• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  * SPDX-License-Identifier: MIT
5  */
6 
7 /**
8  * @file
9  *
10  * We use the bindless descriptor model, which maps fairly closely to how
11  * Vulkan descriptor sets work. The two exceptions are input attachments and
12  * dynamic descriptors, which have to be patched when recording command
13  * buffers. We reserve an extra descriptor set for these. This descriptor set
14  * contains all the input attachments in the pipeline, in order, and then all
15  * the dynamic descriptors. The dynamic descriptors are stored in the CPU-side
16  * datastructure for each tu_descriptor_set, and then combined into one big
17  * descriptor set at CmdBindDescriptors time/draw time.
18  */
19 
20 #include "tu_descriptor_set.h"
21 
22 #include <fcntl.h>
23 
24 #include "vulkan/vulkan_android.h"
25 
26 #include "util/mesa-sha1.h"
27 #include "vk_descriptors.h"
28 #include "vk_util.h"
29 #include "vk_acceleration_structure.h"
30 
31 #include "tu_buffer.h"
32 #include "tu_buffer_view.h"
33 #include "tu_device.h"
34 #include "tu_image.h"
35 #include "tu_formats.h"
36 #include "tu_rmv.h"
37 #include "bvh/tu_build_interface.h"
38 
39 static inline uint8_t *
pool_base(struct tu_descriptor_pool * pool)40 pool_base(struct tu_descriptor_pool *pool)
41 {
42    return pool->host_bo ?: (uint8_t *) pool->bo->map;
43 }
44 
45 static uint32_t
descriptor_size(struct tu_device * dev,const VkDescriptorSetLayoutBinding * binding,VkDescriptorType type)46 descriptor_size(struct tu_device *dev,
47                 const VkDescriptorSetLayoutBinding *binding,
48                 VkDescriptorType type)
49 {
50    switch (type) {
51    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
52       /* We make offsets and sizes all 16 dwords, to match how the hardware
53        * interprets indices passed to sample/load/store instructions in
54        * multiples of 16 dwords.  This means that "normal" descriptors are all
55        * of size 16, with padding for smaller descriptors like uniform storage
56        * descriptors which are less than 16 dwords. However combined images
57        * and samplers are actually two descriptors, so they have size 2.
58        */
59       return A6XX_TEX_CONST_DWORDS * 4 * 2;
60    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
61    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
62       /* isam.v allows using a single 16-bit descriptor for both 16-bit and
63        * 32-bit loads. If not available but 16-bit storage is still supported,
64        * two separate descriptors are required.
65        */
66       return A6XX_TEX_CONST_DWORDS * 4 * (1 +
67          COND(dev->physical_device->info->a6xx.storage_16bit &&
68               !dev->physical_device->info->a6xx.has_isam_v, 1) +
69          COND(dev->physical_device->info->a7xx.storage_8bit, 1));
70    case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
71       return binding->descriptorCount;
72    case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR:
73    default:
74       return A6XX_TEX_CONST_DWORDS * 4;
75    }
76 }
77 
78 static uint32_t
mutable_descriptor_size(struct tu_device * dev,const VkMutableDescriptorTypeListEXT * list)79 mutable_descriptor_size(struct tu_device *dev,
80                         const VkMutableDescriptorTypeListEXT *list)
81 {
82    uint32_t max_size = 0;
83 
84    for (uint32_t i = 0; i < list->descriptorTypeCount; i++) {
85       uint32_t size = descriptor_size(dev, NULL, list->pDescriptorTypes[i]);
86       max_size = MAX2(max_size, size);
87    }
88 
89    return max_size;
90 }
91 
92 static void
tu_descriptor_set_layout_destroy(struct vk_device * vk_dev,struct vk_descriptor_set_layout * vk_layout)93 tu_descriptor_set_layout_destroy(struct vk_device *vk_dev,
94                                  struct vk_descriptor_set_layout *vk_layout)
95 {
96    struct tu_device *dev = container_of(vk_dev, struct tu_device, vk);
97    struct tu_descriptor_set_layout *layout =
98       container_of(vk_layout, struct tu_descriptor_set_layout, vk);
99 
100    if (layout->embedded_samplers)
101       tu_bo_finish(dev, layout->embedded_samplers);
102    vk_descriptor_set_layout_destroy(vk_dev, vk_layout);
103 }
104 
105 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorSetLayout(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorSetLayout * pSetLayout)106 tu_CreateDescriptorSetLayout(
107    VkDevice _device,
108    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
109    const VkAllocationCallbacks *pAllocator,
110    VkDescriptorSetLayout *pSetLayout)
111 {
112    VK_FROM_HANDLE(tu_device, device, _device);
113    struct tu_descriptor_set_layout *set_layout;
114 
115    assert(pCreateInfo->sType ==
116           VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
117    const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
118       vk_find_struct_const(
119          pCreateInfo->pNext,
120          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
121    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
122       vk_find_struct_const(
123          pCreateInfo->pNext,
124          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
125 
126    uint32_t num_bindings = 0;
127    uint32_t immutable_sampler_count = 0;
128    uint32_t ycbcr_sampler_count = 0;
129    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
130       num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1);
131       if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
132            pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
133            pCreateInfo->pBindings[j].pImmutableSamplers) {
134          immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
135 
136          bool has_ycbcr_sampler = false;
137          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
138             if (tu_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->vk.ycbcr_conversion)
139                has_ycbcr_sampler = true;
140          }
141 
142          if (has_ycbcr_sampler)
143             ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount;
144       }
145    }
146 
147    uint32_t samplers_offset =
148       offsetof_arr(struct tu_descriptor_set_layout, binding, num_bindings);
149 
150    /* note: only need to store TEX_SAMP_DWORDS for immutable samples,
151     * but using struct tu_sampler makes things simpler */
152    uint32_t size = samplers_offset +
153       immutable_sampler_count * sizeof(struct tu_sampler) +
154       ycbcr_sampler_count * sizeof(struct vk_ycbcr_conversion);
155 
156    set_layout =
157       (struct tu_descriptor_set_layout *) vk_descriptor_set_layout_zalloc(
158          &device->vk, size);
159    if (!set_layout)
160       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
161 
162    set_layout->flags = pCreateInfo->flags;
163    set_layout->vk.destroy = tu_descriptor_set_layout_destroy;
164 
165    /* We just allocate all the immutable samplers at the end of the struct */
166    struct tu_sampler *samplers =
167       (struct tu_sampler *) &set_layout->binding[num_bindings];
168    struct vk_ycbcr_conversion_state *ycbcr_samplers =
169       (struct vk_ycbcr_conversion_state *) &samplers[immutable_sampler_count];
170 
171    VkDescriptorSetLayoutBinding *bindings = NULL;
172    VkResult result = vk_create_sorted_bindings(
173       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
174    if (result != VK_SUCCESS) {
175       vk_object_free(&device->vk, pAllocator, set_layout);
176       return vk_error(device, result);
177    }
178 
179    set_layout->binding_count = num_bindings;
180    set_layout->shader_stages = 0;
181    set_layout->has_immutable_samplers = false;
182    set_layout->has_inline_uniforms = false;
183    set_layout->size = 0;
184 
185    uint32_t dynamic_offset_size = 0;
186 
187    for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) {
188       const VkDescriptorSetLayoutBinding *binding = bindings + j;
189       uint32_t b = binding->binding;
190 
191       set_layout->binding[b].type = binding->descriptorType;
192       set_layout->binding[b].array_size =
193          binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK ?
194          1 : binding->descriptorCount;
195       set_layout->binding[b].offset = set_layout->size;
196       set_layout->binding[b].dynamic_offset_offset = dynamic_offset_size;
197       set_layout->binding[b].shader_stages = binding->stageFlags;
198 
199       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
200          /* For mutable descriptor types we must allocate a size that fits the
201           * largest descriptor type that the binding can mutate to.
202           */
203          set_layout->binding[b].size =
204             mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[j]);
205       } else {
206          set_layout->binding[b].size =
207             descriptor_size(device, binding, binding->descriptorType);
208       }
209 
210       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK)
211          set_layout->has_inline_uniforms = true;
212 
213       if (variable_flags && binding->binding < variable_flags->bindingCount &&
214           (variable_flags->pBindingFlags[binding->binding] &
215            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
216          assert(!binding->pImmutableSamplers); /* Terribly ill defined  how
217                                                   many samplers are valid */
218          assert(binding->binding == num_bindings - 1);
219 
220          set_layout->has_variable_descriptors = true;
221       }
222 
223       if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
224            binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) &&
225           binding->pImmutableSamplers) {
226          set_layout->binding[b].immutable_samplers_offset = samplers_offset;
227          set_layout->has_immutable_samplers = true;
228 
229          for (uint32_t i = 0; i < binding->descriptorCount; i++)
230             samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]);
231 
232          samplers += binding->descriptorCount;
233          samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount;
234 
235          bool has_ycbcr_sampler = false;
236          for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) {
237             if (tu_sampler_from_handle(binding->pImmutableSamplers[i])->vk.ycbcr_conversion)
238                has_ycbcr_sampler = true;
239          }
240 
241          if (has_ycbcr_sampler) {
242             set_layout->binding[b].ycbcr_samplers_offset =
243                (const char*)ycbcr_samplers - (const char*)set_layout;
244             for (uint32_t i = 0; i < binding->descriptorCount; i++) {
245                struct tu_sampler *sampler = tu_sampler_from_handle(binding->pImmutableSamplers[i]);
246                if (sampler->vk.ycbcr_conversion)
247                   ycbcr_samplers[i] = sampler->vk.ycbcr_conversion->state;
248                else
249                   ycbcr_samplers[i].ycbcr_model = VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY;
250             }
251             ycbcr_samplers += binding->descriptorCount;
252          } else {
253             set_layout->binding[b].ycbcr_samplers_offset = 0;
254          }
255       }
256 
257       uint32_t size =
258          ALIGN_POT(set_layout->binding[b].array_size * set_layout->binding[b].size, 4 * A6XX_TEX_CONST_DWORDS);
259       if (vk_descriptor_type_is_dynamic(binding->descriptorType)) {
260          dynamic_offset_size += size;
261       } else {
262          set_layout->size += size;
263       }
264 
265       set_layout->shader_stages |= binding->stageFlags;
266    }
267 
268    free(bindings);
269 
270    set_layout->dynamic_offset_size = dynamic_offset_size;
271 
272    if (pCreateInfo->flags &
273        VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT) {
274       result = tu_bo_init_new(device, &set_layout->vk.base,
275                               &set_layout->embedded_samplers, set_layout->size,
276                               (enum tu_bo_alloc_flags) (TU_BO_ALLOC_ALLOW_DUMP |
277                                                         TU_BO_ALLOC_INTERNAL_RESOURCE),
278                               "embedded samplers");
279       if (result != VK_SUCCESS) {
280          vk_object_free(&device->vk, pAllocator, set_layout);
281          return vk_error(device, result);
282       }
283 
284       result = tu_bo_map(device, set_layout->embedded_samplers, NULL);
285       if (result != VK_SUCCESS) {
286          tu_bo_finish(device, set_layout->embedded_samplers);
287          vk_object_free(&device->vk, pAllocator, set_layout);
288          return vk_error(device, result);
289       }
290 
291       char *map = (char *) set_layout->embedded_samplers->map;
292       for (unsigned i = 0; i < set_layout->binding_count; i++) {
293          if (!set_layout->binding[i].immutable_samplers_offset)
294             continue;
295 
296          unsigned offset = set_layout->binding[i].offset;
297          const struct tu_sampler *sampler =
298             (const struct tu_sampler *)((const char *)set_layout +
299                                set_layout->binding[i].immutable_samplers_offset);
300          assert(set_layout->binding[i].array_size == 1);
301          memcpy(map + offset, sampler->descriptor,
302                 sizeof(sampler->descriptor));
303       }
304    }
305 
306    *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout);
307 
308    return VK_SUCCESS;
309 }
310 
311 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSupport(VkDevice _device,const VkDescriptorSetLayoutCreateInfo * pCreateInfo,VkDescriptorSetLayoutSupport * pSupport)312 tu_GetDescriptorSetLayoutSupport(
313    VkDevice _device,
314    const VkDescriptorSetLayoutCreateInfo *pCreateInfo,
315    VkDescriptorSetLayoutSupport *pSupport)
316 {
317    VK_FROM_HANDLE(tu_device, device, _device);
318 
319    VkDescriptorSetLayoutBinding *bindings = NULL;
320    VkResult result = vk_create_sorted_bindings(
321       pCreateInfo->pBindings, pCreateInfo->bindingCount, &bindings);
322    if (result != VK_SUCCESS) {
323       pSupport->supported = false;
324       return;
325    }
326 
327    const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags =
328       vk_find_struct_const(
329          pCreateInfo->pNext,
330          DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO);
331    VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count =
332       vk_find_struct(
333          pSupport->pNext,
334          DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT);
335    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
336       vk_find_struct_const(
337          pCreateInfo->pNext,
338          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
339 
340    if (variable_count) {
341       variable_count->maxVariableDescriptorCount = 0;
342    }
343 
344    bool supported = true;
345    uint64_t size = 0;
346    for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) {
347       const VkDescriptorSetLayoutBinding *binding = bindings + i;
348 
349       uint64_t descriptor_sz;
350 
351       if (vk_descriptor_type_is_dynamic(binding->descriptorType)) {
352          descriptor_sz = 0;
353       } else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_MUTABLE_EXT) {
354          const VkMutableDescriptorTypeListEXT *list =
355             &mutable_info->pMutableDescriptorTypeLists[i];
356 
357          for (uint32_t j = 0; j < list->descriptorTypeCount; j++) {
358             /* Don't support the input attachement and combined image sampler type
359              * for mutable descriptors */
360             if (list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER ||
361                 list->pDescriptorTypes[j] == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
362                supported = false;
363                goto out;
364             }
365          }
366 
367          descriptor_sz =
368             mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]);
369       } else {
370          descriptor_sz = descriptor_size(device, binding, binding->descriptorType);
371       }
372       uint64_t descriptor_alignment = 4 * A6XX_TEX_CONST_DWORDS;
373 
374       if (size && !ALIGN_POT(size, descriptor_alignment)) {
375          supported = false;
376       }
377       size = ALIGN_POT(size, descriptor_alignment);
378 
379       uint64_t max_count = MAX_SET_SIZE;
380       unsigned descriptor_count = binding->descriptorCount;
381       if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
382          max_count = MAX_SET_SIZE - size;
383          descriptor_count = descriptor_sz;
384          descriptor_sz = 1;
385       } else if (descriptor_sz) {
386          max_count = (MAX_SET_SIZE - size) / descriptor_sz;
387       }
388 
389       if (max_count < descriptor_count) {
390          supported = false;
391       }
392 
393       if (variable_flags && binding->binding < variable_flags->bindingCount &&
394           variable_count &&
395           (variable_flags->pBindingFlags[binding->binding] &
396            VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT)) {
397          variable_count->maxVariableDescriptorCount =
398             MIN2(UINT32_MAX, max_count);
399       }
400       size += descriptor_count * descriptor_sz;
401    }
402 
403 out:
404    free(bindings);
405 
406    pSupport->supported = supported;
407 }
408 
409 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutSizeEXT(VkDevice _device,VkDescriptorSetLayout _layout,VkDeviceSize * pLayoutSizeInBytes)410 tu_GetDescriptorSetLayoutSizeEXT(
411    VkDevice _device,
412    VkDescriptorSetLayout _layout,
413    VkDeviceSize *pLayoutSizeInBytes)
414 {
415    VK_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
416 
417    *pLayoutSizeInBytes = layout->size;
418 }
419 
420 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorSetLayoutBindingOffsetEXT(VkDevice _device,VkDescriptorSetLayout _layout,uint32_t binding,VkDeviceSize * pOffset)421 tu_GetDescriptorSetLayoutBindingOffsetEXT(
422    VkDevice _device,
423    VkDescriptorSetLayout _layout,
424    uint32_t binding,
425    VkDeviceSize *pOffset)
426 {
427    VK_FROM_HANDLE(tu_descriptor_set_layout, layout, _layout);
428 
429    assert(binding < layout->binding_count);
430    *pOffset = layout->binding[binding].offset;
431 }
432 
433 /* Note: we must hash any values used in tu_lower_io(). */
434 
435 #define SHA1_UPDATE_VALUE(ctx, x) _mesa_sha1_update(ctx, &(x), sizeof(x));
436 
437 static void
sha1_update_ycbcr_sampler(struct mesa_sha1 * ctx,const struct vk_ycbcr_conversion_state * sampler)438 sha1_update_ycbcr_sampler(struct mesa_sha1 *ctx,
439                           const struct vk_ycbcr_conversion_state *sampler)
440 {
441    SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_model);
442    SHA1_UPDATE_VALUE(ctx, sampler->ycbcr_range);
443    SHA1_UPDATE_VALUE(ctx, sampler->format);
444 }
445 
446 static void
sha1_update_descriptor_set_binding_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_binding_layout * layout,const struct tu_descriptor_set_layout * set_layout)447 sha1_update_descriptor_set_binding_layout(struct mesa_sha1 *ctx,
448    const struct tu_descriptor_set_binding_layout *layout,
449    const struct tu_descriptor_set_layout *set_layout)
450 {
451    SHA1_UPDATE_VALUE(ctx, layout->type);
452    SHA1_UPDATE_VALUE(ctx, layout->offset);
453    SHA1_UPDATE_VALUE(ctx, layout->size);
454    SHA1_UPDATE_VALUE(ctx, layout->array_size);
455    SHA1_UPDATE_VALUE(ctx, layout->dynamic_offset_offset);
456    SHA1_UPDATE_VALUE(ctx, layout->immutable_samplers_offset);
457 
458    const struct vk_ycbcr_conversion_state *ycbcr_samplers =
459       tu_immutable_ycbcr_samplers(set_layout, layout);
460 
461    if (ycbcr_samplers) {
462       for (unsigned i = 0; i < layout->array_size; i++)
463          sha1_update_ycbcr_sampler(ctx, ycbcr_samplers + i);
464    }
465 }
466 
467 
468 static void
sha1_update_descriptor_set_layout(struct mesa_sha1 * ctx,const struct tu_descriptor_set_layout * layout)469 sha1_update_descriptor_set_layout(struct mesa_sha1 *ctx,
470                                   const struct tu_descriptor_set_layout *layout)
471 {
472    SHA1_UPDATE_VALUE(ctx, layout->has_variable_descriptors);
473 
474    for (uint16_t i = 0; i < layout->binding_count; i++)
475       sha1_update_descriptor_set_binding_layout(ctx, &layout->binding[i],
476                                                 layout);
477 }
478 
479 /*
480  * Pipeline layouts.  These have nothing to do with the pipeline.  They are
481  * just multiple descriptor set layouts pasted together.
482  */
483 
484 void
tu_pipeline_layout_init(struct tu_pipeline_layout * layout)485 tu_pipeline_layout_init(struct tu_pipeline_layout *layout)
486 {
487    struct mesa_sha1 ctx;
488    _mesa_sha1_init(&ctx);
489    for (unsigned s = 0; s < layout->num_sets; s++) {
490       if (layout->set[s].layout)
491          sha1_update_descriptor_set_layout(&ctx, layout->set[s].layout);
492    }
493    _mesa_sha1_update(&ctx, &layout->num_sets, sizeof(layout->num_sets));
494    _mesa_sha1_update(&ctx, &layout->push_constant_size,
495                      sizeof(layout->push_constant_size));
496    _mesa_sha1_final(&ctx, layout->sha1);
497 }
498 
499 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreatePipelineLayout(VkDevice _device,const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout)500 tu_CreatePipelineLayout(VkDevice _device,
501                         const VkPipelineLayoutCreateInfo *pCreateInfo,
502                         const VkAllocationCallbacks *pAllocator,
503                         VkPipelineLayout *pPipelineLayout)
504 {
505    VK_FROM_HANDLE(tu_device, device, _device);
506    struct tu_pipeline_layout *layout;
507 
508    assert(pCreateInfo->sType ==
509           VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO);
510 
511    layout = (struct tu_pipeline_layout *) vk_object_alloc(
512       &device->vk, pAllocator, sizeof(*layout),
513       VK_OBJECT_TYPE_PIPELINE_LAYOUT);
514    if (layout == NULL)
515       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
516 
517    layout->num_sets = pCreateInfo->setLayoutCount;
518    for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) {
519       VK_FROM_HANDLE(tu_descriptor_set_layout, set_layout,
520                      pCreateInfo->pSetLayouts[set]);
521 
522       assert(set < device->physical_device->usable_sets);
523       layout->set[set].layout = set_layout;
524       if (set_layout)
525          vk_descriptor_set_layout_ref(&set_layout->vk);
526    }
527 
528    layout->push_constant_size = 0;
529 
530    for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) {
531       const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i;
532       layout->push_constant_size =
533          MAX2(layout->push_constant_size, range->offset + range->size);
534    }
535 
536    layout->push_constant_size = align(layout->push_constant_size, 16);
537 
538    tu_pipeline_layout_init(layout);
539 
540    *pPipelineLayout = tu_pipeline_layout_to_handle(layout);
541 
542    return VK_SUCCESS;
543 }
544 
545 VKAPI_ATTR void VKAPI_CALL
tu_DestroyPipelineLayout(VkDevice _device,VkPipelineLayout _pipelineLayout,const VkAllocationCallbacks * pAllocator)546 tu_DestroyPipelineLayout(VkDevice _device,
547                          VkPipelineLayout _pipelineLayout,
548                          const VkAllocationCallbacks *pAllocator)
549 {
550    VK_FROM_HANDLE(tu_device, device, _device);
551    VK_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout);
552 
553    if (!pipeline_layout)
554       return;
555 
556    for (uint32_t i = 0; i < pipeline_layout->num_sets; i++) {
557       if (pipeline_layout->set[i].layout)
558          vk_descriptor_set_layout_unref(&device->vk, &pipeline_layout->set[i].layout->vk);
559    }
560 
561    vk_object_free(&device->vk, pAllocator, pipeline_layout);
562 }
563 
564 #define EMPTY 1
565 
566 static VkResult
tu_descriptor_set_create(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set_layout * layout,uint32_t variable_count,struct tu_descriptor_set ** out_set)567 tu_descriptor_set_create(struct tu_device *device,
568             struct tu_descriptor_pool *pool,
569             struct tu_descriptor_set_layout *layout,
570             uint32_t variable_count,
571             struct tu_descriptor_set **out_set)
572 {
573    struct tu_descriptor_set *set;
574    unsigned dynamic_offset = sizeof(struct tu_descriptor_set);
575    unsigned mem_size = dynamic_offset + layout->dynamic_offset_size;
576 
577    if (pool->host_memory_base) {
578       if (pool->host_memory_end - pool->host_memory_ptr < mem_size)
579          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
580 
581       set = (struct tu_descriptor_set*)pool->host_memory_ptr;
582       pool->host_memory_ptr += mem_size;
583    } else {
584       set = (struct tu_descriptor_set *) vk_alloc2(
585          &device->vk.alloc, NULL, mem_size, 8,
586          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
587 
588       if (!set)
589          return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
590    }
591 
592    memset(set, 0, mem_size);
593    vk_object_base_init(&device->vk, &set->base, VK_OBJECT_TYPE_DESCRIPTOR_SET);
594 
595    if (layout->dynamic_offset_size) {
596       set->dynamic_descriptors = (uint32_t *)((uint8_t*)set + dynamic_offset);
597    }
598 
599    set->layout = layout;
600    set->pool = pool;
601    uint32_t layout_size = layout->size;
602    if (layout->has_variable_descriptors) {
603       struct tu_descriptor_set_binding_layout *binding =
604          &layout->binding[layout->binding_count - 1];
605       if (binding->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
606          layout_size = binding->offset +
607             ALIGN(variable_count, 4 * A6XX_TEX_CONST_DWORDS);
608       } else {
609          uint32_t stride = binding->size;
610          layout_size = binding->offset + variable_count * stride;
611       }
612    }
613 
614    if (layout_size) {
615       set->size = layout_size;
616 
617       if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) {
618          vk_object_free(&device->vk, NULL, set);
619          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
620       }
621 
622       /* try to allocate linearly first, so that we don't spend
623        * time looking for gaps if the app only allocates &
624        * resets via the pool. */
625       if (pool->current_offset + layout_size <= pool->size) {
626          set->mapped_ptr = (uint32_t*)(pool_base(pool) + pool->current_offset);
627          set->va = pool->host_bo ? 0 : pool->bo->iova + pool->current_offset;
628 
629          if (!pool->host_memory_base) {
630             pool->entries[pool->entry_count].offset = pool->current_offset;
631             pool->entries[pool->entry_count].size = layout_size;
632             pool->entries[pool->entry_count].set = set;
633             pool->entry_count++;
634          }
635          pool->current_offset += layout_size;
636       } else if (!pool->host_memory_base) {
637          uint64_t offset = 0;
638          int index;
639 
640          for (index = 0; index < pool->entry_count; ++index) {
641             if (pool->entries[index].size == 0)
642                continue;
643 
644             if (pool->entries[index].offset - offset >= layout_size)
645                break;
646             offset = pool->entries[index].offset + pool->entries[index].size;
647          }
648 
649          if (pool->size - offset < layout_size) {
650             vk_object_free(&device->vk, NULL, set);
651             return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
652          }
653 
654          set->mapped_ptr = (uint32_t*)(pool_base(pool) + offset);
655          set->va = pool->host_bo ? 0 : pool->bo->iova + offset;
656 
657          memmove(&pool->entries[index + 1], &pool->entries[index],
658             sizeof(pool->entries[0]) * (pool->entry_count - index));
659          pool->entries[index].offset = offset;
660          pool->entries[index].size = layout_size;
661          pool->entries[index].set = set;
662          pool->entry_count++;
663       } else
664          return vk_error(device, VK_ERROR_OUT_OF_POOL_MEMORY);
665    } else if (!pool->host_memory_base) {
666       /* Also keep track of zero sized descriptor sets, such as descriptor
667        * sets with just dynamic descriptors, so that we can free the sets on
668        * vkDestroyDescriptorPool().
669        */
670       pool->entries[pool->entry_count].offset = ~0;
671       pool->entries[pool->entry_count].size = 0;
672       pool->entries[pool->entry_count].set = set;
673       pool->entry_count++;
674    }
675 
676    if (layout->has_immutable_samplers) {
677       for (unsigned i = 0; i < layout->binding_count; ++i) {
678          if (!layout->binding[i].immutable_samplers_offset)
679             continue;
680 
681          unsigned offset = layout->binding[i].offset / 4;
682          if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
683             offset += A6XX_TEX_CONST_DWORDS;
684 
685          const struct tu_sampler *samplers =
686             (const struct tu_sampler *)((const char *)layout +
687                                layout->binding[i].immutable_samplers_offset);
688          for (unsigned j = 0; j < layout->binding[i].array_size; ++j) {
689             memcpy(set->mapped_ptr + offset, samplers[j].descriptor,
690                    sizeof(samplers[j].descriptor));
691             offset += layout->binding[i].size / 4;
692          }
693       }
694    }
695 
696    vk_descriptor_set_layout_ref(&layout->vk);
697    list_addtail(&set->pool_link, &pool->desc_sets);
698 
699    *out_set = set;
700    return VK_SUCCESS;
701 }
702 
703 static void
tu_descriptor_set_destroy(struct tu_device * device,struct tu_descriptor_pool * pool,struct tu_descriptor_set * set,bool free_bo)704 tu_descriptor_set_destroy(struct tu_device *device,
705              struct tu_descriptor_pool *pool,
706              struct tu_descriptor_set *set,
707              bool free_bo)
708 {
709    assert(!pool->host_memory_base);
710 
711    if (free_bo && !pool->host_memory_base) {
712       for (int i = 0; i < pool->entry_count; ++i) {
713          if (pool->entries[i].set == set) {
714             if (set->size) {
715                ASSERTED uint32_t offset =
716                   (uint8_t *) set->mapped_ptr - pool_base(pool);
717                assert(pool->entries[i].offset == offset);
718             } else {
719                assert(pool->entries[i].size == 0);
720             }
721 
722             memmove(&pool->entries[i], &pool->entries[i+1],
723                sizeof(pool->entries[i]) * (pool->entry_count - i - 1));
724             --pool->entry_count;
725             break;
726          }
727       }
728    }
729 
730    vk_object_free(&device->vk, NULL, set);
731 }
732 
733 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorPool(VkDevice _device,const VkDescriptorPoolCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorPool * pDescriptorPool)734 tu_CreateDescriptorPool(VkDevice _device,
735                         const VkDescriptorPoolCreateInfo *pCreateInfo,
736                         const VkAllocationCallbacks *pAllocator,
737                         VkDescriptorPool *pDescriptorPool)
738 {
739    VK_FROM_HANDLE(tu_device, device, _device);
740    struct tu_descriptor_pool *pool;
741    uint64_t size = sizeof(struct tu_descriptor_pool);
742    uint64_t bo_size = 0, dynamic_size = 0;
743    VkResult ret;
744 
745    const VkMutableDescriptorTypeCreateInfoEXT *mutable_info =
746       vk_find_struct_const( pCreateInfo->pNext,
747          MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_EXT);
748 
749    const VkDescriptorPoolInlineUniformBlockCreateInfo *inline_info =
750       vk_find_struct_const(pCreateInfo->pNext,
751                            DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO);
752 
753    if (inline_info) {
754       /* We have to factor in the padding for each binding. The sizes are 4
755        * aligned but we have to align to 4 * A6XX_TEX_CONST_DWORDS bytes, and in
756        * the worst case each inline binding has a size of 4 bytes and we have
757        * to pad each one out.
758        */
759       bo_size += (4 * A6XX_TEX_CONST_DWORDS - 4) *
760          inline_info->maxInlineUniformBlockBindings;
761    }
762 
763    for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) {
764       const VkDescriptorPoolSize *pool_size = &pCreateInfo->pPoolSizes[i];
765 
766       switch (pool_size->type) {
767       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
768       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
769          dynamic_size += descriptor_size(device, NULL, pool_size->type) *
770             pool_size->descriptorCount;
771          break;
772       case VK_DESCRIPTOR_TYPE_MUTABLE_EXT:
773          if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount &&
774              mutable_info->pMutableDescriptorTypeLists[i].descriptorTypeCount > 0) {
775             bo_size +=
776                mutable_descriptor_size(device, &mutable_info->pMutableDescriptorTypeLists[i]) *
777                   pool_size->descriptorCount;
778          } else {
779             /* Allocate the maximum size possible. */
780             bo_size += 2 * A6XX_TEX_CONST_DWORDS * 4 *
781                   pool_size->descriptorCount;
782          }
783          break;
784       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK:
785          bo_size += pool_size->descriptorCount;
786          break;
787       default:
788          bo_size += descriptor_size(device, NULL, pool_size->type) *
789                               pool_size->descriptorCount;
790          break;
791       }
792    }
793 
794    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
795       uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set);
796       host_size += dynamic_size;
797       size += host_size;
798    } else {
799       size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets;
800    }
801 
802    pool = (struct tu_descriptor_pool *) vk_object_zalloc(
803       &device->vk, pAllocator, size, VK_OBJECT_TYPE_DESCRIPTOR_POOL);
804    if (!pool)
805       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
806 
807    if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) {
808       pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool);
809       pool->host_memory_ptr = pool->host_memory_base;
810       pool->host_memory_end = (uint8_t*)pool + size;
811    }
812 
813    if (bo_size) {
814       if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT)) {
815          ret = tu_bo_init_new(device, &pool->base, &pool->bo, bo_size,
816                               TU_BO_ALLOC_ALLOW_DUMP, "descriptor pool");
817          if (ret)
818             goto fail_alloc;
819 
820          ret = tu_bo_map(device, pool->bo, NULL);
821          if (ret)
822             goto fail_map;
823       } else {
824          pool->host_bo =
825             (uint8_t *) vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8,
826                                   VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
827          if (!pool->host_bo) {
828             ret = VK_ERROR_OUT_OF_HOST_MEMORY;
829             goto fail_alloc;
830          }
831       }
832    }
833    pool->size = bo_size;
834    pool->max_entry_count = pCreateInfo->maxSets;
835 
836    list_inithead(&pool->desc_sets);
837 
838    TU_RMV(descriptor_pool_create, device, pCreateInfo, pool);
839 
840    *pDescriptorPool = tu_descriptor_pool_to_handle(pool);
841    return VK_SUCCESS;
842 
843 fail_map:
844    tu_bo_finish(device, pool->bo);
845 fail_alloc:
846    vk_object_free(&device->vk, pAllocator, pool);
847    return ret;
848 }
849 
850 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorPool(VkDevice _device,VkDescriptorPool _pool,const VkAllocationCallbacks * pAllocator)851 tu_DestroyDescriptorPool(VkDevice _device,
852                          VkDescriptorPool _pool,
853                          const VkAllocationCallbacks *pAllocator)
854 {
855    VK_FROM_HANDLE(tu_device, device, _device);
856    VK_FROM_HANDLE(tu_descriptor_pool, pool, _pool);
857 
858    if (!pool)
859       return;
860 
861    TU_RMV(resource_destroy, device, pool);
862 
863    list_for_each_entry_safe(struct tu_descriptor_set, set,
864                             &pool->desc_sets, pool_link) {
865       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
866    }
867 
868    if (!pool->host_memory_base) {
869       for(int i = 0; i < pool->entry_count; ++i) {
870          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
871       }
872    }
873 
874    if (pool->size) {
875       if (pool->host_bo)
876          vk_free2(&device->vk.alloc, pAllocator, pool->host_bo);
877       else
878          tu_bo_finish(device, pool->bo);
879    }
880 
881    vk_object_free(&device->vk, pAllocator, pool);
882 }
883 
884 VKAPI_ATTR VkResult VKAPI_CALL
tu_ResetDescriptorPool(VkDevice _device,VkDescriptorPool descriptorPool,VkDescriptorPoolResetFlags flags)885 tu_ResetDescriptorPool(VkDevice _device,
886                        VkDescriptorPool descriptorPool,
887                        VkDescriptorPoolResetFlags flags)
888 {
889    VK_FROM_HANDLE(tu_device, device, _device);
890    VK_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
891 
892    list_for_each_entry_safe(struct tu_descriptor_set, set,
893                             &pool->desc_sets, pool_link) {
894       vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
895    }
896    list_inithead(&pool->desc_sets);
897 
898    if (!pool->host_memory_base) {
899       for(int i = 0; i < pool->entry_count; ++i) {
900          tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false);
901       }
902       pool->entry_count = 0;
903    }
904 
905    pool->current_offset = 0;
906    pool->host_memory_ptr = pool->host_memory_base;
907 
908    return VK_SUCCESS;
909 }
910 
911 VKAPI_ATTR VkResult VKAPI_CALL
tu_AllocateDescriptorSets(VkDevice _device,const VkDescriptorSetAllocateInfo * pAllocateInfo,VkDescriptorSet * pDescriptorSets)912 tu_AllocateDescriptorSets(VkDevice _device,
913                           const VkDescriptorSetAllocateInfo *pAllocateInfo,
914                           VkDescriptorSet *pDescriptorSets)
915 {
916    VK_FROM_HANDLE(tu_device, device, _device);
917    VK_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool);
918 
919    VkResult result = VK_SUCCESS;
920    uint32_t i;
921    struct tu_descriptor_set *set = NULL;
922 
923    const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts =
924       vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO);
925    if (variable_counts && !variable_counts->descriptorSetCount)
926       variable_counts = NULL;
927 
928    /* allocate a set of buffers for each shader to contain descriptors */
929    for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
930       VK_FROM_HANDLE(tu_descriptor_set_layout, layout,
931              pAllocateInfo->pSetLayouts[i]);
932 
933       assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
934 
935       result = tu_descriptor_set_create(
936          device, pool, layout,
937          variable_counts ? variable_counts->pDescriptorCounts[i] : 0, &set);
938       if (result != VK_SUCCESS)
939          break;
940 
941       pDescriptorSets[i] = tu_descriptor_set_to_handle(set);
942    }
943 
944    if (result != VK_SUCCESS) {
945       tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool,
946                i, pDescriptorSets);
947       for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) {
948          pDescriptorSets[i] = VK_NULL_HANDLE;
949       }
950    }
951    return result;
952 }
953 
954 VKAPI_ATTR VkResult VKAPI_CALL
tu_FreeDescriptorSets(VkDevice _device,VkDescriptorPool descriptorPool,uint32_t count,const VkDescriptorSet * pDescriptorSets)955 tu_FreeDescriptorSets(VkDevice _device,
956                       VkDescriptorPool descriptorPool,
957                       uint32_t count,
958                       const VkDescriptorSet *pDescriptorSets)
959 {
960    VK_FROM_HANDLE(tu_device, device, _device);
961    VK_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool);
962 
963    for (uint32_t i = 0; i < count; i++) {
964       VK_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]);
965 
966       if (set) {
967          vk_descriptor_set_layout_unref(&device->vk, &set->layout->vk);
968          list_del(&set->pool_link);
969       }
970 
971       if (set && !pool->host_memory_base)
972          tu_descriptor_set_destroy(device, pool, set, true);
973    }
974    return VK_SUCCESS;
975 }
976 
977 static void
write_texel_buffer_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)978 write_texel_buffer_descriptor_addr(uint32_t *dst,
979                                    const VkDescriptorAddressInfoEXT *buffer_info)
980 {
981    if (!buffer_info || buffer_info->address == 0) {
982       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
983    } else {
984       uint8_t swiz[4] = { PIPE_SWIZZLE_X, PIPE_SWIZZLE_Y, PIPE_SWIZZLE_Z,
985                           PIPE_SWIZZLE_W };
986       fdl6_buffer_view_init(dst,
987                             vk_format_to_pipe_format(buffer_info->format),
988                             swiz, buffer_info->address, buffer_info->range);
989    }
990 }
991 
992 static void
write_texel_buffer_descriptor(uint32_t * dst,const VkBufferView buffer_view)993 write_texel_buffer_descriptor(uint32_t *dst, const VkBufferView buffer_view)
994 {
995    if (buffer_view == VK_NULL_HANDLE) {
996       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
997    } else {
998       VK_FROM_HANDLE(tu_buffer_view, view, buffer_view);
999 
1000       memcpy(dst, view->descriptor, sizeof(view->descriptor));
1001    }
1002 }
1003 
1004 static VkDescriptorAddressInfoEXT
buffer_info_to_address(const VkDescriptorBufferInfo * buffer_info)1005 buffer_info_to_address(const VkDescriptorBufferInfo *buffer_info)
1006 {
1007    VK_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer);
1008 
1009    uint32_t range = buffer ? vk_buffer_range(&buffer->vk, buffer_info->offset, buffer_info->range) : 0;
1010    uint64_t va = buffer ? buffer->iova + buffer_info->offset : 0;
1011 
1012    return (VkDescriptorAddressInfoEXT) {
1013       .address = va,
1014       .range = range,
1015    };
1016 }
1017 
1018 static void
write_buffer_descriptor_addr(const struct tu_device * device,uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1019 write_buffer_descriptor_addr(const struct tu_device *device,
1020                              uint32_t *dst,
1021                              const VkDescriptorAddressInfoEXT *buffer_info)
1022 {
1023    const struct fd_dev_info *info = device->physical_device->info;
1024    /* This prevents any misconfiguration, but 16-bit descriptor capable of both
1025     * 16-bit and 32-bit access through isam.v will of course only be functional
1026     * when 16-bit storage is supported. */
1027    assert(!info->a6xx.has_isam_v || info->a6xx.storage_16bit);
1028    /* Any configuration enabling 8-bit storage support will also provide 16-bit
1029     * storage support and 16-bit descriptors capable of 32-bit isam loads. This
1030     * indirectly ensures we won't need more than two descriptors for access of
1031     * any size.
1032     */
1033    assert(!info->a7xx.storage_8bit || (info->a6xx.storage_16bit &&
1034                                        info->a6xx.has_isam_v));
1035 
1036    unsigned num_descriptors = 1 +
1037       COND(info->a6xx.storage_16bit && !info->a6xx.has_isam_v, 1) +
1038       COND(info->a7xx.storage_8bit, 1);
1039    memset(dst, 0, num_descriptors * A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1040 
1041    if (!buffer_info || buffer_info->address == 0)
1042       return;
1043 
1044    uint64_t va = buffer_info->address;
1045    uint64_t base_va = va & ~0x3full;
1046    unsigned offset = va & 0x3f;
1047    uint32_t range = buffer_info->range;
1048 
1049    if (info->a6xx.storage_16bit) {
1050       dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_16_UINT);
1051       dst[1] = DIV_ROUND_UP(range, 2);
1052       dst[2] =
1053          A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1054          A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 2) |
1055          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1056       dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1057       dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1058       dst += A6XX_TEX_CONST_DWORDS;
1059    }
1060 
1061    /* Set up the 32-bit descriptor when 16-bit storage isn't supported or the
1062     * 16-bit descriptor cannot be used for 32-bit loads through isam.v.
1063     */
1064    if (!info->a6xx.storage_16bit || !info->a6xx.has_isam_v) {
1065       dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT);
1066       dst[1] = DIV_ROUND_UP(range, 4);
1067       dst[2] =
1068          A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1069          A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset / 4) |
1070          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1071       dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1072       dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1073       dst += A6XX_TEX_CONST_DWORDS;
1074    }
1075 
1076    if (info->a7xx.storage_8bit) {
1077       dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_8_UINT);
1078       dst[1] = range;
1079       dst[2] =
1080          A6XX_TEX_CONST_2_STRUCTSIZETEXELS(1) |
1081          A6XX_TEX_CONST_2_STARTOFFSETTEXELS(offset) |
1082          A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1083       dst[4] = A6XX_TEX_CONST_4_BASE_LO(base_va);
1084       dst[5] = A6XX_TEX_CONST_5_BASE_HI(base_va >> 32);
1085    }
1086 }
1087 
1088 static void
write_buffer_descriptor(const struct tu_device * device,uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1089 write_buffer_descriptor(const struct tu_device *device,
1090                         uint32_t *dst,
1091                         const VkDescriptorBufferInfo *buffer_info)
1092 {
1093    VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1094    write_buffer_descriptor_addr(device, dst, &addr);
1095 }
1096 
1097 static void
write_ubo_descriptor_addr(uint32_t * dst,const VkDescriptorAddressInfoEXT * buffer_info)1098 write_ubo_descriptor_addr(uint32_t *dst,
1099                           const VkDescriptorAddressInfoEXT *buffer_info)
1100 {
1101    if (!buffer_info) {
1102       dst[0] = dst[1] = 0;
1103       return;
1104    }
1105 
1106    uint64_t va = buffer_info->address;
1107    /* The HW range is in vec4 units */
1108    uint32_t range = va ? DIV_ROUND_UP(buffer_info->range, 16) : 0;
1109    dst[0] = A6XX_UBO_0_BASE_LO(va);
1110    dst[1] = A6XX_UBO_1_BASE_HI(va >> 32) | A6XX_UBO_1_SIZE(range);
1111 }
1112 
1113 static void
write_ubo_descriptor(uint32_t * dst,const VkDescriptorBufferInfo * buffer_info)1114 write_ubo_descriptor(uint32_t *dst, const VkDescriptorBufferInfo *buffer_info)
1115 {
1116    VkDescriptorAddressInfoEXT addr = buffer_info_to_address(buffer_info);
1117    write_ubo_descriptor_addr(dst, &addr);
1118 }
1119 
1120 static void
write_image_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info)1121 write_image_descriptor(uint32_t *dst,
1122                        VkDescriptorType descriptor_type,
1123                        const VkDescriptorImageInfo *image_info)
1124 {
1125    if (!image_info || image_info->imageView == VK_NULL_HANDLE) {
1126       memset(dst, 0, A6XX_TEX_CONST_DWORDS * sizeof(uint32_t));
1127       return;
1128    }
1129 
1130    VK_FROM_HANDLE(tu_image_view, iview, image_info->imageView);
1131 
1132    if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
1133       memcpy(dst, iview->view.storage_descriptor, sizeof(iview->view.storage_descriptor));
1134    } else {
1135       memcpy(dst, iview->view.descriptor, sizeof(iview->view.descriptor));
1136    }
1137 }
1138 
1139 static void
write_combined_image_sampler_descriptor(uint32_t * dst,VkDescriptorType descriptor_type,const VkDescriptorImageInfo * image_info,bool has_sampler)1140 write_combined_image_sampler_descriptor(uint32_t *dst,
1141                                         VkDescriptorType descriptor_type,
1142                                         const VkDescriptorImageInfo *image_info,
1143                                         bool has_sampler)
1144 {
1145    write_image_descriptor(dst, descriptor_type, image_info);
1146    /* copy over sampler state */
1147    if (has_sampler) {
1148       VK_FROM_HANDLE(tu_sampler, sampler, image_info->sampler);
1149 
1150       memcpy(dst + A6XX_TEX_CONST_DWORDS, sampler->descriptor, sizeof(sampler->descriptor));
1151    }
1152 }
1153 
1154 static void
write_sampler_descriptor(uint32_t * dst,VkSampler _sampler)1155 write_sampler_descriptor(uint32_t *dst, VkSampler _sampler)
1156 {
1157    VK_FROM_HANDLE(tu_sampler, sampler, _sampler);
1158 
1159    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1160 }
1161 
1162 static void
write_accel_struct(uint32_t * dst,uint64_t va,uint64_t size)1163 write_accel_struct(uint32_t *dst, uint64_t va, uint64_t size)
1164 {
1165    dst[0] = A6XX_TEX_CONST_0_TILE_MODE(TILE6_LINEAR) | A6XX_TEX_CONST_0_FMT(FMT6_32_UINT);
1166 
1167    /* The overall range of the entire AS may be more than the max range, but
1168     * the SSBO is only used to access the instance descriptors and header.
1169     * Make sure that we don't specify a too-large range.
1170     */
1171    dst[1] = MAX2(DIV_ROUND_UP(size, AS_RECORD_SIZE), MAX_TEXEL_ELEMENTS);
1172    dst[2] =
1173       A6XX_TEX_CONST_2_STRUCTSIZETEXELS(AS_RECORD_SIZE / 4) |
1174       A6XX_TEX_CONST_2_STARTOFFSETTEXELS(0) |
1175       A6XX_TEX_CONST_2_TYPE(A6XX_TEX_BUFFER);
1176    dst[3] = 0;
1177    dst[4] = A6XX_TEX_CONST_4_BASE_LO(va);
1178    dst[5] = A6XX_TEX_CONST_5_BASE_HI(va >> 32);
1179    for (int j = 6; j < A6XX_TEX_CONST_DWORDS; j++)
1180       dst[j] = 0;
1181 }
1182 
1183 /* note: this is used with immutable samplers in push descriptors */
1184 static void
write_sampler_push(uint32_t * dst,const struct tu_sampler * sampler)1185 write_sampler_push(uint32_t *dst, const struct tu_sampler *sampler)
1186 {
1187    memcpy(dst, sampler->descriptor, sizeof(sampler->descriptor));
1188 }
1189 
1190 VKAPI_ATTR void VKAPI_CALL
tu_GetDescriptorEXT(VkDevice _device,const VkDescriptorGetInfoEXT * pDescriptorInfo,size_t dataSize,void * pDescriptor)1191 tu_GetDescriptorEXT(
1192    VkDevice _device,
1193    const VkDescriptorGetInfoEXT *pDescriptorInfo,
1194    size_t dataSize,
1195    void *pDescriptor)
1196 {
1197    VK_FROM_HANDLE(tu_device, device, _device);
1198    uint32_t *dest = (uint32_t *) pDescriptor;
1199 
1200    switch (pDescriptorInfo->type) {
1201    case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1202       write_ubo_descriptor_addr(dest, pDescriptorInfo->data.pUniformBuffer);
1203       break;
1204    case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1205       write_buffer_descriptor_addr(device, dest, pDescriptorInfo->data.pStorageBuffer);
1206       break;
1207    case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1208       write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pUniformTexelBuffer);
1209       break;
1210    case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1211       write_texel_buffer_descriptor_addr(dest, pDescriptorInfo->data.pStorageTexelBuffer);
1212       break;
1213    case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1214       write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
1215                              pDescriptorInfo->data.pSampledImage);
1216       break;
1217    case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1218       write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1219                              pDescriptorInfo->data.pStorageImage);
1220       break;
1221    case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1222       write_combined_image_sampler_descriptor(dest,
1223                                               VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
1224                                               pDescriptorInfo->data.pCombinedImageSampler,
1225                                               true);
1226       break;
1227    case VK_DESCRIPTOR_TYPE_SAMPLER:
1228       write_sampler_descriptor(dest, *pDescriptorInfo->data.pSampler);
1229       break;
1230    case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: {
1231       if (pDescriptorInfo->data.accelerationStructure == 0) {
1232          write_accel_struct(dest, device->null_accel_struct_bo->iova,
1233                             device->null_accel_struct_bo->size);
1234       } else {
1235          VkDeviceSize size = *(VkDeviceSize *)
1236             util_sparse_array_get(&device->accel_struct_ranges,
1237                                   pDescriptorInfo->data.accelerationStructure);
1238          write_accel_struct(dest, pDescriptorInfo->data.accelerationStructure, size);
1239       }
1240       break;
1241    }
1242    case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1243       write_image_descriptor(dest, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
1244                              pDescriptorInfo->data.pInputAttachmentImage);
1245       break;
1246    default:
1247       unreachable("unimplemented descriptor type");
1248       break;
1249    }
1250 }
1251 
1252 void
tu_update_descriptor_sets(const struct tu_device * device,VkDescriptorSet dstSetOverride,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1253 tu_update_descriptor_sets(const struct tu_device *device,
1254                           VkDescriptorSet dstSetOverride,
1255                           uint32_t descriptorWriteCount,
1256                           const VkWriteDescriptorSet *pDescriptorWrites,
1257                           uint32_t descriptorCopyCount,
1258                           const VkCopyDescriptorSet *pDescriptorCopies)
1259 {
1260    uint32_t i, j;
1261    for (i = 0; i < descriptorWriteCount; i++) {
1262       const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i];
1263       VK_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ?: writeset->dstSet);
1264       const struct tu_descriptor_set_binding_layout *binding_layout =
1265          set->layout->binding + writeset->dstBinding;
1266       uint32_t *ptr = set->mapped_ptr;
1267       if (vk_descriptor_type_is_dynamic(writeset->descriptorType)) {
1268          ptr = set->dynamic_descriptors;
1269          ptr += binding_layout->dynamic_offset_offset / 4;
1270       } else {
1271          ptr = set->mapped_ptr;
1272          ptr += binding_layout->offset / 4;
1273       }
1274 
1275       const VkWriteDescriptorSetAccelerationStructureKHR *accel_structs = NULL;
1276 
1277       /* for immutable samplers with push descriptors: */
1278       const bool copy_immutable_samplers =
1279          dstSetOverride && binding_layout->immutable_samplers_offset;
1280       const struct tu_sampler *samplers =
1281          tu_immutable_samplers(set->layout, binding_layout);
1282 
1283       if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1284          /* We need to respect this note:
1285           *
1286           *    The same behavior applies to bindings with a descriptor type of
1287           *    VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK where descriptorCount
1288           *    specifies the number of bytes to update while dstArrayElement
1289           *    specifies the starting byte offset, thus in this case if the
1290           *    dstBinding has a smaller byte size than the sum of
1291           *    dstArrayElement and descriptorCount, then the remainder will be
1292           *    used to update the subsequent binding - dstBinding+1 starting
1293           *    at offset zero. This falls out as a special case of the above
1294           *    rule.
1295           *
1296           * This means we can't just do a straight memcpy, because due to
1297           * alignment padding there are gaps between sequential bindings. We
1298           * have to loop over each binding updated.
1299           */
1300          const VkWriteDescriptorSetInlineUniformBlock *inline_write =
1301             vk_find_struct_const(writeset->pNext,
1302                                  WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK);
1303          uint32_t remaining = inline_write->dataSize;
1304          const uint8_t *src = (const uint8_t *) inline_write->pData;
1305          uint32_t dst_offset = writeset->dstArrayElement;
1306          do {
1307             uint8_t *dst = (uint8_t *)(ptr) + dst_offset;
1308             uint32_t binding_size = binding_layout->size - dst_offset;
1309             uint32_t to_write = MIN2(remaining, binding_size);
1310             memcpy(dst, src, to_write);
1311 
1312             binding_layout++;
1313             ptr = set->mapped_ptr + binding_layout->offset / 4;
1314             dst_offset = 0;
1315             src += to_write;
1316             remaining -= to_write;
1317          } while (remaining > 0);
1318 
1319          continue;
1320       } else if (writeset->descriptorType ==
1321                  VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR) {
1322          accel_structs = vk_find_struct_const(writeset->pNext, WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR);
1323       }
1324 
1325       ptr += binding_layout->size / 4 * writeset->dstArrayElement;
1326       for (j = 0; j < writeset->descriptorCount; ++j) {
1327          switch(writeset->descriptorType) {
1328          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1329          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1330             write_ubo_descriptor(ptr, writeset->pBufferInfo + j);
1331             break;
1332          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1333          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1334             write_buffer_descriptor(device, ptr, writeset->pBufferInfo + j);
1335             break;
1336          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1337          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1338             write_texel_buffer_descriptor(ptr, writeset->pTexelBufferView[j]);
1339             break;
1340          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1341          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1342          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1343             write_image_descriptor(ptr, writeset->descriptorType, writeset->pImageInfo + j);
1344             break;
1345          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1346             write_combined_image_sampler_descriptor(ptr,
1347                                                     writeset->descriptorType,
1348                                                     writeset->pImageInfo + j,
1349                                                     !binding_layout->immutable_samplers_offset);
1350 
1351             if (copy_immutable_samplers)
1352                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[writeset->dstArrayElement + j]);
1353             break;
1354          case VK_DESCRIPTOR_TYPE_SAMPLER:
1355             if (!binding_layout->immutable_samplers_offset)
1356                write_sampler_descriptor(ptr, writeset->pImageInfo[j].sampler);
1357             else if (copy_immutable_samplers)
1358                write_sampler_push(ptr, &samplers[writeset->dstArrayElement + j]);
1359             break;
1360          case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: {
1361             VK_FROM_HANDLE(vk_acceleration_structure, accel_struct, accel_structs->pAccelerationStructures[j]);
1362             if (accel_struct) {
1363                write_accel_struct(ptr,
1364                                   vk_acceleration_structure_get_va(accel_struct),
1365                                   accel_struct->size);
1366             } else {
1367                write_accel_struct(ptr, device->null_accel_struct_bo->iova,
1368                                   device->null_accel_struct_bo->size);
1369             }
1370             break;
1371          }
1372          default:
1373             unreachable("unimplemented descriptor type");
1374             break;
1375          }
1376          ptr += binding_layout->size / 4;
1377       }
1378    }
1379 
1380    for (i = 0; i < descriptorCopyCount; i++) {
1381       const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i];
1382       VK_FROM_HANDLE(tu_descriptor_set, src_set,
1383                        copyset->srcSet);
1384       VK_FROM_HANDLE(tu_descriptor_set, dst_set,
1385                        copyset->dstSet);
1386       const struct tu_descriptor_set_binding_layout *src_binding_layout =
1387          src_set->layout->binding + copyset->srcBinding;
1388       const struct tu_descriptor_set_binding_layout *dst_binding_layout =
1389          dst_set->layout->binding + copyset->dstBinding;
1390       uint32_t *src_ptr = src_set->mapped_ptr;
1391       uint32_t *dst_ptr = dst_set->mapped_ptr;
1392       if (vk_descriptor_type_is_dynamic(src_binding_layout->type)) {
1393          src_ptr = src_set->dynamic_descriptors;
1394          dst_ptr = dst_set->dynamic_descriptors;
1395          src_ptr += src_binding_layout->dynamic_offset_offset / 4;
1396          dst_ptr += dst_binding_layout->dynamic_offset_offset / 4;
1397       } else {
1398          src_ptr = src_set->mapped_ptr;
1399          dst_ptr = dst_set->mapped_ptr;
1400          src_ptr += src_binding_layout->offset / 4;
1401          dst_ptr += dst_binding_layout->offset / 4;
1402       }
1403 
1404       if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1405          uint32_t remaining = copyset->descriptorCount;
1406          uint32_t src_start = copyset->srcArrayElement;
1407          uint32_t dst_start = copyset->dstArrayElement;
1408          uint8_t *src = (uint8_t *)(src_ptr) + src_start;
1409          uint8_t *dst = (uint8_t *)(dst_ptr) + dst_start;
1410          uint32_t src_remaining =
1411             src_binding_layout->size - src_start;
1412          uint32_t dst_remaining =
1413             dst_binding_layout->size - dst_start;
1414          do {
1415             uint32_t to_write = MIN3(remaining, src_remaining, dst_remaining);
1416             memcpy(dst, src, to_write);
1417 
1418             src += to_write;
1419             dst += to_write;
1420             src_remaining -= to_write;
1421             dst_remaining -= to_write;
1422             remaining -= to_write;
1423 
1424             if (src_remaining == 0) {
1425                src_binding_layout++;
1426                src_ptr = src_set->mapped_ptr + src_binding_layout->offset / 4;
1427                src = (uint8_t *)(src_ptr + A6XX_TEX_CONST_DWORDS);
1428                src_remaining = src_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1429             }
1430 
1431             if (dst_remaining == 0) {
1432                dst_binding_layout++;
1433                dst_ptr = dst_set->mapped_ptr + dst_binding_layout->offset / 4;
1434                dst = (uint8_t *)(dst_ptr + A6XX_TEX_CONST_DWORDS);
1435                dst_remaining = dst_binding_layout->size - 4 * A6XX_TEX_CONST_DWORDS;
1436             }
1437          } while (remaining > 0);
1438 
1439          continue;
1440       }
1441 
1442       src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4;
1443       dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4;
1444 
1445       /* In case of copies between mutable descriptor types
1446        * and non-mutable descriptor types.
1447        */
1448       uint32_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size);
1449 
1450       for (j = 0; j < copyset->descriptorCount; ++j) {
1451          memcpy(dst_ptr, src_ptr, copy_size);
1452 
1453          src_ptr += src_binding_layout->size / 4;
1454          dst_ptr += dst_binding_layout->size / 4;
1455       }
1456    }
1457 }
1458 
1459 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSets(VkDevice _device,uint32_t descriptorWriteCount,const VkWriteDescriptorSet * pDescriptorWrites,uint32_t descriptorCopyCount,const VkCopyDescriptorSet * pDescriptorCopies)1460 tu_UpdateDescriptorSets(VkDevice _device,
1461                         uint32_t descriptorWriteCount,
1462                         const VkWriteDescriptorSet *pDescriptorWrites,
1463                         uint32_t descriptorCopyCount,
1464                         const VkCopyDescriptorSet *pDescriptorCopies)
1465 {
1466    VK_FROM_HANDLE(tu_device, device, _device);
1467    tu_update_descriptor_sets(device, VK_NULL_HANDLE,
1468                              descriptorWriteCount, pDescriptorWrites,
1469                              descriptorCopyCount, pDescriptorCopies);
1470 }
1471 
1472 VKAPI_ATTR VkResult VKAPI_CALL
tu_CreateDescriptorUpdateTemplate(VkDevice _device,const VkDescriptorUpdateTemplateCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDescriptorUpdateTemplate * pDescriptorUpdateTemplate)1473 tu_CreateDescriptorUpdateTemplate(
1474    VkDevice _device,
1475    const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo,
1476    const VkAllocationCallbacks *pAllocator,
1477    VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate)
1478 {
1479    VK_FROM_HANDLE(tu_device, device, _device);
1480    struct tu_descriptor_set_layout *set_layout = NULL;
1481    const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount;
1482    uint32_t dst_entry_count = 0;
1483 
1484    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1485       VK_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout);
1486 
1487       /* descriptorSetLayout should be ignored for push descriptors
1488        * and instead it refers to pipelineLayout and set.
1489        */
1490       assert(pCreateInfo->set < device->physical_device->usable_sets);
1491       set_layout = pipeline_layout->set[pCreateInfo->set].layout;
1492    } else {
1493       VK_FROM_HANDLE(tu_descriptor_set_layout, _set_layout,
1494                      pCreateInfo->descriptorSetLayout);
1495       set_layout = _set_layout;
1496    }
1497 
1498    for (uint32_t i = 0; i < entry_count; i++) {
1499       const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1500       if (entry->descriptorType != VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1501          dst_entry_count++;
1502          continue;
1503       }
1504 
1505       /* Calculate how many bindings this update steps over, so we can split
1506        * up the template entry. This lets the actual update be a simple
1507        * memcpy.
1508        */
1509       uint32_t remaining = entry->descriptorCount;
1510       const struct tu_descriptor_set_binding_layout *binding_layout =
1511          set_layout->binding + entry->dstBinding;
1512       uint32_t dst_start = entry->dstArrayElement;
1513       do {
1514          uint32_t size = binding_layout->size;
1515          uint32_t count = MIN2(remaining, size - dst_start);
1516          remaining -= count;
1517          binding_layout++;
1518          dst_entry_count++;
1519          dst_start = 0;
1520       } while (remaining > 0);
1521    }
1522 
1523    const size_t size =
1524       sizeof(struct tu_descriptor_update_template) +
1525       sizeof(struct tu_descriptor_update_template_entry) * dst_entry_count;
1526    struct tu_descriptor_update_template *templ;
1527 
1528    templ = (struct tu_descriptor_update_template *) vk_object_alloc(
1529       &device->vk, pAllocator, size,
1530       VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE);
1531    if (!templ)
1532       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
1533 
1534    templ->entry_count = dst_entry_count;
1535 
1536    if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) {
1537       templ->bind_point = pCreateInfo->pipelineBindPoint;
1538    }
1539 
1540    uint32_t j = 0;
1541    for (uint32_t i = 0; i < entry_count; i++) {
1542       const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i];
1543 
1544       const struct tu_descriptor_set_binding_layout *binding_layout =
1545          set_layout->binding + entry->dstBinding;
1546       uint32_t dst_offset, dst_stride;
1547       const struct tu_sampler *immutable_samplers = NULL;
1548 
1549       /* dst_offset is an offset into dynamic_descriptors when the descriptor
1550        * is dynamic, and an offset into mapped_ptr otherwise.
1551        */
1552       switch (entry->descriptorType) {
1553       case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1554       case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1555          dst_offset = binding_layout->dynamic_offset_offset / 4;
1556          break;
1557       case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK: {
1558          uint32_t remaining = entry->descriptorCount;
1559          uint32_t dst_start = entry->dstArrayElement;
1560          uint32_t src_offset = entry->offset;
1561          /* See comment in update_descriptor_sets() */
1562          do {
1563             dst_offset =
1564                binding_layout->offset + dst_start;
1565             uint32_t size = binding_layout->size;
1566             uint32_t count = MIN2(remaining, size - dst_start);
1567             templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1568                .descriptor_type = entry->descriptorType,
1569                .descriptor_count = count,
1570                .dst_offset = dst_offset,
1571                .src_offset = src_offset,
1572             };
1573             remaining -= count;
1574             src_offset += count;
1575             binding_layout++;
1576             dst_start = 0;
1577          } while (remaining > 0);
1578 
1579          continue;
1580       }
1581       case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1582       case VK_DESCRIPTOR_TYPE_SAMPLER:
1583          if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR &&
1584              binding_layout->immutable_samplers_offset) {
1585             immutable_samplers =
1586                tu_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement;
1587          }
1588          FALLTHROUGH;
1589       default:
1590          dst_offset = binding_layout->offset / 4;
1591       }
1592 
1593       dst_offset += (binding_layout->size * entry->dstArrayElement) / 4;
1594       dst_stride = binding_layout->size / 4;
1595 
1596       templ->entry[j++] = (struct tu_descriptor_update_template_entry) {
1597          .descriptor_type = entry->descriptorType,
1598          .descriptor_count = entry->descriptorCount,
1599          .dst_offset = dst_offset,
1600          .dst_stride = dst_stride,
1601          .has_sampler = !binding_layout->immutable_samplers_offset,
1602          .src_offset = entry->offset,
1603          .src_stride = entry->stride,
1604          .immutable_samplers = immutable_samplers,
1605       };
1606    }
1607 
1608    assert(j == dst_entry_count);
1609 
1610    *pDescriptorUpdateTemplate =
1611       tu_descriptor_update_template_to_handle(templ);
1612 
1613    return VK_SUCCESS;
1614 }
1615 
1616 VKAPI_ATTR void VKAPI_CALL
tu_DestroyDescriptorUpdateTemplate(VkDevice _device,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const VkAllocationCallbacks * pAllocator)1617 tu_DestroyDescriptorUpdateTemplate(
1618    VkDevice _device,
1619    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1620    const VkAllocationCallbacks *pAllocator)
1621 {
1622    VK_FROM_HANDLE(tu_device, device, _device);
1623    VK_FROM_HANDLE(tu_descriptor_update_template, templ,
1624                   descriptorUpdateTemplate);
1625 
1626    if (!templ)
1627       return;
1628 
1629    vk_object_free(&device->vk, pAllocator, templ);
1630 }
1631 
1632 void
tu_update_descriptor_set_with_template(const struct tu_device * device,struct tu_descriptor_set * set,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1633 tu_update_descriptor_set_with_template(
1634    const struct tu_device *device,
1635    struct tu_descriptor_set *set,
1636    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1637    const void *pData)
1638 {
1639    VK_FROM_HANDLE(tu_descriptor_update_template, templ,
1640                   descriptorUpdateTemplate);
1641 
1642    for (uint32_t i = 0; i < templ->entry_count; i++) {
1643       uint32_t *ptr = set->mapped_ptr;
1644       const void *src = ((const char *) pData) + templ->entry[i].src_offset;
1645       const struct tu_sampler *samplers = templ->entry[i].immutable_samplers;
1646 
1647       if (templ->entry[i].descriptor_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK) {
1648          memcpy(((uint8_t *) ptr) + templ->entry[i].dst_offset, src,
1649                 templ->entry[i].descriptor_count);
1650          continue;
1651       }
1652 
1653       ptr += templ->entry[i].dst_offset;
1654       unsigned dst_offset = templ->entry[i].dst_offset;
1655       for (unsigned j = 0; j < templ->entry[i].descriptor_count; ++j) {
1656          switch(templ->entry[i].descriptor_type) {
1657          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
1658             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1659             write_ubo_descriptor(set->dynamic_descriptors + dst_offset,
1660                                  (const VkDescriptorBufferInfo *) src);
1661             break;
1662          }
1663          case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1664             write_ubo_descriptor(ptr, (const VkDescriptorBufferInfo *) src);
1665             break;
1666          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
1667             assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR));
1668             write_buffer_descriptor(device,
1669                                     set->dynamic_descriptors + dst_offset,
1670                                     (const VkDescriptorBufferInfo *) src);
1671             break;
1672          }
1673          case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1674             write_buffer_descriptor(device, ptr,
1675                                     (const VkDescriptorBufferInfo *) src);
1676             break;
1677          case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1678          case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1679             write_texel_buffer_descriptor(ptr, *(VkBufferView *) src);
1680             break;
1681          case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1682          case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1683          case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: {
1684             write_image_descriptor(ptr, templ->entry[i].descriptor_type,
1685                                    (const VkDescriptorImageInfo *) src);
1686             break;
1687          }
1688          case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1689             write_combined_image_sampler_descriptor(ptr,
1690                                                     templ->entry[i].descriptor_type,
1691                                                     (const VkDescriptorImageInfo *) src,
1692                                                     templ->entry[i].has_sampler);
1693             if (samplers)
1694                write_sampler_push(ptr + A6XX_TEX_CONST_DWORDS, &samplers[j]);
1695             break;
1696          case VK_DESCRIPTOR_TYPE_SAMPLER:
1697             if (templ->entry[i].has_sampler)
1698                write_sampler_descriptor(ptr, ((const VkDescriptorImageInfo *)src)->sampler);
1699             else if (samplers)
1700                write_sampler_push(ptr, &samplers[j]);
1701             break;
1702          case VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: {
1703             VK_FROM_HANDLE(vk_acceleration_structure, accel_struct, *(const VkAccelerationStructureKHR *)src);
1704             if (accel_struct) {
1705                write_accel_struct(ptr,
1706                                   vk_acceleration_structure_get_va(accel_struct),
1707                                   accel_struct->size);
1708             } else {
1709                write_accel_struct(ptr, device->null_accel_struct_bo->iova,
1710                                   device->null_accel_struct_bo->size);
1711             }
1712             break;
1713          }
1714          default:
1715             unreachable("unimplemented descriptor type");
1716             break;
1717          }
1718          src = (char *) src + templ->entry[i].src_stride;
1719          ptr += templ->entry[i].dst_stride;
1720          dst_offset += templ->entry[i].dst_stride;
1721       }
1722    }
1723 }
1724 
1725 VKAPI_ATTR void VKAPI_CALL
tu_UpdateDescriptorSetWithTemplate(VkDevice _device,VkDescriptorSet descriptorSet,VkDescriptorUpdateTemplate descriptorUpdateTemplate,const void * pData)1726 tu_UpdateDescriptorSetWithTemplate(
1727    VkDevice _device,
1728    VkDescriptorSet descriptorSet,
1729    VkDescriptorUpdateTemplate descriptorUpdateTemplate,
1730    const void *pData)
1731 {
1732    VK_FROM_HANDLE(tu_device, device, _device);
1733    VK_FROM_HANDLE(tu_descriptor_set, set, descriptorSet);
1734 
1735    tu_update_descriptor_set_with_template(device, set, descriptorUpdateTemplate, pData);
1736 }
1737