,
2930       .cs_bindless = bind_point == VK_PIPELINE_BIND_POINT_COMPUTE ? CHIP == A6XX ? 0x1f : 0xff : 0,
2931       .gfx_bindless = bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS ? CHIP == A6XX ? 0x1f : 0xff : 0,
2932    ));
2933 
2934    if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
2935       assert(cs->cur == cs->end); /* validate draw state size */
2936       /* note: this also avoids emitting draw states before renderpass clears,
2937        * which may use the 3D clear path (for MSAA cases)
2938        */
2939       if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
2940          tu_cs_emit_pkt7(&cmd->draw_cs, CP_SET_DRAW_STATE, 3);
2941          tu_cs_emit_draw_state(&cmd->draw_cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
2942       }
2943    }
2944 }
2945 
2946 /* We lazily emit the draw state for desciptor sets at draw time, so that we can
2947  * batch together multiple tu_CmdBindDescriptorSets() calls.  ANGLE and zink
2948  * will often emit multiple bind calls in a draw.
2949  */
2950 static void
tu_dirty_desc_sets(struct tu_cmd_buffer * cmd,VkPipelineBindPoint pipelineBindPoint)2951 tu_dirty_desc_sets(struct tu_cmd_buffer *cmd,
2952                    VkPipelineBindPoint pipelineBindPoint)
2953 {
2954    if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
2955       cmd->state.dirty |= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
2956    } else {
2957       assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
2958       cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS;
2959    }
2960 }
2961 
2962 static void
tu_bind_descriptor_sets(struct tu_cmd_buffer * cmd,const VkBindDescriptorSetsInfoKHR * info,VkPipelineBindPoint bind_point)2963 tu_bind_descriptor_sets(struct tu_cmd_buffer *cmd,
2964                         const VkBindDescriptorSetsInfoKHR *info,
2965                         VkPipelineBindPoint bind_point)
2966 {
2967    VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
2968    unsigned dyn_idx = 0;
2969 
2970    struct tu_descriptor_state *descriptors_state =
2971       tu_get_descriptors_state(cmd, bind_point);
2972 
2973    descriptors_state->max_sets_bound =
2974       MAX2(descriptors_state->max_sets_bound,
2975            info->firstSet + info->descriptorSetCount);
2976 
2977    unsigned dynamic_offset_offset = 0;
2978    for (unsigned i = 0; i < info->firstSet; i++) {
2979       dynamic_offset_offset += layout->set[i].layout->dynamic_offset_size;
2980    }
2981 
2982    for (unsigned i = 0; i < info->descriptorSetCount; ++i) {
2983       unsigned idx = i + info->firstSet;
2984       VK_FROM_HANDLE(tu_descriptor_set, set, info->pDescriptorSets[i]);
2985 
2986       descriptors_state->sets[idx] = set;
2987       descriptors_state->set_iova[idx] = set ?
2988          (set->va | BINDLESS_DESCRIPTOR_64B) : 0;
2989 
2990       if (!set)
2991          continue;
2992 
2993       if (set->layout->has_inline_uniforms)
2994          cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
2995 
2996       if (!set->layout->dynamic_offset_size)
2997          continue;
2998 
2999       uint32_t *src = set->dynamic_descriptors;
3000       uint32_t *dst = descriptors_state->dynamic_descriptors +
3001          dynamic_offset_offset / 4;
3002       for (unsigned j = 0; j < set->layout->binding_count; j++) {
3003          struct tu_descriptor_set_binding_layout *binding =
3004             &set->layout->binding[j];
3005          if (vk_descriptor_type_is_dynamic(binding->type)) {
3006             for (unsigned k = 0; k < binding->array_size; k++, dyn_idx++) {
3007                assert(dyn_idx < info->dynamicOffsetCount);
3008                uint32_t offset = info->pDynamicOffsets[dyn_idx];
3009                memcpy(dst, src, binding->size);
3010 
3011                if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
3012                   /* Note: we can assume here that the addition won't roll
3013                    * over and change the SIZE field.
3014                    */
3015                   uint64_t va = src[0] | ((uint64_t)src[1] << 32);
3016                   va += offset;
3017                   dst[0] = va;
3018                   dst[1] = va >> 32;
3019                } else {
3020                   uint32_t *dst_desc = dst;
3021                   for (unsigned i = 0;
3022                        i < binding->size / (4 * A6XX_TEX_CONST_DWORDS);
3023                        i++, dst_desc += A6XX_TEX_CONST_DWORDS) {
3024                      /* Note: A6XX_TEX_CONST_5_DEPTH is always 0 */
3025                      uint64_t va = dst_desc[4] | ((uint64_t)dst_desc[5] << 32);
3026                      uint32_t desc_offset =
3027                         (dst_desc[2] &
3028                          A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) >>
3029                         A6XX_TEX_CONST_2_STARTOFFSETTEXELS__SHIFT;
3030 
3031                      /* Use descriptor's format to determine the shift amount
3032                       * that's to be used on the offset value.
3033                       */
3034                      uint32_t format = (dst_desc[0] &
3035                                         A6XX_TEX_CONST_0_FMT__MASK) >>
3036                                        A6XX_TEX_CONST_0_FMT__SHIFT;
3037                      unsigned offset_shift;
3038                      switch (format) {
3039                      case FMT6_16_UINT:
3040                         offset_shift = 1;
3041                         break;
3042                      case FMT6_32_UINT:
3043                         offset_shift = 2;
3044                         break;
3045                      case FMT6_8_UINT:
3046                      default:
3047                         offset_shift = 0;
3048                         break;
3049                      }
3050 
3051                      va += desc_offset << offset_shift;
3052                      va += offset;
3053                      unsigned new_offset = (va & 0x3f) >> offset_shift;
3054                      va &= ~0x3full;
3055                      dst_desc[4] = va;
3056                      dst_desc[5] = va >> 32;
3057                      dst_desc[2] =
3058                         (dst_desc[2] & ~A6XX_TEX_CONST_2_STARTOFFSETTEXELS__MASK) |
3059                         A6XX_TEX_CONST_2_STARTOFFSETTEXELS(new_offset);
3060                   }
3061                }
3062 
3063                dst += binding->size / 4;
3064                src += binding->size / 4;
3065             }
3066          }
3067       }
3068 
3069       dynamic_offset_offset += layout->set[idx].layout->dynamic_offset_size;
3070    }
3071    assert(dyn_idx == info->dynamicOffsetCount);
3072 
3073    if (dynamic_offset_offset) {
3074       descriptors_state->max_dynamic_offset_size =
3075          MAX2(descriptors_state->max_dynamic_offset_size, dynamic_offset_offset);
3076 
3077       /* allocate and fill out dynamic descriptor set */
3078       struct tu_cs_memory dynamic_desc_set;
3079       int reserved_set_idx = cmd->device->physical_device->reserved_set_idx;
3080       VkResult result =
3081          tu_cs_alloc(&cmd->sub_cs,
3082                      descriptors_state->max_dynamic_offset_size /
3083                      (4 * A6XX_TEX_CONST_DWORDS),
3084                      A6XX_TEX_CONST_DWORDS, &dynamic_desc_set);
3085       if (result != VK_SUCCESS) {
3086          vk_command_buffer_set_error(&cmd->vk, result);
3087          return;
3088       }
3089 
3090       memcpy(dynamic_desc_set.map, descriptors_state->dynamic_descriptors,
3091              descriptors_state->max_dynamic_offset_size);
3092       assert(reserved_set_idx >= 0); /* reserved set must be bound */
3093       descriptors_state->set_iova[reserved_set_idx] = dynamic_desc_set.iova | BINDLESS_DESCRIPTOR_64B;
3094    }
3095 
3096    tu_dirty_desc_sets(cmd, bind_point);
3097 }
3098 
3099 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorSets2KHR(VkCommandBuffer commandBuffer,const VkBindDescriptorSetsInfoKHR * pBindDescriptorSetsInfo)3100 tu_CmdBindDescriptorSets2KHR(
3101    VkCommandBuffer commandBuffer,
3102    const VkBindDescriptorSetsInfoKHR *pBindDescriptorSetsInfo)
3103 {
3104    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3105 
3106    if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
3107       tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
3108                               VK_PIPELINE_BIND_POINT_COMPUTE);
3109    }
3110 
3111    if (pBindDescriptorSetsInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
3112       tu_bind_descriptor_sets(cmd, pBindDescriptorSetsInfo,
3113                               VK_PIPELINE_BIND_POINT_GRAPHICS);
3114    }
3115 }
3116 
3117 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBuffersEXT(VkCommandBuffer commandBuffer,uint32_t bufferCount,const VkDescriptorBufferBindingInfoEXT * pBindingInfos)3118 tu_CmdBindDescriptorBuffersEXT(
3119    VkCommandBuffer commandBuffer,
3120    uint32_t bufferCount,
3121    const VkDescriptorBufferBindingInfoEXT *pBindingInfos)
3122 {
3123    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3124 
3125    for (unsigned i = 0; i < bufferCount; i++)
3126       cmd->state.descriptor_buffer_iova[i] = pBindingInfos[i].address;
3127 }
3128 
3129 static void
tu_set_descriptor_buffer_offsets(struct tu_cmd_buffer * cmd,const VkSetDescriptorBufferOffsetsInfoEXT * info,VkPipelineBindPoint bind_point)3130 tu_set_descriptor_buffer_offsets(
3131    struct tu_cmd_buffer *cmd,
3132    const VkSetDescriptorBufferOffsetsInfoEXT *info,
3133    VkPipelineBindPoint bind_point)
3134 {
3135    VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
3136 
3137    struct tu_descriptor_state *descriptors_state =
3138       tu_get_descriptors_state(cmd, bind_point);
3139 
3140    descriptors_state->max_sets_bound = MAX2(descriptors_state->max_sets_bound,
3141                                             info->firstSet + info->setCount);
3142 
3143    for (unsigned i = 0; i < info->setCount; ++i) {
3144       unsigned idx = i + info->firstSet;
3145       struct tu_descriptor_set_layout *set_layout = layout->set[idx].layout;
3146 
3147       descriptors_state->set_iova[idx] =
3148          (cmd->state.descriptor_buffer_iova[info->pBufferIndices[i]] +
3149           info->pOffsets[i]) |
3150          BINDLESS_DESCRIPTOR_64B;
3151 
3152       if (set_layout->has_inline_uniforms)
3153          cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
3154    }
3155 
3156    tu_dirty_desc_sets(cmd, bind_point);
3157 }
3158 
3159 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetDescriptorBufferOffsets2EXT(VkCommandBuffer commandBuffer,const VkSetDescriptorBufferOffsetsInfoEXT * pSetDescriptorBufferOffsetsInfo)3160 tu_CmdSetDescriptorBufferOffsets2EXT(
3161    VkCommandBuffer commandBuffer,
3162    const VkSetDescriptorBufferOffsetsInfoEXT *pSetDescriptorBufferOffsetsInfo)
3163 {
3164    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3165 
3166    if (pSetDescriptorBufferOffsetsInfo->stageFlags &
3167        VK_SHADER_STAGE_COMPUTE_BIT) {
3168       tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
3169                                        VK_PIPELINE_BIND_POINT_COMPUTE);
3170    }
3171 
3172    if (pSetDescriptorBufferOffsetsInfo->stageFlags &
3173        VK_SHADER_STAGE_ALL_GRAPHICS) {
3174       tu_set_descriptor_buffer_offsets(cmd, pSetDescriptorBufferOffsetsInfo,
3175                                        VK_PIPELINE_BIND_POINT_GRAPHICS);
3176    }
3177 }
3178 
3179 static void
tu_bind_descriptor_buffer_embedded_samplers(struct tu_cmd_buffer * cmd,const VkBindDescriptorBufferEmbeddedSamplersInfoEXT * info,VkPipelineBindPoint bind_point)3180 tu_bind_descriptor_buffer_embedded_samplers(
3181    struct tu_cmd_buffer *cmd,
3182    const VkBindDescriptorBufferEmbeddedSamplersInfoEXT *info,
3183    VkPipelineBindPoint bind_point)
3184 {
3185    VK_FROM_HANDLE(tu_pipeline_layout, layout, info->layout);
3186 
3187    struct tu_descriptor_set_layout *set_layout =
3188       layout->set[info->set].layout;
3189 
3190    struct tu_descriptor_state *descriptors_state =
3191       tu_get_descriptors_state(cmd, bind_point);
3192 
3193    descriptors_state->max_sets_bound =
3194       MAX2(descriptors_state->max_sets_bound, info->set + 1);
3195 
3196    descriptors_state->set_iova[info->set] =
3197       set_layout->embedded_samplers->iova | BINDLESS_DESCRIPTOR_64B;
3198 
3199    tu_dirty_desc_sets(cmd, bind_point);
3200 }
3201 
3202 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindDescriptorBufferEmbeddedSamplers2EXT(VkCommandBuffer commandBuffer,const VkBindDescriptorBufferEmbeddedSamplersInfoEXT * pBindDescriptorBufferEmbeddedSamplersInfo)3203 tu_CmdBindDescriptorBufferEmbeddedSamplers2EXT(
3204    VkCommandBuffer commandBuffer,
3205    const VkBindDescriptorBufferEmbeddedSamplersInfoEXT
3206       *pBindDescriptorBufferEmbeddedSamplersInfo)
3207 {
3208    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3209 
3210    if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
3211        VK_SHADER_STAGE_COMPUTE_BIT) {
3212       tu_bind_descriptor_buffer_embedded_samplers(
3213          cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
3214          VK_PIPELINE_BIND_POINT_COMPUTE);
3215    }
3216 
3217    if (pBindDescriptorBufferEmbeddedSamplersInfo->stageFlags &
3218        VK_SHADER_STAGE_ALL_GRAPHICS) {
3219       tu_bind_descriptor_buffer_embedded_samplers(
3220          cmd, pBindDescriptorBufferEmbeddedSamplersInfo,
3221          VK_PIPELINE_BIND_POINT_GRAPHICS);
3222    }
3223 }
3224 
3225 static VkResult
tu_push_descriptor_set_update_layout(struct tu_device * device,struct tu_descriptor_set * set,struct tu_descriptor_set_layout * layout)3226 tu_push_descriptor_set_update_layout(struct tu_device *device,
3227                                      struct tu_descriptor_set *set,
3228                                      struct tu_descriptor_set_layout *layout)
3229 {
3230    if (set->layout == layout)
3231       return VK_SUCCESS;
3232 
3233    if (set->layout)
3234       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
3235    vk_descriptor_set_layout_ref(&layout->vk);
3236    set->layout = layout;
3237 
3238    if (set->host_size < layout->size) {
3239       void *new_buf =
3240          vk_realloc(&device->vk.alloc, set->mapped_ptr, layout->size, 8,
3241                     VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
3242       if (!new_buf)
3243          return VK_ERROR_OUT_OF_HOST_MEMORY;
3244       set->mapped_ptr = (uint32_t *) new_buf;
3245       set->host_size = layout->size;
3246    }
3247    return VK_SUCCESS;
3248 }
3249 
3250 static void
tu_push_descriptor_set(struct tu_cmd_buffer * cmd,const VkPushDescriptorSetInfoKHR * info,VkPipelineBindPoint bind_point)3251 tu_push_descriptor_set(struct tu_cmd_buffer *cmd,
3252                        const VkPushDescriptorSetInfoKHR *info,
3253                        VkPipelineBindPoint bind_point)
3254 {
3255    VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout, info->layout);
3256    struct tu_descriptor_set_layout *layout =
3257       pipe_layout->set[info->set].layout;
3258    struct tu_descriptor_set *set =
3259       &tu_get_descriptors_state(cmd, bind_point)->push_set;
3260 
3261    struct tu_cs_memory set_mem;
3262    VkResult result = tu_cs_alloc(&cmd->sub_cs,
3263                                  DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
3264                                  A6XX_TEX_CONST_DWORDS, &set_mem);
3265    if (result != VK_SUCCESS) {
3266       vk_command_buffer_set_error(&cmd->vk, result);
3267       return;
3268    }
3269 
3270    result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
3271    if (result != VK_SUCCESS) {
3272       vk_command_buffer_set_error(&cmd->vk, result);
3273       return;
3274    }
3275 
3276    tu_update_descriptor_sets(cmd->device, tu_descriptor_set_to_handle(set),
3277                              info->descriptorWriteCount,
3278                              info->pDescriptorWrites, 0, NULL);
3279 
3280    memcpy(set_mem.map, set->mapped_ptr, layout->size);
3281    set->va = set_mem.iova;
3282 
3283    const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
3284    vk_common_CmdBindDescriptorSets(tu_cmd_buffer_to_handle(cmd), bind_point,
3285                                    info->layout, info->set, 1, desc_set, 0,
3286                                    NULL);
3287 }
3288 
3289 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSet2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetInfoKHR * pPushDescriptorSetInfo)3290 tu_CmdPushDescriptorSet2KHR(
3291    VkCommandBuffer commandBuffer,
3292    const VkPushDescriptorSetInfoKHR *pPushDescriptorSetInfo)
3293 {
3294    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3295 
3296    if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_COMPUTE_BIT) {
3297       tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
3298                              VK_PIPELINE_BIND_POINT_COMPUTE);
3299    }
3300 
3301    if (pPushDescriptorSetInfo->stageFlags & VK_SHADER_STAGE_ALL_GRAPHICS) {
3302       tu_push_descriptor_set(cmd, pPushDescriptorSetInfo,
3303                              VK_PIPELINE_BIND_POINT_GRAPHICS);
3304    }
3305 }
3306 
3307 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushDescriptorSetWithTemplate2KHR(VkCommandBuffer commandBuffer,const VkPushDescriptorSetWithTemplateInfoKHR * pPushDescriptorSetWithTemplateInfo)3308 tu_CmdPushDescriptorSetWithTemplate2KHR(
3309    VkCommandBuffer commandBuffer,
3310    const VkPushDescriptorSetWithTemplateInfoKHR
3311       *pPushDescriptorSetWithTemplateInfo)
3312 {
3313    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3314    VK_FROM_HANDLE(tu_pipeline_layout, pipe_layout,
3315                   pPushDescriptorSetWithTemplateInfo->layout);
3316    VK_FROM_HANDLE(
3317       tu_descriptor_update_template, templ,
3318       pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate);
3319    struct tu_descriptor_set_layout *layout =
3320       pipe_layout->set[pPushDescriptorSetWithTemplateInfo->set].layout;
3321    struct tu_descriptor_set *set =
3322       &tu_get_descriptors_state(cmd, templ->bind_point)->push_set;
3323 
3324    struct tu_cs_memory set_mem;
3325    VkResult result = tu_cs_alloc(&cmd->sub_cs,
3326                                  DIV_ROUND_UP(layout->size, A6XX_TEX_CONST_DWORDS * 4),
3327                                  A6XX_TEX_CONST_DWORDS, &set_mem);
3328    if (result != VK_SUCCESS) {
3329       vk_command_buffer_set_error(&cmd->vk, result);
3330       return;
3331    }
3332 
3333    result = tu_push_descriptor_set_update_layout(cmd->device, set, layout);
3334    if (result != VK_SUCCESS) {
3335       vk_command_buffer_set_error(&cmd->vk, result);
3336       return;
3337    }
3338 
3339    tu_update_descriptor_set_with_template(
3340       cmd->device, set,
3341       pPushDescriptorSetWithTemplateInfo->descriptorUpdateTemplate,
3342       pPushDescriptorSetWithTemplateInfo->pData);
3343 
3344    memcpy(set_mem.map, set->mapped_ptr, layout->size);
3345    set->va = set_mem.iova;
3346 
3347    const VkDescriptorSet desc_set[] = { tu_descriptor_set_to_handle(set) };
3348    vk_common_CmdBindDescriptorSets(
3349       tu_cmd_buffer_to_handle(cmd), templ->bind_point,
3350       pPushDescriptorSetWithTemplateInfo->layout,
3351       pPushDescriptorSetWithTemplateInfo->set, 1, desc_set, 0, NULL);
3352 }
3353 
3354 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,uint32_t firstBinding,uint32_t bindingCount,const VkBuffer * pBuffers,const VkDeviceSize * pOffsets,const VkDeviceSize * pSizes)3355 tu_CmdBindTransformFeedbackBuffersEXT(VkCommandBuffer commandBuffer,
3356                                       uint32_t firstBinding,
3357                                       uint32_t bindingCount,
3358                                       const VkBuffer *pBuffers,
3359                                       const VkDeviceSize *pOffsets,
3360                                       const VkDeviceSize *pSizes)
3361 {
3362    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3363    struct tu_cs *cs = &cmd->draw_cs;
3364 
3365    /* using COND_REG_EXEC for xfb commands matches the blob behavior
3366     * presumably there isn't any benefit using a draw state when the
3367     * condition is (SYSMEM | BINNING)
3368     */
3369    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
3370                           CP_COND_REG_EXEC_0_SYSMEM |
3371                           CP_COND_REG_EXEC_0_BINNING);
3372 
3373    for (uint32_t i = 0; i < bindingCount; i++) {
3374       VK_FROM_HANDLE(tu_buffer, buf, pBuffers[i]);
3375       uint64_t iova = buf->iova + pOffsets[i];
3376       uint32_t size = buf->bo->size - (iova - buf->bo->iova);
3377       uint32_t idx = i + firstBinding;
3378 
3379       if (pSizes && pSizes[i] != VK_WHOLE_SIZE)
3380          size = pSizes[i];
3381 
3382       /* BUFFER_BASE is 32-byte aligned, add remaining offset to BUFFER_OFFSET */
3383       uint32_t offset = iova & 0x1f;
3384       iova &= ~(uint64_t) 0x1f;
3385 
3386       tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_BUFFER_BASE(idx), 3);
3387       tu_cs_emit_qw(cs, iova);
3388       tu_cs_emit(cs, size + offset);
3389 
3390       cmd->state.streamout_offset[idx] = offset;
3391    }
3392 
3393    tu_cond_exec_end(cs);
3394 }
3395 
3396 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)3397 tu_CmdBeginTransformFeedbackEXT(VkCommandBuffer commandBuffer,
3398                                 uint32_t firstCounterBuffer,
3399                                 uint32_t counterBufferCount,
3400                                 const VkBuffer *pCounterBuffers,
3401                                 const VkDeviceSize *pCounterBufferOffsets)
3402 {
3403    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3404    struct tu_cs *cs = &cmd->draw_cs;
3405 
3406    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
3407                           CP_COND_REG_EXEC_0_SYSMEM |
3408                           CP_COND_REG_EXEC_0_BINNING);
3409 
3410    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(false));
3411 
3412    /* TODO: only update offset for active buffers */
3413    for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++)
3414       tu_cs_emit_regs(cs, A6XX_VPC_SO_BUFFER_OFFSET(i, cmd->state.streamout_offset[i]));
3415 
3416    for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
3417       uint32_t idx = firstCounterBuffer + i;
3418       uint32_t offset = cmd->state.streamout_offset[idx];
3419       uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
3420 
3421       if (!pCounterBuffers[i])
3422          continue;
3423 
3424       VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
3425 
3426       tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
3427       tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
3428                      CP_MEM_TO_REG_0_UNK31 |
3429                      CP_MEM_TO_REG_0_CNT(1));
3430       tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
3431 
3432       if (offset) {
3433          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
3434          tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_VPC_SO_BUFFER_OFFSET(idx)) |
3435                         CP_REG_RMW_0_SRC1_ADD);
3436          tu_cs_emit(cs, 0xffffffff);
3437          tu_cs_emit(cs, offset);
3438       }
3439    }
3440 
3441    tu_cond_exec_end(cs);
3442 }
3443 
3444 template <chip CHIP>
3445 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,uint32_t firstCounterBuffer,uint32_t counterBufferCount,const VkBuffer * pCounterBuffers,const VkDeviceSize * pCounterBufferOffsets)3446 tu_CmdEndTransformFeedbackEXT(VkCommandBuffer commandBuffer,
3447                               uint32_t firstCounterBuffer,
3448                               uint32_t counterBufferCount,
3449                               const VkBuffer *pCounterBuffers,
3450                               const VkDeviceSize *pCounterBufferOffsets)
3451 {
3452    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3453    struct tu_cs *cs = &cmd->draw_cs;
3454 
3455    tu_cond_exec_start(cs, CP_COND_REG_EXEC_0_MODE(RENDER_MODE) |
3456                           CP_COND_REG_EXEC_0_SYSMEM |
3457                           CP_COND_REG_EXEC_0_BINNING);
3458 
3459    tu_cs_emit_regs(cs, A6XX_VPC_SO_DISABLE(true));
3460 
3461    /* TODO: only flush buffers that need to be flushed */
3462    for (uint32_t i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
3463       /* note: FLUSH_BASE is always the same, so it could go in init_hw()? */
3464       tu_cs_emit_pkt4(cs, REG_A6XX_VPC_SO_FLUSH_BASE(i), 2);
3465       tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, i));
3466       tu_emit_event_write<CHIP>(cmd, cs, (enum fd_gpu_event) (FD_FLUSH_SO_0 + i));
3467    }
3468 
3469    for (uint32_t i = 0; i < (pCounterBuffers ? counterBufferCount : 0); i++) {
3470       uint32_t idx = firstCounterBuffer + i;
3471       uint32_t offset = cmd->state.streamout_offset[idx];
3472       uint64_t counter_buffer_offset = pCounterBufferOffsets ? pCounterBufferOffsets[i] : 0u;
3473 
3474       if (!pCounterBuffers[i])
3475          continue;
3476 
3477       VK_FROM_HANDLE(tu_buffer, buf, pCounterBuffers[i]);
3478 
3479       /* VPC_SO_FLUSH_BASE has dwords counter, but counter should be in bytes */
3480       tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
3481       tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
3482                      COND(CHIP == A6XX, CP_MEM_TO_REG_0_SHIFT_BY_2) |
3483                      0x40000 | /* ??? */
3484                      CP_MEM_TO_REG_0_UNK31 |
3485                      CP_MEM_TO_REG_0_CNT(1));
3486       tu_cs_emit_qw(cs, global_iova_arr(cmd, flush_base, idx));
3487 
3488       if (offset) {
3489          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
3490          tu_cs_emit(cs, CP_REG_RMW_0_DST_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
3491                         CP_REG_RMW_0_SRC1_ADD);
3492          tu_cs_emit(cs, 0xffffffff);
3493          tu_cs_emit(cs, -offset);
3494       }
3495 
3496       tu_cs_emit_pkt7(cs, CP_REG_TO_MEM, 3);
3497       tu_cs_emit(cs, CP_REG_TO_MEM_0_REG(REG_A6XX_CP_SCRATCH_REG(0)) |
3498                      CP_REG_TO_MEM_0_CNT(1));
3499       tu_cs_emit_qw(cs, buf->iova + counter_buffer_offset);
3500    }
3501 
3502    tu_cond_exec_end(cs);
3503 
3504    cmd->state.rp.xfb_used = true;
3505 }
3506 TU_GENX(tu_CmdEndTransformFeedbackEXT);
3507 
3508 VKAPI_ATTR void VKAPI_CALL
tu_CmdPushConstants2KHR(VkCommandBuffer commandBuffer,const VkPushConstantsInfoKHR * pPushConstantsInfo)3509 tu_CmdPushConstants2KHR(VkCommandBuffer commandBuffer,
3510                         const VkPushConstantsInfoKHR *pPushConstantsInfo)
3511 {
3512    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3513    memcpy((char *) cmd->push_constants + pPushConstantsInfo->offset,
3514           pPushConstantsInfo->pValues, pPushConstantsInfo->size);
3515    cmd->state.dirty |= TU_CMD_DIRTY_SHADER_CONSTS;
3516 }
3517 
3518 /* Clean everything which has been made available but we haven't actually
3519  * cleaned yet.
3520  */
3521 static void
tu_clean_all_pending(struct tu_cache_state * cache)3522 tu_clean_all_pending(struct tu_cache_state *cache)
3523 {
3524    cache->flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
3525    cache->pending_flush_bits &= ~TU_CMD_FLAG_ALL_CLEAN;
3526 }
3527 
3528 template <chip CHIP>
3529 VKAPI_ATTR VkResult VKAPI_CALL
tu_EndCommandBuffer(VkCommandBuffer commandBuffer)3530 tu_EndCommandBuffer(VkCommandBuffer commandBuffer)
3531 {
3532    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
3533 
3534    /* We currently flush CCU at the end of the command buffer, like
3535     * what the blob does. There's implicit synchronization around every
3536     * vkQueueSubmit, but the kernel only flushes the UCHE, and we don't
3537     * know yet if this command buffer will be the last in the submit so we
3538     * have to defensively flush everything else.
3539     *
3540     * TODO: We could definitely do better than this, since these flushes
3541     * aren't required by Vulkan, but we'd need kernel support to do that.
3542     * Ideally, we'd like the kernel to flush everything afterwards, so that we
3543     * wouldn't have to do any flushes here, and when submitting multiple
3544     * command buffers there wouldn't be any unnecessary flushes in between.
3545     */
3546    if (cmd_buffer->state.pass) {
3547       tu_clean_all_pending(&cmd_buffer->state.renderpass_cache);
3548       tu_emit_cache_flush_renderpass<CHIP>(cmd_buffer);
3549 
3550       trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->draw_cs);
3551    } else {
3552       tu_clean_all_pending(&cmd_buffer->state.cache);
3553       cmd_buffer->state.cache.flush_bits |=
3554          TU_CMD_FLAG_CCU_CLEAN_COLOR |
3555          TU_CMD_FLAG_CCU_CLEAN_DEPTH;
3556       tu_emit_cache_flush<CHIP>(cmd_buffer);
3557 
3558       trace_end_cmd_buffer(&cmd_buffer->trace, &cmd_buffer->cs);
3559    }
3560 
3561    tu_cs_end(&cmd_buffer->cs);
3562    tu_cs_end(&cmd_buffer->draw_cs);
3563    tu_cs_end(&cmd_buffer->draw_epilogue_cs);
3564 
3565    return vk_command_buffer_end(&cmd_buffer->vk);
3566 }
3567 TU_GENX(tu_EndCommandBuffer);
3568 
3569 static void
tu_bind_vs(struct tu_cmd_buffer * cmd,struct tu_shader * vs)3570 tu_bind_vs(struct tu_cmd_buffer *cmd, struct tu_shader *vs)
3571 {
3572    cmd->state.shaders[MESA_SHADER_VERTEX] = vs;
3573 }
3574 
3575 static void
tu_bind_tcs(struct tu_cmd_buffer * cmd,struct tu_shader * tcs)3576 tu_bind_tcs(struct tu_cmd_buffer *cmd, struct tu_shader *tcs)
3577 {
3578    cmd->state.shaders[MESA_SHADER_TESS_CTRL] = tcs;
3579 }
3580 
3581 static void
tu_bind_tes(struct tu_cmd_buffer * cmd,struct tu_shader * tes)3582 tu_bind_tes(struct tu_cmd_buffer *cmd, struct tu_shader *tes)
3583 {
3584    if (cmd->state.shaders[MESA_SHADER_TESS_EVAL] != tes) {
3585       cmd->state.shaders[MESA_SHADER_TESS_EVAL] = tes;
3586       cmd->state.dirty |= TU_CMD_DIRTY_TES;
3587 
3588       if (!cmd->state.tess_params.valid ||
3589           cmd->state.tess_params.output_upper_left !=
3590           tes->tes.tess_output_upper_left ||
3591           cmd->state.tess_params.output_lower_left !=
3592           tes->tes.tess_output_lower_left ||
3593           cmd->state.tess_params.spacing != tes->tes.tess_spacing) {
3594          cmd->state.tess_params.output_upper_left =
3595             tes->tes.tess_output_upper_left;
3596          cmd->state.tess_params.output_lower_left =
3597             tes->tes.tess_output_lower_left;
3598          cmd->state.tess_params.spacing = tes->tes.tess_spacing;
3599          cmd->state.tess_params.valid = true;
3600          cmd->state.dirty |= TU_CMD_DIRTY_TESS_PARAMS;
3601       }
3602    }
3603 }
3604 
3605 static void
tu_bind_gs(struct tu_cmd_buffer * cmd,struct tu_shader * gs)3606 tu_bind_gs(struct tu_cmd_buffer *cmd, struct tu_shader *gs)
3607 {
3608    cmd->state.shaders[MESA_SHADER_GEOMETRY] = gs;
3609 }
3610 
3611 static void
tu_bind_fs(struct tu_cmd_buffer * cmd,struct tu_shader * fs)3612 tu_bind_fs(struct tu_cmd_buffer *cmd, struct tu_shader *fs)
3613 {
3614    if (cmd->state.shaders[MESA_SHADER_FRAGMENT] != fs) {
3615       cmd->state.shaders[MESA_SHADER_FRAGMENT] = fs;
3616       cmd->state.dirty |= TU_CMD_DIRTY_LRZ | TU_CMD_DIRTY_FS;
3617    }
3618 }
3619 
3620 /* We cannot do this only at pipeline bind time since pipeline
3621  * could have been bound at any time before current renderpass,
3622  * e.g. in the previous renderpass.
3623  */
3624 static void
tu_pipeline_update_rp_state(struct tu_cmd_state * cmd_state)3625 tu_pipeline_update_rp_state(struct tu_cmd_state *cmd_state)
3626 {
3627    if (cmd_state->pipeline_disable_gmem &&
3628        !cmd_state->rp.disable_gmem) {
3629       /* VK_EXT_attachment_feedback_loop_layout allows feedback loop to involve
3630        * not only input attachments but also sampled images or image resources.
3631        * But we cannot just patch gmem for image in the descriptors.
3632        *
3633        * At the moment, in context of DXVK, it is expected that only a few
3634        * drawcalls in a frame would use feedback loop and they would be wrapped
3635        * in their own renderpasses, so it should be ok to force sysmem.
3636        *
3637        * However, there are two further possible optimizations if need would
3638        * arise for other translation layer:
3639        * - Tiling could be enabled if we ensure that there is no barrier in
3640        *   the renderpass;
3641        * - Check that both pipeline and attachments agree that feedback loop
3642        *   is needed.
3643        */
3644       perf_debug(
3645          cmd->device,
3646          "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
3647       cmd_state->rp.disable_gmem = true;
3648    }
3649 
3650    if (cmd_state->pipeline_sysmem_single_prim_mode &&
3651        !cmd_state->rp.sysmem_single_prim_mode) {
3652       perf_debug(cmd->device, "single_prim_mode due to pipeline settings");
3653       cmd_state->rp.sysmem_single_prim_mode = true;
3654    }
3655 
3656    if (cmd_state->pipeline_has_tess) {
3657       cmd_state->rp.has_tess = true;
3658    }
3659 }
3660 
3661 VKAPI_ATTR void VKAPI_CALL
tu_CmdBindPipeline(VkCommandBuffer commandBuffer,VkPipelineBindPoint pipelineBindPoint,VkPipeline _pipeline)3662 tu_CmdBindPipeline(VkCommandBuffer commandBuffer,
3663                    VkPipelineBindPoint pipelineBindPoint,
3664                    VkPipeline _pipeline)
3665 {
3666    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
3667    VK_FROM_HANDLE(tu_pipeline, pipeline, _pipeline);
3668 
3669    if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_COMPUTE) {
3670       cmd->state.shaders[MESA_SHADER_COMPUTE] =
3671          pipeline->shaders[MESA_SHADER_COMPUTE];
3672       tu_cs_emit_state_ib(&cmd->cs,
3673                           pipeline->shaders[MESA_SHADER_COMPUTE]->state);
3674       cmd->state.compute_load_state = pipeline->load_state;
3675       return;
3676    }
3677 
3678    assert(pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS);
3679 
3680    struct tu_graphics_pipeline *gfx_pipeline = tu_pipeline_to_graphics(pipeline);
3681    cmd->state.dirty |= TU_CMD_DIRTY_DESC_SETS | TU_CMD_DIRTY_SHADER_CONSTS |
3682                        TU_CMD_DIRTY_VS_PARAMS | TU_CMD_DIRTY_PROGRAM;
3683 
3684    tu_bind_vs(cmd, pipeline->shaders[MESA_SHADER_VERTEX]);
3685    tu_bind_tcs(cmd, pipeline->shaders[MESA_SHADER_TESS_CTRL]);
3686    tu_bind_tes(cmd, pipeline->shaders[MESA_SHADER_TESS_EVAL]);
3687    tu_bind_gs(cmd, pipeline->shaders[MESA_SHADER_GEOMETRY]);
3688    tu_bind_fs(cmd, pipeline->shaders[MESA_SHADER_FRAGMENT]);
3689 
3690    /* We precompile static state and count it as dynamic, so we have to
3691     * manually clear bitset that tells which dynamic state is set, in order to
3692     * make sure that future dynamic state will be emitted. The issue is that
3693     * framework remembers only a past REAL dynamic state and compares a new
3694     * dynamic state against it, and not against our static state masquaraded
3695     * as dynamic.
3696     */
3697    BITSET_ANDNOT(cmd->vk.dynamic_graphics_state.set,
3698                  cmd->vk.dynamic_graphics_state.set,
3699                  pipeline->static_state_mask);
3700 
3701    vk_cmd_set_dynamic_graphics_state(&cmd->vk,
3702                                      &gfx_pipeline->dynamic_state);
3703    cmd->state.program = pipeline->program;
3704 
3705    cmd->state.load_state = pipeline->load_state;
3706    cmd->state.prim_order_gmem = pipeline->prim_order.state_gmem;
3707    cmd->state.pipeline_sysmem_single_prim_mode = pipeline->prim_order.sysmem_single_prim_mode;
3708    cmd->state.pipeline_has_tess = pipeline->active_stages & VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
3709    cmd->state.pipeline_disable_gmem = gfx_pipeline->feedback_loop_may_involve_textures;
3710 
3711    tu_pipeline_update_rp_state(&cmd->state);
3712 
3713    if (pipeline->lrz_blend.valid) {
3714       if (cmd->state.blend_reads_dest != pipeline->lrz_blend.reads_dest) {
3715          cmd->state.blend_reads_dest = pipeline->lrz_blend.reads_dest;
3716          cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
3717       }
3718    }
3719    cmd->state.pipeline_blend_lrz = pipeline->lrz_blend.valid;
3720 
3721    if (pipeline->bandwidth.valid)
3722       cmd->state.bandwidth = pipeline->bandwidth;
3723    cmd->state.pipeline_bandwidth = pipeline->bandwidth.valid;
3724 
3725    struct tu_cs *cs = &cmd->draw_cs;
3726 
3727    /* note: this also avoids emitting draw states before renderpass clears,
3728     * which may use the 3D clear path (for MSAA cases)
3729     */
3730    if (!(cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
3731       uint32_t mask = pipeline->set_state_mask;
3732 
3733       tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (10 + util_bitcount(mask)));
3734       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, pipeline->program.config_state);
3735       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, pipeline->program.vs_state);
3736       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, pipeline->program.vs_binning_state);
3737       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, pipeline->program.hs_state);
3738       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, pipeline->program.ds_state);
3739       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, pipeline->program.gs_state);
3740       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, pipeline->program.gs_binning_state);
3741       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, pipeline->program.fs_state);
3742       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, pipeline->program.vpc_state);
3743       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, pipeline->prim_order.state_gmem);
3744 
3745       u_foreach_bit(i, mask)
3746          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i, pipeline->dynamic_state[i]);
3747    }
3748 
3749    cmd->state.pipeline_draw_states = pipeline->set_state_mask;
3750    u_foreach_bit(i, pipeline->set_state_mask)
3751       cmd->state.dynamic_state[i] = pipeline->dynamic_state[i];
3752 
3753    if (pipeline->program.per_view_viewport != cmd->state.per_view_viewport) {
3754       cmd->state.per_view_viewport = pipeline->program.per_view_viewport;
3755       cmd->state.dirty |= TU_CMD_DIRTY_PER_VIEW_VIEWPORT;
3756    }
3757 
3758    if (gfx_pipeline->feedback_loops != cmd->state.pipeline_feedback_loops) {
3759       cmd->state.pipeline_feedback_loops = gfx_pipeline->feedback_loops;
3760       cmd->state.dirty |= TU_CMD_DIRTY_FEEDBACK_LOOPS | TU_CMD_DIRTY_LRZ;
3761    }
3762 
3763    if (pipeline->program.writes_shading_rate !=
3764           cmd->state.pipeline_writes_shading_rate ||
3765        pipeline->program.reads_shading_rate !=
3766           cmd->state.pipeline_reads_shading_rate ||
3767        pipeline->program.accesses_smask !=
3768           cmd->state.pipeline_accesses_smask) {
3769       cmd->state.pipeline_writes_shading_rate =
3770          pipeline->program.writes_shading_rate;
3771       cmd->state.pipeline_reads_shading_rate =
3772          pipeline->program.reads_shading_rate;
3773       cmd->state.pipeline_accesses_smask =
3774          pipeline->program.accesses_smask;
3775       cmd->state.dirty |= TU_CMD_DIRTY_SHADING_RATE;
3776    }
3777 
3778    bool raster_order_attachment_access =
3779       pipeline->output.raster_order_attachment_access ||
3780       pipeline->ds.raster_order_attachment_access;
3781    if (!cmd->state.raster_order_attachment_access_valid ||
3782        raster_order_attachment_access !=
3783        cmd->state.raster_order_attachment_access) {
3784       cmd->state.raster_order_attachment_access =
3785          raster_order_attachment_access;
3786       cmd->state.dirty |= TU_CMD_DIRTY_RAST_ORDER;
3787       cmd->state.raster_order_attachment_access_valid = true;
3788    }
3789 }
3790 
3791 void
tu_flush_for_access(struct tu_cache_state * cache,enum tu_cmd_access_mask src_mask,enum tu_cmd_access_mask dst_mask)3792 tu_flush_for_access(struct tu_cache_state *cache,
3793                     enum tu_cmd_access_mask src_mask,
3794                     enum tu_cmd_access_mask dst_mask)
3795 {
3796    BITMASK_ENUM(tu_cmd_flush_bits) flush_bits = 0;
3797 
3798    if (src_mask & TU_ACCESS_SYSMEM_WRITE) {
3799       cache->pending_flush_bits |= TU_CMD_FLAG_ALL_INVALIDATE;
3800    }
3801 
3802    if (src_mask & TU_ACCESS_CP_WRITE) {
3803       /* Flush the CP write queue.
3804        */
3805       cache->pending_flush_bits |=
3806          TU_CMD_FLAG_WAIT_MEM_WRITES |
3807          TU_CMD_FLAG_ALL_INVALIDATE;
3808    }
3809 
3810 #define SRC_FLUSH(domain, clean, invalidate) \
3811    if (src_mask & TU_ACCESS_##domain##_WRITE) {                      \
3812       cache->pending_flush_bits |= TU_CMD_FLAG_##clean |             \
3813          (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate);   \
3814    }
3815 
3816    SRC_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
3817    SRC_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3818    SRC_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3819 
3820 #undef SRC_FLUSH
3821 
3822 #define SRC_INCOHERENT_FLUSH(domain, clean, invalidate)              \
3823    if (src_mask & TU_ACCESS_##domain##_INCOHERENT_WRITE) {           \
3824       flush_bits |= TU_CMD_FLAG_##clean;                             \
3825       cache->pending_flush_bits |=                                   \
3826          (TU_CMD_FLAG_ALL_INVALIDATE & ~TU_CMD_FLAG_##invalidate);   \
3827    }
3828 
3829    SRC_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3830    SRC_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3831 
3832 #undef SRC_INCOHERENT_FLUSH
3833 
3834    /* Treat host & sysmem write accesses the same, since the kernel implicitly
3835     * drains the queue before signalling completion to the host.
3836     */
3837    if (dst_mask & (TU_ACCESS_SYSMEM_READ | TU_ACCESS_SYSMEM_WRITE)) {
3838       flush_bits |= cache->pending_flush_bits & TU_CMD_FLAG_ALL_CLEAN;
3839    }
3840 
3841 #define DST_FLUSH(domain, clean, invalidate) \
3842    if (dst_mask & (TU_ACCESS_##domain##_READ |                 \
3843                    TU_ACCESS_##domain##_WRITE)) {              \
3844       flush_bits |= cache->pending_flush_bits &                \
3845          (TU_CMD_FLAG_##invalidate |                           \
3846           (TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##clean));     \
3847    }
3848 
3849    DST_FLUSH(UCHE, CACHE_CLEAN, CACHE_INVALIDATE)
3850    DST_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3851    DST_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3852 
3853 #undef DST_FLUSH
3854 
3855 #define DST_INCOHERENT_FLUSH(domain, flush, invalidate) \
3856    if (dst_mask & (TU_ACCESS_##domain##_INCOHERENT_READ |      \
3857                    TU_ACCESS_##domain##_INCOHERENT_WRITE)) {   \
3858       flush_bits |= TU_CMD_FLAG_##invalidate |                 \
3859           (cache->pending_flush_bits &                         \
3860            (TU_CMD_FLAG_ALL_CLEAN & ~TU_CMD_FLAG_##flush));    \
3861    }
3862 
3863    DST_INCOHERENT_FLUSH(CCU_COLOR, CCU_CLEAN_COLOR, CCU_INVALIDATE_COLOR)
3864    DST_INCOHERENT_FLUSH(CCU_DEPTH, CCU_CLEAN_DEPTH, CCU_INVALIDATE_DEPTH)
3865 
3866    if (dst_mask & TU_ACCESS_BINDLESS_DESCRIPTOR_READ) {
3867       flush_bits |= TU_CMD_FLAG_BINDLESS_DESCRIPTOR_INVALIDATE;
3868    }
3869 
3870    /* There are multiple incoherent copies of CCHE, so any read through it may
3871     * require invalidating it and we cannot optimize away invalidates.
3872     */
3873    if (dst_mask & TU_ACCESS_CCHE_READ) {
3874       flush_bits |= TU_CMD_FLAG_CCHE_INVALIDATE;
3875    }
3876 
3877    /* The blit cache is a special case dependency between CP_EVENT_WRITE::BLIT
3878     * (from GMEM loads/clears) to any GMEM attachment reads done via the UCHE
3879     * (Eg: Input attachments/CP_BLIT) which needs an explicit BLIT_CACHE_CLEAN
3880     * for the event blit writes to land, it has the following properties:
3881     * - Set on reads rather than on writes, like flushes.
3882     * - Not executed automatically if pending, like invalidates.
3883     * - Pending bits passed through to secondary command buffers, if they're
3884     *   continuing the render pass.
3885     */
3886    if (src_mask & TU_ACCESS_BLIT_WRITE_GMEM) {
3887       cache->pending_flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
3888    }
3889 
3890    if ((dst_mask & TU_ACCESS_UCHE_READ_GMEM) &&
3891        (cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN)) {
3892       flush_bits |= TU_CMD_FLAG_BLIT_CACHE_CLEAN;
3893    }
3894 
3895    /* Nothing writes through the RTU cache so there's no point trying to
3896     * optimize this. Just always invalidate.
3897     */
3898    if (dst_mask & TU_ACCESS_RTU_READ)
3899       flush_bits |= TU_CMD_FLAG_RTU_INVALIDATE;
3900 
3901 #undef DST_INCOHERENT_FLUSH
3902 
3903    cache->flush_bits |= flush_bits;
3904    cache->pending_flush_bits &= ~flush_bits;
3905 }
3906 
3907 /* When translating Vulkan access flags to which cache is accessed
3908  * (CCU/UCHE/sysmem), we should take into account both the access flags and
3909  * the stage so that accesses with MEMORY_READ_BIT/MEMORY_WRITE_BIT + a
3910  * specific stage return something sensible. The specification for
3911  * VK_KHR_synchronization2 says that we should do this:
3912  *
3913  *    Additionally, scoping the pipeline stages into the barrier structs
3914  *    allows the use of the MEMORY_READ and MEMORY_WRITE flags without
3915  *    sacrificing precision. The per-stage access flags should be used to
3916  *    disambiguate specific accesses in a given stage or set of stages - for
3917  *    instance, between uniform reads and sampling operations.
3918  *
3919  * Note that while in all known cases the stage is actually enough, we should
3920  * still narrow things down based on the access flags to handle "old-style"
3921  * barriers that may specify a wider range of stages but more precise access
3922  * flags. These helpers allow us to do both.
3923  */
3924 
3925 static bool
filter_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3926 filter_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3927                    VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3928 {
3929    return (flags & (tu_flags | VK_ACCESS_2_MEMORY_READ_BIT)) &&
3930       (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3931 }
3932 
3933 static bool
filter_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3934 filter_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3935                     VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3936 {
3937    return (flags & (tu_flags | VK_ACCESS_2_MEMORY_WRITE_BIT)) &&
3938       (stages & (tu_stages | VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT));
3939 }
3940 
3941 static bool
gfx_read_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3942 gfx_read_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3943                 VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3944 {
3945    return filter_read_access(flags, stages, tu_flags,
3946                              tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3947 }
3948 
3949 static bool
gfx_write_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,VkAccessFlags2 tu_flags,VkPipelineStageFlags2 tu_stages)3950 gfx_write_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages,
3951                  VkAccessFlags2 tu_flags, VkPipelineStageFlags2 tu_stages)
3952 {
3953    return filter_write_access(flags, stages, tu_flags,
3954                               tu_stages | VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT);
3955 }
3956 
3957 static enum tu_cmd_access_mask
vk2tu_access(VkAccessFlags2 flags,VkPipelineStageFlags2 stages,bool image_only,bool gmem)3958 vk2tu_access(VkAccessFlags2 flags, VkPipelineStageFlags2 stages, bool image_only, bool gmem)
3959 {
3960    BITMASK_ENUM(tu_cmd_access_mask) mask = 0;
3961 
3962    if (gfx_read_access(flags, stages,
3963                        VK_ACCESS_2_INDIRECT_COMMAND_READ_BIT |
3964                        VK_ACCESS_2_CONDITIONAL_RENDERING_READ_BIT_EXT |
3965                        VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT |
3966                        VK_ACCESS_2_HOST_READ_BIT,
3967                        VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT |
3968                        VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT |
3969                        VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
3970                        VK_PIPELINE_STAGE_2_HOST_BIT))
3971       mask |= TU_ACCESS_SYSMEM_READ;
3972 
3973    if (gfx_write_access(flags, stages,
3974                         VK_ACCESS_2_TRANSFORM_FEEDBACK_COUNTER_READ_BIT_EXT,
3975                         VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT))
3976       mask |= TU_ACCESS_CP_WRITE;
3977 
3978    if (gfx_write_access(flags, stages,
3979                         VK_ACCESS_2_HOST_WRITE_BIT,
3980                         VK_PIPELINE_STAGE_2_HOST_BIT))
3981       mask |= TU_ACCESS_SYSMEM_WRITE;
3982 
3983 #define SHADER_STAGES \
3984    (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT | \
3985     VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT | \
3986     VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT | \
3987     VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT | \
3988     VK_PIPELINE_STAGE_2_PRE_RASTERIZATION_SHADERS_BIT | \
3989     VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | \
3990     VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT)
3991 
3992 
3993    if (gfx_read_access(flags, stages,
3994                        VK_ACCESS_2_INDEX_READ_BIT |
3995                        VK_ACCESS_2_VERTEX_ATTRIBUTE_READ_BIT |
3996                        VK_ACCESS_2_UNIFORM_READ_BIT |
3997                        VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT |
3998                        VK_ACCESS_2_SHADER_READ_BIT |
3999                        VK_ACCESS_2_SHADER_SAMPLED_READ_BIT |
4000                        VK_ACCESS_2_SHADER_STORAGE_READ_BIT |
4001                        VK_ACCESS_2_SHADER_BINDING_TABLE_READ_BIT_KHR |
4002                        VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
4003                        VK_PIPELINE_STAGE_2_INDEX_INPUT_BIT |
4004                        VK_PIPELINE_STAGE_2_VERTEX_INPUT_BIT |
4005                        VK_PIPELINE_STAGE_2_VERTEX_ATTRIBUTE_INPUT_BIT |
4006                        VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
4007                        VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR |
4008                        SHADER_STAGES))
4009        mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ;
4010 
4011    if (gfx_read_access(flags, stages,
4012                        VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
4013                        SHADER_STAGES))
4014        mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ | TU_ACCESS_RTU_READ;
4015 
4016    /* Reading the AS for copying involves doing CmdDispatchIndirect with the
4017     * copy size as a parameter, so it's read by the CP as well as a shader.
4018     */
4019    if (gfx_read_access(flags, stages,
4020                        VK_ACCESS_2_ACCELERATION_STRUCTURE_READ_BIT_KHR,
4021                        VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR |
4022                        VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_COPY_BIT_KHR))
4023        mask |= TU_ACCESS_SYSMEM_READ | TU_ACCESS_UCHE_READ |
4024           TU_ACCESS_CCHE_READ;
4025 
4026 
4027    if (gfx_read_access(flags, stages,
4028                        VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT,
4029                        SHADER_STAGES))
4030        mask |= TU_ACCESS_UCHE_READ_GMEM;
4031 
4032    if (gfx_read_access(flags, stages,
4033                        VK_ACCESS_2_DESCRIPTOR_BUFFER_READ_BIT_EXT,
4034                        SHADER_STAGES)) {
4035       mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_BINDLESS_DESCRIPTOR_READ |
4036               TU_ACCESS_CCHE_READ;
4037    }
4038 
4039    if (gfx_write_access(flags, stages,
4040                         VK_ACCESS_2_SHADER_WRITE_BIT |
4041                         VK_ACCESS_2_SHADER_STORAGE_WRITE_BIT |
4042                         VK_ACCESS_2_TRANSFORM_FEEDBACK_WRITE_BIT_EXT,
4043                         VK_PIPELINE_STAGE_2_TRANSFORM_FEEDBACK_BIT_EXT |
4044                         SHADER_STAGES))
4045        mask |= TU_ACCESS_UCHE_WRITE;
4046 
4047    if (gfx_write_access(flags, stages,
4048                         VK_ACCESS_2_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
4049                         VK_PIPELINE_STAGE_2_ACCELERATION_STRUCTURE_BUILD_BIT_KHR))
4050        mask |= TU_ACCESS_UCHE_WRITE | TU_ACCESS_CP_WRITE;
4051 
4052    /* When using GMEM, the CCU is always flushed automatically to GMEM, and
4053     * then GMEM is flushed to sysmem. Furthermore, we already had to flush any
4054     * previous writes in sysmem mode when transitioning to GMEM. Therefore we
4055     * can ignore CCU and pretend that color attachments and transfers use
4056     * sysmem directly.
4057     */
4058 
4059    if (gfx_read_access(flags, stages,
4060                        VK_ACCESS_2_COLOR_ATTACHMENT_READ_BIT |
4061                        VK_ACCESS_2_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT,
4062                        VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
4063       if (gmem)
4064          mask |= TU_ACCESS_SYSMEM_READ;
4065       else
4066          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_READ;
4067    }
4068 
4069    if (gfx_read_access(flags, stages,
4070                        VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
4071                        VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
4072                        VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
4073       if (gmem)
4074          mask |= TU_ACCESS_SYSMEM_READ;
4075       else
4076          mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_READ;
4077    }
4078 
4079    if (gfx_write_access(flags, stages,
4080                         VK_ACCESS_2_COLOR_ATTACHMENT_WRITE_BIT,
4081                         VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT)) {
4082       if (gmem) {
4083          mask |= TU_ACCESS_SYSMEM_WRITE;
4084       } else {
4085          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
4086       }
4087    }
4088 
4089    if (gfx_write_access(flags, stages,
4090                         VK_ACCESS_2_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
4091                         VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT |
4092                         VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT)) {
4093       if (gmem) {
4094          mask |= TU_ACCESS_SYSMEM_WRITE;
4095       } else {
4096          mask |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
4097       }
4098    }
4099 
4100    if (filter_write_access(flags, stages,
4101                            VK_ACCESS_2_TRANSFER_WRITE_BIT,
4102                            VK_PIPELINE_STAGE_2_COPY_BIT |
4103                            VK_PIPELINE_STAGE_2_BLIT_BIT |
4104                            VK_PIPELINE_STAGE_2_CLEAR_BIT |
4105                            VK_PIPELINE_STAGE_2_RESOLVE_BIT |
4106                            VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
4107       if (gmem) {
4108          mask |= TU_ACCESS_SYSMEM_WRITE;
4109       } else if (image_only) {
4110          /* Because we always split up blits/copies of images involving
4111           * multiple layers, we always access each layer in the same way, with
4112           * the same base address, same format, etc. This means we can avoid
4113           * flushing between multiple writes to the same image. This elides
4114           * flushes between e.g. multiple blits to the same image.
4115           */
4116          mask |= TU_ACCESS_CCU_COLOR_WRITE;
4117       } else {
4118          mask |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
4119       }
4120    }
4121 
4122    if (filter_read_access(flags, stages,
4123                           VK_ACCESS_2_TRANSFER_READ_BIT,
4124                           VK_PIPELINE_STAGE_2_COPY_BIT |
4125                           VK_PIPELINE_STAGE_2_BLIT_BIT |
4126                           VK_PIPELINE_STAGE_2_RESOLVE_BIT |
4127                           VK_PIPELINE_STAGE_2_ALL_TRANSFER_BIT)) {
4128       mask |= TU_ACCESS_UCHE_READ | TU_ACCESS_CCHE_READ;
4129    }
4130 
4131    return mask;
4132 }
4133 
4134 /* These helpers deal with legacy BOTTOM_OF_PIPE/TOP_OF_PIPE stages.
4135  */
4136 
4137 static VkPipelineStageFlags2
sanitize_src_stage(VkPipelineStageFlags2 stage_mask)4138 sanitize_src_stage(VkPipelineStageFlags2 stage_mask)
4139 {
4140    /* From the Vulkan spec:
4141     *
4142     *    VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is ...  equivalent to
4143     *    VK_PIPELINE_STAGE_2_NONE in the first scope.
4144     *
4145     *    VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is equivalent to
4146     *    VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
4147     *    when specified in the first synchronization scope, ...
4148     */
4149    if (stage_mask & VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)
4150       return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
4151 
4152    return stage_mask & ~VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT;
4153 }
4154 
4155 static VkPipelineStageFlags2
sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)4156 sanitize_dst_stage(VkPipelineStageFlags2 stage_mask)
4157 {
4158    /* From the Vulkan spec:
4159     *
4160     *    VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT is equivalent to
4161     *    VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT with VkAccessFlags2 set to 0
4162     *    when specified in the second synchronization scope, ...
4163     *
4164     *    VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT is ... equivalent to
4165     *    VK_PIPELINE_STAGE_2_NONE in the second scope.
4166     *
4167     */
4168    if (stage_mask & VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)
4169       return VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
4170 
4171    return stage_mask & ~VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT;
4172 }
4173 
4174 static enum tu_stage
vk2tu_single_stage(VkPipelineStageFlags2 vk_stage,bool dst)4175 vk2tu_single_stage(VkPipelineStageFlags2 vk_stage, bool dst)
4176 {
4177    /* If the destination stage is executed on the CP, then the CP also has to
4178     * wait for any WFI's to finish. This is already done for draw calls,
4179     * including before indirect param reads, for the most part, so we just
4180     * need to WFI and can use TU_STAGE_GPU.
4181     *
4182     * However, some indirect draw opcodes, depending on firmware, don't have
4183     * implicit CP_WAIT_FOR_ME so we have to handle it manually.
4184     *
4185     * Transform feedback counters are read via CP_MEM_TO_REG, which implicitly
4186     * does CP_WAIT_FOR_ME, so we don't include them here.
4187     *
4188     * Currently we read the draw predicate using CP_MEM_TO_MEM, which
4189     * also implicitly does CP_WAIT_FOR_ME. However CP_DRAW_PRED_SET does *not*
4190     * implicitly do CP_WAIT_FOR_ME, it seems to only wait for counters to
4191     * complete since it's written for DX11 where you can only predicate on the
4192     * result of a query object. So if we implement 64-bit comparisons in the
4193     * future, or if CP_DRAW_PRED_SET grows the capability to do 32-bit
4194     * comparisons, then this will have to be dealt with.
4195     */
4196    if (vk_stage == VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT ||
4197        vk_stage == VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT ||
4198        vk_stage == VK_PIPELINE_STAGE_2_FRAGMENT_DENSITY_PROCESS_BIT_EXT)
4199       return TU_STAGE_CP;
4200 
4201    if (vk_stage == VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT ||
4202        vk_stage == VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT)
4203       return dst ? TU_STAGE_CP : TU_STAGE_GPU;
4204 
4205    if (vk_stage == VK_PIPELINE_STAGE_2_HOST_BIT)
4206       return dst ? TU_STAGE_BOTTOM : TU_STAGE_CP;
4207 
4208    return TU_STAGE_GPU;
4209 }
4210 
4211 static enum tu_stage
vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)4212 vk2tu_src_stage(VkPipelineStageFlags2 vk_stages)
4213 {
4214    enum tu_stage stage = TU_STAGE_CP;
4215    u_foreach_bit64 (bit, vk_stages) {
4216       enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, false);
4217       stage = MAX2(stage, new_stage);
4218    }
4219 
4220    return stage;
4221 }
4222 
4223 static enum tu_stage
vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)4224 vk2tu_dst_stage(VkPipelineStageFlags2 vk_stages)
4225 {
4226    enum tu_stage stage = TU_STAGE_BOTTOM;
4227    u_foreach_bit64 (bit, vk_stages) {
4228       enum tu_stage new_stage = vk2tu_single_stage(1ull << bit, true);
4229       stage = MIN2(stage, new_stage);
4230    }
4231 
4232    return stage;
4233 }
4234 
4235 static void
tu_flush_for_stage(struct tu_cache_state * cache,enum tu_stage src_stage,enum tu_stage dst_stage)4236 tu_flush_for_stage(struct tu_cache_state *cache,
4237                    enum tu_stage src_stage, enum tu_stage dst_stage)
4238 {
4239    /* Even if the source is the host or CP, the destination access could
4240     * generate invalidates that we have to wait to complete.
4241     */
4242    if (src_stage == TU_STAGE_CP &&
4243        (cache->flush_bits & TU_CMD_FLAG_ALL_INVALIDATE))
4244       src_stage = TU_STAGE_GPU;
4245 
4246    if (src_stage >= dst_stage) {
4247       cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
4248       if (dst_stage == TU_STAGE_CP)
4249          cache->pending_flush_bits |= TU_CMD_FLAG_WAIT_FOR_ME;
4250    }
4251 }
4252 
4253 void
tu_render_pass_state_merge(struct tu_render_pass_state * dst,const struct tu_render_pass_state * src)4254 tu_render_pass_state_merge(struct tu_render_pass_state *dst,
4255                            const struct tu_render_pass_state *src)
4256 {
4257    dst->xfb_used |= src->xfb_used;
4258    dst->has_tess |= src->has_tess;
4259    dst->has_prim_generated_query_in_rp |= src->has_prim_generated_query_in_rp;
4260    dst->has_zpass_done_sample_count_write_in_rp |= src->has_zpass_done_sample_count_write_in_rp;
4261    dst->disable_gmem |= src->disable_gmem;
4262    dst->sysmem_single_prim_mode |= src->sysmem_single_prim_mode;
4263    dst->draw_cs_writes_to_cond_pred |= src->draw_cs_writes_to_cond_pred;
4264    dst->shared_viewport |= src->shared_viewport;
4265 
4266    dst->drawcall_count += src->drawcall_count;
4267    dst->drawcall_bandwidth_per_sample_sum +=
4268       src->drawcall_bandwidth_per_sample_sum;
4269    if (!dst->lrz_disable_reason && src->lrz_disable_reason) {
4270       dst->lrz_disable_reason = src->lrz_disable_reason;
4271       dst->lrz_disabled_at_draw =
4272          dst->drawcall_count + src->lrz_disabled_at_draw;
4273    }
4274 }
4275 
4276 void
tu_restore_suspended_pass(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * suspended)4277 tu_restore_suspended_pass(struct tu_cmd_buffer *cmd,
4278                           struct tu_cmd_buffer *suspended)
4279 {
4280    cmd->state.pass = suspended->state.suspended_pass.pass;
4281    cmd->state.subpass = suspended->state.suspended_pass.subpass;
4282    cmd->state.framebuffer = suspended->state.suspended_pass.framebuffer;
4283    cmd->state.attachments = suspended->state.suspended_pass.attachments;
4284    cmd->state.clear_values = suspended->state.suspended_pass.clear_values;
4285    cmd->state.render_area = suspended->state.suspended_pass.render_area;
4286    cmd->state.gmem_layout = suspended->state.suspended_pass.gmem_layout;
4287    cmd->state.tiling = &cmd->state.framebuffer->tiling[cmd->state.gmem_layout];
4288    cmd->state.lrz = suspended->state.suspended_pass.lrz;
4289 }
4290 
4291 /* Take the saved pre-chain in "secondary" and copy its commands to "cmd",
4292  * appending it after any saved-up commands in "cmd".
4293  */
4294 void
tu_append_pre_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)4295 tu_append_pre_chain(struct tu_cmd_buffer *cmd,
4296                     struct tu_cmd_buffer *secondary)
4297 {
4298    tu_cs_add_entries(&cmd->draw_cs, &secondary->pre_chain.draw_cs);
4299    tu_cs_add_entries(&cmd->draw_epilogue_cs,
4300                      &secondary->pre_chain.draw_epilogue_cs);
4301 
4302    tu_render_pass_state_merge(&cmd->state.rp,
4303                               &secondary->pre_chain.state);
4304    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->pre_chain.trace_renderpass_start,
4305          secondary->pre_chain.trace_renderpass_end);
4306    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4307                                  &secondary->pre_chain.fdm_bin_patchpoints);
4308 }
4309 
4310 /* Take the saved post-chain in "secondary" and copy it to "cmd".
4311  */
4312 void
tu_append_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)4313 tu_append_post_chain(struct tu_cmd_buffer *cmd,
4314                      struct tu_cmd_buffer *secondary)
4315 {
4316    tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
4317    tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
4318 
4319    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
4320          secondary->trace_renderpass_end);
4321    cmd->state.rp = secondary->state.rp;
4322    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4323                                  &secondary->fdm_bin_patchpoints);
4324 }
4325 
4326 /* Assuming "secondary" is just a sequence of suspended and resuming passes,
4327  * copy its state to "cmd". This also works instead of tu_append_post_chain(),
4328  * but it's a bit slower because we don't assume that the chain begins in
4329  * "secondary" and therefore have to care about the command buffer's
4330  * renderpass state.
4331  */
4332 void
tu_append_pre_post_chain(struct tu_cmd_buffer * cmd,struct tu_cmd_buffer * secondary)4333 tu_append_pre_post_chain(struct tu_cmd_buffer *cmd,
4334                          struct tu_cmd_buffer *secondary)
4335 {
4336    tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
4337    tu_cs_add_entries(&cmd->draw_epilogue_cs, &secondary->draw_epilogue_cs);
4338 
4339    tu_clone_trace_range(cmd, &cmd->draw_cs, secondary->trace_renderpass_start,
4340          secondary->trace_renderpass_end);
4341    tu_render_pass_state_merge(&cmd->state.rp,
4342                               &secondary->state.rp);
4343    util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4344                                  &secondary->fdm_bin_patchpoints);
4345 }
4346 
4347 /* Take the current render pass state and save it to "pre_chain" to be
4348  * combined later.
4349  */
4350 static void
tu_save_pre_chain(struct tu_cmd_buffer * cmd)4351 tu_save_pre_chain(struct tu_cmd_buffer *cmd)
4352 {
4353    tu_cs_add_entries(&cmd->pre_chain.draw_cs,
4354                      &cmd->draw_cs);
4355    tu_cs_add_entries(&cmd->pre_chain.draw_epilogue_cs,
4356                      &cmd->draw_epilogue_cs);
4357    cmd->pre_chain.trace_renderpass_start =
4358       cmd->trace_renderpass_start;
4359    cmd->pre_chain.trace_renderpass_end =
4360       cmd->trace_renderpass_end;
4361    cmd->pre_chain.state = cmd->state.rp;
4362    util_dynarray_append_dynarray(&cmd->pre_chain.fdm_bin_patchpoints,
4363                                  &cmd->fdm_bin_patchpoints);
4364    cmd->pre_chain.patchpoints_ctx = cmd->patchpoints_ctx;
4365    cmd->patchpoints_ctx = NULL;
4366 }
4367 
4368 VKAPI_ATTR void VKAPI_CALL
tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,uint32_t commandBufferCount,const VkCommandBuffer * pCmdBuffers)4369 tu_CmdExecuteCommands(VkCommandBuffer commandBuffer,
4370                       uint32_t commandBufferCount,
4371                       const VkCommandBuffer *pCmdBuffers)
4372 {
4373    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4374    VkResult result;
4375 
4376    assert(commandBufferCount > 0);
4377 
4378    /* Emit any pending flushes. */
4379    if (cmd->state.pass) {
4380       tu_clean_all_pending(&cmd->state.renderpass_cache);
4381       TU_CALLX(cmd->device, tu_emit_cache_flush_renderpass)(cmd);
4382    } else {
4383       tu_clean_all_pending(&cmd->state.cache);
4384       TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
4385    }
4386 
4387    for (uint32_t i = 0; i < commandBufferCount; i++) {
4388       VK_FROM_HANDLE(tu_cmd_buffer, secondary, pCmdBuffers[i]);
4389 
4390       if (secondary->usage_flags &
4391           VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
4392          assert(tu_cs_is_empty(&secondary->cs));
4393 
4394          TU_CALLX(cmd->device, tu_lrz_flush_valid_during_renderpass)
4395             (cmd, &cmd->draw_cs);
4396 
4397          result = tu_cs_add_entries(&cmd->draw_cs, &secondary->draw_cs);
4398          if (result != VK_SUCCESS) {
4399             vk_command_buffer_set_error(&cmd->vk, result);
4400             break;
4401          }
4402 
4403          result = tu_cs_add_entries(&cmd->draw_epilogue_cs,
4404                &secondary->draw_epilogue_cs);
4405          if (result != VK_SUCCESS) {
4406             vk_command_buffer_set_error(&cmd->vk, result);
4407             break;
4408          }
4409 
4410          /* If LRZ was made invalid in secondary - we should disable
4411           * LRZ retroactively for the whole renderpass.
4412           */
4413          if (!secondary->state.lrz.valid)
4414             cmd->state.lrz.valid = false;
4415 
4416          tu_clone_trace(cmd, &cmd->draw_cs, &secondary->trace);
4417          tu_render_pass_state_merge(&cmd->state.rp, &secondary->state.rp);
4418          util_dynarray_append_dynarray(&cmd->fdm_bin_patchpoints,
4419                                        &secondary->fdm_bin_patchpoints);
4420       } else {
4421          switch (secondary->state.suspend_resume) {
4422          case SR_NONE:
4423             assert(tu_cs_is_empty(&secondary->draw_cs));
4424             assert(tu_cs_is_empty(&secondary->draw_epilogue_cs));
4425             tu_cs_add_entries(&cmd->cs, &secondary->cs);
4426             tu_clone_trace(cmd, &cmd->cs, &secondary->trace);
4427             break;
4428 
4429          case SR_IN_PRE_CHAIN:
4430             /* cmd may be empty, which means that the chain begins before cmd
4431              * in which case we have to update its state.
4432              */
4433             if (cmd->state.suspend_resume == SR_NONE) {
4434                cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
4435                cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4436             }
4437 
4438             /* The secondary is just a continuous suspend/resume chain so we
4439              * just have to append it to the the command buffer.
4440              */
4441             assert(tu_cs_is_empty(&secondary->cs));
4442             tu_append_pre_post_chain(cmd, secondary);
4443             break;
4444 
4445          case SR_AFTER_PRE_CHAIN:
4446          case SR_IN_CHAIN:
4447          case SR_IN_CHAIN_AFTER_PRE_CHAIN:
4448             if (secondary->state.suspend_resume == SR_AFTER_PRE_CHAIN ||
4449                 secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN) {
4450                /* In thse cases there is a `pre_chain` in the secondary which
4451                 * ends that we need to append to the primary.
4452                 */
4453 
4454                if (cmd->state.suspend_resume == SR_NONE)
4455                   cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4456 
4457                tu_append_pre_chain(cmd, secondary);
4458 
4459                /* We're about to render, so we need to end the command stream
4460                 * in case there were any extra commands generated by copying
4461                 * the trace.
4462                 */
4463                tu_cs_end(&cmd->draw_cs);
4464                tu_cs_end(&cmd->draw_epilogue_cs);
4465 
4466                switch (cmd->state.suspend_resume) {
4467                case SR_NONE:
4468                case SR_IN_PRE_CHAIN:
4469                   /* The renderpass chain ends in the secondary but isn't
4470                    * started in the primary, so we have to move the state to
4471                    * `pre_chain`.
4472                    */
4473                   cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
4474                   tu_save_pre_chain(cmd);
4475                   cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
4476                   break;
4477                case SR_IN_CHAIN:
4478                case SR_IN_CHAIN_AFTER_PRE_CHAIN:
4479                   /* The renderpass ends in the secondary and starts somewhere
4480                    * earlier in this primary. Since the last render pass in
4481                    * the chain is in the secondary, we are technically outside
4482                    * of a render pass.  Fix that here by reusing the dynamic
4483                    * render pass that was setup for the last suspended render
4484                    * pass before the secondary.
4485                    */
4486                   tu_restore_suspended_pass(cmd, cmd);
4487 
4488                   TU_CALLX(cmd->device, tu_cmd_render)(cmd);
4489                   if (cmd->state.suspend_resume == SR_IN_CHAIN)
4490                      cmd->state.suspend_resume = SR_NONE;
4491                   else
4492                      cmd->state.suspend_resume = SR_AFTER_PRE_CHAIN;
4493                   break;
4494                case SR_AFTER_PRE_CHAIN:
4495                   unreachable("resuming render pass is not preceded by suspending one");
4496                }
4497 
4498                tu_reset_render_pass(cmd);
4499             }
4500 
4501             tu_cs_add_entries(&cmd->cs, &secondary->cs);
4502 
4503             if (secondary->state.suspend_resume == SR_IN_CHAIN_AFTER_PRE_CHAIN ||
4504                 secondary->state.suspend_resume == SR_IN_CHAIN) {
4505                /* The secondary ends in a "post-chain" (the opposite of a
4506                 * pre-chain) that we need to copy into the current command
4507                 * buffer.
4508                 */
4509                cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4510                tu_append_post_chain(cmd, secondary);
4511                cmd->trace_renderpass_end = u_trace_end_iterator(&cmd->trace);
4512                cmd->state.suspended_pass = secondary->state.suspended_pass;
4513 
4514                switch (cmd->state.suspend_resume) {
4515                case SR_NONE:
4516                   cmd->state.suspend_resume = SR_IN_CHAIN;
4517                   break;
4518                case SR_AFTER_PRE_CHAIN:
4519                   cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
4520                   break;
4521                default:
4522                   unreachable("suspending render pass is followed by a not resuming one");
4523                }
4524             }
4525          }
4526       }
4527 
4528       cmd->state.index_size = secondary->state.index_size; /* for restart index update */
4529    }
4530    cmd->state.dirty = ~0u; /* TODO: set dirty only what needs to be */
4531 
4532    if (!cmd->state.lrz.gpu_dir_tracking && cmd->state.pass) {
4533       /* After a secondary command buffer is executed, LRZ is not valid
4534        * until it is cleared again.
4535        */
4536       cmd->state.lrz.valid = false;
4537    }
4538 
4539    /* After executing secondary command buffers, there may have been arbitrary
4540     * flushes executed, so when we encounter a pipeline barrier with a
4541     * srcMask, we have to assume that we need to invalidate. Therefore we need
4542     * to re-initialize the cache with all pending invalidate bits set.
4543     */
4544    if (cmd->state.pass) {
4545       struct tu_cache_state *cache = &cmd->state.renderpass_cache;
4546       BITMASK_ENUM(tu_cmd_flush_bits) retained_pending_flush_bits =
4547          cache->pending_flush_bits & TU_CMD_FLAG_BLIT_CACHE_CLEAN;
4548       tu_cache_init(cache);
4549       cache->pending_flush_bits |= retained_pending_flush_bits;
4550    } else {
4551       tu_cache_init(&cmd->state.cache);
4552    }
4553 }
4554 
4555 static void
tu_subpass_barrier(struct tu_cmd_buffer * cmd_buffer,const struct tu_subpass_barrier * barrier,bool external)4556 tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
4557                    const struct tu_subpass_barrier *barrier,
4558                    bool external)
4559 {
4560    /* Note: we don't know until the end of the subpass whether we'll use
4561     * sysmem, so assume sysmem here to be safe.
4562     */
4563    struct tu_cache_state *cache =
4564       external ? &cmd_buffer->state.cache : &cmd_buffer->state.renderpass_cache;
4565    VkPipelineStageFlags2 src_stage_vk =
4566       sanitize_src_stage(barrier->src_stage_mask);
4567    VkPipelineStageFlags2 dst_stage_vk =
4568       sanitize_dst_stage(barrier->dst_stage_mask);
4569    BITMASK_ENUM(tu_cmd_access_mask) src_flags =
4570       vk2tu_access(barrier->src_access_mask, src_stage_vk, false, false);
4571    BITMASK_ENUM(tu_cmd_access_mask) dst_flags =
4572       vk2tu_access(barrier->dst_access_mask, dst_stage_vk, false, false);
4573 
4574    if (barrier->incoherent_ccu_color)
4575       src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
4576    if (barrier->incoherent_ccu_depth)
4577       src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
4578 
4579    tu_flush_for_access(cache, src_flags, dst_flags);
4580 
4581    enum tu_stage src_stage = vk2tu_src_stage(src_stage_vk);
4582    enum tu_stage dst_stage = vk2tu_dst_stage(dst_stage_vk);
4583    tu_flush_for_stage(cache, src_stage, dst_stage);
4584 }
4585 
4586 template <chip CHIP>
4587 static void
tu_emit_subpass_begin_gmem(struct tu_cmd_buffer * cmd,struct tu_resolve_group * resolve_group)4588 tu_emit_subpass_begin_gmem(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group)
4589 {
4590    struct tu_cs *cs = &cmd->draw_cs;
4591    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
4592 
4593    /* If we might choose to bin, then put the loads under a check for geometry
4594     * having been binned to this tile.  If we don't choose to bin in the end,
4595     * then we will have manually set those registers to say geometry is present.
4596     *
4597     * However, if the draw CS has a write to the condition for some other reason
4598     * (perf queries), then we can't do this optimization since the
4599     * start-of-the-CS geometry condition will have been overwritten.
4600     */
4601    bool cond_load_allowed = cmd->state.tiling->binning &&
4602                             cmd->state.pass->has_cond_load_store &&
4603                             !cmd->state.rp.draw_cs_writes_to_cond_pred;
4604 
4605    if (cmd->state.pass->has_fdm)
4606       tu_cs_set_writeable(cs, true);
4607 
4608    tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
4609 
4610    /* Emit gmem loads that are first used in this subpass. */
4611    bool emitted_scissor = false;
4612    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4613       struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
4614       if ((att->load || att->load_stencil) && att->first_subpass_idx == subpass_idx) {
4615          if (!emitted_scissor) {
4616             tu6_emit_blit_scissor(cmd, cs, true);
4617             emitted_scissor = true;
4618          }
4619          tu_load_gmem_attachment<CHIP>(cmd, cs, resolve_group, i,
4620                                        cond_load_allowed, false);
4621       }
4622    }
4623 
4624    if (!cmd->device->physical_device->info->a7xx.has_generic_clear) {
4625       /* Emit gmem clears that are first used in this subpass. */
4626       emitted_scissor = false;
4627       for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4628          struct tu_render_pass_attachment *att =
4629             &cmd->state.pass->attachments[i];
4630          if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
4631             if (!emitted_scissor) {
4632                tu6_emit_blit_scissor(cmd, cs, false);
4633                emitted_scissor = true;
4634             }
4635             tu_clear_gmem_attachment<CHIP>(cmd, cs, resolve_group, i);
4636          }
4637       }
4638    }
4639 
4640    tu_cond_exec_end(cs); /* CP_COND_EXEC_0_RENDER_MODE_GMEM */
4641 
4642    if (cmd->state.pass->has_fdm)
4643       tu_cs_set_writeable(cs, false);
4644 
4645 }
4646 
4647 /* Emits sysmem clears that are first used in this subpass. */
4648 template <chip CHIP>
4649 static void
tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer * cmd)4650 tu_emit_subpass_begin_sysmem(struct tu_cmd_buffer *cmd)
4651 {
4652    if (cmd->device->physical_device->info->a7xx.has_generic_clear)
4653       return;
4654 
4655    struct tu_cs *cs = &cmd->draw_cs;
4656    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
4657 
4658    tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
4659    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4660       struct tu_render_pass_attachment *att = &cmd->state.pass->attachments[i];
4661       if (att->clear_mask && att->first_subpass_idx == subpass_idx)
4662          tu_clear_sysmem_attachment<CHIP>(cmd, cs, i);
4663    }
4664    tu_cond_exec_end(cs); /* sysmem */
4665 }
4666 
4667 static void
tu7_emit_subpass_clear(struct tu_cmd_buffer * cmd,struct tu_resolve_group * resolve_group)4668 tu7_emit_subpass_clear(struct tu_cmd_buffer *cmd, struct tu_resolve_group *resolve_group)
4669 {
4670    if (cmd->state.render_area.extent.width == 0 ||
4671        cmd->state.render_area.extent.height == 0)
4672       return;
4673 
4674    struct tu_cs *cs = &cmd->draw_cs;
4675    uint32_t subpass_idx = cmd->state.subpass - cmd->state.pass->subpasses;
4676 
4677    bool emitted_scissor = false;
4678    for (uint32_t i = 0; i < cmd->state.pass->attachment_count; ++i) {
4679       struct tu_render_pass_attachment *att =
4680          &cmd->state.pass->attachments[i];
4681       if (att->clear_mask && att->first_subpass_idx == subpass_idx) {
4682          if (!emitted_scissor) {
4683             tu6_emit_blit_scissor(cmd, cs, false);
4684             emitted_scissor = true;
4685          }
4686          tu7_generic_clear_attachment(cmd, cs, resolve_group, i);
4687       }
4688    }
4689 }
4690 
4691 static void
tu7_emit_subpass_shading_rate(struct tu_cmd_buffer * cmd,const struct tu_subpass * subpass,struct tu_cs * cs)4692 tu7_emit_subpass_shading_rate(struct tu_cmd_buffer *cmd,
4693                               const struct tu_subpass *subpass,
4694                               struct tu_cs *cs)
4695 {
4696    if (subpass->fsr_attachment == VK_ATTACHMENT_UNUSED) {
4697       tu_cs_emit_regs(cs, A7XX_GRAS_FSR_BUFFER_DESC(),
4698                       A7XX_GRAS_FSR_BUFFER_SIZE());
4699       tu_cs_emit_regs(cs, A7XX_GRAS_FSR_BUFFER_PITCH());
4700       tu_cs_emit_regs(cs, A7XX_GRAS_FSR_BUFFER_BASE());
4701       /* We need to invalidate cache when changing to NULL FSR attachment, but
4702        * only once.
4703        */
4704       if (!cmd->prev_fsr_is_null) {
4705          tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE,
4706                                        false);
4707          cmd->prev_fsr_is_null = true;
4708       }
4709       return;
4710    }
4711 
4712    const struct tu_image_view *iview =
4713       cmd->state.attachments[subpass->fsr_attachment];
4714    assert(iview->vk.format == VK_FORMAT_R8_UINT);
4715 
4716    tu_cs_emit_regs(
4717       cs,
4718       A7XX_GRAS_FSR_BUFFER_DESC(.layered = true,
4719                                 .tile_mode =
4720                                    (a6xx_tile_mode) iview->image->layout[0]
4721                                       .tile_mode, ),
4722       A7XX_GRAS_FSR_BUFFER_SIZE(.width = iview->view.width,
4723                                 .height = iview->view.height));
4724    tu_cs_emit_regs(
4725       cs, A7XX_GRAS_FSR_BUFFER_PITCH(.pitch = iview->view.pitch,
4726                                      .array_pitch = iview->view.layer_size));
4727    tu_cs_emit_regs(cs,
4728                    A7XX_GRAS_FSR_BUFFER_BASE(.qword = iview->view.base_addr));
4729 
4730    tu_emit_raw_event_write<A7XX>(cmd, cs, LRZ_Q_CACHE_INVALIDATE, false);
4731    cmd->prev_fsr_is_null = false;
4732 }
4733 
4734 /* emit loads, clears, and mrt/zs/msaa/ubwc state for the subpass that is
4735  * starting (either at vkCmdBeginRenderPass2() or vkCmdNextSubpass2())
4736  *
4737  * Clears and loads have to happen at this point, because with
4738  * VK_ATTACHMENT_DESCRIPTION_MAY_ALIAS_BIT the loads may depend on the output of
4739  * a previous aliased attachment's store.
4740  */
4741 template <chip CHIP>
4742 static void
tu_emit_subpass_begin(struct tu_cmd_buffer * cmd)4743 tu_emit_subpass_begin(struct tu_cmd_buffer *cmd)
4744 {
4745    tu_fill_render_pass_state(&cmd->state.vk_rp, cmd->state.pass, cmd->state.subpass);
4746 
4747    struct tu_resolve_group resolve_group = {};
4748 
4749    tu_emit_subpass_begin_gmem<CHIP>(cmd, &resolve_group);
4750    tu_emit_subpass_begin_sysmem<CHIP>(cmd);
4751    if (cmd->device->physical_device->info->a7xx.has_generic_clear) {
4752       tu7_emit_subpass_clear(cmd, &resolve_group);
4753    }
4754 
4755    tu_emit_resolve_group<CHIP>(cmd, &cmd->draw_cs, &resolve_group);
4756 
4757    tu6_emit_zs<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
4758    tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
4759    tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
4760 
4761    if (CHIP >= A7XX) {
4762       tu7_emit_subpass_shading_rate(cmd, cmd->state.subpass, &cmd->draw_cs);
4763    }
4764 
4765    tu_set_input_attachments(cmd, cmd->state.subpass);
4766 
4767    vk_cmd_set_cb_attachment_count(&cmd->vk, cmd->state.subpass->color_count);
4768 
4769    cmd->state.dirty |= TU_CMD_DIRTY_SUBPASS;
4770 }
4771 
4772 template <chip CHIP>
4773 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,const VkRenderPassBeginInfo * pRenderPassBegin,const VkSubpassBeginInfo * pSubpassBeginInfo)4774 tu_CmdBeginRenderPass2(VkCommandBuffer commandBuffer,
4775                        const VkRenderPassBeginInfo *pRenderPassBegin,
4776                        const VkSubpassBeginInfo *pSubpassBeginInfo)
4777 {
4778    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4779 
4780    if (TU_DEBUG(DYNAMIC)) {
4781       vk_common_CmdBeginRenderPass2(commandBuffer, pRenderPassBegin,
4782                                     pSubpassBeginInfo);
4783       return;
4784    }
4785 
4786    VK_FROM_HANDLE(tu_render_pass, pass, pRenderPassBegin->renderPass);
4787    VK_FROM_HANDLE(tu_framebuffer, fb, pRenderPassBegin->framebuffer);
4788 
4789    const struct VkRenderPassAttachmentBeginInfo *pAttachmentInfo =
4790       vk_find_struct_const(pRenderPassBegin->pNext,
4791                            RENDER_PASS_ATTACHMENT_BEGIN_INFO);
4792 
4793    cmd->state.pass = pass;
4794    cmd->state.subpass = pass->subpasses;
4795    cmd->state.framebuffer = fb;
4796    cmd->state.render_area = pRenderPassBegin->renderArea;
4797 
4798    if (pass->attachment_count > 0) {
4799       VK_MULTIALLOC(ma);
4800       vk_multialloc_add(&ma, &cmd->state.attachments,
4801                         const struct tu_image_view *, pass->attachment_count);
4802       vk_multialloc_add(&ma, &cmd->state.clear_values, VkClearValue,
4803                         pRenderPassBegin->clearValueCount);
4804       if (!vk_multialloc_alloc(&ma, &cmd->vk.pool->alloc,
4805                                VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) {
4806          vk_command_buffer_set_error(&cmd->vk, VK_ERROR_OUT_OF_HOST_MEMORY);
4807          return;
4808       }
4809    }
4810 
4811    if (cmd->device->dbg_renderpass_stomp_cs) {
4812       tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4813    }
4814 
4815    for (unsigned i = 0; i < pass->attachment_count; i++) {
4816       cmd->state.attachments[i] = pAttachmentInfo ?
4817          tu_image_view_from_handle(pAttachmentInfo->pAttachments[i]) :
4818          cmd->state.framebuffer->attachments[i].attachment;
4819    }
4820    if (pass->attachment_count) {
4821       for (unsigned i = 0; i < pRenderPassBegin->clearValueCount; i++)
4822             cmd->state.clear_values[i] = pRenderPassBegin->pClearValues[i];
4823    }
4824 
4825    tu_choose_gmem_layout(cmd);
4826 
4827    tu_trace_start_render_pass(cmd);
4828 
4829    /* Note: because this is external, any flushes will happen before draw_cs
4830     * gets called. However deferred flushes could have to happen later as part
4831     * of the subpass.
4832     */
4833    tu_subpass_barrier(cmd, &pass->subpasses[0].start_barrier, true);
4834    cmd->state.renderpass_cache.pending_flush_bits =
4835       cmd->state.cache.pending_flush_bits;
4836    cmd->state.renderpass_cache.flush_bits = 0;
4837 
4838    if (pass->subpasses[0].feedback_invalidate) {
4839       cmd->state.renderpass_cache.flush_bits |=
4840          TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
4841          TU_CMD_FLAG_WAIT_FOR_IDLE;
4842    }
4843 
4844    tu_lrz_begin_renderpass<CHIP>(cmd);
4845 
4846    cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4847 
4848    tu_emit_renderpass_begin(cmd);
4849    tu_emit_subpass_begin<CHIP>(cmd);
4850 
4851    cmd->patchpoints_ctx = ralloc_context(NULL);
4852 }
4853 TU_GENX(tu_CmdBeginRenderPass2);
4854 
4855 template <chip CHIP>
4856 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginRendering(VkCommandBuffer commandBuffer,const VkRenderingInfo * pRenderingInfo)4857 tu_CmdBeginRendering(VkCommandBuffer commandBuffer,
4858                      const VkRenderingInfo *pRenderingInfo)
4859 {
4860    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
4861 
4862    tu_setup_dynamic_render_pass(cmd, pRenderingInfo);
4863    tu_setup_dynamic_framebuffer(cmd, pRenderingInfo);
4864 
4865    cmd->state.pass = &cmd->dynamic_pass;
4866    cmd->state.subpass = &cmd->dynamic_subpass;
4867    cmd->state.framebuffer = &cmd->dynamic_framebuffer;
4868    cmd->state.render_area = pRenderingInfo->renderArea;
4869    cmd->state.blit_cache_cleaned = false;
4870 
4871    cmd->state.attachments = cmd->dynamic_attachments;
4872    cmd->state.clear_values = cmd->dynamic_clear_values;
4873 
4874    for (unsigned i = 0; i < pRenderingInfo->colorAttachmentCount; i++) {
4875       uint32_t a = cmd->dynamic_subpass.color_attachments[i].attachment;
4876       if (!pRenderingInfo->pColorAttachments[i].imageView)
4877          continue;
4878 
4879       cmd->state.clear_values[a] =
4880          pRenderingInfo->pColorAttachments[i].clearValue;
4881 
4882       VK_FROM_HANDLE(tu_image_view, view,
4883                      pRenderingInfo->pColorAttachments[i].imageView);
4884       cmd->state.attachments[a] = view;
4885 
4886       a = cmd->dynamic_subpass.resolve_attachments[i].attachment;
4887       if (a != VK_ATTACHMENT_UNUSED) {
4888          VK_FROM_HANDLE(tu_image_view, resolve_view,
4889                         pRenderingInfo->pColorAttachments[i].resolveImageView);
4890          cmd->state.attachments[a] = resolve_view;
4891       }
4892    }
4893 
4894    uint32_t a = cmd->dynamic_subpass.depth_stencil_attachment.attachment;
4895    if (pRenderingInfo->pDepthAttachment || pRenderingInfo->pStencilAttachment) {
4896       const struct VkRenderingAttachmentInfo *common_info =
4897          (pRenderingInfo->pDepthAttachment &&
4898           pRenderingInfo->pDepthAttachment->imageView != VK_NULL_HANDLE) ?
4899          pRenderingInfo->pDepthAttachment :
4900          pRenderingInfo->pStencilAttachment;
4901       if (common_info && common_info->imageView != VK_NULL_HANDLE) {
4902          VK_FROM_HANDLE(tu_image_view, view, common_info->imageView);
4903          cmd->state.attachments[a] = view;
4904          if (pRenderingInfo->pDepthAttachment) {
4905             cmd->state.clear_values[a].depthStencil.depth =
4906                pRenderingInfo->pDepthAttachment->clearValue.depthStencil.depth;
4907          }
4908 
4909          if (pRenderingInfo->pStencilAttachment) {
4910             cmd->state.clear_values[a].depthStencil.stencil =
4911                pRenderingInfo->pStencilAttachment->clearValue.depthStencil.stencil;
4912          }
4913 
4914          if (cmd->dynamic_subpass.resolve_count >
4915              cmd->dynamic_subpass.color_count) {
4916             VK_FROM_HANDLE(tu_image_view, resolve_view,
4917                            common_info->resolveImageView);
4918             a = cmd->dynamic_subpass.resolve_attachments[cmd->dynamic_subpass.color_count].attachment;
4919             cmd->state.attachments[a] = resolve_view;
4920          }
4921       }
4922    }
4923 
4924    a = cmd->dynamic_pass.fragment_density_map.attachment;
4925    if (a != VK_ATTACHMENT_UNUSED) {
4926       const VkRenderingFragmentDensityMapAttachmentInfoEXT *fdm_info =
4927          vk_find_struct_const(pRenderingInfo->pNext,
4928                               RENDERING_FRAGMENT_DENSITY_MAP_ATTACHMENT_INFO_EXT);
4929       VK_FROM_HANDLE(tu_image_view, view, fdm_info->imageView);
4930       cmd->state.attachments[a] = view;
4931    }
4932 
4933    const VkRenderingAttachmentLocationInfoKHR ral_info = {
4934       .sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_LOCATION_INFO_KHR,
4935       .colorAttachmentCount = pRenderingInfo->colorAttachmentCount,
4936    };
4937    vk_cmd_set_rendering_attachment_locations(&cmd->vk, &ral_info);
4938 
4939    cmd->patchpoints_ctx = ralloc_context(NULL);
4940 
4941    a = cmd->dynamic_subpass.fsr_attachment;
4942    if (a != VK_ATTACHMENT_UNUSED) {
4943       const VkRenderingFragmentShadingRateAttachmentInfoKHR *fsr_info =
4944          vk_find_struct_const(pRenderingInfo->pNext,
4945                               RENDERING_FRAGMENT_SHADING_RATE_ATTACHMENT_INFO_KHR);
4946       VK_FROM_HANDLE(tu_image_view, view, fsr_info->imageView);
4947       cmd->state.attachments[a] = view;
4948    }
4949 
4950    tu_choose_gmem_layout(cmd);
4951 
4952    cmd->state.renderpass_cache.pending_flush_bits =
4953       cmd->state.cache.pending_flush_bits;
4954    cmd->state.renderpass_cache.flush_bits = 0;
4955 
4956    bool resuming = pRenderingInfo->flags & VK_RENDERING_RESUMING_BIT;
4957    bool suspending = pRenderingInfo->flags & VK_RENDERING_SUSPENDING_BIT;
4958    cmd->state.suspending = suspending;
4959    cmd->state.resuming = resuming;
4960 
4961    if (!resuming && cmd->device->dbg_renderpass_stomp_cs) {
4962       tu_cs_emit_call(&cmd->cs, cmd->device->dbg_renderpass_stomp_cs);
4963    }
4964 
4965    /* We can't track LRZ across command buffer boundaries, so we have to
4966     * disable LRZ when resuming/suspending unless we can track on the GPU.
4967     */
4968    if ((resuming || suspending) &&
4969        !cmd->device->physical_device->info->a6xx.has_lrz_dir_tracking) {
4970       cmd->state.lrz.valid = false;
4971    } else {
4972       if (resuming)
4973          tu_lrz_begin_resumed_renderpass<CHIP>(cmd);
4974       else
4975          tu_lrz_begin_renderpass<CHIP>(cmd);
4976    }
4977 
4978 
4979    if (suspending) {
4980       cmd->state.suspended_pass.pass = cmd->state.pass;
4981       cmd->state.suspended_pass.subpass = cmd->state.subpass;
4982       cmd->state.suspended_pass.framebuffer = cmd->state.framebuffer;
4983       cmd->state.suspended_pass.render_area = cmd->state.render_area;
4984       cmd->state.suspended_pass.attachments = cmd->state.attachments;
4985       cmd->state.suspended_pass.clear_values = cmd->state.clear_values;
4986       cmd->state.suspended_pass.gmem_layout = cmd->state.gmem_layout;
4987    }
4988 
4989    if (!resuming)
4990       tu_trace_start_render_pass(cmd);
4991 
4992    if (!resuming || cmd->state.suspend_resume == SR_NONE) {
4993       cmd->trace_renderpass_start = u_trace_end_iterator(&cmd->trace);
4994    }
4995 
4996    if (!resuming) {
4997       tu_emit_renderpass_begin(cmd);
4998       tu_emit_subpass_begin<CHIP>(cmd);
4999    }
5000 
5001    if (suspending && !resuming) {
5002       /* entering a chain */
5003       switch (cmd->state.suspend_resume) {
5004       case SR_NONE:
5005          cmd->state.suspend_resume = SR_IN_CHAIN;
5006          break;
5007       case SR_AFTER_PRE_CHAIN:
5008          cmd->state.suspend_resume = SR_IN_CHAIN_AFTER_PRE_CHAIN;
5009          break;
5010       case SR_IN_PRE_CHAIN:
5011       case SR_IN_CHAIN:
5012       case SR_IN_CHAIN_AFTER_PRE_CHAIN:
5013          unreachable("suspending render pass not followed by resuming pass");
5014          break;
5015       }
5016    }
5017 
5018    if (resuming && cmd->state.suspend_resume == SR_NONE)
5019       cmd->state.suspend_resume = SR_IN_PRE_CHAIN;
5020 }
5021 TU_GENX(tu_CmdBeginRendering);
5022 
5023 template <chip CHIP>
5024 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetRenderingAttachmentLocationsKHR(VkCommandBuffer commandBuffer,const VkRenderingAttachmentLocationInfoKHR * pLocationInfo)5025 tu_CmdSetRenderingAttachmentLocationsKHR(
5026    VkCommandBuffer commandBuffer,
5027    const VkRenderingAttachmentLocationInfoKHR *pLocationInfo)
5028 {
5029    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5030 
5031    vk_common_CmdSetRenderingAttachmentLocationsKHR(commandBuffer, pLocationInfo);
5032 
5033    tu6_emit_mrt<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs);
5034    tu6_emit_render_cntl<CHIP>(cmd, cmd->state.subpass, &cmd->draw_cs, false);
5035 
5036    /* Because this is just a remapping and not a different "reference", there
5037     * doesn't need to be a barrier between accesses to the same attachment
5038     * with a different index. This is different from "classic" renderpasses.
5039     * Before a7xx the CCU includes the render target ID in the cache location
5040     * calculation, so we need to manually flush/invalidate color CCU here
5041     * since the same render target/attachment may be in a different location.
5042     */
5043    if (cmd->device->physical_device->info->chip == 6) {
5044       struct tu_cache_state *cache = &cmd->state.renderpass_cache;
5045       tu_flush_for_access(cache, TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE,
5046                           TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE);
5047       cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
5048    }
5049 }
5050 TU_GENX(tu_CmdSetRenderingAttachmentLocationsKHR);
5051 
5052 VKAPI_ATTR void VKAPI_CALL
tu_CmdSetRenderingInputAttachmentIndicesKHR(VkCommandBuffer commandBuffer,const VkRenderingInputAttachmentIndexInfoKHR * pLocationInfo)5053 tu_CmdSetRenderingInputAttachmentIndicesKHR(
5054    VkCommandBuffer commandBuffer,
5055    const VkRenderingInputAttachmentIndexInfoKHR *pLocationInfo)
5056 {
5057    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5058 
5059    vk_common_CmdSetRenderingInputAttachmentIndicesKHR(commandBuffer, pLocationInfo);
5060 
5061    const struct vk_input_attachment_location_state *ial =
5062       &cmd->vk.dynamic_graphics_state.ial;
5063 
5064    struct tu_subpass *subpass = &cmd->dynamic_subpass;
5065 
5066    for (unsigned i = 0; i < ARRAY_SIZE(cmd->dynamic_input_attachments); i++) {
5067       subpass->input_attachments[i].attachment = VK_ATTACHMENT_UNUSED;
5068    }
5069 
5070    unsigned input_count = 0;
5071    for (unsigned i = 0; i < subpass->color_count; i++) {
5072       if (ial->color_map[i] == MESA_VK_ATTACHMENT_UNUSED)
5073          continue;
5074       subpass->input_attachments[ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET].attachment =
5075          subpass->color_attachments[i].attachment;
5076       input_count = MAX2(input_count, ial->color_map[i] + TU_DYN_INPUT_ATT_OFFSET + 1);
5077    }
5078 
5079    if (ial->depth_att != MESA_VK_ATTACHMENT_UNUSED) {
5080       if (ial->depth_att == MESA_VK_ATTACHMENT_NO_INDEX) {
5081          subpass->input_attachments[0].attachment =
5082             subpass->depth_stencil_attachment.attachment;
5083          input_count = MAX2(input_count, 1);
5084       } else {
5085          subpass->input_attachments[ial->depth_att + TU_DYN_INPUT_ATT_OFFSET].attachment =
5086             subpass->depth_stencil_attachment.attachment;
5087          input_count = MAX2(input_count, ial->depth_att + TU_DYN_INPUT_ATT_OFFSET + 1);
5088       }
5089    }
5090 
5091    if (ial->stencil_att != MESA_VK_ATTACHMENT_UNUSED) {
5092       if (ial->stencil_att == MESA_VK_ATTACHMENT_NO_INDEX) {
5093          subpass->input_attachments[0].attachment =
5094             subpass->depth_stencil_attachment.attachment;
5095          input_count = MAX2(input_count, 1);
5096       } else {
5097          subpass->input_attachments[ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET].attachment =
5098             subpass->depth_stencil_attachment.attachment;
5099          input_count = MAX2(input_count, ial->stencil_att + TU_DYN_INPUT_ATT_OFFSET + 1);
5100       }
5101    }
5102 
5103    subpass->input_count = input_count;
5104 
5105    tu_set_input_attachments(cmd, cmd->state.subpass);
5106 }
5107 
5108 template <chip CHIP>
5109 VKAPI_ATTR void VKAPI_CALL
tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,const VkSubpassBeginInfo * pSubpassBeginInfo,const VkSubpassEndInfo * pSubpassEndInfo)5110 tu_CmdNextSubpass2(VkCommandBuffer commandBuffer,
5111                    const VkSubpassBeginInfo *pSubpassBeginInfo,
5112                    const VkSubpassEndInfo *pSubpassEndInfo)
5113 {
5114    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
5115 
5116    if (TU_DEBUG(DYNAMIC)) {
5117       vk_common_CmdNextSubpass2(commandBuffer, pSubpassBeginInfo,
5118                                 pSubpassEndInfo);
5119       return;
5120    }
5121 
5122    const struct tu_render_pass *pass = cmd->state.pass;
5123    const struct tu_framebuffer *fb = cmd->state.framebuffer;
5124    struct tu_cs *cs = &cmd->draw_cs;
5125    const struct tu_subpass *last_subpass = cmd->state.subpass;
5126 
5127    const struct tu_subpass *subpass = cmd->state.subpass++;
5128 
5129    /* Track LRZ valid state
5130     *
5131     * TODO: Improve this tracking for keeping the state of the past depth/stencil images,
5132     * so if they become active again, we reuse its old state.
5133     */
5134    if (last_subpass->depth_stencil_attachment.attachment != subpass->depth_stencil_attachment.attachment) {
5135       cmd->state.lrz.valid = false;
5136       cmd->state.dirty |= TU_CMD_DIRTY_LRZ;
5137    }
5138 
5139    if (cmd->state.tiling->possible) {
5140       if (cmd->state.pass->has_fdm)
5141          tu_cs_set_writeable(cs, true);
5142 
5143       tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_GMEM);
5144 
5145       if (subpass->resolve_attachments) {
5146          tu6_emit_blit_scissor(cmd, cs, true);
5147 
5148          struct tu_resolve_group resolve_group = {};
5149 
5150          for (unsigned i = 0; i < subpass->resolve_count; i++) {
5151             uint32_t a = subpass->resolve_attachments[i].attachment;
5152             if (a == VK_ATTACHMENT_UNUSED)
5153                continue;
5154 
5155             uint32_t gmem_a = tu_subpass_get_attachment_to_resolve(subpass, i);
5156 
5157             tu_store_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, gmem_a,
5158                                            fb->layers, subpass->multiview_mask, false);
5159 
5160             if (!pass->attachments[a].gmem)
5161                continue;
5162 
5163             /* check if the resolved attachment is needed by later subpasses,
5164             * if it is, should be doing a GMEM->GMEM resolve instead of GMEM->MEM->GMEM..
5165             */
5166             perf_debug(cmd->device, "TODO: missing GMEM->GMEM resolve path\n");
5167             tu_load_gmem_attachment<CHIP>(cmd, cs, &resolve_group, a, false, true);
5168          }
5169 
5170          tu_emit_resolve_group<CHIP>(cmd, cs, &resolve_group);
5171       }
5172 
5173       tu_cond_exec_end(cs);
5174 
5175       if (cmd->state.pass->has_fdm)
5176          tu_cs_set_writeable(cs, false);
5177 
5178       tu_cond_exec_start(cs, CP_COND_EXEC_0_RENDER_MODE_SYSMEM);
5179    }
5180 
5181    tu6_emit_sysmem_resolves<CHIP>(cmd, cs, subpass);
5182 
5183    if (cmd->state.tiling->possible)
5184       tu_cond_exec_end(cs);
5185 
5186    /* Handle dependencies for the next subpass */
5187    tu_subpass_barrier(cmd, &cmd->state.subpass->start_barrier, false);
5188 
5189    if (cmd->state.subpass->feedback_invalidate) {
5190       cmd->state.renderpass_cache.flush_bits |=
5191          TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
5192          TU_CMD_FLAG_WAIT_FOR_IDLE;
5193    }
5194 
5195    tu_emit_subpass_begin<CHIP>(cmd);
5196 }
5197 TU_GENX(tu_CmdNextSubpass2);
5198 
5199 static uint32_t
tu6_user_consts_size(const struct tu_const_state * const_state,bool ldgk,gl_shader_stage type)5200 tu6_user_consts_size(const struct tu_const_state *const_state,
5201                      bool ldgk,
5202                      gl_shader_stage type)
5203 {
5204    uint32_t dwords = 0;
5205 
5206    if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
5207       unsigned num_units = const_state->push_consts.dwords;
5208       dwords += 4 + num_units;
5209       assert(num_units > 0);
5210    }
5211 
5212    if (ldgk) {
5213       dwords += 6 + (2 * const_state->num_inline_ubos + 4);
5214    } else {
5215       dwords += 8 * const_state->num_inline_ubos;
5216    }
5217 
5218    return dwords;
5219 }
5220 
5221 static void
tu6_emit_per_stage_push_consts(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,gl_shader_stage type,uint32_t * push_constants)5222 tu6_emit_per_stage_push_consts(struct tu_cs *cs,
5223                                const struct tu_const_state *const_state,
5224                                const struct ir3_const_state *ir_const_state,
5225                                gl_shader_stage type,
5226                                uint32_t *push_constants)
5227 {
5228    if (const_state->push_consts.type == IR3_PUSH_CONSTS_PER_STAGE) {
5229       unsigned num_units = const_state->push_consts.dwords;
5230       unsigned offset_vec4 =
5231          ir_const_state->allocs.consts[IR3_CONST_ALLOC_PUSH_CONSTS]
5232             .offset_vec4;
5233       assert(num_units > 0);
5234 
5235       /* DST_OFF and NUM_UNIT requires vec4 units */
5236       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_units);
5237       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset_vec4) |
5238             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5239             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5240             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5241             CP_LOAD_STATE6_0_NUM_UNIT(num_units / 4));
5242       tu_cs_emit(cs, 0);
5243       tu_cs_emit(cs, 0);
5244 
5245       unsigned lo = const_state->push_consts.lo_dwords;
5246       for (unsigned i = 0; i < num_units; i++)
5247          tu_cs_emit(cs, push_constants[i + lo]);
5248    }
5249 }
5250 
5251 static void
tu6_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)5252 tu6_emit_inline_ubo(struct tu_cs *cs,
5253                     const struct tu_const_state *const_state,
5254                     unsigned constlen,
5255                     gl_shader_stage type,
5256                     struct tu_descriptor_state *descriptors)
5257 {
5258    assert(const_state->num_inline_ubos == 0 || !cs->device->physical_device->info->a7xx.load_shader_consts_via_preamble);
5259 
5260    /* Emit loads of inline uniforms. These load directly from the uniform's
5261     * storage space inside the descriptor set.
5262     */
5263    for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
5264       const struct tu_inline_ubo *ubo = &const_state->ubos[i];
5265 
5266       if (constlen <= ubo->const_offset_vec4)
5267          continue;
5268 
5269       uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
5270 
5271       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), ubo->push_address ? 7 : 3);
5272       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(ubo->const_offset_vec4) |
5273             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5274             CP_LOAD_STATE6_0_STATE_SRC(ubo->push_address ? SS6_DIRECT : SS6_INDIRECT) |
5275             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5276             CP_LOAD_STATE6_0_NUM_UNIT(MIN2(ubo->size_vec4, constlen - ubo->const_offset_vec4)));
5277       if (ubo->push_address) {
5278          tu_cs_emit(cs, 0);
5279          tu_cs_emit(cs, 0);
5280          tu_cs_emit_qw(cs, va + ubo->offset);
5281          tu_cs_emit(cs, 0);
5282          tu_cs_emit(cs, 0);
5283       } else {
5284          tu_cs_emit_qw(cs, va + ubo->offset);
5285       }
5286    }
5287 }
5288 
5289 static void
tu7_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)5290 tu7_emit_inline_ubo(struct tu_cs *cs,
5291                     const struct tu_const_state *const_state,
5292                     const struct ir3_const_state *ir_const_state,
5293                     unsigned constlen,
5294                     gl_shader_stage type,
5295                     struct tu_descriptor_state *descriptors)
5296 {
5297    uint64_t addresses[7] = {0};
5298    unsigned offset = const_state->inline_uniforms_ubo.idx;
5299 
5300    if (offset == -1)
5301       return;
5302 
5303    for (unsigned i = 0; i < const_state->num_inline_ubos; i++) {
5304       const struct tu_inline_ubo *ubo = &const_state->ubos[i];
5305 
5306       uint64_t va = descriptors->set_iova[ubo->base] & ~0x3f;
5307       addresses[i] = va + ubo->offset;
5308    }
5309 
5310    /* A7XX TODO: Emit data via sub_cs instead of NOP */
5311    uint64_t iova = tu_cs_emit_data_nop(cs, (uint32_t *)addresses, const_state->num_inline_ubos * 2, 4);
5312 
5313    tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
5314    tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5315             CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
5316             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5317             CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
5318             CP_LOAD_STATE6_0_NUM_UNIT(1));
5319    tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
5320    tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
5321    int size_vec4s = DIV_ROUND_UP(const_state->num_inline_ubos * 2, 4);
5322    tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
5323 }
5324 
5325 static void
tu_emit_inline_ubo(struct tu_cs * cs,const struct tu_const_state * const_state,const struct ir3_const_state * ir_const_state,unsigned constlen,gl_shader_stage type,struct tu_descriptor_state * descriptors)5326 tu_emit_inline_ubo(struct tu_cs *cs,
5327                    const struct tu_const_state *const_state,
5328                    const struct ir3_const_state *ir_const_state,
5329                    unsigned constlen,
5330                    gl_shader_stage type,
5331                    struct tu_descriptor_state *descriptors)
5332 {
5333    if (!const_state->num_inline_ubos)
5334       return;
5335 
5336    if (cs->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk) {
5337       tu7_emit_inline_ubo(cs, const_state, ir_const_state, constlen, type, descriptors);
5338    } else {
5339       tu6_emit_inline_ubo(cs, const_state, constlen, type, descriptors);
5340    }
5341 }
5342 
5343 static void
tu6_emit_shared_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants,bool compute)5344 tu6_emit_shared_consts(struct tu_cs *cs,
5345                        const struct tu_push_constant_range *shared_consts,
5346                        uint32_t *push_constants,
5347                        bool compute)
5348 {
5349    if (shared_consts->dwords > 0) {
5350       /* Offset and num_units for shared consts are in units of dwords. */
5351       unsigned num_units = shared_consts->dwords;
5352       unsigned offset = shared_consts->lo_dwords;
5353 
5354       enum a6xx_state_type st = compute ? ST6_UBO : ST6_CONSTANTS;
5355       uint32_t cp_load_state = compute ? CP_LOAD_STATE6_FRAG : CP_LOAD_STATE6;
5356 
5357       tu_cs_emit_pkt7(cs, cp_load_state, 3 + num_units);
5358       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5359             CP_LOAD_STATE6_0_STATE_TYPE(st) |
5360             CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5361             CP_LOAD_STATE6_0_STATE_BLOCK(SB6_IBO) |
5362             CP_LOAD_STATE6_0_NUM_UNIT(num_units));
5363       tu_cs_emit(cs, 0);
5364       tu_cs_emit(cs, 0);
5365 
5366       for (unsigned i = 0; i < num_units; i++)
5367          tu_cs_emit(cs, push_constants[i + offset]);
5368    }
5369 }
5370 
5371 static void
tu7_emit_shared_preamble_consts(struct tu_cs * cs,const struct tu_push_constant_range * shared_consts,uint32_t * push_constants)5372 tu7_emit_shared_preamble_consts(
5373    struct tu_cs *cs,
5374    const struct tu_push_constant_range *shared_consts,
5375    uint32_t *push_constants)
5376 {
5377    tu_cs_emit_pkt4(cs, REG_A7XX_HLSQ_SHARED_CONSTS_IMM(shared_consts->lo_dwords),
5378                    shared_consts->dwords);
5379    tu_cs_emit_array(cs, push_constants + shared_consts->lo_dwords,
5380                     shared_consts->dwords);
5381 }
5382 
5383 static uint32_t
tu6_const_size(struct tu_cmd_buffer * cmd,const struct tu_push_constant_range * shared_consts,bool compute)5384 tu6_const_size(struct tu_cmd_buffer *cmd,
5385                const struct tu_push_constant_range *shared_consts,
5386                bool compute)
5387 {
5388    uint32_t dwords = 0;
5389 
5390    if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
5391       dwords += shared_consts->dwords + 4;
5392    } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
5393       dwords += shared_consts->dwords + 1;
5394    }
5395 
5396    bool ldgk = cmd->device->physical_device->info->a7xx.load_inline_uniforms_via_preamble_ldgk;
5397    if (compute) {
5398       dwords +=
5399          tu6_user_consts_size(&cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state, ldgk, MESA_SHADER_COMPUTE);
5400    } else {
5401       for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++)
5402          dwords += tu6_user_consts_size(&cmd->state.shaders[type]->const_state, ldgk, (gl_shader_stage) type);
5403    }
5404 
5405    return dwords;
5406 }
5407 
5408 static struct tu_draw_state
tu_emit_consts(struct tu_cmd_buffer * cmd,bool compute)5409 tu_emit_consts(struct tu_cmd_buffer *cmd, bool compute)
5410 {
5411    uint32_t dwords = 0;
5412    const struct tu_push_constant_range *shared_consts =
5413       compute ? &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state.push_consts :
5414       &cmd->state.program.shared_consts;
5415 
5416    dwords = tu6_const_size(cmd, shared_consts, compute);
5417 
5418    if (dwords == 0)
5419       return (struct tu_draw_state) {};
5420 
5421    struct tu_cs cs;
5422    tu_cs_begin_sub_stream(&cmd->sub_cs, dwords, &cs);
5423 
5424    if (shared_consts->type == IR3_PUSH_CONSTS_SHARED) {
5425       tu6_emit_shared_consts(&cs, shared_consts, cmd->push_constants, compute);
5426    } else if (shared_consts->type == IR3_PUSH_CONSTS_SHARED_PREAMBLE) {
5427       tu7_emit_shared_preamble_consts(&cs, shared_consts, cmd->push_constants);
5428    }
5429 
5430    if (compute) {
5431       tu6_emit_per_stage_push_consts(
5432          &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
5433          cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
5434          MESA_SHADER_COMPUTE, cmd->push_constants);
5435       tu_emit_inline_ubo(
5436          &cs, &cmd->state.shaders[MESA_SHADER_COMPUTE]->const_state,
5437          cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->const_state,
5438          cmd->state.shaders[MESA_SHADER_COMPUTE]->variant->constlen,
5439          MESA_SHADER_COMPUTE,
5440          tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_COMPUTE));
5441    } else {
5442       struct tu_descriptor_state *descriptors =
5443          tu_get_descriptors_state(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
5444       for (uint32_t type = MESA_SHADER_VERTEX; type <= MESA_SHADER_FRAGMENT; type++) {
5445          const struct tu_program_descriptor_linkage *link =
5446             &cmd->state.program.link[type];
5447          tu6_emit_per_stage_push_consts(&cs, &link->tu_const_state,
5448                                         &link->const_state,
5449                                         (gl_shader_stage) type,
5450                                         cmd->push_constants);
5451          tu_emit_inline_ubo(&cs, &link->tu_const_state,
5452                             &link->const_state, link->constlen,
5453                             (gl_shader_stage) type, descriptors);
5454       }
5455    }
5456 
5457    return tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5458 }
5459 
5460 /* Various frontends (ANGLE, zink at least) will enable stencil testing with
5461  * what works out to be no-op writes.  Simplify what they give us into flags
5462  * that LRZ can use.
5463  */
5464 static void
tu6_update_simplified_stencil_state(struct tu_cmd_buffer * cmd)5465 tu6_update_simplified_stencil_state(struct tu_cmd_buffer *cmd)
5466 {
5467    const struct vk_depth_stencil_state *ds =
5468       &cmd->vk.dynamic_graphics_state.ds;
5469    bool stencil_test_enable = ds->stencil.test_enable;
5470 
5471    if (!stencil_test_enable) {
5472       cmd->state.stencil_front_write = false;
5473       cmd->state.stencil_back_write = false;
5474       return;
5475    }
5476 
5477    bool stencil_front_writemask = ds->stencil.front.write_mask;
5478    bool stencil_back_writemask = ds->stencil.back.write_mask;
5479 
5480    VkStencilOp front_fail_op = (VkStencilOp)ds->stencil.front.op.fail;
5481    VkStencilOp front_pass_op = (VkStencilOp)ds->stencil.front.op.pass;
5482    VkStencilOp front_depth_fail_op = (VkStencilOp)ds->stencil.front.op.depth_fail;
5483    VkStencilOp back_fail_op = (VkStencilOp)ds->stencil.back.op.fail;
5484    VkStencilOp back_pass_op = (VkStencilOp)ds->stencil.back.op.pass;
5485    VkStencilOp back_depth_fail_op = (VkStencilOp)ds->stencil.back.op.depth_fail;
5486 
5487    bool stencil_front_op_writes =
5488       front_pass_op != VK_STENCIL_OP_KEEP ||
5489       front_fail_op != VK_STENCIL_OP_KEEP ||
5490       front_depth_fail_op != VK_STENCIL_OP_KEEP;
5491 
5492    bool stencil_back_op_writes =
5493       back_pass_op != VK_STENCIL_OP_KEEP ||
5494       back_fail_op != VK_STENCIL_OP_KEEP ||
5495       back_depth_fail_op != VK_STENCIL_OP_KEEP;
5496 
5497    cmd->state.stencil_front_write =
5498       stencil_front_op_writes && stencil_front_writemask;
5499    cmd->state.stencil_back_write =
5500       stencil_back_op_writes && stencil_back_writemask;
5501 }
5502 
5503 static bool
tu6_writes_depth(struct tu_cmd_buffer * cmd,bool depth_test_enable)5504 tu6_writes_depth(struct tu_cmd_buffer *cmd, bool depth_test_enable)
5505 {
5506    bool depth_write_enable =
5507       cmd->vk.dynamic_graphics_state.ds.depth.write_enable;
5508 
5509    VkCompareOp depth_compare_op = (VkCompareOp)
5510       cmd->vk.dynamic_graphics_state.ds.depth.compare_op;
5511 
5512    bool depth_compare_op_writes = depth_compare_op != VK_COMPARE_OP_NEVER;
5513 
5514    return depth_test_enable && depth_write_enable && depth_compare_op_writes;
5515 }
5516 
5517 static bool
tu6_writes_stencil(struct tu_cmd_buffer * cmd)5518 tu6_writes_stencil(struct tu_cmd_buffer *cmd)
5519 {
5520    return cmd->state.stencil_front_write || cmd->state.stencil_back_write;
5521 }
5522 
5523 static bool
tu_fs_reads_dynamic_ds_input_attachment(struct tu_cmd_buffer * cmd,const struct tu_shader * fs)5524 tu_fs_reads_dynamic_ds_input_attachment(struct tu_cmd_buffer *cmd,
5525                                         const struct tu_shader *fs)
5526 {
5527    uint8_t depth_att = cmd->vk.dynamic_graphics_state.ial.depth_att;
5528    if (depth_att == MESA_VK_ATTACHMENT_UNUSED)
5529       return false;
5530    unsigned depth_idx =
5531       (depth_att == MESA_VK_ATTACHMENT_NO_INDEX) ? 0 : depth_att + 1;
5532    return fs->fs.dynamic_input_attachments_used & (1u << depth_idx);
5533 }
5534 
5535 static void
tu6_build_depth_plane_z_mode(struct tu_cmd_buffer * cmd,struct tu_cs * cs)5536 tu6_build_depth_plane_z_mode(struct tu_cmd_buffer *cmd, struct tu_cs *cs)
5537 {
5538    enum a6xx_ztest_mode zmode = A6XX_EARLY_Z;
5539    bool depth_test_enable = cmd->vk.dynamic_graphics_state.ds.depth.test_enable;
5540    bool depth_write = tu6_writes_depth(cmd, depth_test_enable);
5541    bool stencil_write = tu6_writes_stencil(cmd);
5542    const struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
5543    const struct tu_render_pass *pass = cmd->state.pass;
5544    const struct tu_subpass *subpass = cmd->state.subpass;
5545 
5546    if ((fs->variant->has_kill ||
5547         (cmd->state.pipeline_feedback_loops & VK_IMAGE_ASPECT_DEPTH_BIT) ||
5548         (cmd->vk.dynamic_graphics_state.feedback_loops &
5549          VK_IMAGE_ASPECT_DEPTH_BIT) ||
5550         tu_fs_reads_dynamic_ds_input_attachment(cmd, fs)) &&
5551        (depth_write || stencil_write)) {
5552       zmode = (cmd->state.lrz.valid && cmd->state.lrz.enabled)
5553                  ? A6XX_EARLY_LRZ_LATE_Z
5554                  : A6XX_LATE_Z;
5555    }
5556 
5557    bool force_late_z =
5558       (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED &&
5559        pass->attachments[subpass->depth_stencil_attachment.attachment].format
5560        == VK_FORMAT_S8_UINT) ||
5561       fs->fs.lrz.force_late_z ||
5562       /* alpha-to-coverage can behave like a discard. */
5563       cmd->vk.dynamic_graphics_state.ms.alpha_to_coverage_enable;
5564    if ((force_late_z && !fs->variant->fs.early_fragment_tests) ||
5565        !depth_test_enable)
5566       zmode = A6XX_LATE_Z;
5567 
5568    /* User defined early tests take precedence above all else */
5569    if (fs->variant->fs.early_fragment_tests)
5570       zmode = A6XX_EARLY_Z;
5571 
5572    tu_cs_emit_pkt4(cs, REG_A6XX_GRAS_SU_DEPTH_PLANE_CNTL, 1);
5573    tu_cs_emit(cs, A6XX_GRAS_SU_DEPTH_PLANE_CNTL_Z_MODE(zmode));
5574 
5575    tu_cs_emit_pkt4(cs, REG_A6XX_RB_DEPTH_PLANE_CNTL, 1);
5576    tu_cs_emit(cs, A6XX_RB_DEPTH_PLANE_CNTL_Z_MODE(zmode));
5577 }
5578 
5579 static uint32_t
fs_params_offset(struct tu_cmd_buffer * cmd)5580 fs_params_offset(struct tu_cmd_buffer *cmd)
5581 {
5582    const struct tu_program_descriptor_linkage *link =
5583       &cmd->state.program.link[MESA_SHADER_FRAGMENT];
5584    const struct ir3_const_state *const_state = &link->const_state;
5585 
5586    if (const_state->num_driver_params <= IR3_DP_FS_DYNAMIC)
5587       return 0;
5588 
5589    uint32_t param_offset =
5590       const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
5591 
5592    if (param_offset + IR3_DP_FS_DYNAMIC / 4 >= link->constlen)
5593       return 0;
5594 
5595    return param_offset + IR3_DP_FS_DYNAMIC / 4;
5596 }
5597 
5598 static uint32_t
fs_params_size(struct tu_cmd_buffer * cmd)5599 fs_params_size(struct tu_cmd_buffer *cmd)
5600 {
5601    const struct tu_program_descriptor_linkage *link =
5602       &cmd->state.program.link[MESA_SHADER_FRAGMENT];
5603    const struct ir3_const_state *const_state = &link->const_state;
5604 
5605    return DIV_ROUND_UP(const_state->num_driver_params - IR3_DP_FS_DYNAMIC, 4);
5606 }
5607 
5608 struct apply_fs_params_state {
5609    unsigned num_consts;
5610 };
5611 
5612 static void
fdm_apply_fs_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,void * data,VkRect2D bin,unsigned views,VkExtent2D * frag_areas)5613 fdm_apply_fs_params(struct tu_cmd_buffer *cmd,
5614                     struct tu_cs *cs,
5615                     void *data,
5616                     VkRect2D bin,
5617                     unsigned views,
5618                     VkExtent2D *frag_areas)
5619 {
5620    const struct apply_fs_params_state *state =
5621       (const struct apply_fs_params_state *)data;
5622    unsigned num_consts = state->num_consts;
5623 
5624    for (unsigned i = 0; i < num_consts; i++) {
5625       assert(i < views);
5626       VkExtent2D area = frag_areas[i];
5627       VkOffset2D offset = tu_fdm_per_bin_offset(area, bin);
5628 
5629       tu_cs_emit(cs, area.width);
5630       tu_cs_emit(cs, area.height);
5631       tu_cs_emit(cs, fui(offset.x));
5632       tu_cs_emit(cs, fui(offset.y));
5633    }
5634 }
5635 
5636 static void
tu_emit_fdm_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,struct tu_shader * fs,unsigned num_units)5637 tu_emit_fdm_params(struct tu_cmd_buffer *cmd,
5638                    struct tu_cs *cs, struct tu_shader *fs,
5639                    unsigned num_units)
5640 {
5641    STATIC_ASSERT(IR3_DP_FS(frag_invocation_count) == IR3_DP_FS_DYNAMIC);
5642    tu_cs_emit(cs, fs->fs.per_samp ?
5643               cmd->vk.dynamic_graphics_state.ms.rasterization_samples : 1);
5644    tu_cs_emit(cs, 0);
5645    tu_cs_emit(cs, 0);
5646    tu_cs_emit(cs, 0);
5647 
5648    STATIC_ASSERT(IR3_DP_FS(frag_size) == IR3_DP_FS_DYNAMIC + 4);
5649    STATIC_ASSERT(IR3_DP_FS(frag_offset) == IR3_DP_FS_DYNAMIC + 6);
5650    if (num_units > 1) {
5651       if (fs->fs.has_fdm) {
5652          struct apply_fs_params_state state = {
5653             .num_consts = num_units - 1,
5654          };
5655          tu_create_fdm_bin_patchpoint(cmd, cs, 4 * (num_units - 1),
5656                                       fdm_apply_fs_params, state);
5657       } else {
5658          for (unsigned i = 1; i < num_units; i++) {
5659             tu_cs_emit(cs, 1);
5660             tu_cs_emit(cs, 1);
5661             tu_cs_emit(cs, fui(0.0f));
5662             tu_cs_emit(cs, fui(0.0f));
5663          }
5664       }
5665    }
5666 }
5667 
5668 static void
tu6_emit_fs_params(struct tu_cmd_buffer * cmd)5669 tu6_emit_fs_params(struct tu_cmd_buffer *cmd)
5670 {
5671    uint32_t offset = fs_params_offset(cmd);
5672 
5673    if (offset == 0) {
5674       cmd->state.fs_params = (struct tu_draw_state) {};
5675       return;
5676    }
5677 
5678    struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
5679 
5680    unsigned num_units = fs_params_size(cmd);
5681 
5682    if (fs->fs.has_fdm)
5683       tu_cs_set_writeable(&cmd->sub_cs, true);
5684 
5685    struct tu_cs cs;
5686    VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 4 + 4 * num_units, &cs);
5687    if (result != VK_SUCCESS) {
5688       tu_cs_set_writeable(&cmd->sub_cs, false);
5689       vk_command_buffer_set_error(&cmd->vk, result);
5690       return;
5691    }
5692 
5693    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 3 + 4 * num_units);
5694    tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
5695          CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
5696          CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5697          CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
5698          CP_LOAD_STATE6_0_NUM_UNIT(num_units));
5699    tu_cs_emit(&cs, 0);
5700    tu_cs_emit(&cs, 0);
5701 
5702    tu_emit_fdm_params(cmd, &cs, fs, num_units);
5703 
5704    cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5705 
5706    if (fs->fs.has_fdm)
5707       tu_cs_set_writeable(&cmd->sub_cs, false);
5708 }
5709 
5710 static void
tu7_emit_fs_params(struct tu_cmd_buffer * cmd)5711 tu7_emit_fs_params(struct tu_cmd_buffer *cmd)
5712 {
5713    struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
5714 
5715    int ubo_offset = fs->const_state.fdm_ubo.idx;
5716    if (ubo_offset < 0) {
5717       cmd->state.fs_params = (struct tu_draw_state) {};
5718       return;
5719    }
5720 
5721    unsigned num_units = DIV_ROUND_UP(fs->const_state.fdm_ubo.size, 4);
5722 
5723    if (fs->fs.has_fdm)
5724       tu_cs_set_writeable(&cmd->sub_cs, true);
5725 
5726    struct tu_cs cs;
5727    VkResult result =
5728       tu_cs_begin_sub_stream_aligned(&cmd->sub_cs, num_units, 4, &cs);
5729    if (result != VK_SUCCESS) {
5730       tu_cs_set_writeable(&cmd->sub_cs, false);
5731       vk_command_buffer_set_error(&cmd->vk, result);
5732       return;
5733    }
5734 
5735    tu_emit_fdm_params(cmd, &cs, fs, num_units);
5736 
5737    struct tu_draw_state fdm_ubo = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5738 
5739    if (fs->fs.has_fdm)
5740       tu_cs_set_writeable(&cmd->sub_cs, false);
5741 
5742    result = tu_cs_begin_sub_stream(&cmd->sub_cs, 6, &cs);
5743    if (result != VK_SUCCESS) {
5744       vk_command_buffer_set_error(&cmd->vk, result);
5745       return;
5746    }
5747 
5748    tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_FRAG, 5);
5749    tu_cs_emit(&cs,
5750               CP_LOAD_STATE6_0_DST_OFF(ubo_offset) |
5751               CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO)|
5752               CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
5753               CP_LOAD_STATE6_0_STATE_BLOCK(SB6_FS_SHADER) |
5754               CP_LOAD_STATE6_0_NUM_UNIT(1));
5755    tu_cs_emit(&cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
5756    tu_cs_emit(&cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
5757    tu_cs_emit_qw(&cs,
5758                  fdm_ubo.iova |
5759                  (uint64_t)A6XX_UBO_1_SIZE(num_units) << 32);
5760 
5761    cmd->state.fs_params = tu_cs_end_draw_state(&cmd->sub_cs, &cs);
5762 }
5763 
5764 static void
tu_emit_fs_params(struct tu_cmd_buffer * cmd)5765 tu_emit_fs_params(struct tu_cmd_buffer *cmd)
5766 {
5767    if (cmd->device->compiler->load_shader_consts_via_preamble)
5768       tu7_emit_fs_params(cmd);
5769    else
5770       tu6_emit_fs_params(cmd);
5771 }
5772 
5773 static void
tu_flush_dynamic_input_attachments(struct tu_cmd_buffer * cmd)5774 tu_flush_dynamic_input_attachments(struct tu_cmd_buffer *cmd)
5775 {
5776    struct tu_shader *fs = cmd->state.shaders[MESA_SHADER_FRAGMENT];
5777 
5778    if (!fs->fs.dynamic_input_attachments_used)
5779       return;
5780 
5781    /* Input attachments may read data from a load op, so we have to invalidate
5782     * UCHE and force pending blits to complete unless we know it's already
5783     * been invalidated. This is the same as tu_subpass::feedback_invalidate
5784     * but for dynamic renderpasses.
5785     */
5786    if (!cmd->state.blit_cache_cleaned) {
5787       cmd->state.renderpass_cache.flush_bits |=
5788          TU_CMD_FLAG_CACHE_INVALIDATE | TU_CMD_FLAG_BLIT_CACHE_CLEAN |
5789          TU_CMD_FLAG_WAIT_FOR_IDLE;
5790    }
5791 }
5792 
5793 template <chip CHIP>
5794 static VkResult
tu6_draw_common(struct tu_cmd_buffer * cmd,struct tu_cs * cs,bool indexed,uint32_t draw_count)5795 tu6_draw_common(struct tu_cmd_buffer *cmd,
5796                 struct tu_cs *cs,
5797                 bool indexed,
5798                 /* note: draw_count is 0 for indirect */
5799                 uint32_t draw_count)
5800 {
5801    const struct tu_program_state *program = &cmd->state.program;
5802    struct tu_render_pass_state *rp = &cmd->state.rp;
5803 
5804    /* Emit state first, because it's needed for bandwidth calculations */
5805    uint32_t dynamic_draw_state_dirty = 0;
5806    if (!BITSET_IS_EMPTY(cmd->vk.dynamic_graphics_state.dirty) ||
5807        (cmd->state.dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS)) {
5808       dynamic_draw_state_dirty = tu_emit_draw_state<CHIP>(cmd);
5809    }
5810 
5811    /* Primitive restart value works in non-indexed draws, we have to disable
5812     * prim restart for such draws since we may read stale restart index.
5813     */
5814    if (cmd->state.last_draw_indexed != indexed) {
5815       cmd->state.last_draw_indexed = indexed;
5816       BITSET_SET(cmd->vk.dynamic_graphics_state.dirty,
5817                  MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE);
5818    }
5819 
5820    /* Fill draw stats for autotuner */
5821    rp->drawcall_count++;
5822 
5823    rp->drawcall_bandwidth_per_sample_sum +=
5824       cmd->state.bandwidth.color_bandwidth_per_sample;
5825 
5826    /* add depth memory bandwidth cost */
5827    const uint32_t depth_bandwidth = cmd->state.bandwidth.depth_cpp_per_sample;
5828    if (cmd->vk.dynamic_graphics_state.ds.depth.write_enable)
5829       rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
5830    if (cmd->vk.dynamic_graphics_state.ds.depth.test_enable)
5831       rp->drawcall_bandwidth_per_sample_sum += depth_bandwidth;
5832 
5833    /* add stencil memory bandwidth cost */
5834    const uint32_t stencil_bandwidth =
5835       cmd->state.bandwidth.stencil_cpp_per_sample;
5836    if (cmd->vk.dynamic_graphics_state.ds.stencil.test_enable)
5837       rp->drawcall_bandwidth_per_sample_sum += stencil_bandwidth * 2;
5838 
5839    if (cmd->state.dirty & TU_CMD_DIRTY_FS)
5840       tu_flush_dynamic_input_attachments(cmd);
5841 
5842    tu_emit_cache_flush_renderpass<CHIP>(cmd);
5843 
5844   if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5845                   MESA_VK_DYNAMIC_IA_PRIMITIVE_RESTART_ENABLE) ||
5846       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5847                   MESA_VK_DYNAMIC_RS_PROVOKING_VERTEX) ||
5848       (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5849       bool primitive_restart_enabled =
5850          cmd->vk.dynamic_graphics_state.ia.primitive_restart_enable;
5851 
5852       bool primitive_restart = primitive_restart_enabled && indexed;
5853       bool provoking_vtx_last =
5854          cmd->vk.dynamic_graphics_state.rs.provoking_vertex ==
5855          VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT;
5856 
5857       uint32_t primitive_cntl_0 =
5858          A6XX_PC_PRIMITIVE_CNTL_0(.primitive_restart = primitive_restart,
5859                                   .provoking_vtx_last = provoking_vtx_last).value;
5860       tu_cs_emit_regs(cs, A6XX_PC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
5861       if (CHIP == A7XX) {
5862          tu_cs_emit_regs(cs, A7XX_VPC_PRIMITIVE_CNTL_0(.dword = primitive_cntl_0));
5863       }
5864    }
5865 
5866    struct tu_tess_params *tess_params = &cmd->state.tess_params;
5867    if ((cmd->state.dirty & TU_CMD_DIRTY_TESS_PARAMS) ||
5868        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5869                    MESA_VK_DYNAMIC_TS_DOMAIN_ORIGIN) ||
5870        (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5871       bool tess_upper_left_domain_origin =
5872          (VkTessellationDomainOrigin)cmd->vk.dynamic_graphics_state.ts.domain_origin ==
5873          VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
5874       tu_cs_emit_regs(cs, A6XX_PC_TESS_CNTL(
5875             .spacing = tess_params->spacing,
5876             .output = tess_upper_left_domain_origin ?
5877                tess_params->output_upper_left :
5878                tess_params->output_lower_left));
5879    }
5880 
5881    if (cmd->device->physical_device->info->a7xx.has_rt_workaround &&
5882        cmd->state.program.uses_ray_intersection) {
5883       tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
5884       tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_SHADER_USES_RT);
5885    }
5886 
5887    /* Early exit if there is nothing to emit, saves CPU cycles */
5888    uint32_t dirty = cmd->state.dirty;
5889    if (!dynamic_draw_state_dirty && !(dirty & ~TU_CMD_DIRTY_COMPUTE_DESC_SETS))
5890       return VK_SUCCESS;
5891 
5892    bool dirty_lrz =
5893       (dirty & TU_CMD_DIRTY_LRZ) ||
5894       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5895                   MESA_VK_DYNAMIC_DS_DEPTH_TEST_ENABLE) ||
5896       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5897                   MESA_VK_DYNAMIC_DS_DEPTH_WRITE_ENABLE) ||
5898       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5899                   MESA_VK_DYNAMIC_DS_DEPTH_BOUNDS_TEST_ENABLE) ||
5900       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5901                   MESA_VK_DYNAMIC_DS_DEPTH_COMPARE_OP) ||
5902       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5903                   MESA_VK_DYNAMIC_DS_STENCIL_TEST_ENABLE) ||
5904       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5905                   MESA_VK_DYNAMIC_DS_STENCIL_OP) ||
5906       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5907                   MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) ||
5908       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5909                   MESA_VK_DYNAMIC_MS_ALPHA_TO_COVERAGE_ENABLE) ||
5910       BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5911                   MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE);
5912 
5913    if (dirty_lrz) {
5914       struct tu_cs cs;
5915       uint32_t size = 8 +
5916                       (cmd->device->physical_device->info->a6xx.lrz_track_quirk ? 2 : 0) +
5917                       (CHIP >= A7XX ? 2 : 0); // A7XX has extra packets from LRZ_CNTL2.
5918 
5919       cmd->state.lrz_and_depth_plane_state =
5920          tu_cs_draw_state(&cmd->sub_cs, &cs, size);
5921       tu6_update_simplified_stencil_state(cmd);
5922       tu6_emit_lrz<CHIP>(cmd, &cs);
5923       tu6_build_depth_plane_z_mode(cmd, &cs);
5924    }
5925 
5926    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5927                    MESA_VK_DYNAMIC_ATTACHMENT_FEEDBACK_LOOP_ENABLE)) {
5928       if (cmd->vk.dynamic_graphics_state.feedback_loops &&
5929           !cmd->state.rp.disable_gmem) {
5930          perf_debug(
5931             cmd->device,
5932             "Disabling gmem due to VK_EXT_attachment_feedback_loop_layout");
5933          cmd->state.rp.disable_gmem = true;
5934       }
5935    }
5936 
5937    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5938                    MESA_VK_DYNAMIC_VI_BINDINGS_VALID)) {
5939       cmd->state.vertex_buffers.size =
5940          util_last_bit(cmd->vk.dynamic_graphics_state.vi_bindings_valid) * 4;
5941       dirty |= TU_CMD_DIRTY_VERTEX_BUFFERS;
5942    }
5943 
5944    if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
5945       cmd->state.shader_const = tu_emit_consts(cmd, false);
5946 
5947    if (dirty & TU_CMD_DIRTY_DESC_SETS)
5948       tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
5949 
5950    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5951                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
5952        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5953                    MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) ||
5954        BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5955                    MESA_VK_DYNAMIC_RS_LINE_MODE) ||
5956        (cmd->state.dirty & TU_CMD_DIRTY_TES) ||
5957        (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5958       tu6_update_msaa_disable(cmd);
5959    }
5960 
5961    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5962                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
5963        (cmd->state.dirty & TU_CMD_DIRTY_DRAW_STATE)) {
5964       tu6_update_msaa(cmd);
5965    }
5966 
5967    bool dirty_fs_params = false;
5968    if (BITSET_TEST(cmd->vk.dynamic_graphics_state.dirty,
5969                    MESA_VK_DYNAMIC_MS_RASTERIZATION_SAMPLES) ||
5970        (cmd->state.dirty & (TU_CMD_DIRTY_PROGRAM | TU_CMD_DIRTY_FDM))) {
5971       tu_emit_fs_params(cmd);
5972       dirty_fs_params = true;
5973    }
5974 
5975    /* for the first draw in a renderpass, re-emit all the draw states
5976     *
5977     * and if a draw-state disabling path (CmdClearAttachments 3D fallback) was
5978     * used, then draw states must be re-emitted. note however this only happens
5979     * in the sysmem path, so this can be skipped this for the gmem path (TODO)
5980     *
5981     * the two input attachment states are excluded because secondary command
5982     * buffer doesn't have a state ib to restore it, and not re-emitting them
5983     * is OK since CmdClearAttachments won't disable/overwrite them
5984     */
5985    if (dirty & TU_CMD_DIRTY_DRAW_STATE) {
5986       tu_pipeline_update_rp_state(&cmd->state);
5987 
5988       tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * (TU_DRAW_STATE_COUNT - 2));
5989 
5990       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PROGRAM_CONFIG, program->config_state);
5991       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS, program->vs_state);
5992       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_BINNING, program->vs_binning_state);
5993       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_HS, program->hs_state);
5994       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DS, program->ds_state);
5995       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS, program->gs_state);
5996       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_GS_BINNING, program->gs_binning_state);
5997       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS, program->fs_state);
5998       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VPC, program->vpc_state);
5999       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_PRIM_MODE_GMEM, cmd->state.prim_order_gmem);
6000       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
6001       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS, cmd->state.desc_sets);
6002       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
6003       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
6004       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
6005       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
6006       tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
6007 
6008       for (uint32_t i = 0; i < ARRAY_SIZE(cmd->state.dynamic_state); i++) {
6009          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
6010                                cmd->state.dynamic_state[i]);
6011       }
6012    } else {
6013       /* emit draw states that were just updated */
6014       uint32_t draw_state_count =
6015          util_bitcount(dynamic_draw_state_dirty) +
6016          ((dirty & TU_CMD_DIRTY_SHADER_CONSTS) ? 1 : 0) +
6017          ((dirty & TU_CMD_DIRTY_DESC_SETS) ? 1 : 0) +
6018          ((dirty & TU_CMD_DIRTY_VERTEX_BUFFERS) ? 1 : 0) +
6019          ((dirty & TU_CMD_DIRTY_VS_PARAMS) ? 1 : 0) +
6020          (dirty_fs_params ? 1 : 0) +
6021          (dirty_lrz ? 1 : 0);
6022 
6023       if (draw_state_count > 0)
6024          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3 * draw_state_count);
6025 
6026       if (dirty & TU_CMD_DIRTY_SHADER_CONSTS)
6027          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_CONST, cmd->state.shader_const);
6028       if (dirty & TU_CMD_DIRTY_DESC_SETS) {
6029          /* tu6_emit_descriptor_sets emitted the cmd->state.desc_sets draw state. */
6030          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DESC_SETS_LOAD, cmd->state.load_state);
6031       }
6032       if (dirty & TU_CMD_DIRTY_VERTEX_BUFFERS)
6033          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VB, cmd->state.vertex_buffers);
6034       u_foreach_bit (i, dynamic_draw_state_dirty) {
6035          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_DYNAMIC + i,
6036                                cmd->state.dynamic_state[i]);
6037       }
6038       if (dirty & TU_CMD_DIRTY_VS_PARAMS)
6039          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
6040       if (dirty_fs_params)
6041          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_FS_PARAMS, cmd->state.fs_params);
6042       if (dirty_lrz) {
6043          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_LRZ_AND_DEPTH_PLANE, cmd->state.lrz_and_depth_plane_state);
6044       }
6045    }
6046 
6047    tu_cs_sanity_check(cs);
6048 
6049    /* There are too many graphics dirty bits to list here, so just list the
6050     * bits to preserve instead. The only things not emitted here are
6051     * compute-related state.
6052     */
6053    cmd->state.dirty &= TU_CMD_DIRTY_COMPUTE_DESC_SETS;
6054    BITSET_ZERO(cmd->vk.dynamic_graphics_state.dirty);
6055    return VK_SUCCESS;
6056 }
6057 
6058 static uint32_t
tu_draw_initiator(struct tu_cmd_buffer * cmd,enum pc_di_src_sel src_sel)6059 tu_draw_initiator(struct tu_cmd_buffer *cmd, enum pc_di_src_sel src_sel)
6060 {
6061    enum pc_di_primtype primtype =
6062       tu6_primtype((VkPrimitiveTopology)cmd->vk.dynamic_graphics_state.ia.primitive_topology);
6063 
6064    if (primtype == DI_PT_PATCHES0)
6065       primtype = (enum pc_di_primtype) (primtype +
6066                                         cmd->vk.dynamic_graphics_state.ts.patch_control_points);
6067 
6068    uint32_t initiator =
6069       CP_DRAW_INDX_OFFSET_0_PRIM_TYPE(primtype) |
6070       CP_DRAW_INDX_OFFSET_0_SOURCE_SELECT(src_sel) |
6071       CP_DRAW_INDX_OFFSET_0_INDEX_SIZE((enum a4xx_index_size) cmd->state.index_size) |
6072       CP_DRAW_INDX_OFFSET_0_VIS_CULL(USE_VISIBILITY);
6073 
6074    if (cmd->state.shaders[MESA_SHADER_GEOMETRY]->variant)
6075       initiator |= CP_DRAW_INDX_OFFSET_0_GS_ENABLE;
6076 
6077    const struct tu_shader *tes = cmd->state.shaders[MESA_SHADER_TESS_EVAL];
6078    if (tes->variant) {
6079       switch (tes->variant->key.tessellation) {
6080       case IR3_TESS_TRIANGLES:
6081          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_TRIANGLES) |
6082                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
6083          break;
6084       case IR3_TESS_ISOLINES:
6085          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_ISOLINES) |
6086                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
6087          break;
6088       case IR3_TESS_QUADS:
6089          initiator |= CP_DRAW_INDX_OFFSET_0_PATCH_TYPE(TESS_QUADS) |
6090                       CP_DRAW_INDX_OFFSET_0_TESS_ENABLE;
6091          break;
6092       }
6093    }
6094    return initiator;
6095 }
6096 
6097 
6098 static uint32_t
vs_params_offset(struct tu_cmd_buffer * cmd)6099 vs_params_offset(struct tu_cmd_buffer *cmd)
6100 {
6101    const struct tu_program_descriptor_linkage *link =
6102       &cmd->state.program.link[MESA_SHADER_VERTEX];
6103    const struct ir3_const_state *const_state = &link->const_state;
6104 
6105    uint32_t param_offset =
6106       const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
6107 
6108    if (!ir3_const_can_upload(&const_state->allocs,
6109                              IR3_CONST_ALLOC_DRIVER_PARAMS, link->constlen))
6110       return 0;
6111 
6112    /* this layout is required by CP_DRAW_INDIRECT_MULTI */
6113    STATIC_ASSERT(IR3_DP_VS(draw_id) == 0);
6114    STATIC_ASSERT(IR3_DP_VS(vtxid_base) == 1);
6115    STATIC_ASSERT(IR3_DP_VS(instid_base) == 2);
6116 
6117    /* 0 means disabled for CP_DRAW_INDIRECT_MULTI */
6118    assert(param_offset != 0);
6119 
6120    return param_offset;
6121 }
6122 
6123 static void
tu6_emit_empty_vs_params(struct tu_cmd_buffer * cmd)6124 tu6_emit_empty_vs_params(struct tu_cmd_buffer *cmd)
6125 {
6126    if (cmd->state.vs_params.iova) {
6127       cmd->state.vs_params = (struct tu_draw_state) {};
6128       cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
6129    }
6130 }
6131 
6132 static void
tu6_emit_vs_params(struct tu_cmd_buffer * cmd,uint32_t draw_id,uint32_t vertex_offset,uint32_t first_instance)6133 tu6_emit_vs_params(struct tu_cmd_buffer *cmd,
6134                    uint32_t draw_id,
6135                    uint32_t vertex_offset,
6136                    uint32_t first_instance)
6137 {
6138    uint32_t offset = vs_params_offset(cmd);
6139 
6140    /* Beside re-emitting params when they are changed, we should re-emit
6141     * them after constants are invalidated via HLSQ_INVALIDATE_CMD or after we
6142     * emit an empty vs params.
6143     */
6144    if (!(cmd->state.dirty & (TU_CMD_DIRTY_DRAW_STATE | TU_CMD_DIRTY_VS_PARAMS |
6145                              TU_CMD_DIRTY_PROGRAM)) &&
6146        cmd->state.vs_params.iova &&
6147        (offset == 0 || draw_id == cmd->state.last_vs_params.draw_id) &&
6148        vertex_offset == cmd->state.last_vs_params.vertex_offset &&
6149        first_instance == cmd->state.last_vs_params.first_instance) {
6150       return;
6151    }
6152 
6153    uint64_t consts_iova = 0;
6154    if (offset) {
6155       struct tu_cs_memory consts;
6156       VkResult result = tu_cs_alloc(&cmd->sub_cs, 1, 4, &consts);
6157       if (result != VK_SUCCESS) {
6158          vk_command_buffer_set_error(&cmd->vk, result);
6159          return;
6160       }
6161       consts.map[0] = draw_id;
6162       consts.map[1] = vertex_offset;
6163       consts.map[2] = first_instance;
6164       consts.map[3] = 0;
6165 
6166       consts_iova = consts.iova;
6167    }
6168 
6169    struct tu_cs cs;
6170    VkResult result = tu_cs_begin_sub_stream(&cmd->sub_cs, 3 + (offset ? 4 : 0), &cs);
6171    if (result != VK_SUCCESS) {
6172       vk_command_buffer_set_error(&cmd->vk, result);
6173       return;
6174    }
6175 
6176    tu_cs_emit_regs(&cs,
6177                    A6XX_VFD_INDEX_OFFSET(vertex_offset),
6178                    A6XX_VFD_INSTANCE_START_OFFSET(first_instance));
6179 
6180    /* It is implemented as INDIRECT load even on a750+ because with UBO
6181     * lowering it would be tricky to get const offset for to use in multidraw,
6182     * also we would need to ensure the offset is not 0.
6183     * TODO/A7XX: Rework vs params to use UBO lowering.
6184     */
6185    if (offset) {
6186       tu_cs_emit_pkt7(&cs, CP_LOAD_STATE6_GEOM, 3);
6187       tu_cs_emit(&cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
6188             CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6189             CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
6190             CP_LOAD_STATE6_0_STATE_BLOCK(SB6_VS_SHADER) |
6191             CP_LOAD_STATE6_0_NUM_UNIT(1));
6192       tu_cs_emit_qw(&cs, consts_iova);
6193    }
6194 
6195    cmd->state.last_vs_params.vertex_offset = vertex_offset;
6196    cmd->state.last_vs_params.first_instance = first_instance;
6197    cmd->state.last_vs_params.draw_id = draw_id;
6198 
6199    struct tu_cs_entry entry = tu_cs_end_sub_stream(&cmd->sub_cs, &cs);
6200    cmd->state.vs_params = (struct tu_draw_state) {entry.bo->iova + entry.offset, entry.size / 4};
6201 
6202    cmd->state.dirty |= TU_CMD_DIRTY_VS_PARAMS;
6203 }
6204 
6205 template <chip CHIP>
6206 VKAPI_ATTR void VKAPI_CALL
tu_CmdDraw(VkCommandBuffer commandBuffer,uint32_t vertexCount,uint32_t instanceCount,uint32_t firstVertex,uint32_t firstInstance)6207 tu_CmdDraw(VkCommandBuffer commandBuffer,
6208            uint32_t vertexCount,
6209            uint32_t instanceCount,
6210            uint32_t firstVertex,
6211            uint32_t firstInstance)
6212 {
6213    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6214    struct tu_cs *cs = &cmd->draw_cs;
6215 
6216    tu6_emit_vs_params(cmd, 0, firstVertex, firstInstance);
6217 
6218    tu6_draw_common<CHIP>(cmd, cs, false, vertexCount);
6219 
6220    tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
6221    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
6222    tu_cs_emit(cs, instanceCount);
6223    tu_cs_emit(cs, vertexCount);
6224 }
6225 TU_GENX(tu_CmdDraw);
6226 
6227 template <chip CHIP>
6228 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawInfoEXT * pVertexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride)6229 tu_CmdDrawMultiEXT(VkCommandBuffer commandBuffer,
6230                    uint32_t drawCount,
6231                    const VkMultiDrawInfoEXT *pVertexInfo,
6232                    uint32_t instanceCount,
6233                    uint32_t firstInstance,
6234                    uint32_t stride)
6235 {
6236    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6237    struct tu_cs *cs = &cmd->draw_cs;
6238 
6239    if (!drawCount)
6240       return;
6241 
6242    bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
6243 
6244    uint32_t max_vertex_count = 0;
6245    if (has_tess) {
6246       uint32_t i = 0;
6247       vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
6248          max_vertex_count = MAX2(max_vertex_count, draw->vertexCount);
6249       }
6250    }
6251 
6252    uint32_t i = 0;
6253    vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
6254       tu6_emit_vs_params(cmd, i, draw->firstVertex, firstInstance);
6255 
6256       if (i == 0)
6257          tu6_draw_common<CHIP>(cmd, cs, false, max_vertex_count);
6258 
6259       if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
6260          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
6261          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
6262          cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
6263       }
6264 
6265       tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 3);
6266       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
6267       tu_cs_emit(cs, instanceCount);
6268       tu_cs_emit(cs, draw->vertexCount);
6269    }
6270 }
6271 TU_GENX(tu_CmdDrawMultiEXT);
6272 
6273 template <chip CHIP>
6274 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,uint32_t indexCount,uint32_t instanceCount,uint32_t firstIndex,int32_t vertexOffset,uint32_t firstInstance)6275 tu_CmdDrawIndexed(VkCommandBuffer commandBuffer,
6276                   uint32_t indexCount,
6277                   uint32_t instanceCount,
6278                   uint32_t firstIndex,
6279                   int32_t vertexOffset,
6280                   uint32_t firstInstance)
6281 {
6282    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6283    struct tu_cs *cs = &cmd->draw_cs;
6284 
6285    tu6_emit_vs_params(cmd, 0, vertexOffset, firstInstance);
6286 
6287    tu6_draw_common<CHIP>(cmd, cs, true, indexCount);
6288 
6289    tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
6290    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
6291    tu_cs_emit(cs, instanceCount);
6292    tu_cs_emit(cs, indexCount);
6293    tu_cs_emit(cs, firstIndex);
6294    tu_cs_emit_qw(cs, cmd->state.index_va);
6295    tu_cs_emit(cs, cmd->state.max_index_count);
6296 }
6297 TU_GENX(tu_CmdDrawIndexed);
6298 
6299 template <chip CHIP>
6300 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,uint32_t drawCount,const VkMultiDrawIndexedInfoEXT * pIndexInfo,uint32_t instanceCount,uint32_t firstInstance,uint32_t stride,const int32_t * pVertexOffset)6301 tu_CmdDrawMultiIndexedEXT(VkCommandBuffer commandBuffer,
6302                           uint32_t drawCount,
6303                           const VkMultiDrawIndexedInfoEXT *pIndexInfo,
6304                           uint32_t instanceCount,
6305                           uint32_t firstInstance,
6306                           uint32_t stride,
6307                           const int32_t *pVertexOffset)
6308 {
6309    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6310    struct tu_cs *cs = &cmd->draw_cs;
6311 
6312    if (!drawCount)
6313       return;
6314 
6315    bool has_tess = cmd->state.shaders[MESA_SHADER_TESS_CTRL]->variant;
6316 
6317    uint32_t max_index_count = 0;
6318    if (has_tess) {
6319       uint32_t i = 0;
6320       vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
6321          max_index_count = MAX2(max_index_count, draw->indexCount);
6322       }
6323    }
6324 
6325    uint32_t i = 0;
6326    vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
6327       int32_t vertexOffset = pVertexOffset ? *pVertexOffset : draw->vertexOffset;
6328       tu6_emit_vs_params(cmd, i, vertexOffset, firstInstance);
6329 
6330       if (i == 0)
6331          tu6_draw_common<CHIP>(cmd, cs, true, max_index_count);
6332 
6333       if (cmd->state.dirty & TU_CMD_DIRTY_VS_PARAMS) {
6334          tu_cs_emit_pkt7(cs, CP_SET_DRAW_STATE, 3);
6335          tu_cs_emit_draw_state(cs, TU_DRAW_STATE_VS_PARAMS, cmd->state.vs_params);
6336          cmd->state.dirty &= ~TU_CMD_DIRTY_VS_PARAMS;
6337       }
6338 
6339       tu_cs_emit_pkt7(cs, CP_DRAW_INDX_OFFSET, 7);
6340       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
6341       tu_cs_emit(cs, instanceCount);
6342       tu_cs_emit(cs, draw->indexCount);
6343       tu_cs_emit(cs, draw->firstIndex);
6344       tu_cs_emit_qw(cs, cmd->state.index_va);
6345       tu_cs_emit(cs, cmd->state.max_index_count);
6346    }
6347 }
6348 TU_GENX(tu_CmdDrawMultiIndexedEXT);
6349 
6350 /* Various firmware bugs/inconsistencies mean that some indirect draw opcodes
6351  * do not wait for WFI's to complete before executing. Add a WAIT_FOR_ME if
6352  * pending for these opcodes. This may result in a few extra WAIT_FOR_ME's
6353  * with these opcodes, but the alternative would add unnecessary WAIT_FOR_ME's
6354  * before draw opcodes that don't need it.
6355  */
6356 static void
draw_wfm(struct tu_cmd_buffer * cmd)6357 draw_wfm(struct tu_cmd_buffer *cmd)
6358 {
6359    cmd->state.renderpass_cache.flush_bits |=
6360       cmd->state.renderpass_cache.pending_flush_bits & TU_CMD_FLAG_WAIT_FOR_ME;
6361    cmd->state.renderpass_cache.pending_flush_bits &= ~TU_CMD_FLAG_WAIT_FOR_ME;
6362 }
6363 
6364 template <chip CHIP>
6365 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)6366 tu_CmdDrawIndirect(VkCommandBuffer commandBuffer,
6367                    VkBuffer _buffer,
6368                    VkDeviceSize offset,
6369                    uint32_t drawCount,
6370                    uint32_t stride)
6371 {
6372    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6373    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
6374    struct tu_cs *cs = &cmd->draw_cs;
6375 
6376    tu6_emit_empty_vs_params(cmd);
6377 
6378    if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
6379       draw_wfm(cmd);
6380 
6381    tu6_draw_common<CHIP>(cmd, cs, false, 0);
6382 
6383    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 6);
6384    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
6385    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_NORMAL) |
6386                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
6387    tu_cs_emit(cs, drawCount);
6388    tu_cs_emit_qw(cs, buf->iova + offset);
6389    tu_cs_emit(cs, stride);
6390 }
6391 TU_GENX(tu_CmdDrawIndirect);
6392 
6393 template <chip CHIP>
6394 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,uint32_t drawCount,uint32_t stride)6395 tu_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer,
6396                           VkBuffer _buffer,
6397                           VkDeviceSize offset,
6398                           uint32_t drawCount,
6399                           uint32_t stride)
6400 {
6401    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6402    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
6403    struct tu_cs *cs = &cmd->draw_cs;
6404 
6405    tu6_emit_empty_vs_params(cmd);
6406 
6407    if (cmd->device->physical_device->info->a6xx.indirect_draw_wfm_quirk)
6408       draw_wfm(cmd);
6409 
6410    tu6_draw_common<CHIP>(cmd, cs, true, 0);
6411 
6412    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 9);
6413    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
6414    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDEXED) |
6415                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
6416    tu_cs_emit(cs, drawCount);
6417    tu_cs_emit_qw(cs, cmd->state.index_va);
6418    tu_cs_emit(cs, cmd->state.max_index_count);
6419    tu_cs_emit_qw(cs, buf->iova + offset);
6420    tu_cs_emit(cs, stride);
6421 }
6422 TU_GENX(tu_CmdDrawIndexedIndirect);
6423 
6424 template <chip CHIP>
6425 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)6426 tu_CmdDrawIndirectCount(VkCommandBuffer commandBuffer,
6427                         VkBuffer _buffer,
6428                         VkDeviceSize offset,
6429                         VkBuffer countBuffer,
6430                         VkDeviceSize countBufferOffset,
6431                         uint32_t drawCount,
6432                         uint32_t stride)
6433 {
6434    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6435    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
6436    VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
6437    struct tu_cs *cs = &cmd->draw_cs;
6438 
6439    tu6_emit_empty_vs_params(cmd);
6440 
6441    /* It turns out that the firmware we have for a650 only partially fixed the
6442     * problem with CP_DRAW_INDIRECT_MULTI not waiting for WFI's to complete
6443     * before reading indirect parameters. It waits for WFI's before reading
6444     * the draw parameters, but after reading the indirect count :(.
6445     */
6446    draw_wfm(cmd);
6447 
6448    tu6_draw_common<CHIP>(cmd, cs, false, 0);
6449 
6450    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 8);
6451    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
6452    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT) |
6453                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
6454    tu_cs_emit(cs, drawCount);
6455    tu_cs_emit_qw(cs, buf->iova + offset);
6456    tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
6457    tu_cs_emit(cs, stride);
6458 }
6459 TU_GENX(tu_CmdDrawIndirectCount);
6460 
6461 template <chip CHIP>
6462 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset,VkBuffer countBuffer,VkDeviceSize countBufferOffset,uint32_t drawCount,uint32_t stride)6463 tu_CmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer,
6464                                VkBuffer _buffer,
6465                                VkDeviceSize offset,
6466                                VkBuffer countBuffer,
6467                                VkDeviceSize countBufferOffset,
6468                                uint32_t drawCount,
6469                                uint32_t stride)
6470 {
6471    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6472    VK_FROM_HANDLE(tu_buffer, buf, _buffer);
6473    VK_FROM_HANDLE(tu_buffer, count_buf, countBuffer);
6474    struct tu_cs *cs = &cmd->draw_cs;
6475 
6476    tu6_emit_empty_vs_params(cmd);
6477 
6478    draw_wfm(cmd);
6479 
6480    tu6_draw_common<CHIP>(cmd, cs, true, 0);
6481 
6482    tu_cs_emit_pkt7(cs, CP_DRAW_INDIRECT_MULTI, 11);
6483    tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_DMA));
6484    tu_cs_emit(cs, A6XX_CP_DRAW_INDIRECT_MULTI_1_OPCODE(INDIRECT_OP_INDIRECT_COUNT_INDEXED) |
6485                   A6XX_CP_DRAW_INDIRECT_MULTI_1_DST_OFF(vs_params_offset(cmd)));
6486    tu_cs_emit(cs, drawCount);
6487    tu_cs_emit_qw(cs, cmd->state.index_va);
6488    tu_cs_emit(cs, cmd->state.max_index_count);
6489    tu_cs_emit_qw(cs, buf->iova + offset);
6490    tu_cs_emit_qw(cs, count_buf->iova + countBufferOffset);
6491    tu_cs_emit(cs, stride);
6492 }
6493 TU_GENX(tu_CmdDrawIndexedIndirectCount);
6494 
6495 template <chip CHIP>
6496 VKAPI_ATTR void VKAPI_CALL
tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,uint32_t instanceCount,uint32_t firstInstance,VkBuffer _counterBuffer,VkDeviceSize counterBufferOffset,uint32_t counterOffset,uint32_t vertexStride)6497 tu_CmdDrawIndirectByteCountEXT(VkCommandBuffer commandBuffer,
6498                                uint32_t instanceCount,
6499                                uint32_t firstInstance,
6500                                VkBuffer _counterBuffer,
6501                                VkDeviceSize counterBufferOffset,
6502                                uint32_t counterOffset,
6503                                uint32_t vertexStride)
6504 {
6505    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
6506    VK_FROM_HANDLE(tu_buffer, buf, _counterBuffer);
6507    struct tu_cs *cs = &cmd->draw_cs;
6508 
6509    /* All known firmware versions do not wait for WFI's with CP_DRAW_AUTO.
6510     * Plus, for the common case where the counter buffer is written by
6511     * vkCmdEndTransformFeedback, we need to wait for the CP_WAIT_MEM_WRITES to
6512     * complete which means we need a WAIT_FOR_ME anyway.
6513     */
6514    draw_wfm(cmd);
6515 
6516    tu6_emit_vs_params(cmd, 0, 0, firstInstance);
6517 
6518    tu6_draw_common<CHIP>(cmd, cs, false, 0);
6519 
6520    tu_cs_emit_pkt7(cs, CP_DRAW_AUTO, 6);
6521    if (CHIP == A6XX) {
6522       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_XFB));
6523    } else {
6524       tu_cs_emit(cs, tu_draw_initiator(cmd, DI_SRC_SEL_AUTO_INDEX));
6525       /* On a7xx the counter value and offset are shifted right by 2, so
6526        * the vertexStride should also be in units of dwords.
6527        */
6528       vertexStride = vertexStride >> 2;
6529    }
6530    tu_cs_emit(cs, instanceCount);
6531    tu_cs_emit_qw(cs, buf->iova + counterBufferOffset);
6532    tu_cs_emit(cs, counterOffset);
6533    tu_cs_emit(cs, vertexStride);
6534 }
6535 TU_GENX(tu_CmdDrawIndirectByteCountEXT);
6536 
6537 struct tu_dispatch_info
6538 {
6539    /**
6540     * Determine the layout of the grid (in block units) to be used.
6541     */
6542    uint32_t blocks[3];
6543 
6544    /**
6545     * A starting offset for the grid. If unaligned is set, the offset
6546     * must still be aligned.
6547     */
6548    uint32_t offsets[3];
6549    /**
6550     * Whether it's an unaligned compute dispatch.
6551     */
6552    bool unaligned;
6553 
6554    /**
6555     * Indirect compute parameters resource.
6556     */
6557    VkDeviceAddress indirect;
6558 };
6559 
6560 static inline struct ir3_driver_params_cs
build_driver_params_cs(const struct ir3_shader_variant * variant,const struct tu_dispatch_info * info)6561 build_driver_params_cs(const struct ir3_shader_variant *variant,
6562                        const struct tu_dispatch_info *info)
6563 {
6564    unsigned subgroup_size = variant->info.subgroup_size;
6565    unsigned subgroup_shift = util_logbase2(subgroup_size);
6566 
6567    return (struct ir3_driver_params_cs) {
6568       .num_work_groups_x = info->blocks[0],
6569       .num_work_groups_y = info->blocks[1],
6570       .num_work_groups_z = info->blocks[2],
6571       .work_dim = 0,
6572       .base_group_x = info->offsets[0],
6573       .base_group_y = info->offsets[1],
6574       .base_group_z = info->offsets[2],
6575       .subgroup_size = subgroup_size,
6576       .local_group_size_x = 0,
6577       .local_group_size_y = 0,
6578       .local_group_size_z = 0,
6579       .subgroup_id_shift = subgroup_shift,
6580    };
6581 }
6582 
6583 template <chip CHIP>
6584 static void
tu_emit_compute_driver_params(struct tu_cmd_buffer * cmd,struct tu_cs * cs,const struct tu_dispatch_info * info)6585 tu_emit_compute_driver_params(struct tu_cmd_buffer *cmd,
6586                               struct tu_cs *cs,
6587                               const struct tu_dispatch_info *info)
6588 {
6589    gl_shader_stage type = MESA_SHADER_COMPUTE;
6590    const struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
6591    const struct ir3_shader_variant *variant = shader->variant;
6592    const struct ir3_const_state *const_state = variant->const_state;
6593    unsigned subgroup_size = variant->info.subgroup_size;
6594    unsigned subgroup_shift = util_logbase2(subgroup_size);
6595 
6596    if (cmd->device->physical_device->info->a7xx.load_shader_consts_via_preamble) {
6597       uint32_t num_consts = const_state->driver_params_ubo.size;
6598       if (num_consts == 0)
6599          return;
6600 
6601       bool direct_indirect_load =
6602          !(info->indirect & 0xf) &&
6603          !(info->indirect && num_consts > IR3_DP_CS(base_group_x));
6604 
6605       uint64_t iova = 0;
6606 
6607       if (!info->indirect) {
6608          struct ir3_driver_params_cs driver_params =
6609             build_driver_params_cs(variant, info);
6610 
6611          assert(num_consts <= dword_sizeof(driver_params));
6612 
6613          struct tu_cs_memory consts;
6614          uint32_t consts_vec4 = DIV_ROUND_UP(num_consts, 4);
6615          VkResult result = tu_cs_alloc(&cmd->sub_cs, consts_vec4, 4, &consts);
6616          if (result != VK_SUCCESS) {
6617             vk_command_buffer_set_error(&cmd->vk, result);
6618             return;
6619          }
6620          memcpy(consts.map, &driver_params, num_consts * sizeof(uint32_t));
6621          iova = consts.iova;
6622       } else if (direct_indirect_load) {
6623          iova = info->indirect;
6624       } else {
6625          /* Vulkan guarantees only 4 byte alignment for indirect_offset.
6626           * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
6627           */
6628 
6629          uint64_t indirect_iova = info->indirect;
6630 
6631          /* Wait for any previous uses to finish. */
6632          tu_cs_emit_wfi(cs);
6633 
6634          for (uint32_t i = 0; i < 3; i++) {
6635             tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
6636             tu_cs_emit(cs, 0);
6637             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
6638             tu_cs_emit_qw(cs, indirect_iova + i * sizeof(uint32_t));
6639          }
6640 
6641          /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
6642           * indirect dispatch.
6643           */
6644          if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) {
6645             uint32_t indirect_driver_params[8] = {
6646                0, 0, 0, subgroup_size,
6647                0, 0, 0, subgroup_shift,
6648             };
6649             bool emit_local = num_consts > IR3_DP_CS(local_group_size_x);
6650             uint32_t emit_size = emit_local ? 8 : 4;
6651 
6652             tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + emit_size);
6653             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, 0) + 4 * sizeof(uint32_t));
6654             for (uint32_t i = 0; i < emit_size; i++) {
6655                tu_cs_emit(cs, indirect_driver_params[i]);
6656             }
6657          }
6658 
6659          tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
6660          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
6661          tu_cs_emit_wfi(cs);
6662 
6663          iova = global_iova(cmd, cs_indirect_xyz[0]);
6664       }
6665 
6666       tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 5);
6667       tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(const_state->driver_params_ubo.idx) |
6668                CP_LOAD_STATE6_0_STATE_TYPE(ST6_UBO) |
6669                CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
6670                CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6671                CP_LOAD_STATE6_0_NUM_UNIT(1));
6672       tu_cs_emit(cs, CP_LOAD_STATE6_1_EXT_SRC_ADDR(0));
6673       tu_cs_emit(cs, CP_LOAD_STATE6_2_EXT_SRC_ADDR_HI(0));
6674       int size_vec4s = DIV_ROUND_UP(num_consts, 4);
6675       tu_cs_emit_qw(cs, iova | ((uint64_t)A6XX_UBO_1_SIZE(size_vec4s) << 32));
6676 
6677    } else {
6678       uint32_t offset =
6679          const_state->allocs.consts[IR3_CONST_ALLOC_DRIVER_PARAMS].offset_vec4;
6680       if (!ir3_const_can_upload(&const_state->allocs,
6681                                 IR3_CONST_ALLOC_DRIVER_PARAMS,
6682                                 variant->constlen))
6683          return;
6684 
6685       uint32_t num_consts = MIN2(const_state->num_driver_params,
6686                                  (variant->constlen - offset) * 4);
6687 
6688       if (!info->indirect) {
6689          struct ir3_driver_params_cs driver_params =
6690             build_driver_params_cs(variant, info);
6691 
6692          assert(num_consts <= dword_sizeof(driver_params));
6693 
6694          /* push constants */
6695          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3 + num_consts);
6696          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
6697                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6698                   CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
6699                   CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6700                   CP_LOAD_STATE6_0_NUM_UNIT(num_consts / 4));
6701          tu_cs_emit(cs, 0);
6702          tu_cs_emit(cs, 0);
6703          tu_cs_emit_array(cs, (uint32_t *)&driver_params, num_consts);
6704       } else if (!(info->indirect & 0xf)) {
6705          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
6706          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
6707                      CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6708                      CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
6709                      CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6710                      CP_LOAD_STATE6_0_NUM_UNIT(1));
6711          tu_cs_emit_qw(cs, info->indirect);
6712       } else {
6713          /* Vulkan guarantees only 4 byte alignment for indirect_offset.
6714           * However, CP_LOAD_STATE.EXT_SRC_ADDR needs 16 byte alignment.
6715           */
6716 
6717          /* Wait for any previous uses to finish. */
6718          tu_cs_emit_wfi(cs);
6719 
6720          for (uint32_t i = 0; i < 3; i++) {
6721             tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
6722             tu_cs_emit(cs, 0);
6723             tu_cs_emit_qw(cs, global_iova_arr(cmd, cs_indirect_xyz, i));
6724             tu_cs_emit_qw(cs, info->indirect + i * 4);
6725          }
6726 
6727          tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
6728          tu_emit_event_write<CHIP>(cmd, cs, FD_CACHE_INVALIDATE);
6729          tu_cs_emit_wfi(cs);
6730 
6731          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 3);
6732          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset) |
6733                      CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6734                      CP_LOAD_STATE6_0_STATE_SRC(SS6_INDIRECT) |
6735                      CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6736                      CP_LOAD_STATE6_0_NUM_UNIT(1));
6737          tu_cs_emit_qw(cs, global_iova(cmd, cs_indirect_xyz[0]));
6738       }
6739 
6740       /* Fill out IR3_DP_CS_SUBGROUP_SIZE and IR3_DP_SUBGROUP_ID_SHIFT for
6741        * indirect dispatch.
6742        */
6743       if (info->indirect && num_consts > IR3_DP_CS(base_group_x)) {
6744          bool emit_local = num_consts > IR3_DP_CS(local_group_size_x);
6745          tu_cs_emit_pkt7(cs, tu6_stage2opcode(type), 7 + (emit_local ? 4 : 0));
6746          tu_cs_emit(cs, CP_LOAD_STATE6_0_DST_OFF(offset + (IR3_DP_CS(base_group_x) / 4)) |
6747                   CP_LOAD_STATE6_0_STATE_TYPE(ST6_CONSTANTS) |
6748                   CP_LOAD_STATE6_0_STATE_SRC(SS6_DIRECT) |
6749                   CP_LOAD_STATE6_0_STATE_BLOCK(tu6_stage2shadersb(type)) |
6750                   CP_LOAD_STATE6_0_NUM_UNIT((num_consts - IR3_DP_CS(base_group_x)) / 4));
6751          tu_cs_emit_qw(cs, 0);
6752          tu_cs_emit(cs, 0); /* BASE_GROUP_X */
6753          tu_cs_emit(cs, 0); /* BASE_GROUP_Y */
6754          tu_cs_emit(cs, 0); /* BASE_GROUP_Z */
6755          tu_cs_emit(cs, subgroup_size);
6756          if (emit_local) {
6757             assert(num_consts == align(IR3_DP_CS(subgroup_id_shift), 4));
6758             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_X */
6759             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Y */
6760             tu_cs_emit(cs, 0); /* LOCAL_GROUP_SIZE_Z */
6761             tu_cs_emit(cs, subgroup_shift);
6762          }
6763       }
6764    }
6765 }
6766 
6767 template <chip CHIP>
6768 static void
tu_dispatch(struct tu_cmd_buffer * cmd,const struct tu_dispatch_info * info)6769 tu_dispatch(struct tu_cmd_buffer *cmd,
6770             const struct tu_dispatch_info *info)
6771 {
6772    if (!info->indirect &&
6773        (info->blocks[0] == 0 || info->blocks[1] == 0 || info->blocks[2] == 0))
6774       return;
6775 
6776    struct tu_cs *cs = &cmd->cs;
6777    struct tu_shader *shader = cmd->state.shaders[MESA_SHADER_COMPUTE];
6778 
6779    bool emit_instrlen_workaround =
6780       shader->variant->instrlen >
6781       cmd->device->physical_device->info->a6xx.instr_cache_size;
6782 
6783    /* We don't use draw states for dispatches, so the bound pipeline
6784     * could be overwritten by reg stomping in a renderpass or blit.
6785     */
6786    if (cmd->device->dbg_renderpass_stomp_cs) {
6787       tu_cs_emit_state_ib(&cmd->cs, shader->state);
6788    }
6789 
6790    /* There appears to be a HW bug where in some rare circumstances it appears
6791     * to accidentally use the FS instrlen instead of the CS instrlen, which
6792     * affects all known gens. Based on various experiments it appears that the
6793     * issue is that when prefetching a branch destination and there is a cache
6794     * miss, when fetching from memory the HW bounds-checks the fetch against
6795     * SP_CS_INSTRLEN, except when one of the two register contexts is active
6796     * it accidentally fetches SP_FS_INSTRLEN from the other (inactive)
6797     * context. To workaround it we set the FS instrlen here and do a dummy
6798     * event to roll the context (because it fetches SP_FS_INSTRLEN from the
6799     * "wrong" context). Because the bug seems to involve cache misses, we
6800     * don't emit this if the entire CS program fits in cache, which will
6801     * hopefully be the majority of cases.
6802     *
6803     * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/5892
6804     */
6805    if (emit_instrlen_workaround) {
6806       tu_cs_emit_regs(cs, A6XX_SP_FS_INSTRLEN(shader->variant->instrlen));
6807       tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
6808    }
6809 
6810    /* TODO: We could probably flush less if we add a compute_flush_bits
6811     * bitfield.
6812     */
6813    tu_emit_cache_flush<CHIP>(cmd);
6814 
6815    /* note: no reason to have this in a separate IB */
6816    tu_cs_emit_state_ib(cs, tu_emit_consts(cmd, true));
6817 
6818    tu_emit_compute_driver_params<CHIP>(cmd, cs, info);
6819 
6820    if (cmd->state.dirty & TU_CMD_DIRTY_COMPUTE_DESC_SETS) {
6821       tu6_emit_descriptor_sets<CHIP>(cmd, VK_PIPELINE_BIND_POINT_COMPUTE);
6822       tu_cs_emit_state_ib(cs, cmd->state.compute_load_state);
6823    }
6824 
6825    cmd->state.dirty &= ~TU_CMD_DIRTY_COMPUTE_DESC_SETS;
6826 
6827    tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
6828    tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_MODE(RM6_COMPUTE));
6829 
6830    const uint16_t *local_size = shader->variant->local_size;
6831    const uint32_t *num_groups = info->blocks;
6832 
6833    if (info->unaligned) {
6834       assert(CHIP >= A7XX);
6835 
6836       if (info->indirect) {
6837          /* This path is tailored for BVH building and currently only supports
6838           * 1-dimensional dispatches with a power-of-two local size. We use
6839           * CP_RUN_OPENCL instead of CP_EXEC_CS in order to dynamically set
6840           * HLSQ_CS_KERNEL_GROUP_X, which is usually set implicitly by the
6841           * packet, to the number of workgroups. The registers for Y and Z
6842           * dimensions should be unused because we set the kernel dimension to
6843           * 1.
6844           */
6845          assert(local_size[1] == 1 && local_size[2] == 1);
6846          assert(util_is_power_of_two_nonzero(local_size[0]));
6847 
6848          tu_cs_emit_regs(cs,
6849                          HLSQ_CS_NDRANGE_0(CHIP, .kerneldim = 1,
6850                                                  .localsizex = local_size[0] - 1));
6851 
6852          tu_cs_emit_regs(cs, HLSQ_CS_NDRANGE_2(CHIP, .globaloff_x = 0));
6853 
6854          /* This does:
6855           * - waits for pending cache flushes to finish
6856           * - CP_WAIT_FOR_ME
6857           *
6858           * In a sequence of indirect dispatches this shouldn't wait for the
6859           * previous dispatches to finish.
6860           */
6861          tu_cs_emit_pkt7(cs, CP_MEM_TO_REG, 3);
6862          tu_cs_emit(cs, CP_MEM_TO_REG_0_REG(REG_A7XX_HLSQ_CS_NDRANGE_1));
6863          tu_cs_emit_qw(cs, info->indirect);
6864 
6865          tu_cs_emit_pkt7(cs, CP_SCRATCH_WRITE, 2);
6866          tu_cs_emit(cs, CP_SCRATCH_WRITE_0_SCRATCH(0));
6867          tu_cs_emit(cs, ~0u);
6868 
6869          /* CP_REG_RMW and CP_REG_TO_SCRATCH implicitly do a CP_WAIT_FOR_IDLE
6870           * *and* CP_WAIT_FOR_ME, which is a full pipeline stall that we don't
6871           * want, so manually wait for the CP_MEM_TO_REG write to land and
6872           * then skip waiting below with SKIP_WAIT_FOR_ME.
6873           */
6874          tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
6875 
6876          /* scratch0 = ((scratch0 & CS_NDRANGE_1) + -1
6877           *          = ((~0 & CS_NDRANGE_1) + -1
6878           *          =  CS_NDRANGE_1 - 1
6879           */
6880          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
6881          tu_cs_emit(cs,
6882                     CP_REG_RMW_0_DST_REG(0) |
6883                     CP_REG_RMW_0_DST_SCRATCH |
6884                     CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
6885                     CP_REG_RMW_0_SRC0_IS_REG |
6886                     CP_REG_RMW_0_SRC1_ADD);
6887          tu_cs_emit(cs, REG_A7XX_HLSQ_CS_NDRANGE_1); /* SRC0 */
6888          tu_cs_emit(cs, -1); /* SRC1 */
6889 
6890          /* scratch0 = ((scratch0 & (local_size - 1)) rot 2
6891           *          = ((scratch0 & (local_size - 1)) << 2
6892           */
6893          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
6894          tu_cs_emit(cs,
6895                     CP_REG_RMW_0_DST_REG(0) |
6896                     CP_REG_RMW_0_DST_SCRATCH |
6897                     CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
6898                     CP_REG_RMW_0_ROTATE(A7XX_HLSQ_CS_LAST_LOCAL_SIZE_LOCALSIZEX__SHIFT));
6899          tu_cs_emit(cs, local_size[0] - 1); /* SRC0 */
6900          tu_cs_emit(cs, 0); /* SRC1 */
6901 
6902          /* write scratch0 to HLSQ_CS_LAST_LOCAL_SIZE */
6903          tu_cs_emit_pkt7(cs, CP_SCRATCH_TO_REG, 1);
6904          tu_cs_emit(cs,
6905                     CP_SCRATCH_TO_REG_0_REG(REG_A7XX_HLSQ_CS_LAST_LOCAL_SIZE) |
6906                     CP_SCRATCH_TO_REG_0_SCRATCH(0));
6907 
6908          tu_cs_emit_pkt7(cs, CP_SCRATCH_WRITE, 2);
6909          tu_cs_emit(cs, CP_SCRATCH_WRITE_0_SCRATCH(0));
6910          tu_cs_emit(cs, ~0u);
6911 
6912          /* scratch0 = (scratch0 & CS_NDRANGE_1) + local_size - 1
6913           *          = (~0u & CS_NDRANGE_1) + local_size - 1
6914           *          = CS_NDRANGE_1 + local_size - 1
6915           */
6916          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
6917          tu_cs_emit(cs,
6918                     CP_REG_RMW_0_DST_REG(0) |
6919                     CP_REG_RMW_0_DST_SCRATCH |
6920                     CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
6921                     CP_REG_RMW_0_SRC0_IS_REG |
6922                     CP_REG_RMW_0_SRC1_ADD);
6923          tu_cs_emit(cs, REG_A7XX_HLSQ_CS_NDRANGE_1); /* SRC0 */
6924          tu_cs_emit(cs, local_size[0] - 1); /* SRC1 */
6925 
6926          unsigned local_size_log2 = util_logbase2(local_size[0]);
6927 
6928          /* scratch0 = (scratch0 & (~(local_size - 1)) rot (32 - log2(local_size))
6929           *          = scratch0 >> log2(local_size)
6930           *          = scratch0 / local_size
6931           *          = (CS_NDRANGE_1 + local_size - 1) / local_size
6932           */
6933          tu_cs_emit_pkt7(cs, CP_REG_RMW, 3);
6934          tu_cs_emit(cs,
6935                     CP_REG_RMW_0_DST_REG(0) |
6936                     CP_REG_RMW_0_DST_SCRATCH |
6937                     CP_REG_RMW_0_SKIP_WAIT_FOR_ME |
6938                     CP_REG_RMW_0_ROTATE(32 - local_size_log2));
6939          tu_cs_emit(cs, ~(local_size[0] - 1)); /* SRC0 */
6940          tu_cs_emit(cs, 0); /* SRC1 */
6941 
6942          /* write scratch0 to HLSQ_CS_KERNEL_GROUP_X */
6943          tu_cs_emit_pkt7(cs, CP_SCRATCH_TO_REG, 1);
6944          tu_cs_emit(cs,
6945                     CP_SCRATCH_TO_REG_0_REG(REG_A7XX_HLSQ_CS_KERNEL_GROUP_X) |
6946                     CP_SCRATCH_TO_REG_0_SCRATCH(0));
6947       } else {
6948          tu_cs_emit_regs(cs,
6949                          HLSQ_CS_NDRANGE_0(CHIP, .kerneldim = 3,
6950                                                  .localsizex = local_size[0] - 1,
6951                                                  .localsizey = local_size[1] - 1,
6952                                                  .localsizez = local_size[2] - 1),
6953                          HLSQ_CS_NDRANGE_1(CHIP, .globalsize_x = num_groups[0]),
6954                          HLSQ_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
6955                          HLSQ_CS_NDRANGE_3(CHIP, .globalsize_y = num_groups[1]),
6956                          HLSQ_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
6957                          HLSQ_CS_NDRANGE_5(CHIP, .globalsize_z = num_groups[2]),
6958                          HLSQ_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
6959          uint32_t last_local_size[3];
6960          for (unsigned i = 0; i < 3; i++)
6961             last_local_size[i] = ((num_groups[i] - 1) % local_size[i]) + 1;
6962          tu_cs_emit_regs(cs,
6963                          A7XX_HLSQ_CS_LAST_LOCAL_SIZE(.localsizex = last_local_size[0] - 1,
6964                                                       .localsizey = last_local_size[1] - 1,
6965                                                       .localsizez = last_local_size[2] - 1));
6966       }
6967    } else {
6968       tu_cs_emit_regs(cs,
6969                       HLSQ_CS_NDRANGE_0(CHIP, .kerneldim = 3,
6970                                               .localsizex = local_size[0] - 1,
6971                                               .localsizey = local_size[1] - 1,
6972                                               .localsizez = local_size[2] - 1),
6973                       HLSQ_CS_NDRANGE_1(CHIP, .globalsize_x = local_size[0] * num_groups[0]),
6974                       HLSQ_CS_NDRANGE_2(CHIP, .globaloff_x = 0),
6975                       HLSQ_CS_NDRANGE_3(CHIP, .globalsize_y = local_size[1] * num_groups[1]),
6976                       HLSQ_CS_NDRANGE_4(CHIP, .globaloff_y = 0),
6977                       HLSQ_CS_NDRANGE_5(CHIP, .globalsize_z = local_size[2] * num_groups[2]),
6978                       HLSQ_CS_NDRANGE_6(CHIP, .globaloff_z = 0));
6979       if (CHIP >= A7XX) {
6980          tu_cs_emit_regs(cs,
6981                          A7XX_HLSQ_CS_LAST_LOCAL_SIZE(.localsizex = local_size[0] - 1,
6982                                                       .localsizey = local_size[1] - 1,
6983                                                       .localsizez = local_size[2] - 1));
6984       }
6985    }
6986 
6987    if (cmd->device->physical_device->info->a7xx.has_rt_workaround &&
6988        shader->variant->info.uses_ray_intersection) {
6989       tu_cs_emit_pkt7(cs, CP_SET_MARKER, 1);
6990       tu_cs_emit(cs, A6XX_CP_SET_MARKER_0_SHADER_USES_RT);
6991    }
6992 
6993    if (info->indirect) {
6994       trace_start_compute_indirect(&cmd->trace, cs, info->unaligned);
6995 
6996       if (info->unaligned) {
6997          tu_cs_emit_pkt7(cs, CP_RUN_OPENCL, 1);
6998          tu_cs_emit(cs, 0x00000000);
6999       } else {
7000          tu_cs_emit_pkt7(cs, CP_EXEC_CS_INDIRECT, 4);
7001          tu_cs_emit(cs, 0x00000000);
7002          tu_cs_emit_qw(cs, info->indirect);
7003          tu_cs_emit(cs,
7004                     A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEX(local_size[0] - 1) |
7005                     A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEY(local_size[1] - 1) |
7006                     A5XX_CP_EXEC_CS_INDIRECT_3_LOCALSIZEZ(local_size[2] - 1));
7007 
7008       }
7009 
7010       trace_end_compute_indirect(&cmd->trace, cs,
7011                                  (struct u_trace_address) {
7012                                     .bo = NULL,
7013                                     .offset = info->indirect,
7014                                  });
7015    } else {
7016       trace_start_compute(&cmd->trace, cs, info->indirect != 0,
7017                           info->unaligned, local_size[0], local_size[1],
7018                           local_size[2], info->blocks[0], info->blocks[1],
7019                           info->blocks[2]);
7020 
7021       if (info->unaligned) {
7022          tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
7023          tu_cs_emit(cs, 0x00000000);
7024          tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(DIV_ROUND_UP(info->blocks[0],
7025                                                             local_size[0])));
7026          tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(DIV_ROUND_UP(info->blocks[1],
7027                                                             local_size[1])));
7028          tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(DIV_ROUND_UP(info->blocks[2],
7029                                                             local_size[2])));
7030       } else {
7031          tu_cs_emit_pkt7(cs, CP_EXEC_CS, 4);
7032          tu_cs_emit(cs, 0x00000000);
7033          tu_cs_emit(cs, CP_EXEC_CS_1_NGROUPS_X(info->blocks[0]));
7034          tu_cs_emit(cs, CP_EXEC_CS_2_NGROUPS_Y(info->blocks[1]));
7035          tu_cs_emit(cs, CP_EXEC_CS_3_NGROUPS_Z(info->blocks[2]));
7036       }
7037 
7038       trace_end_compute(&cmd->trace, cs);
7039    }
7040 
7041    /* For the workaround above, because it's using the "wrong" context for
7042     * SP_FS_INSTRLEN we should emit another dummy event write to avoid a
7043     * potential race between writing the register and the CP_EXEC_CS we just
7044     * did. We don't need to reset the register because it will be re-emitted
7045     * anyway when the next renderpass starts.
7046     */
7047    if (emit_instrlen_workaround) {
7048       tu_emit_event_write<CHIP>(cmd, cs, FD_LABEL);
7049    }
7050 }
7051 
7052 template <chip CHIP>
7053 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchBase(VkCommandBuffer commandBuffer,uint32_t base_x,uint32_t base_y,uint32_t base_z,uint32_t x,uint32_t y,uint32_t z)7054 tu_CmdDispatchBase(VkCommandBuffer commandBuffer,
7055                    uint32_t base_x,
7056                    uint32_t base_y,
7057                    uint32_t base_z,
7058                    uint32_t x,
7059                    uint32_t y,
7060                    uint32_t z)
7061 {
7062    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
7063    struct tu_dispatch_info info = {};
7064 
7065    info.blocks[0] = x;
7066    info.blocks[1] = y;
7067    info.blocks[2] = z;
7068 
7069    info.offsets[0] = base_x;
7070    info.offsets[1] = base_y;
7071    info.offsets[2] = base_z;
7072    tu_dispatch<CHIP>(cmd_buffer, &info);
7073 }
7074 TU_GENX(tu_CmdDispatchBase);
7075 
7076 template <chip CHIP>
7077 VKAPI_ATTR void VKAPI_CALL
tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,VkBuffer _buffer,VkDeviceSize offset)7078 tu_CmdDispatchIndirect(VkCommandBuffer commandBuffer,
7079                        VkBuffer _buffer,
7080                        VkDeviceSize offset)
7081 {
7082    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
7083    VK_FROM_HANDLE(tu_buffer, buffer, _buffer);
7084    struct tu_dispatch_info info = {};
7085 
7086    info.indirect = buffer->iova + offset;
7087 
7088    tu_dispatch<CHIP>(cmd_buffer, &info);
7089 }
7090 TU_GENX(tu_CmdDispatchIndirect);
7091 
7092 void
tu_dispatch_unaligned(VkCommandBuffer commandBuffer,uint32_t x,uint32_t y,uint32_t z)7093 tu_dispatch_unaligned(VkCommandBuffer commandBuffer,
7094                       uint32_t x, uint32_t y, uint32_t z)
7095 {
7096    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
7097    struct tu_dispatch_info info = {};
7098 
7099    info.unaligned = true;
7100    info.blocks[0] = x;
7101    info.blocks[1] = y;
7102    info.blocks[2] = z;
7103    TU_CALLX(cmd_buffer->device, tu_dispatch)(cmd_buffer, &info);
7104 }
7105 
7106 void
tu_dispatch_unaligned_indirect(VkCommandBuffer commandBuffer,VkDeviceAddress size_addr)7107 tu_dispatch_unaligned_indirect(VkCommandBuffer commandBuffer,
7108                                VkDeviceAddress size_addr)
7109 {
7110    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
7111    struct tu_dispatch_info info = {};
7112 
7113    info.unaligned = true;
7114    info.indirect = size_addr;
7115 
7116    TU_CALLX(cmd_buffer->device, tu_dispatch)(cmd_buffer, &info);
7117 }
7118 
7119 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,const VkSubpassEndInfo * pSubpassEndInfo)7120 tu_CmdEndRenderPass2(VkCommandBuffer commandBuffer,
7121                      const VkSubpassEndInfo *pSubpassEndInfo)
7122 {
7123    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
7124 
7125    if (TU_DEBUG(DYNAMIC)) {
7126       vk_common_CmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
7127       return;
7128    }
7129 
7130    tu_cs_end(&cmd_buffer->draw_cs);
7131    tu_cs_end(&cmd_buffer->draw_epilogue_cs);
7132    TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
7133 
7134    cmd_buffer->state.cache.pending_flush_bits |=
7135       cmd_buffer->state.renderpass_cache.pending_flush_bits;
7136    tu_subpass_barrier(cmd_buffer, &cmd_buffer->state.pass->end_barrier, true);
7137 
7138    vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.attachments);
7139 
7140    tu_reset_render_pass(cmd_buffer);
7141 }
7142 
7143 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndRendering(VkCommandBuffer commandBuffer)7144 tu_CmdEndRendering(VkCommandBuffer commandBuffer)
7145 {
7146    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
7147 
7148    if (cmd_buffer->state.suspending) {
7149       cmd_buffer->state.suspended_pass.lrz = cmd_buffer->state.lrz;
7150       /* We cannot pass LRZ state to next resuming renderpass, so we have to
7151        * force disable it here.
7152        */
7153       TU_CALLX(cmd_buffer->device, tu_lrz_flush_valid_during_renderpass)
7154          (cmd_buffer, &cmd_buffer->draw_cs);
7155    }
7156 
7157    if (!cmd_buffer->state.suspending) {
7158       tu_cs_end(&cmd_buffer->draw_cs);
7159       tu_cs_end(&cmd_buffer->draw_epilogue_cs);
7160 
7161       if (cmd_buffer->state.suspend_resume == SR_IN_PRE_CHAIN) {
7162          cmd_buffer->trace_renderpass_end = u_trace_end_iterator(&cmd_buffer->trace);
7163          tu_save_pre_chain(cmd_buffer);
7164 
7165          /* Even we don't call tu_cmd_render here, renderpass is finished
7166           * and draw states should be disabled.
7167           */
7168          tu_disable_draw_states(cmd_buffer, &cmd_buffer->cs);
7169       } else {
7170          TU_CALLX(cmd_buffer->device, tu_cmd_render)(cmd_buffer);
7171       }
7172 
7173       tu_reset_render_pass(cmd_buffer);
7174    }
7175 
7176    if (cmd_buffer->state.resuming && !cmd_buffer->state.suspending) {
7177       /* exiting suspend/resume chain */
7178       switch (cmd_buffer->state.suspend_resume) {
7179       case SR_IN_CHAIN:
7180          cmd_buffer->state.suspend_resume = SR_NONE;
7181          break;
7182       case SR_IN_PRE_CHAIN:
7183       case SR_IN_CHAIN_AFTER_PRE_CHAIN:
7184          cmd_buffer->state.suspend_resume = SR_AFTER_PRE_CHAIN;
7185          break;
7186       default:
7187          unreachable("suspending render pass not followed by resuming pass");
7188       }
7189    }
7190 }
7191 
7192 void
tu_barrier(struct tu_cmd_buffer * cmd,uint32_t dep_count,const VkDependencyInfo * dep_infos)7193 tu_barrier(struct tu_cmd_buffer *cmd,
7194            uint32_t dep_count,
7195            const VkDependencyInfo *dep_infos)
7196 {
7197    VkPipelineStageFlags2 srcStage = 0;
7198    VkPipelineStageFlags2 dstStage = 0;
7199    BITMASK_ENUM(tu_cmd_access_mask) src_flags = 0;
7200    BITMASK_ENUM(tu_cmd_access_mask) dst_flags = 0;
7201 
7202    /* Inside a renderpass, we don't know yet whether we'll be using sysmem
7203     * so we have to use the sysmem flushes.
7204     */
7205    bool gmem = cmd->state.ccu_state == TU_CMD_CCU_GMEM &&
7206       !cmd->state.pass;
7207 
7208    for (uint32_t dep_idx = 0; dep_idx < dep_count; dep_idx++) {
7209       const VkDependencyInfo *dep_info = &dep_infos[dep_idx];
7210 
7211       for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
7212          VkPipelineStageFlags2 sanitized_src_stage =
7213             sanitize_src_stage(dep_info->pMemoryBarriers[i].srcStageMask);
7214          VkPipelineStageFlags2 sanitized_dst_stage =
7215             sanitize_dst_stage(dep_info->pMemoryBarriers[i].dstStageMask);
7216          src_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].srcAccessMask,
7217                                    sanitized_src_stage, false, gmem);
7218          dst_flags |= vk2tu_access(dep_info->pMemoryBarriers[i].dstAccessMask,
7219                                    sanitized_dst_stage, false, gmem);
7220          srcStage |= sanitized_src_stage;
7221          dstStage |= sanitized_dst_stage;
7222       }
7223 
7224       for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
7225          VkPipelineStageFlags2 sanitized_src_stage =
7226             sanitize_src_stage(dep_info->pBufferMemoryBarriers[i].srcStageMask);
7227          VkPipelineStageFlags2 sanitized_dst_stage =
7228             sanitize_dst_stage(dep_info->pBufferMemoryBarriers[i].dstStageMask);
7229          src_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].srcAccessMask,
7230                                    sanitized_src_stage, false, gmem);
7231          dst_flags |= vk2tu_access(dep_info->pBufferMemoryBarriers[i].dstAccessMask,
7232                                    sanitized_dst_stage, false, gmem);
7233          srcStage |= sanitized_src_stage;
7234          dstStage |= sanitized_dst_stage;
7235       }
7236 
7237       for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
7238          VkImageLayout old_layout = dep_info->pImageMemoryBarriers[i].oldLayout;
7239          if (old_layout == VK_IMAGE_LAYOUT_UNDEFINED) {
7240             /* The underlying memory for this image may have been used earlier
7241              * within the same queue submission for a different image, which
7242              * means that there may be old, stale cache entries which are in the
7243              * "wrong" location, which could cause problems later after writing
7244              * to the image. We don't want these entries being flushed later and
7245              * overwriting the actual image, so we need to flush the CCU.
7246              */
7247             VK_FROM_HANDLE(tu_image, image, dep_info->pImageMemoryBarriers[i].image);
7248 
7249             if (vk_format_is_depth_or_stencil(image->vk.format)) {
7250                src_flags |= TU_ACCESS_CCU_DEPTH_INCOHERENT_WRITE;
7251             } else {
7252                src_flags |= TU_ACCESS_CCU_COLOR_INCOHERENT_WRITE;
7253             }
7254          }
7255          VkPipelineStageFlags2 sanitized_src_stage =
7256             sanitize_src_stage(dep_info->pImageMemoryBarriers[i].srcStageMask);
7257          VkPipelineStageFlags2 sanitized_dst_stage =
7258             sanitize_dst_stage(dep_info->pImageMemoryBarriers[i].dstStageMask);
7259          src_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].srcAccessMask,
7260                                    sanitized_src_stage, true, gmem);
7261          dst_flags |= vk2tu_access(dep_info->pImageMemoryBarriers[i].dstAccessMask,
7262                                    sanitized_dst_stage, true, gmem);
7263          srcStage |= sanitized_src_stage;
7264          dstStage |= sanitized_dst_stage;
7265       }
7266    }
7267 
7268    if (cmd->state.pass) {
7269       const VkPipelineStageFlags framebuffer_space_stages =
7270          VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT |
7271          VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
7272          VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT |
7273          VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
7274 
7275       /* We cannot have non-by-region "fb-space to fb-space" barriers.
7276        *
7277        * From the Vulkan 1.2.185 spec, section 7.6.1 "Subpass Self-dependency":
7278        *
7279        *    If the source and destination stage masks both include
7280        *    framebuffer-space stages, then dependencyFlags must include
7281        *    VK_DEPENDENCY_BY_REGION_BIT.
7282        *    [...]
7283        *    Each of the synchronization scopes and access scopes of a
7284        *    vkCmdPipelineBarrier2 or vkCmdPipelineBarrier command inside
7285        *    a render pass instance must be a subset of the scopes of one of
7286        *    the self-dependencies for the current subpass.
7287        *
7288        *    If the self-dependency has VK_DEPENDENCY_BY_REGION_BIT or
7289        *    VK_DEPENDENCY_VIEW_LOCAL_BIT set, then so must the pipeline barrier.
7290        *
7291        * By-region barriers are ok for gmem. All other barriers would involve
7292        * vtx stages which are NOT ok for gmem rendering.
7293        * See dep_invalid_for_gmem().
7294        */
7295       if ((srcStage & ~framebuffer_space_stages) ||
7296           (dstStage & ~framebuffer_space_stages)) {
7297          cmd->state.rp.disable_gmem = true;
7298       }
7299    }
7300 
7301    struct tu_cache_state *cache =
7302       cmd->state.pass  ? &cmd->state.renderpass_cache : &cmd->state.cache;
7303 
7304    /* a750 has a HW bug where writing a UBWC compressed image with a compute
7305     * shader followed by reading it as a texture (or readonly image) requires
7306     * a CACHE_CLEAN event. Some notes about this bug:
7307     * - It only happens after a blit happens.
7308     * - It's fast-clear related, it happens when the image is fast cleared
7309     *   before the write and the value read is (incorrectly) the fast clear
7310     *   color.
7311     * - CACHE_FLUSH is supposed to be the same as CACHE_CLEAN +
7312     *   CACHE_INVALIDATE, but it doesn't work whereas CACHE_CLEAN +
7313     *   CACHE_INVALIDATE does.
7314     *
7315     * The srcAccess can be replaced by a OpMemoryBarrier(MakeAvailable), so
7316     * we can't use that to insert the flush. Instead we use the shader source
7317     * stage.
7318     */
7319    if (cmd->device->physical_device->info->a7xx.ubwc_coherency_quirk &&
7320        (srcStage &
7321         (VK_PIPELINE_STAGE_2_VERTEX_SHADER_BIT |
7322          VK_PIPELINE_STAGE_2_TESSELLATION_CONTROL_SHADER_BIT |
7323          VK_PIPELINE_STAGE_2_TESSELLATION_EVALUATION_SHADER_BIT |
7324          VK_PIPELINE_STAGE_2_GEOMETRY_SHADER_BIT |
7325          VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT |
7326          VK_PIPELINE_STAGE_2_COMPUTE_SHADER_BIT |
7327          VK_PIPELINE_STAGE_2_ALL_GRAPHICS_BIT |
7328          VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT))) {
7329       cache->flush_bits |= TU_CMD_FLAG_CACHE_CLEAN;
7330       cache->pending_flush_bits &= ~TU_CMD_FLAG_CACHE_CLEAN;
7331    }
7332 
7333    tu_flush_for_access(cache, src_flags, dst_flags);
7334 
7335    enum tu_stage src_stage = vk2tu_src_stage(srcStage);
7336    enum tu_stage dst_stage = vk2tu_dst_stage(dstStage);
7337    tu_flush_for_stage(cache, src_stage, dst_stage);
7338 }
7339 
7340 VKAPI_ATTR void VKAPI_CALL
tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,const VkDependencyInfo * pDependencyInfo)7341 tu_CmdPipelineBarrier2(VkCommandBuffer commandBuffer,
7342                        const VkDependencyInfo *pDependencyInfo)
7343 {
7344    VK_FROM_HANDLE(tu_cmd_buffer, cmd_buffer, commandBuffer);
7345 
7346    tu_barrier(cmd_buffer, 1, pDependencyInfo);
7347 }
7348 
7349 template <chip CHIP>
7350 void
tu_write_event(struct tu_cmd_buffer * cmd,struct tu_event * event,VkPipelineStageFlags2 stageMask,unsigned value)7351 tu_write_event(struct tu_cmd_buffer *cmd, struct tu_event *event,
7352                VkPipelineStageFlags2 stageMask, unsigned value)
7353 {
7354    struct tu_cs *cs = &cmd->cs;
7355 
7356    /* vkCmdSetEvent/vkCmdResetEvent cannot be called inside a render pass */
7357    assert(!cmd->state.pass);
7358 
7359    tu_emit_cache_flush<CHIP>(cmd);
7360 
7361    /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
7362     * read by the CP, so the draw indirect stage counts as top-of-pipe too.
7363     */
7364    VkPipelineStageFlags2 top_of_pipe_flags =
7365       VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
7366       VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
7367 
7368    if (!(stageMask & ~top_of_pipe_flags)) {
7369       tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
7370       tu_cs_emit_qw(cs, event->bo->iova); /* ADDR_LO/HI */
7371       tu_cs_emit(cs, value);
7372    } else {
7373       /* Use a RB_DONE_TS event to wait for everything to complete. */
7374       if (CHIP == A6XX) {
7375          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
7376          tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
7377       } else {
7378          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
7379          tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
7380                                           .write_src = EV_WRITE_USER_32B,
7381                                           .write_dst = EV_DST_RAM,
7382                                           .write_enabled = true).value);
7383       }
7384 
7385       tu_cs_emit_qw(cs, event->bo->iova);
7386       tu_cs_emit(cs, value);
7387    }
7388 }
7389 TU_GENX(tu_write_event);
7390 
7391 template <chip CHIP>
7392 VKAPI_ATTR void VKAPI_CALL
tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,const VkConditionalRenderingBeginInfoEXT * pConditionalRenderingBegin)7393 tu_CmdBeginConditionalRenderingEXT(VkCommandBuffer commandBuffer,
7394                                    const VkConditionalRenderingBeginInfoEXT *pConditionalRenderingBegin)
7395 {
7396    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
7397 
7398    cmd->state.predication_active = true;
7399 
7400    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
7401 
7402    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
7403    tu_cs_emit(cs, 1);
7404 
7405    /* Wait for any writes to the predicate to land */
7406    if (cmd->state.pass)
7407       tu_emit_cache_flush_renderpass<CHIP>(cmd);
7408    else
7409       tu_emit_cache_flush<CHIP>(cmd);
7410 
7411    VK_FROM_HANDLE(tu_buffer, buf, pConditionalRenderingBegin->buffer);
7412    uint64_t iova = buf->iova + pConditionalRenderingBegin->offset;
7413 
7414    /* qcom doesn't support 32-bit reference values, only 64-bit, but Vulkan
7415     * mandates 32-bit comparisons. Our workaround is to copy the the reference
7416     * value to the low 32-bits of a location where the high 32 bits are known
7417     * to be 0 and then compare that.
7418     */
7419    tu_cs_emit_pkt7(cs, CP_MEM_TO_MEM, 5);
7420    tu_cs_emit(cs, 0);
7421    tu_cs_emit_qw(cs, global_iova(cmd, predicate));
7422    tu_cs_emit_qw(cs, iova);
7423 
7424    tu_cs_emit_pkt7(cs, CP_WAIT_MEM_WRITES, 0);
7425    tu_cs_emit_pkt7(cs, CP_WAIT_FOR_ME, 0);
7426 
7427    bool inv = pConditionalRenderingBegin->flags & VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
7428    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_SET, 3);
7429    tu_cs_emit(cs, CP_DRAW_PRED_SET_0_SRC(PRED_SRC_MEM) |
7430                   CP_DRAW_PRED_SET_0_TEST(inv ? EQ_0_PASS : NE_0_PASS));
7431    tu_cs_emit_qw(cs, global_iova(cmd, predicate));
7432 }
7433 TU_GENX(tu_CmdBeginConditionalRenderingEXT);
7434 
7435 VKAPI_ATTR void VKAPI_CALL
tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)7436 tu_CmdEndConditionalRenderingEXT(VkCommandBuffer commandBuffer)
7437 {
7438    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
7439 
7440    cmd->state.predication_active = false;
7441 
7442    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
7443 
7444    tu_cs_emit_pkt7(cs, CP_DRAW_PRED_ENABLE_GLOBAL, 1);
7445    tu_cs_emit(cs, 0);
7446 }
7447 
7448 template <chip CHIP>
7449 void
tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,VkPipelineStageFlagBits2 pipelineStage,VkBuffer dstBuffer,VkDeviceSize dstOffset,uint32_t marker)7450 tu_CmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer,
7451                             VkPipelineStageFlagBits2 pipelineStage,
7452                             VkBuffer dstBuffer,
7453                             VkDeviceSize dstOffset,
7454                             uint32_t marker)
7455 {
7456    /* Almost the same as tu_write_event, but also allowed in renderpass */
7457    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
7458    VK_FROM_HANDLE(tu_buffer, buffer, dstBuffer);
7459 
7460    uint64_t va = buffer->iova + dstOffset;
7461 
7462    struct tu_cs *cs = cmd->state.pass ? &cmd->draw_cs : &cmd->cs;
7463    struct tu_cache_state *cache =
7464       cmd->state.pass ? &cmd->state.renderpass_cache : &cmd->state.cache;
7465 
7466    /* From the Vulkan 1.2.203 spec:
7467     *
7468     *    The access scope for buffer marker writes falls under
7469     *    the VK_ACCESS_TRANSFER_WRITE_BIT, and the pipeline stages for
7470     *    identifying the synchronization scope must include both pipelineStage
7471     *    and VK_PIPELINE_STAGE_TRANSFER_BIT.
7472     *
7473     * Transfer operations use CCU however here we write via CP.
7474     * Flush CCU in order to make the results of previous transfer
7475     * operation visible to CP.
7476     */
7477    tu_flush_for_access(cache, TU_ACCESS_NONE, TU_ACCESS_SYSMEM_WRITE);
7478 
7479    /* Flags that only require a top-of-pipe event. DrawIndirect parameters are
7480     * read by the CP, so the draw indirect stage counts as top-of-pipe too.
7481     */
7482    VkPipelineStageFlags2 top_of_pipe_flags =
7483       VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT |
7484       VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT;
7485 
7486    bool is_top_of_pipe = !(pipelineStage & ~top_of_pipe_flags);
7487 
7488    /* We have to WFI only if we flushed CCU here and are using CP_MEM_WRITE.
7489     * Otherwise:
7490     * - We do CP_EVENT_WRITE(RB_DONE_TS) which should wait for flushes;
7491     * - There was a barrier to synchronize other writes with WriteBufferMarkerAMD
7492     *   and they had to include our pipelineStage which forces the WFI.
7493     */
7494    if (cache->flush_bits && is_top_of_pipe) {
7495       cache->flush_bits |= TU_CMD_FLAG_WAIT_FOR_IDLE;
7496    }
7497 
7498    if (cmd->state.pass) {
7499       tu_emit_cache_flush_renderpass<CHIP>(cmd);
7500    } else {
7501       tu_emit_cache_flush<CHIP>(cmd);
7502    }
7503 
7504    if (is_top_of_pipe) {
7505       tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 3);
7506       tu_cs_emit_qw(cs, va); /* ADDR_LO/HI */
7507       tu_cs_emit(cs, marker);
7508    } else {
7509       /* Use a RB_DONE_TS event to wait for everything to complete. */
7510       if (CHIP == A6XX) {
7511          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE, 4);
7512          tu_cs_emit(cs, CP_EVENT_WRITE_0_EVENT(RB_DONE_TS));
7513       } else {
7514          tu_cs_emit_pkt7(cs, CP_EVENT_WRITE7, 4);
7515          tu_cs_emit(cs, CP_EVENT_WRITE7_0(.event = RB_DONE_TS,
7516                                           .write_src = EV_WRITE_USER_32B,
7517                                           .write_dst = EV_DST_RAM,
7518                                           .write_enabled = true).value);
7519       }
7520       tu_cs_emit_qw(cs, va);
7521       tu_cs_emit(cs, marker);
7522    }
7523 
7524    /* Make sure the result of this write is visible to others. */
7525    tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, TU_ACCESS_NONE);
7526 }
7527 TU_GENX(tu_CmdWriteBufferMarker2AMD);
7528 
7529 void
tu_write_buffer_cp(VkCommandBuffer commandBuffer,VkDeviceAddress addr,void * data,uint32_t size)7530 tu_write_buffer_cp(VkCommandBuffer commandBuffer,
7531                    VkDeviceAddress addr,
7532                    void *data, uint32_t size)
7533 {
7534    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
7535 
7536    TU_CALLX(cmd->device, tu_emit_cache_flush)(cmd);
7537 
7538    struct tu_cs *cs = &cmd->cs;
7539 
7540    tu_cs_emit_pkt7(cs, CP_MEM_WRITE, 2 + size / 4);
7541    tu_cs_emit_qw(cs, addr);
7542    tu_cs_emit_array(cs, (uint32_t *)data, size / 4);
7543 }
7544 
7545 void
tu_flush_buffer_write_cp(VkCommandBuffer commandBuffer)7546 tu_flush_buffer_write_cp(VkCommandBuffer commandBuffer)
7547 {
7548    VK_FROM_HANDLE(tu_cmd_buffer, cmd, commandBuffer);
7549 
7550    struct tu_cache_state *cache = &cmd->state.cache;
7551    tu_flush_for_access(cache, TU_ACCESS_CP_WRITE, (enum tu_cmd_access_mask)0);
7552 }
7553 
7554