1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #ifdef HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #else
81 #define VG(x)
82 #endif
83
84 #include "pipe/p_defines.h"
85 #include "pipe/p_state.h"
86 #include "pipe/p_context.h"
87 #include "pipe/p_screen.h"
88 #include "util/u_dual_blend.h"
89 #include "util/u_inlines.h"
90 #include "util/format/u_format.h"
91 #include "util/u_framebuffer.h"
92 #include "util/u_transfer.h"
93 #include "util/u_upload_mgr.h"
94 #include "util/u_viewport.h"
95 #include "util/u_memory.h"
96 #include "util/u_trace_gallium.h"
97 #include "nir.h"
98 #include "intel/common/intel_aux_map.h"
99 #include "intel/common/intel_compute_slm.h"
100 #include "intel/common/intel_l3_config.h"
101 #include "intel/common/intel_sample_positions.h"
102 #include "intel/ds/intel_tracepoints.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108 #include "iris_utrace.h"
109
110 #include "iris_genx_macros.h"
111
112 #if GFX_VER >= 9
113 #include "intel/compiler/brw_compiler.h"
114 #include "intel/common/intel_genX_state_brw.h"
115 #else
116 #include "intel/compiler/elk/elk_compiler.h"
117 #include "intel/common/intel_genX_state_elk.h"
118 #endif
119
120 #include "intel/common/intel_guardband.h"
121 #include "intel/common/intel_pixel_hash.h"
122 #include "intel/common/intel_tiled_render.h"
123
124 /**
125 * Statically assert that PIPE_* enums match the hardware packets.
126 * (As long as they match, we don't need to translate them.)
127 */
pipe_asserts()128 UNUSED static void pipe_asserts()
129 {
130 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
131
132 /* pipe_logicop happens to match the hardware. */
133 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
134 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
135 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
136 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
138 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
139 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
140 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
141 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
142 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
143 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
144 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
145 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
147 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
148 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
149
150 /* pipe_blend_func happens to match the hardware. */
151 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
152 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
153 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
170
171 /* pipe_blend_func happens to match the hardware. */
172 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
173 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
174 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
175 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
176 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
177
178 /* pipe_stencil_op happens to match the hardware. */
179 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
180 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
181 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
182 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
183 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
187
188 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
189 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
190 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
191 #undef PIPE_ASSERT
192 }
193
194 static unsigned
translate_prim_type(enum mesa_prim prim,uint8_t verts_per_patch)195 translate_prim_type(enum mesa_prim prim, uint8_t verts_per_patch)
196 {
197 static const unsigned map[] = {
198 [MESA_PRIM_POINTS] = _3DPRIM_POINTLIST,
199 [MESA_PRIM_LINES] = _3DPRIM_LINELIST,
200 [MESA_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
201 [MESA_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
202 [MESA_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
203 [MESA_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
204 [MESA_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
205 [MESA_PRIM_QUADS] = _3DPRIM_QUADLIST,
206 [MESA_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
207 [MESA_PRIM_POLYGON] = _3DPRIM_POLYGON,
208 [MESA_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
209 [MESA_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
210 [MESA_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
211 [MESA_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
212 [MESA_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
213 };
214
215 return map[prim] + (prim == MESA_PRIM_PATCHES ? verts_per_patch : 0);
216 }
217
218 static unsigned
translate_compare_func(enum pipe_compare_func pipe_func)219 translate_compare_func(enum pipe_compare_func pipe_func)
220 {
221 static const unsigned map[] = {
222 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
223 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
224 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
225 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
226 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
227 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
228 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
229 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
230 };
231 return map[pipe_func];
232 }
233
234 static unsigned
translate_shadow_func(enum pipe_compare_func pipe_func)235 translate_shadow_func(enum pipe_compare_func pipe_func)
236 {
237 /* Gallium specifies the result of shadow comparisons as:
238 *
239 * 1 if ref <op> texel,
240 * 0 otherwise.
241 *
242 * The hardware does:
243 *
244 * 0 if texel <op> ref,
245 * 1 otherwise.
246 *
247 * So we need to flip the operator and also negate.
248 */
249 static const unsigned map[] = {
250 [PIPE_FUNC_NEVER] = PREFILTEROP_ALWAYS,
251 [PIPE_FUNC_LESS] = PREFILTEROP_LEQUAL,
252 [PIPE_FUNC_EQUAL] = PREFILTEROP_NOTEQUAL,
253 [PIPE_FUNC_LEQUAL] = PREFILTEROP_LESS,
254 [PIPE_FUNC_GREATER] = PREFILTEROP_GEQUAL,
255 [PIPE_FUNC_NOTEQUAL] = PREFILTEROP_EQUAL,
256 [PIPE_FUNC_GEQUAL] = PREFILTEROP_GREATER,
257 [PIPE_FUNC_ALWAYS] = PREFILTEROP_NEVER,
258 };
259 return map[pipe_func];
260 }
261
262 static unsigned
translate_cull_mode(unsigned pipe_face)263 translate_cull_mode(unsigned pipe_face)
264 {
265 static const unsigned map[4] = {
266 [PIPE_FACE_NONE] = CULLMODE_NONE,
267 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
268 [PIPE_FACE_BACK] = CULLMODE_BACK,
269 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
270 };
271 return map[pipe_face];
272 }
273
274 static unsigned
translate_fill_mode(unsigned pipe_polymode)275 translate_fill_mode(unsigned pipe_polymode)
276 {
277 static const unsigned map[4] = {
278 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
279 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
280 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
281 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
282 };
283 return map[pipe_polymode];
284 }
285
286 static unsigned
translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)287 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
288 {
289 static const unsigned map[] = {
290 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
291 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
292 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
293 };
294 return map[pipe_mip];
295 }
296
297 static uint32_t
translate_wrap(unsigned pipe_wrap)298 translate_wrap(unsigned pipe_wrap)
299 {
300 static const unsigned map[] = {
301 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
302 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
303 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
304 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
305 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
306 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
307
308 /* These are unsupported. */
309 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
310 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
311 };
312 return map[pipe_wrap];
313 }
314
315 /**
316 * Allocate space for some indirect state.
317 *
318 * Return a pointer to the map (to fill it out) and a state ref (for
319 * referring to the state in GPU commands).
320 */
321 static void *
upload_state(struct u_upload_mgr * uploader,struct iris_state_ref * ref,unsigned size,unsigned alignment)322 upload_state(struct u_upload_mgr *uploader,
323 struct iris_state_ref *ref,
324 unsigned size,
325 unsigned alignment)
326 {
327 void *p = NULL;
328 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
329 return p;
330 }
331
332 /**
333 * Stream out temporary/short-lived state.
334 *
335 * This allocates space, pins the BO, and includes the BO address in the
336 * returned offset (which works because all state lives in 32-bit memory
337 * zones).
338 */
339 static uint32_t *
stream_state(struct iris_batch * batch,struct u_upload_mgr * uploader,struct pipe_resource ** out_res,unsigned size,unsigned alignment,uint32_t * out_offset)340 stream_state(struct iris_batch *batch,
341 struct u_upload_mgr *uploader,
342 struct pipe_resource **out_res,
343 unsigned size,
344 unsigned alignment,
345 uint32_t *out_offset)
346 {
347 void *ptr = NULL;
348
349 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
350
351 struct iris_bo *bo = iris_resource_bo(*out_res);
352 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
353
354 iris_record_state_size(batch->state_sizes,
355 bo->address + *out_offset, size);
356
357 *out_offset += iris_bo_offset_from_base_address(bo);
358
359 return ptr;
360 }
361
362 /**
363 * stream_state() + memcpy.
364 */
365 static uint32_t
emit_state(struct iris_batch * batch,struct u_upload_mgr * uploader,struct pipe_resource ** out_res,const void * data,unsigned size,unsigned alignment)366 emit_state(struct iris_batch *batch,
367 struct u_upload_mgr *uploader,
368 struct pipe_resource **out_res,
369 const void *data,
370 unsigned size,
371 unsigned alignment)
372 {
373 unsigned offset = 0;
374 uint32_t *map =
375 stream_state(batch, uploader, out_res, size, alignment, &offset);
376
377 if (map)
378 memcpy(map, data, size);
379
380 return offset;
381 }
382
383 /**
384 * Did field 'x' change between 'old_cso' and 'new_cso'?
385 *
386 * (If so, we may want to set some dirty flags.)
387 */
388 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
389 #define cso_changed_memcmp(x) \
390 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
391 #define cso_changed_memcmp_elts(x, n) \
392 (!old_cso || memcmp(old_cso->x, new_cso->x, n * sizeof(old_cso->x[0])) != 0)
393
394 static void
flush_before_state_base_change(struct iris_batch * batch)395 flush_before_state_base_change(struct iris_batch *batch)
396 {
397 /* Wa_14014427904 - We need additional invalidate/flush when
398 * emitting NP state commands with ATS-M in compute mode.
399 */
400 bool atsm_compute = intel_device_info_is_atsm(batch->screen->devinfo) &&
401 batch->name == IRIS_BATCH_COMPUTE;
402 uint32_t np_state_wa_bits =
403 PIPE_CONTROL_CS_STALL |
404 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
405 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
406 PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
407 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
408 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
409 PIPE_CONTROL_FLUSH_HDC;
410
411 /* Flush before emitting STATE_BASE_ADDRESS.
412 *
413 * This isn't documented anywhere in the PRM. However, it seems to be
414 * necessary prior to changing the surface state base address. We've
415 * seen issues in Vulkan where we get GPU hangs when using multi-level
416 * command buffers which clear depth, reset state base address, and then
417 * go render stuff.
418 *
419 * Normally, in GL, we would trust the kernel to do sufficient stalls
420 * and flushes prior to executing our batch. However, it doesn't seem
421 * as if the kernel's flushing is always sufficient and we don't want to
422 * rely on it.
423 *
424 * We make this an end-of-pipe sync instead of a normal flush because we
425 * do not know the current status of the GPU. On Haswell at least,
426 * having a fast-clear operation in flight at the same time as a normal
427 * rendering operation can cause hangs. Since the kernel's flushing is
428 * insufficient, we need to ensure that any rendering operations from
429 * other processes are definitely complete before we try to do our own
430 * rendering. It's a bit of a big hammer but it appears to work.
431 *
432 * Render target cache flush before SBA is required by Wa_18039438632.
433 */
434 iris_emit_end_of_pipe_sync(batch,
435 "change STATE_BASE_ADDRESS (flushes)",
436 atsm_compute ? np_state_wa_bits : 0 |
437 PIPE_CONTROL_RENDER_TARGET_FLUSH |
438 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
439 PIPE_CONTROL_DATA_CACHE_FLUSH);
440 }
441
442 static void
flush_after_state_base_change(struct iris_batch * batch)443 flush_after_state_base_change(struct iris_batch *batch)
444 {
445 const struct intel_device_info *devinfo = batch->screen->devinfo;
446 /* After re-setting the surface state base address, we have to do some
447 * cache flusing so that the sampler engine will pick up the new
448 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
449 * Shared Function > 3D Sampler > State > State Caching (page 96):
450 *
451 * Coherency with system memory in the state cache, like the texture
452 * cache is handled partially by software. It is expected that the
453 * command stream or shader will issue Cache Flush operation or
454 * Cache_Flush sampler message to ensure that the L1 cache remains
455 * coherent with system memory.
456 *
457 * [...]
458 *
459 * Whenever the value of the Dynamic_State_Base_Addr,
460 * Surface_State_Base_Addr are altered, the L1 state cache must be
461 * invalidated to ensure the new surface or sampler state is fetched
462 * from system memory.
463 *
464 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
465 * which, according the PIPE_CONTROL instruction documentation in the
466 * Broadwell PRM:
467 *
468 * Setting this bit is independent of any other bit in this packet.
469 * This bit controls the invalidation of the L1 and L2 state caches
470 * at the top of the pipe i.e. at the parsing time.
471 *
472 * Unfortunately, experimentation seems to indicate that state cache
473 * invalidation through a PIPE_CONTROL does nothing whatsoever in
474 * regards to surface state and binding tables. In stead, it seems that
475 * invalidating the texture cache is what is actually needed.
476 *
477 * XXX: As far as we have been able to determine through
478 * experimentation, shows that flush the texture cache appears to be
479 * sufficient. The theory here is that all of the sampling/rendering
480 * units cache the binding table in the texture cache. However, we have
481 * yet to be able to actually confirm this.
482 *
483 * Wa_16013000631:
484 *
485 * "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice
486 * or program pipe control with Instruction cache invalidate post
487 * STATE_BASE_ADDRESS command"
488 */
489 iris_emit_end_of_pipe_sync(batch,
490 "change STATE_BASE_ADDRESS (invalidates)",
491 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
492 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
493 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
494 (intel_needs_workaround(devinfo, 16013000631) ?
495 PIPE_CONTROL_INSTRUCTION_INVALIDATE : 0));
496 }
497
498 static void
iris_load_register_reg32(struct iris_batch * batch,uint32_t dst,uint32_t src)499 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
500 uint32_t src)
501 {
502 struct mi_builder b;
503 mi_builder_init(&b, batch->screen->devinfo, batch);
504 mi_store(&b, mi_reg32(dst), mi_reg32(src));
505 }
506
507 static void
iris_load_register_reg64(struct iris_batch * batch,uint32_t dst,uint32_t src)508 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
509 uint32_t src)
510 {
511 struct mi_builder b;
512 mi_builder_init(&b, batch->screen->devinfo, batch);
513 mi_store(&b, mi_reg64(dst), mi_reg64(src));
514 }
515
516 static void
iris_load_register_imm32(struct iris_batch * batch,uint32_t reg,uint32_t val)517 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
518 uint32_t val)
519 {
520 struct mi_builder b;
521 mi_builder_init(&b, batch->screen->devinfo, batch);
522 mi_store(&b, mi_reg32(reg), mi_imm(val));
523 }
524
525 static void
iris_load_register_imm64(struct iris_batch * batch,uint32_t reg,uint64_t val)526 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
527 uint64_t val)
528 {
529 struct mi_builder b;
530 mi_builder_init(&b, batch->screen->devinfo, batch);
531 mi_store(&b, mi_reg64(reg), mi_imm(val));
532 }
533
534 /**
535 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
536 */
537 static void
iris_load_register_mem32(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset)538 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
539 struct iris_bo *bo, uint32_t offset)
540 {
541 iris_batch_sync_region_start(batch);
542 struct mi_builder b;
543 mi_builder_init(&b, batch->screen->devinfo, batch);
544 struct mi_value src = mi_mem32(ro_bo(bo, offset));
545 mi_store(&b, mi_reg32(reg), src);
546 iris_batch_sync_region_end(batch);
547 }
548
549 /**
550 * Load a 64-bit value from a buffer into a MMIO register via
551 * two MI_LOAD_REGISTER_MEM commands.
552 */
553 static void
iris_load_register_mem64(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset)554 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
555 struct iris_bo *bo, uint32_t offset)
556 {
557 iris_batch_sync_region_start(batch);
558 struct mi_builder b;
559 mi_builder_init(&b, batch->screen->devinfo, batch);
560 struct mi_value src = mi_mem64(ro_bo(bo, offset));
561 mi_store(&b, mi_reg64(reg), src);
562 iris_batch_sync_region_end(batch);
563 }
564
565 static void
iris_store_register_mem32(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset,bool predicated)566 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
567 struct iris_bo *bo, uint32_t offset,
568 bool predicated)
569 {
570 iris_batch_sync_region_start(batch);
571 struct mi_builder b;
572 mi_builder_init(&b, batch->screen->devinfo, batch);
573 struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
574 struct mi_value src = mi_reg32(reg);
575 if (predicated)
576 mi_store_if(&b, dst, src);
577 else
578 mi_store(&b, dst, src);
579 iris_batch_sync_region_end(batch);
580 }
581
582 static void
iris_store_register_mem64(struct iris_batch * batch,uint32_t reg,struct iris_bo * bo,uint32_t offset,bool predicated)583 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
584 struct iris_bo *bo, uint32_t offset,
585 bool predicated)
586 {
587 iris_batch_sync_region_start(batch);
588 struct mi_builder b;
589 mi_builder_init(&b, batch->screen->devinfo, batch);
590 struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
591 struct mi_value src = mi_reg64(reg);
592 if (predicated)
593 mi_store_if(&b, dst, src);
594 else
595 mi_store(&b, dst, src);
596 iris_batch_sync_region_end(batch);
597 }
598
599 static void
iris_store_data_imm32(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset,uint32_t imm)600 iris_store_data_imm32(struct iris_batch *batch,
601 struct iris_bo *bo, uint32_t offset,
602 uint32_t imm)
603 {
604 iris_batch_sync_region_start(batch);
605 struct mi_builder b;
606 mi_builder_init(&b, batch->screen->devinfo, batch);
607 struct mi_value dst = mi_mem32(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
608 struct mi_value src = mi_imm(imm);
609 mi_store(&b, dst, src);
610 iris_batch_sync_region_end(batch);
611 }
612
613 static void
iris_store_data_imm64(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset,uint64_t imm)614 iris_store_data_imm64(struct iris_batch *batch,
615 struct iris_bo *bo, uint32_t offset,
616 uint64_t imm)
617 {
618 iris_batch_sync_region_start(batch);
619 struct mi_builder b;
620 mi_builder_init(&b, batch->screen->devinfo, batch);
621 struct mi_value dst = mi_mem64(rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE));
622 struct mi_value src = mi_imm(imm);
623 mi_store(&b, dst, src);
624 iris_batch_sync_region_end(batch);
625 }
626
627 static void
iris_copy_mem_mem(struct iris_batch * batch,struct iris_bo * dst_bo,uint32_t dst_offset,struct iris_bo * src_bo,uint32_t src_offset,unsigned bytes)628 iris_copy_mem_mem(struct iris_batch *batch,
629 struct iris_bo *dst_bo, uint32_t dst_offset,
630 struct iris_bo *src_bo, uint32_t src_offset,
631 unsigned bytes)
632 {
633 /* MI_COPY_MEM_MEM operates on DWords. */
634 assert(bytes % 4 == 0);
635 assert(dst_offset % 4 == 0);
636 assert(src_offset % 4 == 0);
637 iris_batch_sync_region_start(batch);
638
639 for (unsigned i = 0; i < bytes; i += 4) {
640 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
641 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i,
642 IRIS_DOMAIN_OTHER_WRITE);
643 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
644 }
645 }
646
647 iris_batch_sync_region_end(batch);
648 }
649
650 static void
iris_rewrite_compute_walker_pc(struct iris_batch * batch,uint32_t * walker,struct iris_bo * bo,uint32_t offset)651 iris_rewrite_compute_walker_pc(struct iris_batch *batch,
652 uint32_t *walker,
653 struct iris_bo *bo,
654 uint32_t offset)
655 {
656 #if GFX_VERx10 >= 125
657 struct iris_screen *screen = batch->screen;
658 struct iris_address addr = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
659
660 uint32_t dwords[GENX(COMPUTE_WALKER_length)];
661
662 _iris_pack_command(batch, GENX(COMPUTE_WALKER), dwords, cw) {
663 cw.body.PostSync.Operation = WriteTimestamp;
664 cw.body.PostSync.DestinationAddress = addr;
665 cw.body.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
666 }
667
668 for (uint32_t i = 0; i < GENX(COMPUTE_WALKER_length); i++)
669 walker[i] |= dwords[i];
670 #else
671 unreachable("Unsupported");
672 #endif
673 }
674
675 static void
emit_pipeline_select(struct iris_batch * batch,uint32_t pipeline)676 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
677 {
678 /* Bspec 55860: Xe2+ no longer requires PIPELINE_SELECT */
679 #if GFX_VER < 20
680
681 #if GFX_VER >= 8 && GFX_VER < 10
682 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
683 *
684 * Software must clear the COLOR_CALC_STATE Valid field in
685 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
686 * with Pipeline Select set to GPGPU.
687 *
688 * The internal hardware docs recommend the same workaround for Gfx9
689 * hardware too.
690 */
691 if (pipeline == GPGPU)
692 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
693 #endif
694
695 #if GFX_VER >= 12
696 /* From Tigerlake PRM, Volume 2a, PIPELINE_SELECT:
697 *
698 * "Software must ensure Render Cache, Depth Cache and HDC Pipeline flush
699 * are flushed through a stalling PIPE_CONTROL command prior to
700 * programming of PIPELINE_SELECT command transitioning Pipeline Select
701 * from 3D to GPGPU/Media.
702 * Software must ensure HDC Pipeline flush and Generic Media State Clear
703 * is issued through a stalling PIPE_CONTROL command prior to programming
704 * of PIPELINE_SELECT command transitioning Pipeline Select from
705 * GPGPU/Media to 3D."
706 *
707 * Note: Issuing PIPE_CONTROL_MEDIA_STATE_CLEAR causes GPU hangs, probably
708 * because PIPE was not in MEDIA mode?!
709 */
710 enum pipe_control_flags flags = PIPE_CONTROL_CS_STALL |
711 PIPE_CONTROL_FLUSH_HDC;
712
713 if (pipeline == GPGPU && batch->name == IRIS_BATCH_RENDER) {
714 flags |= PIPE_CONTROL_RENDER_TARGET_FLUSH |
715 PIPE_CONTROL_DEPTH_CACHE_FLUSH;
716 } else {
717 flags |= PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH;
718 }
719 /* Wa_16013063087 - State Cache Invalidate must be issued prior to
720 * PIPELINE_SELECT when switching from 3D to Compute.
721 *
722 * SW must do this by programming of PIPECONTROL with “CS Stall” followed
723 * by a PIPECONTROL with State Cache Invalidate bit set.
724 */
725 if (pipeline == GPGPU &&
726 intel_needs_workaround(batch->screen->devinfo, 16013063087))
727 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
728
729 iris_emit_pipe_control_flush(batch, "PIPELINE_SELECT flush", flags);
730 #else
731 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
732 * PIPELINE_SELECT [DevBWR+]":
733 *
734 * "Project: DEVSNB+
735 *
736 * Software must ensure all the write caches are flushed through a
737 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
738 * command to invalidate read only caches prior to programming
739 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
740 */
741 iris_emit_pipe_control_flush(batch,
742 "workaround: PIPELINE_SELECT flushes (1/2)",
743 PIPE_CONTROL_RENDER_TARGET_FLUSH |
744 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
745 PIPE_CONTROL_DATA_CACHE_FLUSH |
746 PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
747 PIPE_CONTROL_CS_STALL);
748
749 iris_emit_pipe_control_flush(batch,
750 "workaround: PIPELINE_SELECT flushes (2/2)",
751 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
752 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
753 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
754 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
755 #endif
756
757 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
758 #if GFX_VER >= 9
759 sel.MaskBits = GFX_VER == 12 ? 0x13 : 0x3;
760 #if GFX_VER == 12
761 sel.MediaSamplerDOPClockGateEnable = true;
762 #endif /* if GFX_VER == 12 */
763 #endif /* if GFX_VER >= 9 */
764 sel.PipelineSelection = pipeline;
765 }
766 #endif /* if GFX_VER < 20 */
767 }
768
769 UNUSED static void
init_glk_barrier_mode(struct iris_batch * batch,uint32_t value)770 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
771 {
772 #if GFX_VER == 9
773 /* Project: DevGLK
774 *
775 * "This chicken bit works around a hardware issue with barrier
776 * logic encountered when switching between GPGPU and 3D pipelines.
777 * To workaround the issue, this mode bit should be set after a
778 * pipeline is selected."
779 */
780 iris_emit_reg(batch, GENX(SLICE_COMMON_ECO_CHICKEN1), reg) {
781 reg.GLKBarrierMode = value;
782 reg.GLKBarrierModeMask = 1;
783 }
784 #endif
785 }
786
787 static void
init_state_base_address(struct iris_batch * batch)788 init_state_base_address(struct iris_batch *batch)
789 {
790 struct isl_device *isl_dev = &batch->screen->isl_dev;
791 uint32_t mocs = isl_mocs(isl_dev, 0, false);
792 flush_before_state_base_change(batch);
793
794 /* We program most base addresses once at context initialization time.
795 * Each base address points at a 4GB memory zone, and never needs to
796 * change. See iris_bufmgr.h for a description of the memory zones.
797 *
798 * The one exception is Surface State Base Address, which needs to be
799 * updated occasionally. See iris_binder.c for the details there.
800 */
801 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
802 sba.GeneralStateMOCS = mocs;
803 sba.StatelessDataPortAccessMOCS = mocs;
804 sba.DynamicStateMOCS = mocs;
805 sba.IndirectObjectMOCS = mocs;
806 sba.InstructionMOCS = mocs;
807 sba.SurfaceStateMOCS = mocs;
808 #if GFX_VER >= 9
809 sba.BindlessSurfaceStateMOCS = mocs;
810 #endif
811
812 sba.GeneralStateBaseAddressModifyEnable = true;
813 sba.DynamicStateBaseAddressModifyEnable = true;
814 sba.IndirectObjectBaseAddressModifyEnable = true;
815 sba.InstructionBaseAddressModifyEnable = true;
816 sba.GeneralStateBufferSizeModifyEnable = true;
817 sba.DynamicStateBufferSizeModifyEnable = true;
818 sba.SurfaceStateBaseAddressModifyEnable = true;
819 #if GFX_VER >= 11
820 sba.BindlessSamplerStateMOCS = mocs;
821 #endif
822 sba.IndirectObjectBufferSizeModifyEnable = true;
823 sba.InstructionBuffersizeModifyEnable = true;
824
825 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
826 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
827 sba.SurfaceStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_BINDER_START);
828
829 sba.GeneralStateBufferSize = 0xfffff;
830 sba.IndirectObjectBufferSize = 0xfffff;
831 sba.InstructionBufferSize = 0xfffff;
832 sba.DynamicStateBufferSize = 0xfffff;
833 #if GFX_VERx10 >= 125
834 sba.L1CacheControl = L1CC_WB;
835 #endif
836 }
837
838 flush_after_state_base_change(batch);
839 }
840
841 static void
iris_emit_l3_config(struct iris_batch * batch,const struct intel_l3_config * cfg)842 iris_emit_l3_config(struct iris_batch *batch,
843 const struct intel_l3_config *cfg)
844 {
845 #if GFX_VER < 20
846 assert(cfg || GFX_VER >= 12);
847
848 #if GFX_VER >= 12
849 #define L3_ALLOCATION_REG GENX(L3ALLOC)
850 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
851 #else
852 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
853 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
854 #endif
855
856 iris_emit_reg(batch, L3_ALLOCATION_REG, reg) {
857 #if GFX_VER < 11
858 reg.SLMEnable = cfg->n[INTEL_L3P_SLM] > 0;
859 #endif
860 #if GFX_VER == 11
861 /* Wa_1406697149: Bit 9 "Error Detection Behavior Control" must be set
862 * in L3CNTLREG register. The default setting of the bit is not the
863 * desirable behavior.
864 */
865 reg.ErrorDetectionBehaviorControl = true;
866 reg.UseFullWays = true;
867 #endif
868 if (GFX_VER < 12 || (cfg && cfg->n[INTEL_L3P_ALL] <= 126)) {
869 reg.URBAllocation = cfg->n[INTEL_L3P_URB];
870 reg.ROAllocation = cfg->n[INTEL_L3P_RO];
871 reg.DCAllocation = cfg->n[INTEL_L3P_DC];
872 reg.AllAllocation = cfg->n[INTEL_L3P_ALL];
873 } else {
874 assert(!cfg || !(cfg->n[INTEL_L3P_SLM] || cfg->n[INTEL_L3P_URB] ||
875 cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_RO] ||
876 cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_C] ||
877 cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_TC]));
878 #if GFX_VER >= 12
879 reg.L3FullWayAllocationEnable = true;
880 #endif
881 }
882 }
883 #endif /* GFX_VER < 20 */
884 }
885
886 void
genX(emit_urb_config)887 genX(emit_urb_config)(struct iris_batch *batch,
888 bool has_tess_eval,
889 bool has_geometry)
890 {
891 struct iris_screen *screen = batch->screen;
892 struct iris_context *ice = batch->ice;
893
894 intel_get_urb_config(screen->devinfo,
895 screen->l3_config_3d,
896 has_tess_eval,
897 has_geometry,
898 &ice->shaders.urb.cfg,
899 &ice->state.urb_deref_block_size,
900 &ice->shaders.urb.constrained);
901
902 genX(urb_workaround)(batch, &ice->shaders.urb.cfg);
903
904 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
905 #if GFX_VER >= 12
906 iris_emit_cmd(batch, GENX(3DSTATE_URB_ALLOC_VS), urb) {
907 urb._3DCommandSubOpcode += i;
908 urb.VSURBEntryAllocationSize = ice->shaders.urb.cfg.size[i] - 1;
909 urb.VSURBStartingAddressSlice0 = ice->shaders.urb.cfg.start[i];
910 urb.VSURBStartingAddressSliceN = ice->shaders.urb.cfg.start[i];
911 urb.VSNumberofURBEntriesSlice0 = ice->shaders.urb.cfg.entries[i];
912 urb.VSNumberofURBEntriesSliceN = ice->shaders.urb.cfg.entries[i];
913 }
914 #else
915 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
916 urb._3DCommandSubOpcode += i;
917 urb.VSURBStartingAddress = ice->shaders.urb.cfg.start[i];
918 urb.VSURBEntryAllocationSize = ice->shaders.urb.cfg.size[i] - 1;
919 urb.VSNumberofURBEntries = ice->shaders.urb.cfg.entries[i];
920 }
921 #endif
922 }
923 }
924
925 #if GFX_VER == 9
926 static void
iris_enable_obj_preemption(struct iris_batch * batch,bool enable)927 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
928 {
929 /* A fixed function pipe flush is required before modifying this field */
930 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
931 : "disable preemption",
932 PIPE_CONTROL_RENDER_TARGET_FLUSH);
933
934 /* enable object level preemption */
935 iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
936 reg.ReplayMode = enable;
937 reg.ReplayModeMask = true;
938 }
939 }
940 #endif
941
942 static void
upload_pixel_hashing_tables(struct iris_batch * batch)943 upload_pixel_hashing_tables(struct iris_batch *batch)
944 {
945 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
946 UNUSED struct iris_context *ice = batch->ice;
947 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
948
949 #if GFX_VER == 11
950 /* Gfx11 hardware has two pixel pipes at most. */
951 for (unsigned i = 2; i < ARRAY_SIZE(devinfo->ppipe_subslices); i++)
952 assert(devinfo->ppipe_subslices[i] == 0);
953
954 if (devinfo->ppipe_subslices[0] == devinfo->ppipe_subslices[1])
955 return;
956
957 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
958 uint32_t hash_address;
959 struct pipe_resource *tmp = NULL;
960 uint32_t *map =
961 stream_state(batch, ice->state.dynamic_uploader, &tmp,
962 size, 64, &hash_address);
963 pipe_resource_reference(&tmp, NULL);
964
965 const bool flip = devinfo->ppipe_subslices[0] < devinfo->ppipe_subslices[1];
966 struct GENX(SLICE_HASH_TABLE) table;
967 intel_compute_pixel_hash_table_3way(16, 16, 3, 3, flip, table.Entry[0]);
968
969 GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
970
971 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
972 ptr.SliceHashStatePointerValid = true;
973 ptr.SliceHashTableStatePointer = hash_address;
974 }
975
976 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
977 mode.SliceHashingTableEnable = true;
978 }
979
980 #elif GFX_VERx10 == 120
981 /* For each n calculate ppipes_of[n], equal to the number of pixel pipes
982 * present with n active dual subslices.
983 */
984 unsigned ppipes_of[3] = {};
985
986 for (unsigned n = 0; n < ARRAY_SIZE(ppipes_of); n++) {
987 for (unsigned p = 0; p < 3; p++)
988 ppipes_of[n] += (devinfo->ppipe_subslices[p] == n);
989 }
990
991 /* Gfx12 has three pixel pipes. */
992 for (unsigned p = 3; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++)
993 assert(devinfo->ppipe_subslices[p] == 0);
994
995 if (ppipes_of[2] == 3 || ppipes_of[0] == 2) {
996 /* All three pixel pipes have the maximum number of active dual
997 * subslices, or there is only one active pixel pipe: Nothing to do.
998 */
999 return;
1000 }
1001
1002 iris_emit_cmd(batch, GENX(3DSTATE_SUBSLICE_HASH_TABLE), p) {
1003 p.SliceHashControl[0] = TABLE_0;
1004
1005 if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
1006 intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.TwoWayTableEntry[0]);
1007 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
1008 intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.TwoWayTableEntry[0]);
1009
1010 if (ppipes_of[2] == 2 && ppipes_of[1] == 1)
1011 intel_compute_pixel_hash_table_3way(8, 16, 5, 4, 0, p.ThreeWayTableEntry[0]);
1012 else if (ppipes_of[2] == 2 && ppipes_of[0] == 1)
1013 intel_compute_pixel_hash_table_3way(8, 16, 2, 2, 0, p.ThreeWayTableEntry[0]);
1014 else if (ppipes_of[2] == 1 && ppipes_of[1] == 1 && ppipes_of[0] == 1)
1015 intel_compute_pixel_hash_table_3way(8, 16, 3, 3, 0, p.ThreeWayTableEntry[0]);
1016 else
1017 unreachable("Illegal fusing.");
1018 }
1019
1020 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
1021 p.SubsliceHashingTableEnable = true;
1022 p.SubsliceHashingTableEnableMask = true;
1023 }
1024
1025 #elif GFX_VERx10 == 125
1026 struct pipe_screen *pscreen = &batch->screen->base;
1027 const unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
1028 const struct pipe_resource tmpl = {
1029 .target = PIPE_BUFFER,
1030 .format = PIPE_FORMAT_R8_UNORM,
1031 .bind = PIPE_BIND_CUSTOM,
1032 .usage = PIPE_USAGE_IMMUTABLE,
1033 .flags = IRIS_RESOURCE_FLAG_DYNAMIC_MEMZONE,
1034 .width0 = size,
1035 .height0 = 1,
1036 .depth0 = 1,
1037 .array_size = 1
1038 };
1039
1040 pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
1041 ice->state.pixel_hashing_tables = pscreen->resource_create(pscreen, &tmpl);
1042
1043 struct iris_resource *res = (struct iris_resource *)ice->state.pixel_hashing_tables;
1044 struct pipe_transfer *transfer = NULL;
1045 uint32_t *map = pipe_buffer_map_range(&ice->ctx, ice->state.pixel_hashing_tables,
1046 0, size, PIPE_MAP_WRITE,
1047 &transfer);
1048
1049 /* Calculate the set of present pixel pipes, and another set of
1050 * present pixel pipes with 2 dual subslices enabled, the latter
1051 * will appear on the hashing table with twice the frequency of
1052 * pixel pipes with a single dual subslice present.
1053 */
1054 uint32_t ppipe_mask1 = 0, ppipe_mask2 = 0;
1055 for (unsigned p = 0; p < ARRAY_SIZE(devinfo->ppipe_subslices); p++) {
1056 if (devinfo->ppipe_subslices[p])
1057 ppipe_mask1 |= (1u << p);
1058 if (devinfo->ppipe_subslices[p] > 1)
1059 ppipe_mask2 |= (1u << p);
1060 }
1061 assert(ppipe_mask1);
1062
1063 struct GENX(SLICE_HASH_TABLE) table;
1064
1065 /* Note that the hardware expects an array with 7 tables, each
1066 * table is intended to specify the pixel pipe hashing behavior for
1067 * every possible slice count between 2 and 8, however that doesn't
1068 * actually work, among other reasons due to hardware bugs that
1069 * will cause the GPU to erroneously access the table at the wrong
1070 * index in some cases, so in practice all 7 tables need to be
1071 * initialized to the same value.
1072 */
1073 for (unsigned i = 0; i < 7; i++)
1074 intel_compute_pixel_hash_table_nway(16, 16, ppipe_mask1, ppipe_mask2,
1075 table.Entry[i][0]);
1076
1077 GENX(SLICE_HASH_TABLE_pack)(NULL, map, &table);
1078
1079 pipe_buffer_unmap(&ice->ctx, transfer);
1080
1081 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_NONE);
1082 iris_record_state_size(batch->state_sizes, res->bo->address + res->offset, size);
1083
1084 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
1085 ptr.SliceHashStatePointerValid = true;
1086 ptr.SliceHashTableStatePointer = iris_bo_offset_from_base_address(res->bo) +
1087 res->offset;
1088 }
1089
1090 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
1091 mode.SliceHashingTableEnable = true;
1092 mode.SliceHashingTableEnableMask = true;
1093 mode.CrossSliceHashingMode = (util_bitcount(ppipe_mask1) > 1 ?
1094 hashing32x32 : NormalMode);
1095 mode.CrossSliceHashingModeMask = -1;
1096 }
1097 #endif
1098 }
1099
1100 static void
iris_alloc_push_constants(struct iris_batch * batch)1101 iris_alloc_push_constants(struct iris_batch *batch)
1102 {
1103 const struct intel_device_info *devinfo = batch->screen->devinfo;
1104
1105 /* For now, we set a static partitioning of the push constant area,
1106 * assuming that all stages could be in use.
1107 *
1108 * TODO: Try lazily allocating the HS/DS/GS sections as needed, and
1109 * see if that improves performance by offering more space to
1110 * the VS/FS when those aren't in use. Also, try dynamically
1111 * enabling/disabling it like i965 does. This would be more
1112 * stalls and may not actually help; we don't know yet.
1113 */
1114
1115 /* Divide as equally as possible with any remainder given to FRAGMENT. */
1116 const unsigned push_constant_kb = devinfo->max_constant_urb_size_kb;
1117 const unsigned stage_size = push_constant_kb / 5;
1118 const unsigned frag_size = push_constant_kb - 4 * stage_size;
1119
1120 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
1121 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1122 alloc._3DCommandSubOpcode = 18 + i;
1123 alloc.ConstantBufferOffset = stage_size * i;
1124 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? frag_size : stage_size;
1125 }
1126 }
1127
1128 #if GFX_VERx10 == 125
1129 /* DG2: Wa_22011440098
1130 * MTL: Wa_18022330953
1131 *
1132 * In 3D mode, after programming push constant alloc command immediately
1133 * program push constant command(ZERO length) without any commit between
1134 * them.
1135 */
1136 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), c) {
1137 /* Update empty push constants for all stages (bitmask = 11111b) */
1138 c.ShaderUpdateEnable = 0x1f;
1139 c.MOCS = iris_mocs(NULL, &batch->screen->isl_dev, 0);
1140 }
1141 #endif
1142 }
1143
1144 #if GFX_VER >= 12
1145 static void
1146 init_aux_map_state(struct iris_batch *batch);
1147 #endif
1148
1149 /* This updates a register. Caller should stall the pipeline as needed. */
1150 static void
iris_disable_rhwo_optimization(struct iris_batch * batch,bool disable)1151 iris_disable_rhwo_optimization(struct iris_batch *batch, bool disable)
1152 {
1153 assert(batch->screen->devinfo->verx10 == 120);
1154 #if GFX_VERx10 == 120
1155 iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), c1) {
1156 c1.RCCRHWOOptimizationDisable = disable;
1157 c1.RCCRHWOOptimizationDisableMask = true;
1158 };
1159 #endif
1160 }
1161
1162 static void
state_system_mem_fence_address_emit(struct iris_batch * batch)1163 state_system_mem_fence_address_emit(struct iris_batch *batch)
1164 {
1165 #if GFX_VERx10 >= 200
1166 struct iris_screen *screen = batch->screen;
1167 struct iris_address addr = { .bo = iris_bufmgr_get_mem_fence_bo(screen->bufmgr) };
1168 iris_emit_cmd(batch, GENX(STATE_SYSTEM_MEM_FENCE_ADDRESS), mem_fence_addr) {
1169 mem_fence_addr.SystemMemoryFenceAddress = addr;
1170 }
1171 #endif
1172 }
1173
1174 /**
1175 * Upload initial GPU state for any kind of context.
1176 *
1177 * These need to happen for both render and compute.
1178 */
1179 static void
iris_init_common_context(struct iris_batch * batch)1180 iris_init_common_context(struct iris_batch *batch)
1181 {
1182 #if GFX_VER == 11
1183 iris_emit_reg(batch, GENX(SAMPLER_MODE), reg) {
1184 reg.HeaderlessMessageforPreemptableContexts = 1;
1185 reg.HeaderlessMessageforPreemptableContextsMask = 1;
1186 }
1187
1188 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
1189 iris_emit_reg(batch, GENX(HALF_SLICE_CHICKEN7), reg) {
1190 reg.EnabledTexelOffsetPrecisionFix = 1;
1191 reg.EnabledTexelOffsetPrecisionFixMask = 1;
1192 }
1193 #endif
1194
1195 /* Select 256B-aligned binding table mode on Icelake through Tigerlake,
1196 * which gives us larger binding table pointers, at the cost of higher
1197 * alignment requirements (bits 18:8 are valid instead of 15:5). When
1198 * using this mode, we have to shift binding table pointers by 3 bits,
1199 * as they're still stored in the same bit-location in the field.
1200 */
1201 #if GFX_VER >= 11 && GFX_VERx10 < 125
1202 iris_emit_reg(batch, GENX(GT_MODE), reg) {
1203 reg.BindingTableAlignment = BTP_18_8;
1204 reg.BindingTableAlignmentMask = true;
1205 }
1206 #endif
1207
1208 #if GFX_VERx10 == 125
1209 /* Even though L3 partial write merging is supposed to be enabled
1210 * by default on Gfx12.5 according to the hardware spec, i915
1211 * appears to accidentally clear the enables during context
1212 * initialization, so make sure to enable them here since partial
1213 * write merging has a large impact on rendering performance.
1214 */
1215 iris_emit_reg(batch, GENX(L3SQCREG5), reg) {
1216 reg.L3CachePartialWriteMergeTimerInitialValue = 0x7f;
1217 reg.CompressiblePartialWriteMergeEnable = true;
1218 reg.CoherentPartialWriteMergeEnable = true;
1219 reg.CrossTilePartialWriteMergeEnable = true;
1220 }
1221 #endif
1222
1223 state_system_mem_fence_address_emit(batch);
1224 }
1225
1226 static void
toggle_protected(struct iris_batch * batch)1227 toggle_protected(struct iris_batch *batch)
1228 {
1229 struct iris_context *ice;
1230
1231 if (batch->name == IRIS_BATCH_RENDER)
1232 ice =container_of(batch, struct iris_context, batches[IRIS_BATCH_RENDER]);
1233 else if (batch->name == IRIS_BATCH_COMPUTE)
1234 ice = container_of(batch, struct iris_context, batches[IRIS_BATCH_COMPUTE]);
1235 else
1236 unreachable("unhandled batch");
1237
1238 if (!ice->protected)
1239 return;
1240
1241 #if GFX_VER >= 12
1242 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
1243 pc.CommandStreamerStallEnable = true;
1244 pc.RenderTargetCacheFlushEnable = true;
1245 pc.ProtectedMemoryDisable = true;
1246 }
1247 iris_emit_cmd(batch, GENX(MI_SET_APPID), appid) {
1248 /* Default value for single session. */
1249 appid.ProtectedMemoryApplicationID = 0xf;
1250 appid.ProtectedMemoryApplicationIDType = DISPLAY_APP;
1251 }
1252 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
1253 pc.CommandStreamerStallEnable = true;
1254 pc.RenderTargetCacheFlushEnable = true;
1255 pc.ProtectedMemoryEnable = true;
1256 }
1257 #else
1258 unreachable("Not supported");
1259 #endif
1260 }
1261
1262 #if GFX_VER >= 20
1263 #define _3DSTATE_DRAWING_RECTANGLE GENX(3DSTATE_DRAWING_RECTANGLE_FAST)
1264 #else
1265 #define _3DSTATE_DRAWING_RECTANGLE GENX(3DSTATE_DRAWING_RECTANGLE)
1266 #endif
1267
1268 /**
1269 * Upload the initial GPU state for a render context.
1270 *
1271 * This sets some invariant state that needs to be programmed a particular
1272 * way, but we never actually change.
1273 */
1274 static void
iris_init_render_context(struct iris_batch * batch)1275 iris_init_render_context(struct iris_batch *batch)
1276 {
1277 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
1278
1279 iris_batch_sync_region_start(batch);
1280
1281 emit_pipeline_select(batch, _3D);
1282
1283 toggle_protected(batch);
1284
1285 iris_emit_l3_config(batch, batch->screen->l3_config_3d);
1286
1287 init_state_base_address(batch);
1288
1289 iris_init_common_context(batch);
1290
1291 #if GFX_VER >= 9
1292 iris_emit_reg(batch, GENX(CS_DEBUG_MODE2), reg) {
1293 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
1294 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
1295 }
1296 #else
1297 iris_emit_reg(batch, GENX(INSTPM), reg) {
1298 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
1299 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
1300 }
1301 #endif
1302
1303 #if GFX_VER == 9
1304 iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
1305 reg.FloatBlendOptimizationEnable = true;
1306 reg.FloatBlendOptimizationEnableMask = true;
1307 reg.MSCRAWHazardAvoidanceBit = true;
1308 reg.MSCRAWHazardAvoidanceBitMask = true;
1309 reg.PartialResolveDisableInVC = true;
1310 reg.PartialResolveDisableInVCMask = true;
1311 }
1312
1313 if (devinfo->platform == INTEL_PLATFORM_GLK)
1314 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
1315 #endif
1316
1317 #if GFX_VER == 11
1318 iris_emit_reg(batch, GENX(TCCNTLREG), reg) {
1319 reg.L3DataPartialWriteMergingEnable = true;
1320 reg.ColorZPartialWriteMergingEnable = true;
1321 reg.URBPartialWriteMergingEnable = true;
1322 reg.TCDisable = true;
1323 }
1324
1325 /* Hardware specification recommends disabling repacking for the
1326 * compatibility with decompression mechanism in display controller.
1327 */
1328 if (devinfo->disable_ccs_repack) {
1329 iris_emit_reg(batch, GENX(CACHE_MODE_0), reg) {
1330 reg.DisableRepackingforCompression = true;
1331 reg.DisableRepackingforCompressionMask = true;
1332 }
1333 }
1334 #endif
1335
1336 #if GFX_VER == 12
1337 iris_emit_reg(batch, GENX(FF_MODE2), reg) {
1338 /* On Alchemist, the FF_MODE2 docs for the GS timer say:
1339 *
1340 * "The timer value must be set to 224."
1341 *
1342 * and Wa_16011163337 indicates this is the case for all Gfx12 parts,
1343 * and that this is necessary to avoid hanging the HS/DS units. It
1344 * also clarifies that 224 is literally 0xE0 in the bits, not 7*32=224.
1345 *
1346 * The HS timer docs also have the same quote for Alchemist. I am
1347 * unaware of a reason it needs to be set to 224 on Tigerlake, but
1348 * we do so for consistency if nothing else.
1349 *
1350 * For the TDS timer value, the docs say:
1351 *
1352 * "For best performance, a value of 4 should be programmed."
1353 *
1354 * i915 also sets it this way on Tigerlake due to workarounds.
1355 *
1356 * The default VS timer appears to be 0, so we leave it at that.
1357 */
1358 reg.GSTimerValue = 224;
1359 reg.HSTimerValue = 224;
1360 reg.TDSTimerValue = 4;
1361 reg.VSTimerValue = 0;
1362 }
1363 #endif
1364
1365 #if INTEL_NEEDS_WA_1508744258
1366 /* The suggested workaround is:
1367 *
1368 * Disable RHWO by setting 0x7010[14] by default except during resolve
1369 * pass.
1370 *
1371 * We implement global disabling of the optimization here and we toggle it
1372 * in iris_resolve_color.
1373 *
1374 * iris_init_compute_context is unmodified because we don't expect to
1375 * access the RCC in the compute context. iris_mcs_partial_resolve is
1376 * unmodified because that pass doesn't use a HW bit to perform the
1377 * resolve (related HSDs specifically call out the RenderTargetResolveType
1378 * field in the 3DSTATE_PS instruction).
1379 */
1380 iris_disable_rhwo_optimization(batch, true);
1381 #endif
1382
1383 #if GFX_VERx10 == 120
1384 /* Wa_1806527549 says to disable the following HiZ optimization when the
1385 * depth buffer is D16_UNORM. We've found the WA to help with more depth
1386 * buffer configurations however, so we always disable it just to be safe.
1387 */
1388 iris_emit_reg(batch, GENX(HIZ_CHICKEN), reg) {
1389 reg.HZDepthTestLEGEOptimizationDisable = true;
1390 reg.HZDepthTestLEGEOptimizationDisableMask = true;
1391 }
1392 #endif
1393
1394 #if GFX_VERx10 == 125
1395 iris_emit_reg(batch, GENX(CHICKEN_RASTER_2), reg) {
1396 reg.TBIMRBatchSizeOverride = true;
1397 reg.TBIMROpenBatchEnable = true;
1398 reg.TBIMRFastClip = true;
1399 reg.TBIMRBatchSizeOverrideMask = true;
1400 reg.TBIMROpenBatchEnableMask = true;
1401 reg.TBIMRFastClipMask = true;
1402 };
1403 #endif
1404
1405 #if GFX_VER >= 20
1406 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
1407 p.DX10OGLBorderModeforYCRCB = true;
1408 p.DX10OGLBorderModeforYCRCBMask = true;
1409 }
1410 #endif
1411
1412 #if GFX_VER >= 30
1413 iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
1414 cm.EnableVariableRegisterSizeAllocationMask = 1;
1415 cm.EnableVariableRegisterSizeAllocation = true;
1416 }
1417 #endif
1418
1419 upload_pixel_hashing_tables(batch);
1420
1421 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
1422 * changing it dynamically. We set it to the maximum size here, and
1423 * instead include the render target dimensions in the viewport, so
1424 * viewport extents clipping takes care of pruning stray geometry.
1425 */
1426 iris_emit_cmd(batch, _3DSTATE_DRAWING_RECTANGLE, rect) {
1427 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
1428 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
1429 }
1430
1431 /* Set the initial MSAA sample positions. */
1432 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
1433 INTEL_SAMPLE_POS_1X(pat._1xSample);
1434 INTEL_SAMPLE_POS_2X(pat._2xSample);
1435 INTEL_SAMPLE_POS_4X(pat._4xSample);
1436 INTEL_SAMPLE_POS_8X(pat._8xSample);
1437 #if GFX_VER >= 9
1438 INTEL_SAMPLE_POS_16X(pat._16xSample);
1439 #endif
1440 }
1441
1442 /* Use the legacy AA line coverage computation. */
1443 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
1444
1445 /* Disable chromakeying (it's for media) */
1446 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
1447
1448 /* We want regular rendering, not special HiZ operations. */
1449 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
1450
1451 /* No polygon stippling offsets are necessary. */
1452 /* TODO: may need to set an offset for origin-UL framebuffers */
1453 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
1454
1455 #if GFX_VERx10 >= 125
1456 iris_emit_cmd(batch, GENX(3DSTATE_MESH_CONTROL), foo);
1457 iris_emit_cmd(batch, GENX(3DSTATE_TASK_CONTROL), foo);
1458 #endif
1459
1460 #if INTEL_NEEDS_WA_14019857787
1461 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), p) {
1462 p.EnableOOOreadsinRCPB = true;
1463 p.EnableOOOreadsinRCPBMask = true;
1464 }
1465 #endif
1466
1467 iris_alloc_push_constants(batch);
1468
1469 #if GFX_VER >= 12
1470 init_aux_map_state(batch);
1471 #endif
1472
1473 iris_batch_sync_region_end(batch);
1474 }
1475
1476 static void
iris_init_compute_context(struct iris_batch * batch)1477 iris_init_compute_context(struct iris_batch *batch)
1478 {
1479 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
1480
1481 iris_batch_sync_region_start(batch);
1482
1483 /* Wa_1607854226:
1484 *
1485 * Start with pipeline in 3D mode to set the STATE_BASE_ADDRESS.
1486 */
1487 #if GFX_VERx10 == 120
1488 emit_pipeline_select(batch, _3D);
1489 #else
1490 emit_pipeline_select(batch, GPGPU);
1491 #endif
1492
1493 toggle_protected(batch);
1494
1495 iris_emit_l3_config(batch, batch->screen->l3_config_cs);
1496
1497 init_state_base_address(batch);
1498
1499 iris_init_common_context(batch);
1500
1501 #if GFX_VERx10 == 120
1502 emit_pipeline_select(batch, GPGPU);
1503 #endif
1504
1505 #if GFX_VER == 9
1506 if (devinfo->platform == INTEL_PLATFORM_GLK)
1507 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
1508 #endif
1509
1510 #if GFX_VER >= 12
1511 init_aux_map_state(batch);
1512 #endif
1513
1514 #if GFX_VERx10 >= 125
1515 /* Wa_14015782607 - Issue pipe control with HDC_flush and
1516 * untyped cache flush set to 1 when CCS has NP state update with
1517 * STATE_COMPUTE_MODE.
1518 */
1519 if (intel_needs_workaround(devinfo, 14015782607))
1520 iris_emit_pipe_control_flush(batch, "Wa_14015782607",
1521 PIPE_CONTROL_CS_STALL |
1522 PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
1523 PIPE_CONTROL_FLUSH_HDC);
1524
1525 /* Wa_14014427904/22013045878 - We need additional invalidate/flush when
1526 * emitting NP state commands with ATS-M in compute mode.
1527 */
1528 if (intel_device_info_is_atsm(devinfo))
1529 iris_emit_pipe_control_flush(batch, "Wa_14014427904/22013045878",
1530 PIPE_CONTROL_CS_STALL |
1531 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
1532 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
1533 PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
1534 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1535 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
1536 PIPE_CONTROL_FLUSH_HDC);
1537
1538 iris_emit_cmd(batch, GENX(STATE_COMPUTE_MODE), cm) {
1539 #if GFX_VER >= 30
1540 cm.EnableVariableRegisterSizeAllocationMask = 1;
1541 cm.EnableVariableRegisterSizeAllocation = true;
1542 #endif
1543 #if GFX_VER >= 20
1544 cm.AsyncComputeThreadLimit = ACTL_Max8;
1545 cm.ZPassAsyncComputeThreadLimit = ZPACTL_Max60;
1546 cm.ZAsyncThrottlesettings = ZATS_DefertoAsyncComputeThreadLimit;
1547 cm.AsyncComputeThreadLimitMask = 0x7;
1548 cm.ZPassAsyncComputeThreadLimitMask = 0x7;
1549 cm.ZAsyncThrottlesettingsMask = 0x3;
1550 #else
1551 cm.PixelAsyncComputeThreadLimit = PACTL_Max24;
1552 cm.ZPassAsyncComputeThreadLimit = ZPACTL_Max60;
1553 cm.PixelAsyncComputeThreadLimitMask = 0x7;
1554 cm.ZPassAsyncComputeThreadLimitMask = 0x7;
1555 if (intel_device_info_is_mtl_or_arl(devinfo)) {
1556 cm.ZAsyncThrottlesettings = ZATS_DefertoPixelAsyncComputeThreadLimit;
1557 cm.ZAsyncThrottlesettingsMask = 0x3;
1558 }
1559 #endif
1560 }
1561 #endif
1562
1563 #if GFX_VERx10 >= 125
1564 iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
1565 cfe.MaximumNumberofThreads =
1566 devinfo->max_cs_threads * devinfo->subslice_total;
1567 }
1568 #endif
1569
1570 iris_batch_sync_region_end(batch);
1571 }
1572
1573 static void
iris_init_copy_context(struct iris_batch * batch)1574 iris_init_copy_context(struct iris_batch *batch)
1575 {
1576 iris_batch_sync_region_start(batch);
1577
1578 #if GFX_VER >= 12
1579 init_aux_map_state(batch);
1580 #endif
1581
1582 state_system_mem_fence_address_emit(batch);
1583
1584 iris_batch_sync_region_end(batch);
1585 }
1586
1587 struct iris_vertex_buffer_state {
1588 /** The VERTEX_BUFFER_STATE hardware structure. */
1589 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
1590
1591 /** The resource to source vertex data from. */
1592 struct pipe_resource *resource;
1593
1594 int offset;
1595 };
1596
1597 struct iris_depth_buffer_state {
1598 /* Depth/HiZ/Stencil related hardware packets. */
1599 #if GFX_VER < 20
1600 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1601 GENX(3DSTATE_STENCIL_BUFFER_length) +
1602 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
1603 GENX(3DSTATE_CLEAR_PARAMS_length)];
1604 #else
1605 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
1606 GENX(3DSTATE_STENCIL_BUFFER_length) +
1607 GENX(3DSTATE_HIER_DEPTH_BUFFER_length)];
1608 #endif
1609 };
1610
1611 #if INTEL_NEEDS_WA_1808121037
1612 enum iris_depth_reg_mode {
1613 IRIS_DEPTH_REG_MODE_HW_DEFAULT = 0,
1614 IRIS_DEPTH_REG_MODE_D16_1X_MSAA,
1615 IRIS_DEPTH_REG_MODE_UNKNOWN,
1616 };
1617 #endif
1618
1619 /**
1620 * Generation-specific context state (ice->state.genx->...).
1621 *
1622 * Most state can go in iris_context directly, but these encode hardware
1623 * packets which vary by generation.
1624 */
1625 struct iris_genx_state {
1626 struct iris_vertex_buffer_state vertex_buffers[33];
1627 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
1628
1629 struct iris_depth_buffer_state depth_buffer;
1630
1631 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
1632
1633 #if GFX_VER == 8
1634 bool pma_fix_enabled;
1635 #endif
1636
1637 /* Is object level preemption enabled? */
1638 bool object_preemption;
1639
1640 #if INTEL_NEEDS_WA_1808121037
1641 enum iris_depth_reg_mode depth_reg_mode;
1642 #endif
1643
1644 struct {
1645 #if GFX_VER == 8
1646 struct isl_image_param image_param[PIPE_MAX_SHADER_IMAGES];
1647 #endif
1648 } shaders[MESA_SHADER_STAGES];
1649 };
1650
1651 /**
1652 * The pipe->set_blend_color() driver hook.
1653 *
1654 * This corresponds to our COLOR_CALC_STATE.
1655 */
1656 static void
iris_set_blend_color(struct pipe_context * ctx,const struct pipe_blend_color * state)1657 iris_set_blend_color(struct pipe_context *ctx,
1658 const struct pipe_blend_color *state)
1659 {
1660 struct iris_context *ice = (struct iris_context *) ctx;
1661
1662 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
1663 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
1664 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1665 }
1666
1667 /**
1668 * Gallium CSO for blend state (see pipe_blend_state).
1669 */
1670 struct iris_blend_state {
1671 /** Partial 3DSTATE_PS_BLEND */
1672 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
1673
1674 /** Partial BLEND_STATE */
1675 uint32_t blend_state[GENX(BLEND_STATE_length) +
1676 IRIS_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
1677
1678 bool alpha_to_coverage; /* for shader key */
1679
1680 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
1681 uint8_t blend_enables;
1682
1683 /** Bitfield of whether color writes are enabled for RT[i] */
1684 uint8_t color_write_enables;
1685
1686 /** Does RT[0] use dual color blending? */
1687 bool dual_color_blending;
1688
1689 int ps_dst_blend_factor[IRIS_MAX_DRAW_BUFFERS];
1690 int ps_dst_alpha_blend_factor[IRIS_MAX_DRAW_BUFFERS];
1691 };
1692
1693 static enum pipe_blendfactor
fix_blendfactor(enum pipe_blendfactor f,bool alpha_to_one)1694 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
1695 {
1696 if (alpha_to_one) {
1697 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
1698 return PIPE_BLENDFACTOR_ONE;
1699
1700 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
1701 return PIPE_BLENDFACTOR_ZERO;
1702 }
1703
1704 return f;
1705 }
1706
1707 /**
1708 * The pipe->create_blend_state() driver hook.
1709 *
1710 * Translates a pipe_blend_state into iris_blend_state.
1711 */
1712 static void *
iris_create_blend_state(struct pipe_context * ctx,const struct pipe_blend_state * state)1713 iris_create_blend_state(struct pipe_context *ctx,
1714 const struct pipe_blend_state *state)
1715 {
1716 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1717 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1718
1719 cso->blend_enables = 0;
1720 cso->color_write_enables = 0;
1721 STATIC_ASSERT(IRIS_MAX_DRAW_BUFFERS <= 8);
1722
1723 cso->alpha_to_coverage = state->alpha_to_coverage;
1724
1725 bool indep_alpha_blend = false;
1726
1727 for (int i = 0; i < IRIS_MAX_DRAW_BUFFERS; i++) {
1728 const struct pipe_rt_blend_state *rt =
1729 &state->rt[state->independent_blend_enable ? i : 0];
1730
1731 enum pipe_blendfactor src_rgb =
1732 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1733 enum pipe_blendfactor src_alpha =
1734 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1735 enum pipe_blendfactor dst_rgb =
1736 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1737 enum pipe_blendfactor dst_alpha =
1738 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1739
1740 /* Stored separately in cso for dynamic emission. */
1741 cso->ps_dst_blend_factor[i] = (int) dst_rgb;
1742 cso->ps_dst_alpha_blend_factor[i] = (int) dst_alpha;
1743
1744 if (rt->rgb_func != rt->alpha_func ||
1745 src_rgb != src_alpha || dst_rgb != dst_alpha)
1746 indep_alpha_blend = true;
1747
1748 if (rt->blend_enable)
1749 cso->blend_enables |= 1u << i;
1750
1751 if (rt->colormask)
1752 cso->color_write_enables |= 1u << i;
1753
1754 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1755 be.LogicOpEnable = state->logicop_enable;
1756 be.LogicOpFunction = state->logicop_func;
1757
1758 be.PreBlendSourceOnlyClampEnable = false;
1759 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1760 be.PreBlendColorClampEnable = true;
1761 be.PostBlendColorClampEnable = true;
1762
1763 be.ColorBufferBlendEnable = rt->blend_enable;
1764
1765 be.ColorBlendFunction = rt->rgb_func;
1766 be.AlphaBlendFunction = rt->alpha_func;
1767
1768 /* The casts prevent warnings about implicit enum type conversions. */
1769 be.SourceBlendFactor = (int) src_rgb;
1770 be.SourceAlphaBlendFactor = (int) src_alpha;
1771
1772 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1773 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1774 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1775 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1776 }
1777 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1778 }
1779
1780 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1781 /* pb.HasWriteableRT is filled in at draw time.
1782 * pb.AlphaTestEnable is filled in at draw time.
1783 *
1784 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1785 * setting it when dual color blending without an appropriate shader.
1786 */
1787
1788 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1789 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1790
1791 /* The casts prevent warnings about implicit enum type conversions. */
1792 pb.SourceBlendFactor =
1793 (int) fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1794 pb.SourceAlphaBlendFactor =
1795 (int) fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1796 }
1797
1798 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1799 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1800 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1801 bs.AlphaToOneEnable = state->alpha_to_one;
1802 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage_dither;
1803 bs.ColorDitherEnable = state->dither;
1804 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1805 }
1806
1807 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1808
1809 return cso;
1810 }
1811
1812 /**
1813 * The pipe->bind_blend_state() driver hook.
1814 *
1815 * Bind a blending CSO and flag related dirty bits.
1816 */
1817 static void
iris_bind_blend_state(struct pipe_context * ctx,void * state)1818 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1819 {
1820 struct iris_context *ice = (struct iris_context *) ctx;
1821 struct iris_blend_state *cso = state;
1822
1823 ice->state.cso_blend = cso;
1824
1825 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1826 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1827 ice->state.stage_dirty |= ice->state.stage_dirty_for_nos[IRIS_NOS_BLEND];
1828
1829 if (GFX_VER == 8)
1830 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
1831 }
1832
1833 /**
1834 * Return true if the FS writes to any color outputs which are not disabled
1835 * via color masking.
1836 */
1837 static bool
has_writeable_rt(const struct iris_blend_state * cso_blend,const struct shader_info * fs_info)1838 has_writeable_rt(const struct iris_blend_state *cso_blend,
1839 const struct shader_info *fs_info)
1840 {
1841 if (!fs_info)
1842 return false;
1843
1844 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1845
1846 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1847 rt_outputs = (1 << IRIS_MAX_DRAW_BUFFERS) - 1;
1848
1849 return cso_blend->color_write_enables & rt_outputs;
1850 }
1851
1852 /**
1853 * Gallium CSO for depth, stencil, and alpha testing state.
1854 */
1855 struct iris_depth_stencil_alpha_state {
1856 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1857 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1858
1859 #if GFX_VER >= 12
1860 uint32_t depth_bounds[GENX(3DSTATE_DEPTH_BOUNDS_length)];
1861 #endif
1862
1863 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1864 unsigned alpha_enabled:1;
1865 unsigned alpha_func:3; /**< PIPE_FUNC_x */
1866 float alpha_ref_value; /**< reference value */
1867
1868 /** Outbound to resolve and cache set tracking. */
1869 bool depth_writes_enabled;
1870 bool stencil_writes_enabled;
1871
1872 /** Outbound to Gfx8-9 PMA stall equations */
1873 bool depth_test_enabled;
1874
1875 /** Tracking state of DS writes for Wa_18019816803. */
1876 bool ds_write_state;
1877 };
1878
1879 /**
1880 * The pipe->create_depth_stencil_alpha_state() driver hook.
1881 *
1882 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1883 * testing state since we need pieces of it in a variety of places.
1884 */
1885 static void *
iris_create_zsa_state(struct pipe_context * ctx,const struct pipe_depth_stencil_alpha_state * state)1886 iris_create_zsa_state(struct pipe_context *ctx,
1887 const struct pipe_depth_stencil_alpha_state *state)
1888 {
1889 struct iris_depth_stencil_alpha_state *cso =
1890 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1891
1892 bool two_sided_stencil = state->stencil[1].enabled;
1893
1894 bool depth_write_enabled = false;
1895 bool stencil_write_enabled = false;
1896
1897 /* Depth writes enabled? */
1898 if (state->depth_writemask &&
1899 ((!state->depth_enabled) ||
1900 ((state->depth_func != PIPE_FUNC_NEVER) &&
1901 (state->depth_func != PIPE_FUNC_EQUAL))))
1902 depth_write_enabled = true;
1903
1904 bool stencil_all_keep =
1905 state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
1906 state->stencil[0].zfail_op == PIPE_STENCIL_OP_KEEP &&
1907 state->stencil[0].zpass_op == PIPE_STENCIL_OP_KEEP &&
1908 (!two_sided_stencil ||
1909 (state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP &&
1910 state->stencil[1].zfail_op == PIPE_STENCIL_OP_KEEP &&
1911 state->stencil[1].zpass_op == PIPE_STENCIL_OP_KEEP));
1912
1913 bool stencil_mask_zero =
1914 state->stencil[0].writemask == 0 ||
1915 (!two_sided_stencil || state->stencil[1].writemask == 0);
1916
1917 bool stencil_func_never =
1918 state->stencil[0].func == PIPE_FUNC_NEVER &&
1919 state->stencil[0].fail_op == PIPE_STENCIL_OP_KEEP &&
1920 (!two_sided_stencil ||
1921 (state->stencil[1].func == PIPE_FUNC_NEVER &&
1922 state->stencil[1].fail_op == PIPE_STENCIL_OP_KEEP));
1923
1924 /* Stencil writes enabled? */
1925 if (state->stencil[0].writemask != 0 ||
1926 ((two_sided_stencil && state->stencil[1].writemask != 0) &&
1927 (!stencil_all_keep &&
1928 !stencil_mask_zero &&
1929 !stencil_func_never)))
1930 stencil_write_enabled = true;
1931
1932 cso->ds_write_state = depth_write_enabled || stencil_write_enabled;
1933
1934 cso->alpha_enabled = state->alpha_enabled;
1935 cso->alpha_func = state->alpha_func;
1936 cso->alpha_ref_value = state->alpha_ref_value;
1937 cso->depth_writes_enabled = state->depth_writemask;
1938 cso->depth_test_enabled = state->depth_enabled;
1939 cso->stencil_writes_enabled =
1940 state->stencil[0].writemask != 0 ||
1941 (two_sided_stencil && state->stencil[1].writemask != 0);
1942
1943 /* gallium frontends need to optimize away EQUAL writes for us. */
1944 assert(!(state->depth_func == PIPE_FUNC_EQUAL && state->depth_writemask));
1945
1946 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1947 wmds.StencilFailOp = state->stencil[0].fail_op;
1948 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1949 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1950 wmds.StencilTestFunction =
1951 translate_compare_func(state->stencil[0].func);
1952 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1953 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1954 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1955 wmds.BackfaceStencilTestFunction =
1956 translate_compare_func(state->stencil[1].func);
1957 wmds.DepthTestFunction = translate_compare_func(state->depth_func);
1958 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1959 wmds.StencilTestEnable = state->stencil[0].enabled;
1960 wmds.StencilBufferWriteEnable =
1961 state->stencil[0].writemask != 0 ||
1962 (two_sided_stencil && state->stencil[1].writemask != 0);
1963 wmds.DepthTestEnable = state->depth_enabled;
1964 wmds.DepthBufferWriteEnable = state->depth_writemask;
1965 wmds.StencilTestMask = state->stencil[0].valuemask;
1966 wmds.StencilWriteMask = state->stencil[0].writemask;
1967 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1968 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1969 /* wmds.[Backface]StencilReferenceValue are merged later */
1970 #if GFX_VER >= 12
1971 wmds.StencilReferenceValueModifyDisable = true;
1972 #endif
1973 }
1974
1975 #if GFX_VER >= 12
1976 iris_pack_command(GENX(3DSTATE_DEPTH_BOUNDS), cso->depth_bounds, depth_bounds) {
1977 depth_bounds.DepthBoundsTestValueModifyDisable = false;
1978 depth_bounds.DepthBoundsTestEnableModifyDisable = false;
1979 depth_bounds.DepthBoundsTestEnable = state->depth_bounds_test;
1980 depth_bounds.DepthBoundsTestMinValue = state->depth_bounds_min;
1981 depth_bounds.DepthBoundsTestMaxValue = state->depth_bounds_max;
1982 }
1983 #endif
1984
1985 return cso;
1986 }
1987
1988 /**
1989 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1990 *
1991 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1992 */
1993 static void
iris_bind_zsa_state(struct pipe_context * ctx,void * state)1994 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1995 {
1996 struct iris_context *ice = (struct iris_context *) ctx;
1997 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1998 struct iris_depth_stencil_alpha_state *new_cso = state;
1999
2000 if (new_cso) {
2001 if (cso_changed(alpha_ref_value))
2002 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2003
2004 if (cso_changed(alpha_enabled))
2005 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
2006
2007 if (cso_changed(alpha_func))
2008 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2009
2010 if (cso_changed(depth_writes_enabled) || cso_changed(stencil_writes_enabled))
2011 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2012
2013 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
2014 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
2015
2016 /* State ds_write_enable changed, need to flag dirty DS. */
2017 if (!old_cso || (ice->state.ds_write_state != new_cso->ds_write_state)) {
2018 ice->state.dirty |= IRIS_DIRTY_DS_WRITE_ENABLE;
2019 ice->state.ds_write_state = new_cso->ds_write_state;
2020 }
2021
2022 #if GFX_VER >= 12
2023 if (cso_changed(depth_bounds))
2024 ice->state.dirty |= IRIS_DIRTY_DEPTH_BOUNDS;
2025 #endif
2026 }
2027
2028 ice->state.cso_zsa = new_cso;
2029 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2030 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2031 ice->state.stage_dirty |=
2032 ice->state.stage_dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
2033
2034 if (GFX_VER == 8)
2035 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
2036 }
2037
2038 #if GFX_VER == 8
2039 static bool
want_pma_fix(struct iris_context * ice)2040 want_pma_fix(struct iris_context *ice)
2041 {
2042 UNUSED struct iris_screen *screen = (void *) ice->ctx.screen;
2043 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
2044 const struct iris_fs_data *fs_data =
2045 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
2046 const struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
2047 const struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
2048 const struct iris_blend_state *cso_blend = ice->state.cso_blend;
2049
2050 /* In very specific combinations of state, we can instruct Gfx8-9 hardware
2051 * to avoid stalling at the pixel mask array. The state equations are
2052 * documented in these places:
2053 *
2054 * - Gfx8 Depth PMA Fix: CACHE_MODE_1::NP_PMA_FIX_ENABLE
2055 * - Gfx9 Stencil PMA Fix: CACHE_MODE_0::STC PMA Optimization Enable
2056 *
2057 * Both equations share some common elements:
2058 *
2059 * no_hiz_op =
2060 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
2061 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
2062 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
2063 * 3DSTATE_WM_HZ_OP::StencilBufferClear) &&
2064 *
2065 * killpixels =
2066 * 3DSTATE_WM::ForceKillPix != ForceOff &&
2067 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
2068 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
2069 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
2070 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
2071 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
2072 *
2073 * (Technically the stencil PMA treats ForceKillPix differently,
2074 * but I think this is a documentation oversight, and we don't
2075 * ever use it in this way, so it doesn't matter).
2076 *
2077 * common_pma_fix =
2078 * 3DSTATE_WM::ForceThreadDispatch != 1 &&
2079 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0 &&
2080 * 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
2081 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
2082 * 3DSTATE_WM::EDSC_Mode != EDSC_PREPS &&
2083 * 3DSTATE_PS_EXTRA::PixelShaderValid &&
2084 * no_hiz_op
2085 *
2086 * These are always true:
2087 *
2088 * 3DSTATE_RASTER::ForceSampleCount == NUMRASTSAMPLES_0
2089 * 3DSTATE_PS_EXTRA::PixelShaderValid
2090 *
2091 * Also, we never use the normal drawing path for HiZ ops; these are true:
2092 *
2093 * !(3DSTATE_WM_HZ_OP::DepthBufferClear ||
2094 * 3DSTATE_WM_HZ_OP::DepthBufferResolve ||
2095 * 3DSTATE_WM_HZ_OP::Hierarchical Depth Buffer Resolve Enable ||
2096 * 3DSTATE_WM_HZ_OP::StencilBufferClear)
2097 *
2098 * This happens sometimes:
2099 *
2100 * 3DSTATE_WM::ForceThreadDispatch != 1
2101 *
2102 * However, we choose to ignore it as it either agrees with the signal
2103 * (dispatch was already enabled, so nothing out of the ordinary), or
2104 * there are no framebuffer attachments (so no depth or HiZ anyway,
2105 * meaning the PMA signal will already be disabled).
2106 */
2107
2108 if (!cso_fb->zsbuf)
2109 return false;
2110
2111 struct iris_resource *zres, *sres;
2112 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture, &zres, &sres);
2113
2114 /* 3DSTATE_DEPTH_BUFFER::SURFACE_TYPE != NULL &&
2115 * 3DSTATE_DEPTH_BUFFER::HIZ Enable &&
2116 */
2117 if (!zres ||
2118 !iris_resource_level_has_hiz(devinfo, zres, cso_fb->zsbuf->u.tex.level))
2119 return false;
2120
2121 /* 3DSTATE_WM::EDSC_Mode != EDSC_PREPS */
2122 if (fs_data->early_fragment_tests)
2123 return false;
2124
2125 /* 3DSTATE_WM::ForceKillPix != ForceOff &&
2126 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
2127 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
2128 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
2129 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
2130 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
2131 */
2132 bool killpixels = fs_data->uses_kill || fs_data->uses_omask ||
2133 cso_blend->alpha_to_coverage || cso_zsa->alpha_enabled;
2134
2135 /* The Gfx8 depth PMA equation becomes:
2136 *
2137 * depth_writes =
2138 * 3DSTATE_WM_DEPTH_STENCIL::DepthWriteEnable &&
2139 * 3DSTATE_DEPTH_BUFFER::DEPTH_WRITE_ENABLE
2140 *
2141 * stencil_writes =
2142 * 3DSTATE_WM_DEPTH_STENCIL::Stencil Buffer Write Enable &&
2143 * 3DSTATE_DEPTH_BUFFER::STENCIL_WRITE_ENABLE &&
2144 * 3DSTATE_STENCIL_BUFFER::STENCIL_BUFFER_ENABLE
2145 *
2146 * Z_PMA_OPT =
2147 * common_pma_fix &&
2148 * 3DSTATE_WM_DEPTH_STENCIL::DepthTestEnable &&
2149 * ((killpixels && (depth_writes || stencil_writes)) ||
2150 * 3DSTATE_PS_EXTRA::PixelShaderComputedDepthMode != PSCDEPTH_OFF)
2151 *
2152 */
2153 if (!cso_zsa->depth_test_enabled)
2154 return false;
2155
2156 return fs_data->computed_depth_mode != PSCDEPTH_OFF ||
2157 (killpixels && (cso_zsa->depth_writes_enabled ||
2158 (sres && cso_zsa->stencil_writes_enabled)));
2159 }
2160 #endif
2161
2162 void
genX(update_pma_fix)2163 genX(update_pma_fix)(struct iris_context *ice,
2164 struct iris_batch *batch,
2165 bool enable)
2166 {
2167 #if GFX_VER == 8
2168 struct iris_genx_state *genx = ice->state.genx;
2169
2170 if (genx->pma_fix_enabled == enable)
2171 return;
2172
2173 genx->pma_fix_enabled = enable;
2174
2175 /* According to the Broadwell PIPE_CONTROL documentation, software should
2176 * emit a PIPE_CONTROL with the CS Stall and Depth Cache Flush bits set
2177 * prior to the LRI. If stencil buffer writes are enabled, then a Render
2178 * Cache Flush is also necessary.
2179 *
2180 * The Gfx9 docs say to use a depth stall rather than a command streamer
2181 * stall. However, the hardware seems to violently disagree. A full
2182 * command streamer stall seems to be needed in both cases.
2183 */
2184 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
2185 PIPE_CONTROL_CS_STALL |
2186 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2187 PIPE_CONTROL_RENDER_TARGET_FLUSH);
2188
2189 iris_emit_reg(batch, GENX(CACHE_MODE_1), reg) {
2190 reg.NPPMAFixEnable = enable;
2191 reg.NPEarlyZFailsDisable = enable;
2192 reg.NPPMAFixEnableMask = true;
2193 reg.NPEarlyZFailsDisableMask = true;
2194 }
2195
2196 /* After the LRI, a PIPE_CONTROL with both the Depth Stall and Depth Cache
2197 * Flush bits is often necessary. We do it regardless because it's easier.
2198 * The render cache flush is also necessary if stencil writes are enabled.
2199 *
2200 * Again, the Gfx9 docs give a different set of flushes but the Broadwell
2201 * flushes seem to work just as well.
2202 */
2203 iris_emit_pipe_control_flush(batch, "PMA fix change (1/2)",
2204 PIPE_CONTROL_DEPTH_STALL |
2205 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2206 PIPE_CONTROL_RENDER_TARGET_FLUSH);
2207 #endif
2208 }
2209
2210 /**
2211 * Gallium CSO for rasterizer state.
2212 */
2213 struct iris_rasterizer_state {
2214 uint32_t sf[GENX(3DSTATE_SF_length)];
2215 uint32_t clip[GENX(3DSTATE_CLIP_length)];
2216 uint32_t raster[GENX(3DSTATE_RASTER_length)];
2217 uint32_t wm[GENX(3DSTATE_WM_length)];
2218 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
2219
2220 uint8_t num_clip_plane_consts;
2221 bool clip_halfz; /* for CC_VIEWPORT */
2222 bool depth_clip_near; /* for CC_VIEWPORT */
2223 bool depth_clip_far; /* for CC_VIEWPORT */
2224 bool flatshade; /* for shader state */
2225 bool flatshade_first; /* for stream output */
2226 bool clamp_fragment_color; /* for shader state */
2227 bool light_twoside; /* for shader state */
2228 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
2229 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
2230 bool line_smooth;
2231 bool line_stipple_enable;
2232 bool poly_stipple_enable;
2233 bool multisample;
2234 bool force_persample_interp;
2235 bool conservative_rasterization;
2236 bool fill_mode_point;
2237 bool fill_mode_line;
2238 bool fill_mode_point_or_line;
2239 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
2240 uint16_t sprite_coord_enable;
2241 };
2242
2243 static float
get_line_width(const struct pipe_rasterizer_state * state)2244 get_line_width(const struct pipe_rasterizer_state *state)
2245 {
2246 float line_width = state->line_width;
2247
2248 /* From the OpenGL 4.4 spec:
2249 *
2250 * "The actual width of non-antialiased lines is determined by rounding
2251 * the supplied width to the nearest integer, then clamping it to the
2252 * implementation-dependent maximum non-antialiased line width."
2253 */
2254 if (!state->multisample && !state->line_smooth)
2255 line_width = roundf(state->line_width);
2256
2257 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
2258 /* For 1 pixel line thickness or less, the general anti-aliasing
2259 * algorithm gives up, and a garbage line is generated. Setting a
2260 * Line Width of 0.0 specifies the rasterization of the "thinnest"
2261 * (one-pixel-wide), non-antialiased lines.
2262 *
2263 * Lines rendered with zero Line Width are rasterized using the
2264 * "Grid Intersection Quantization" rules as specified by the
2265 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
2266 */
2267 line_width = 0.0f;
2268 }
2269
2270 return line_width;
2271 }
2272
2273 /**
2274 * The pipe->create_rasterizer_state() driver hook.
2275 */
2276 static void *
iris_create_rasterizer_state(struct pipe_context * ctx,const struct pipe_rasterizer_state * state)2277 iris_create_rasterizer_state(struct pipe_context *ctx,
2278 const struct pipe_rasterizer_state *state)
2279 {
2280 struct iris_rasterizer_state *cso =
2281 malloc(sizeof(struct iris_rasterizer_state));
2282
2283 cso->multisample = state->multisample;
2284 cso->force_persample_interp = state->force_persample_interp;
2285 cso->clip_halfz = state->clip_halfz;
2286 cso->depth_clip_near = state->depth_clip_near;
2287 cso->depth_clip_far = state->depth_clip_far;
2288 cso->flatshade = state->flatshade;
2289 cso->flatshade_first = state->flatshade_first;
2290 cso->clamp_fragment_color = state->clamp_fragment_color;
2291 cso->light_twoside = state->light_twoside;
2292 cso->rasterizer_discard = state->rasterizer_discard;
2293 cso->half_pixel_center = state->half_pixel_center;
2294 cso->sprite_coord_mode = state->sprite_coord_mode;
2295 cso->sprite_coord_enable = state->sprite_coord_enable;
2296 cso->line_smooth = state->line_smooth;
2297 cso->line_stipple_enable = state->line_stipple_enable;
2298 cso->poly_stipple_enable = state->poly_stipple_enable;
2299 cso->conservative_rasterization =
2300 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
2301
2302 cso->fill_mode_point =
2303 state->fill_front == PIPE_POLYGON_MODE_POINT ||
2304 state->fill_back == PIPE_POLYGON_MODE_POINT;
2305 cso->fill_mode_line =
2306 state->fill_front == PIPE_POLYGON_MODE_LINE ||
2307 state->fill_back == PIPE_POLYGON_MODE_LINE;
2308 cso->fill_mode_point_or_line =
2309 cso->fill_mode_point ||
2310 cso->fill_mode_line;
2311
2312 if (state->clip_plane_enable != 0)
2313 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
2314 else
2315 cso->num_clip_plane_consts = 0;
2316
2317 float line_width = get_line_width(state);
2318
2319 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
2320 sf.StatisticsEnable = true;
2321 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
2322 sf.LineEndCapAntialiasingRegionWidth =
2323 state->line_smooth ? _10pixels : _05pixels;
2324 sf.LastPixelEnable = state->line_last_pixel;
2325 sf.LineWidth = line_width;
2326 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
2327 !state->point_quad_rasterization;
2328 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
2329 sf.PointWidth = CLAMP(state->point_size, 0.125f, 255.875f);
2330
2331 if (state->flatshade_first) {
2332 sf.TriangleFanProvokingVertexSelect = 1;
2333 } else {
2334 sf.TriangleStripListProvokingVertexSelect = 2;
2335 sf.TriangleFanProvokingVertexSelect = 2;
2336 sf.LineStripListProvokingVertexSelect = 1;
2337 }
2338 }
2339
2340 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
2341 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
2342 rr.CullMode = translate_cull_mode(state->cull_face);
2343 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
2344 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
2345 rr.DXMultisampleRasterizationEnable = state->multisample;
2346 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
2347 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
2348 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
2349 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
2350 rr.GlobalDepthOffsetScale = state->offset_scale;
2351 rr.GlobalDepthOffsetClamp = state->offset_clamp;
2352 rr.SmoothPointEnable = state->point_smooth;
2353 rr.ScissorRectangleEnable = state->scissor;
2354 #if GFX_VER >= 9
2355 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
2356 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
2357 rr.ConservativeRasterizationEnable =
2358 cso->conservative_rasterization;
2359 #else
2360 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
2361 #endif
2362 }
2363
2364 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
2365 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
2366 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
2367 */
2368 cl.EarlyCullEnable = true;
2369 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
2370 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
2371 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
2372 cl.GuardbandClipTestEnable = true;
2373 cl.ClipEnable = true;
2374 cl.MinimumPointWidth = 0.125;
2375 cl.MaximumPointWidth = 255.875;
2376
2377 if (state->flatshade_first) {
2378 cl.TriangleFanProvokingVertexSelect = 1;
2379 } else {
2380 cl.TriangleStripListProvokingVertexSelect = 2;
2381 cl.TriangleFanProvokingVertexSelect = 2;
2382 cl.LineStripListProvokingVertexSelect = 1;
2383 }
2384 }
2385
2386 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
2387 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
2388 * filled in at draw time from the FS program.
2389 */
2390 wm.LineAntialiasingRegionWidth = _10pixels;
2391 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
2392 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
2393 wm.LineStippleEnable = state->line_stipple_enable;
2394 wm.PolygonStippleEnable = state->poly_stipple_enable;
2395 }
2396
2397 /* Remap from 0..255 back to 1..256 */
2398 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
2399
2400 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
2401 if (state->line_stipple_enable) {
2402 line.LineStipplePattern = state->line_stipple_pattern;
2403 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
2404 line.LineStippleRepeatCount = line_stipple_factor;
2405 }
2406 }
2407
2408 return cso;
2409 }
2410
2411 /**
2412 * The pipe->bind_rasterizer_state() driver hook.
2413 *
2414 * Bind a rasterizer CSO and flag related dirty bits.
2415 */
2416 static void
iris_bind_rasterizer_state(struct pipe_context * ctx,void * state)2417 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
2418 {
2419 struct iris_context *ice = (struct iris_context *) ctx;
2420 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
2421 struct iris_rasterizer_state *new_cso = state;
2422
2423 if (new_cso) {
2424 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
2425 if (cso_changed_memcmp(line_stipple))
2426 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
2427
2428 if (cso_changed(half_pixel_center))
2429 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2430
2431 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
2432 ice->state.dirty |= IRIS_DIRTY_WM;
2433
2434 if (cso_changed(rasterizer_discard))
2435 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
2436
2437 if (cso_changed(flatshade_first))
2438 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
2439
2440 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
2441 cso_changed(clip_halfz))
2442 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2443
2444 if (cso_changed(sprite_coord_enable) ||
2445 cso_changed(sprite_coord_mode) ||
2446 cso_changed(light_twoside))
2447 ice->state.dirty |= IRIS_DIRTY_SBE;
2448
2449 if (cso_changed(conservative_rasterization))
2450 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
2451 }
2452
2453 ice->state.cso_rast = new_cso;
2454 ice->state.dirty |= IRIS_DIRTY_RASTER;
2455 ice->state.dirty |= IRIS_DIRTY_CLIP;
2456 ice->state.stage_dirty |=
2457 ice->state.stage_dirty_for_nos[IRIS_NOS_RASTERIZER];
2458 }
2459
2460 /**
2461 * Return true if the given wrap mode requires the border color to exist.
2462 *
2463 * (We can skip uploading it if the sampler isn't going to use it.)
2464 */
2465 static bool
wrap_mode_needs_border_color(unsigned wrap_mode)2466 wrap_mode_needs_border_color(unsigned wrap_mode)
2467 {
2468 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
2469 }
2470
2471 /**
2472 * Gallium CSO for sampler state.
2473 */
2474 struct iris_sampler_state {
2475 union pipe_color_union border_color;
2476 bool needs_border_color;
2477
2478 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
2479
2480 #if GFX_VERx10 == 125
2481 /* Sampler state structure to use for 3D textures in order to
2482 * implement Wa_14014414195.
2483 */
2484 uint32_t sampler_state_3d[GENX(SAMPLER_STATE_length)];
2485 #endif
2486 };
2487
2488 static void
fill_sampler_state(uint32_t * sampler_state,const struct pipe_sampler_state * state,unsigned max_anisotropy)2489 fill_sampler_state(uint32_t *sampler_state,
2490 const struct pipe_sampler_state *state,
2491 unsigned max_anisotropy)
2492 {
2493 float min_lod = state->min_lod;
2494 unsigned mag_img_filter = state->mag_img_filter;
2495
2496 // XXX: explain this code ported from ilo...I don't get it at all...
2497 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
2498 state->min_lod > 0.0f) {
2499 min_lod = 0.0f;
2500 mag_img_filter = state->min_img_filter;
2501 }
2502
2503 iris_pack_state(GENX(SAMPLER_STATE), sampler_state, samp) {
2504 samp.TCXAddressControlMode = translate_wrap(state->wrap_s);
2505 samp.TCYAddressControlMode = translate_wrap(state->wrap_t);
2506 samp.TCZAddressControlMode = translate_wrap(state->wrap_r);
2507 samp.CubeSurfaceControlMode = state->seamless_cube_map;
2508 samp.NonnormalizedCoordinateEnable = state->unnormalized_coords;
2509 samp.MinModeFilter = state->min_img_filter;
2510 samp.MagModeFilter = mag_img_filter;
2511 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
2512 samp.MaximumAnisotropy = RATIO21;
2513
2514 if (max_anisotropy >= 2) {
2515 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
2516 #if GFX_VER >= 30
2517 samp.MinModeFilter = MAPFILTER_ANISOTROPIC_FAST;
2518 #else
2519 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
2520 #endif
2521 samp.AnisotropicAlgorithm = EWAApproximation;
2522 }
2523
2524 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR) {
2525 #if GFX_VER >= 30
2526 samp.MagModeFilter = MAPFILTER_ANISOTROPIC_FAST;
2527 #else
2528 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
2529 #endif
2530 }
2531
2532 samp.MaximumAnisotropy =
2533 MIN2((max_anisotropy - 2) / 2, RATIO161);
2534 }
2535
2536 /* Set address rounding bits if not using nearest filtering. */
2537 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
2538 samp.UAddressMinFilterRoundingEnable = true;
2539 samp.VAddressMinFilterRoundingEnable = true;
2540 samp.RAddressMinFilterRoundingEnable = true;
2541 }
2542
2543 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
2544 samp.UAddressMagFilterRoundingEnable = true;
2545 samp.VAddressMagFilterRoundingEnable = true;
2546 samp.RAddressMagFilterRoundingEnable = true;
2547 }
2548
2549 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
2550 samp.ShadowFunction = translate_shadow_func(state->compare_func);
2551
2552 const float hw_max_lod = GFX_VER >= 7 ? 14 : 13;
2553
2554 samp.LODPreClampMode = CLAMP_MODE_OGL;
2555 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
2556 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
2557 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
2558
2559 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
2560 }
2561 }
2562
2563 /**
2564 * The pipe->create_sampler_state() driver hook.
2565 *
2566 * We fill out SAMPLER_STATE (except for the border color pointer), and
2567 * store that on the CPU. It doesn't make sense to upload it to a GPU
2568 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
2569 * all bound sampler states to be in contiguous memory.
2570 */
2571 static void *
iris_create_sampler_state(struct pipe_context * ctx,const struct pipe_sampler_state * state)2572 iris_create_sampler_state(struct pipe_context *ctx,
2573 const struct pipe_sampler_state *state)
2574 {
2575 UNUSED struct iris_screen *screen = (void *)ctx->screen;
2576 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
2577 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
2578
2579 if (!cso)
2580 return NULL;
2581
2582 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
2583 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
2584
2585 unsigned wrap_s = translate_wrap(state->wrap_s);
2586 unsigned wrap_t = translate_wrap(state->wrap_t);
2587 unsigned wrap_r = translate_wrap(state->wrap_r);
2588
2589 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
2590
2591 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
2592 wrap_mode_needs_border_color(wrap_t) ||
2593 wrap_mode_needs_border_color(wrap_r);
2594
2595 fill_sampler_state(cso->sampler_state, state, state->max_anisotropy);
2596
2597 #if GFX_VERx10 == 125
2598 /* Fill an extra sampler state structure with anisotropic filtering
2599 * disabled used to implement Wa_14014414195.
2600 */
2601 if (intel_needs_workaround(screen->devinfo, 14014414195))
2602 fill_sampler_state(cso->sampler_state_3d, state, 0);
2603 #endif
2604
2605 return cso;
2606 }
2607
2608 /**
2609 * The pipe->bind_sampler_states() driver hook.
2610 */
2611 static void
iris_bind_sampler_states(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start,unsigned count,void ** states)2612 iris_bind_sampler_states(struct pipe_context *ctx,
2613 enum pipe_shader_type p_stage,
2614 unsigned start, unsigned count,
2615 void **states)
2616 {
2617 struct iris_context *ice = (struct iris_context *) ctx;
2618 gl_shader_stage stage = stage_from_pipe(p_stage);
2619 struct iris_shader_state *shs = &ice->state.shaders[stage];
2620
2621 assert(start + count <= IRIS_MAX_SAMPLERS);
2622
2623 bool dirty = false;
2624
2625 for (int i = 0; i < count; i++) {
2626 struct iris_sampler_state *state = states ? states[i] : NULL;
2627 if (shs->samplers[start + i] != state) {
2628 shs->samplers[start + i] = state;
2629 dirty = true;
2630 }
2631 }
2632
2633 if (dirty)
2634 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
2635 }
2636
2637 /**
2638 * Upload the sampler states into a contiguous area of GPU memory, for
2639 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
2640 *
2641 * Also fill out the border color state pointers.
2642 */
2643 static void
iris_upload_sampler_states(struct iris_context * ice,gl_shader_stage stage)2644 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
2645 {
2646 struct iris_screen *screen = (struct iris_screen *) ice->ctx.screen;
2647 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2648 struct iris_shader_state *shs = &ice->state.shaders[stage];
2649 struct iris_border_color_pool *border_color_pool =
2650 iris_bufmgr_get_border_color_pool(screen->bufmgr);
2651
2652 /* We assume gallium frontends will call pipe->bind_sampler_states()
2653 * if the program's number of textures changes.
2654 */
2655 unsigned count = util_last_bit64(shader->bt.samplers_used_mask);
2656
2657 if (!count)
2658 return;
2659
2660 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
2661 * in the dynamic state memory zone, so we can point to it via the
2662 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
2663 */
2664 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
2665 uint32_t *map =
2666 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
2667 if (unlikely(!map))
2668 return;
2669
2670 struct pipe_resource *res = shs->sampler_table.res;
2671 struct iris_bo *bo = iris_resource_bo(res);
2672
2673 iris_record_state_size(ice->state.sizes,
2674 bo->address + shs->sampler_table.offset, size);
2675
2676 shs->sampler_table.offset += iris_bo_offset_from_base_address(bo);
2677
2678 ice->state.need_border_colors &= ~(1 << stage);
2679
2680 for (int i = 0; i < count; i++) {
2681 struct iris_sampler_state *state = shs->samplers[i];
2682 struct iris_sampler_view *tex = shs->textures[i];
2683
2684 if (!state) {
2685 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
2686 } else {
2687 const uint32_t *sampler_state = state->sampler_state;
2688
2689 #if GFX_VERx10 == 125
2690 if (intel_needs_workaround(screen->devinfo, 14014414195) &&
2691 tex && tex->res->base.b.target == PIPE_TEXTURE_3D) {
2692 sampler_state = state->sampler_state_3d;
2693 }
2694 #endif
2695
2696 if (!state->needs_border_color) {
2697 memcpy(map, sampler_state, 4 * GENX(SAMPLER_STATE_length));
2698 } else {
2699 ice->state.need_border_colors |= 1 << stage;
2700
2701 /* We may need to swizzle the border color for format faking.
2702 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
2703 * This means we need to move the border color's A channel into
2704 * the R or G channels so that those read swizzles will move it
2705 * back into A.
2706 */
2707 union pipe_color_union *color = &state->border_color;
2708 union pipe_color_union tmp;
2709 if (tex) {
2710 enum pipe_format internal_format = tex->res->internal_format;
2711
2712 if (util_format_is_alpha(internal_format)) {
2713 unsigned char swz[4] = {
2714 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
2715 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2716 };
2717 util_format_apply_color_swizzle(&tmp, color, swz, true);
2718 color = &tmp;
2719 } else if (util_format_is_luminance_alpha(internal_format) &&
2720 internal_format != PIPE_FORMAT_L8A8_SRGB) {
2721 unsigned char swz[4] = {
2722 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
2723 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
2724 };
2725 util_format_apply_color_swizzle(&tmp, color, swz, true);
2726 color = &tmp;
2727 }
2728 }
2729
2730 /* Stream out the border color and merge the pointer. */
2731 uint32_t offset = iris_upload_border_color(border_color_pool,
2732 color);
2733
2734 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
2735 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
2736 dyns.BorderColorPointer = offset;
2737 }
2738
2739 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
2740 map[j] = sampler_state[j] | dynamic[j];
2741 }
2742 }
2743
2744 map += GENX(SAMPLER_STATE_length);
2745 }
2746 }
2747
2748 static enum isl_channel_select
fmt_swizzle(const struct iris_format_info * fmt,enum pipe_swizzle swz)2749 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
2750 {
2751 switch (swz) {
2752 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
2753 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
2754 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
2755 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
2756 case PIPE_SWIZZLE_1: return ISL_CHANNEL_SELECT_ONE;
2757 case PIPE_SWIZZLE_0: return ISL_CHANNEL_SELECT_ZERO;
2758 default: unreachable("invalid swizzle");
2759 }
2760 }
2761
2762 static void
fill_buffer_surface_state(struct isl_device * isl_dev,struct iris_resource * res,void * map,enum isl_format format,struct isl_swizzle swizzle,unsigned offset,unsigned size,isl_surf_usage_flags_t usage)2763 fill_buffer_surface_state(struct isl_device *isl_dev,
2764 struct iris_resource *res,
2765 void *map,
2766 enum isl_format format,
2767 struct isl_swizzle swizzle,
2768 unsigned offset,
2769 unsigned size,
2770 isl_surf_usage_flags_t usage)
2771 {
2772 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2773 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2774
2775 /* The ARB_texture_buffer_specification says:
2776 *
2777 * "The number of texels in the buffer texture's texel array is given by
2778 *
2779 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
2780 *
2781 * where <buffer_size> is the size of the buffer object, in basic
2782 * machine units and <components> and <base_type> are the element count
2783 * and base data type for elements, as specified in Table X.1. The
2784 * number of texels in the texel array is then clamped to the
2785 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
2786 *
2787 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
2788 * so that when ISL divides by stride to obtain the number of texels, that
2789 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
2790 */
2791 unsigned final_size =
2792 MIN3(size, res->bo->size - res->offset - offset,
2793 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
2794
2795 isl_buffer_fill_state(isl_dev, map,
2796 .address = res->bo->address + res->offset + offset,
2797 .size_B = final_size,
2798 .format = format,
2799 .swizzle = swizzle,
2800 .stride_B = cpp,
2801 .mocs = iris_mocs(res->bo, isl_dev, usage));
2802 }
2803
2804 #define SURFACE_STATE_ALIGNMENT 64
2805
2806 /**
2807 * Allocate several contiguous SURFACE_STATE structures, one for each
2808 * supported auxiliary surface mode. This only allocates the CPU-side
2809 * copy, they will need to be uploaded later after they're filled in.
2810 */
2811 static void
alloc_surface_states(struct iris_surface_state * surf_state,unsigned aux_usages)2812 alloc_surface_states(struct iris_surface_state *surf_state,
2813 unsigned aux_usages)
2814 {
2815 enum { surf_size = 4 * GENX(RENDER_SURFACE_STATE_length) };
2816
2817 /* If this changes, update this to explicitly align pointers */
2818 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
2819
2820 assert(aux_usages != 0);
2821
2822 /* In case we're re-allocating them... */
2823 free(surf_state->cpu);
2824
2825 surf_state->aux_usages = aux_usages;
2826 surf_state->num_states = util_bitcount(aux_usages);
2827 surf_state->cpu = calloc(surf_state->num_states, surf_size);
2828 surf_state->ref.offset = 0;
2829 pipe_resource_reference(&surf_state->ref.res, NULL);
2830
2831 assert(surf_state->cpu);
2832 }
2833
2834 /**
2835 * Upload the CPU side SURFACE_STATEs into a GPU buffer.
2836 */
2837 static void
upload_surface_states(struct u_upload_mgr * mgr,struct iris_surface_state * surf_state)2838 upload_surface_states(struct u_upload_mgr *mgr,
2839 struct iris_surface_state *surf_state)
2840 {
2841 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
2842 const unsigned bytes = surf_state->num_states * surf_size;
2843
2844 void *map =
2845 upload_state(mgr, &surf_state->ref, bytes, SURFACE_STATE_ALIGNMENT);
2846
2847 surf_state->ref.offset +=
2848 iris_bo_offset_from_base_address(iris_resource_bo(surf_state->ref.res));
2849
2850 if (map)
2851 memcpy(map, surf_state->cpu, bytes);
2852 }
2853
2854 /**
2855 * Update resource addresses in a set of SURFACE_STATE descriptors,
2856 * and re-upload them if necessary.
2857 */
2858 static bool
update_surface_state_addrs(struct u_upload_mgr * mgr,struct iris_surface_state * surf_state,struct iris_bo * bo)2859 update_surface_state_addrs(struct u_upload_mgr *mgr,
2860 struct iris_surface_state *surf_state,
2861 struct iris_bo *bo)
2862 {
2863 if (surf_state->bo_address == bo->address)
2864 return false;
2865
2866 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) % 64 == 0);
2867 STATIC_ASSERT(GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_bits) == 64);
2868
2869 uint64_t *ss_addr = (uint64_t *) &surf_state->cpu[GENX(RENDER_SURFACE_STATE_SurfaceBaseAddress_start) / 32];
2870
2871 /* First, update the CPU copies. We assume no other fields exist in
2872 * the QWord containing Surface Base Address.
2873 */
2874 for (unsigned i = 0; i < surf_state->num_states; i++) {
2875 *ss_addr = *ss_addr - surf_state->bo_address + bo->address;
2876 ss_addr = ((void *) ss_addr) + SURFACE_STATE_ALIGNMENT;
2877 }
2878
2879 /* Next, upload the updated copies to a GPU buffer. */
2880 upload_surface_states(mgr, surf_state);
2881
2882 surf_state->bo_address = bo->address;
2883
2884 return true;
2885 }
2886
2887 /* We should only use this function when it's needed to fill out
2888 * surf with information provided by the pipe_(image|sampler)_view.
2889 * This is only necessary for CL extension cl_khr_image2d_from_buffer.
2890 * This is the reason why ISL_SURF_DIM_2D is hardcoded on dim field.
2891 */
2892 static void
fill_surf_for_tex2d_from_buffer(struct isl_device * isl_dev,enum isl_format format,unsigned width,unsigned height,unsigned row_stride,isl_surf_usage_flags_t usage,struct isl_surf * surf)2893 fill_surf_for_tex2d_from_buffer(struct isl_device *isl_dev,
2894 enum isl_format format,
2895 unsigned width,
2896 unsigned height,
2897 unsigned row_stride,
2898 isl_surf_usage_flags_t usage,
2899 struct isl_surf *surf)
2900 {
2901 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
2902 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
2903
2904 const struct isl_surf_init_info init_info = {
2905 .dim = ISL_SURF_DIM_2D,
2906 .format = format,
2907 .width = width,
2908 .height = height,
2909 .depth = 1,
2910 .levels = 1,
2911 .array_len = 1,
2912 .samples = 1,
2913 .min_alignment_B = 4,
2914 .row_pitch_B = row_stride * cpp,
2915 .usage = usage,
2916 .tiling_flags = ISL_TILING_LINEAR_BIT,
2917 };
2918
2919 const bool isl_surf_created_successfully =
2920 isl_surf_init_s(isl_dev, surf, &init_info);
2921
2922 assert(isl_surf_created_successfully);
2923 }
2924
2925 static void
fill_surface_state(struct isl_device * isl_dev,void * map,struct iris_resource * res,struct isl_surf * surf,struct isl_view * view,unsigned aux_usage,uint32_t extra_main_offset,uint32_t tile_x_sa,uint32_t tile_y_sa)2926 fill_surface_state(struct isl_device *isl_dev,
2927 void *map,
2928 struct iris_resource *res,
2929 struct isl_surf *surf,
2930 struct isl_view *view,
2931 unsigned aux_usage,
2932 uint32_t extra_main_offset,
2933 uint32_t tile_x_sa,
2934 uint32_t tile_y_sa)
2935 {
2936 struct isl_surf_fill_state_info f = {
2937 .surf = surf,
2938 .view = view,
2939 .mocs = iris_mocs(res->bo, isl_dev, view->usage),
2940 .address = res->bo->address + res->offset + extra_main_offset,
2941 .x_offset_sa = tile_x_sa,
2942 .y_offset_sa = tile_y_sa,
2943 };
2944
2945 if (aux_usage != ISL_AUX_USAGE_NONE) {
2946 f.aux_surf = &res->aux.surf;
2947 f.aux_usage = aux_usage;
2948 f.clear_color = res->aux.clear_color;
2949
2950 if (aux_usage == ISL_AUX_USAGE_MC)
2951 f.mc_format = iris_format_for_usage(isl_dev->info,
2952 res->external_format,
2953 surf->usage).fmt;
2954
2955 if (res->aux.bo)
2956 f.aux_address = res->aux.bo->address + res->aux.offset;
2957
2958 if (res->aux.clear_color_bo) {
2959 f.clear_address = res->aux.clear_color_bo->address +
2960 res->aux.clear_color_offset;
2961 f.use_clear_address = isl_dev->info->ver > 9;
2962 }
2963 }
2964
2965 isl_surf_fill_state_s(isl_dev, map, &f);
2966 }
2967
2968 static void
fill_surface_states(struct isl_device * isl_dev,struct iris_surface_state * surf_state,struct iris_resource * res,struct isl_surf * surf,struct isl_view * view,uint64_t extra_main_offset,uint32_t tile_x_sa,uint32_t tile_y_sa)2969 fill_surface_states(struct isl_device *isl_dev,
2970 struct iris_surface_state *surf_state,
2971 struct iris_resource *res,
2972 struct isl_surf *surf,
2973 struct isl_view *view,
2974 uint64_t extra_main_offset,
2975 uint32_t tile_x_sa,
2976 uint32_t tile_y_sa)
2977 {
2978 void *map = surf_state->cpu;
2979 unsigned aux_modes = surf_state->aux_usages;
2980
2981 while (aux_modes) {
2982 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2983
2984 fill_surface_state(isl_dev, map, res, surf, view, aux_usage,
2985 extra_main_offset, tile_x_sa, tile_y_sa);
2986
2987 map += SURFACE_STATE_ALIGNMENT;
2988 }
2989 }
2990
2991 /**
2992 * The pipe->create_sampler_view() driver hook.
2993 */
2994 static struct pipe_sampler_view *
iris_create_sampler_view(struct pipe_context * ctx,struct pipe_resource * tex,const struct pipe_sampler_view * tmpl)2995 iris_create_sampler_view(struct pipe_context *ctx,
2996 struct pipe_resource *tex,
2997 const struct pipe_sampler_view *tmpl)
2998 {
2999 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3000 const struct intel_device_info *devinfo = screen->devinfo;
3001 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
3002
3003 if (!isv)
3004 return NULL;
3005
3006 /* initialize base object */
3007 isv->base = *tmpl;
3008 isv->base.context = ctx;
3009 isv->base.texture = NULL;
3010 pipe_reference_init(&isv->base.reference, 1);
3011 pipe_resource_reference(&isv->base.texture, tex);
3012
3013 if (util_format_is_depth_or_stencil(tmpl->format)) {
3014 struct iris_resource *zres, *sres;
3015 const struct util_format_description *desc =
3016 util_format_description(tmpl->format);
3017
3018 iris_get_depth_stencil_resources(tex, &zres, &sres);
3019
3020 tex = util_format_has_depth(desc) ? &zres->base.b : &sres->base.b;
3021 }
3022
3023 isv->res = (struct iris_resource *) tex;
3024
3025 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
3026
3027 if (isv->base.target == PIPE_TEXTURE_CUBE ||
3028 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
3029 usage |= ISL_SURF_USAGE_CUBE_BIT;
3030
3031 const struct iris_format_info fmt =
3032 iris_format_for_usage(devinfo, tmpl->format, usage);
3033
3034 isv->clear_color = isv->res->aux.clear_color;
3035
3036 isv->view = (struct isl_view) {
3037 .format = fmt.fmt,
3038 .swizzle = (struct isl_swizzle) {
3039 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
3040 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
3041 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
3042 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
3043 },
3044 .usage = usage,
3045 };
3046
3047 unsigned aux_usages = 0;
3048
3049 if ((isv->res->aux.usage == ISL_AUX_USAGE_CCS_D ||
3050 isv->res->aux.usage == ISL_AUX_USAGE_CCS_E ||
3051 isv->res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
3052 !isl_format_supports_ccs_e(devinfo, isv->view.format)) {
3053 aux_usages = 1 << ISL_AUX_USAGE_NONE;
3054 } else if (isl_aux_usage_has_hiz(isv->res->aux.usage) &&
3055 !iris_sample_with_depth_aux(devinfo, isv->res)) {
3056 aux_usages = 1 << ISL_AUX_USAGE_NONE;
3057 } else {
3058 aux_usages = 1 << ISL_AUX_USAGE_NONE |
3059 1 << isv->res->aux.usage;
3060 }
3061
3062 alloc_surface_states(&isv->surface_state, aux_usages);
3063 isv->surface_state.bo_address = isv->res->bo->address;
3064
3065 /* Fill out SURFACE_STATE for this view. */
3066 if (tmpl->target != PIPE_BUFFER) {
3067 isv->view.base_level = tmpl->u.tex.first_level;
3068 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
3069
3070 if (tmpl->target == PIPE_TEXTURE_3D) {
3071 isv->view.base_array_layer = 0;
3072 isv->view.array_len = 1;
3073 } else {
3074 #if GFX_VER < 9
3075 /* Hardware older than skylake ignores this value */
3076 assert(tex->target != PIPE_TEXTURE_3D || !tmpl->u.tex.first_layer);
3077 #endif
3078 isv->view.base_array_layer = tmpl->u.tex.first_layer;
3079 isv->view.array_len =
3080 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
3081 }
3082
3083 fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
3084 &isv->res->surf, &isv->view, 0, 0, 0);
3085 } else if (isv->base.is_tex2d_from_buf) {
3086 /* In case it's a 2d image created from a buffer, we should
3087 * use fill_surface_states function with image parameters provided
3088 * by the CL application
3089 */
3090 isv->view.base_array_layer = 0;
3091 isv->view.array_len = 1;
3092
3093 /* Create temp_surf and fill with values provided by CL application */
3094 struct isl_surf temp_surf;
3095 fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt.fmt,
3096 isv->base.u.tex2d_from_buf.width,
3097 isv->base.u.tex2d_from_buf.height,
3098 isv->base.u.tex2d_from_buf.row_stride,
3099 usage,
3100 &temp_surf);
3101
3102 fill_surface_states(&screen->isl_dev, &isv->surface_state, isv->res,
3103 &temp_surf, &isv->view, 0, 0, 0);
3104 } else {
3105 fill_buffer_surface_state(&screen->isl_dev, isv->res,
3106 isv->surface_state.cpu,
3107 isv->view.format, isv->view.swizzle,
3108 tmpl->u.buf.offset, tmpl->u.buf.size,
3109 ISL_SURF_USAGE_TEXTURE_BIT);
3110 }
3111
3112 return &isv->base;
3113 }
3114
3115 static void
iris_sampler_view_destroy(struct pipe_context * ctx,struct pipe_sampler_view * state)3116 iris_sampler_view_destroy(struct pipe_context *ctx,
3117 struct pipe_sampler_view *state)
3118 {
3119 struct iris_sampler_view *isv = (void *) state;
3120 pipe_resource_reference(&state->texture, NULL);
3121 pipe_resource_reference(&isv->surface_state.ref.res, NULL);
3122 free(isv->surface_state.cpu);
3123 free(isv);
3124 }
3125
3126 /**
3127 * The pipe->create_surface() driver hook.
3128 *
3129 * In Gallium nomenclature, "surfaces" are a view of a resource that
3130 * can be bound as a render target or depth/stencil buffer.
3131 */
3132 static struct pipe_surface *
iris_create_surface(struct pipe_context * ctx,struct pipe_resource * tex,const struct pipe_surface * tmpl)3133 iris_create_surface(struct pipe_context *ctx,
3134 struct pipe_resource *tex,
3135 const struct pipe_surface *tmpl)
3136 {
3137 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3138 const struct intel_device_info *devinfo = screen->devinfo;
3139
3140 isl_surf_usage_flags_t usage = 0;
3141 if (tmpl->writable)
3142 usage = ISL_SURF_USAGE_STORAGE_BIT;
3143 else if (util_format_is_depth_or_stencil(tmpl->format))
3144 usage = ISL_SURF_USAGE_DEPTH_BIT;
3145 else
3146 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3147
3148 const struct iris_format_info fmt =
3149 iris_format_for_usage(devinfo, tmpl->format, usage);
3150
3151 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
3152 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
3153 /* Framebuffer validation will reject this invalid case, but it
3154 * hasn't had the opportunity yet. In the meantime, we need to
3155 * avoid hitting ISL asserts about unsupported formats below.
3156 */
3157 return NULL;
3158 }
3159
3160 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
3161 struct iris_resource *res = (struct iris_resource *) tex;
3162
3163 if (!surf)
3164 return NULL;
3165
3166 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
3167
3168 struct isl_view *view = &surf->view;
3169 *view = (struct isl_view) {
3170 .format = fmt.fmt,
3171 .base_level = tmpl->u.tex.level,
3172 .levels = 1,
3173 .base_array_layer = tmpl->u.tex.first_layer,
3174 .array_len = array_len,
3175 .swizzle = ISL_SWIZZLE_IDENTITY,
3176 .usage = usage,
3177 };
3178
3179 #if GFX_VER == 8
3180 struct isl_view *read_view = &surf->read_view;
3181 *read_view = (struct isl_view) {
3182 .format = fmt.fmt,
3183 .base_level = tmpl->u.tex.level,
3184 .levels = 1,
3185 .base_array_layer = tmpl->u.tex.first_layer,
3186 .array_len = array_len,
3187 .swizzle = ISL_SWIZZLE_IDENTITY,
3188 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
3189 };
3190
3191 struct isl_surf read_surf = res->surf;
3192 uint64_t read_surf_offset_B = 0;
3193 uint32_t read_surf_tile_x_sa = 0, read_surf_tile_y_sa = 0;
3194 if (tex->target == PIPE_TEXTURE_3D && array_len == 1) {
3195 /* The minimum array element field of the surface state structure is
3196 * ignored by the sampler unit for 3D textures on some hardware. If the
3197 * render buffer is a single slice of a 3D texture, create a 2D texture
3198 * covering that slice.
3199 *
3200 * TODO: This only handles the case where we're rendering to a single
3201 * slice of an array texture. If we have layered rendering combined
3202 * with non-coherent FB fetch and a non-zero base_array_layer, then
3203 * we're going to run into problems.
3204 *
3205 * See https://gitlab.freedesktop.org/mesa/mesa/-/issues/4904
3206 */
3207 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
3208 read_view->base_level,
3209 0, read_view->base_array_layer,
3210 &read_surf, &read_surf_offset_B,
3211 &read_surf_tile_x_sa, &read_surf_tile_y_sa);
3212 read_view->base_level = 0;
3213 read_view->base_array_layer = 0;
3214 assert(read_view->array_len == 1);
3215 } else if (tex->target == PIPE_TEXTURE_1D_ARRAY) {
3216 /* Convert 1D array textures to 2D arrays because shaders always provide
3217 * the array index coordinate at the Z component to avoid recompiles
3218 * when changing the texture target of the framebuffer.
3219 */
3220 assert(read_surf.dim_layout == ISL_DIM_LAYOUT_GFX4_2D);
3221 read_surf.dim = ISL_SURF_DIM_2D;
3222 }
3223 #endif
3224
3225 struct isl_surf isl_surf = res->surf;
3226 uint64_t offset_B = 0;
3227 uint32_t tile_x_el = 0, tile_y_el = 0;
3228 if (isl_format_is_compressed(res->surf.format)) {
3229 /* The resource has a compressed format, which is not renderable, but we
3230 * have a renderable view format. We must be attempting to upload
3231 * blocks of compressed data via an uncompressed view.
3232 *
3233 * In this case, we can assume there are no auxiliary surfaces, a single
3234 * miplevel, and that the resource is single-sampled. Gallium may try
3235 * and create an uncompressed view with multiple layers, however.
3236 */
3237 assert(res->aux.surf.size_B == 0);
3238 assert(res->surf.samples == 1);
3239 assert(view->levels == 1);
3240
3241 bool ok = isl_surf_get_uncompressed_surf(&screen->isl_dev,
3242 &res->surf, view,
3243 &isl_surf, view, &offset_B,
3244 &tile_x_el, &tile_y_el);
3245
3246 /* On Broadwell, HALIGN and VALIGN are specified in pixels and are
3247 * hard-coded to align to exactly the block size of the compressed
3248 * texture. This means that, when reinterpreted as a non-compressed
3249 * texture, the tile offsets may be anything.
3250 *
3251 * We need them to be multiples of 4 to be usable in RENDER_SURFACE_STATE,
3252 * so force the state tracker to take fallback paths if they're not.
3253 */
3254 #if GFX_VER == 8
3255 if (tile_x_el % 4 != 0 || tile_y_el % 4 != 0) {
3256 ok = false;
3257 }
3258 #endif
3259
3260 if (!ok) {
3261 free(surf);
3262 return NULL;
3263 }
3264 }
3265
3266 surf->clear_color = res->aux.clear_color;
3267
3268 struct pipe_surface *psurf = &surf->base;
3269 pipe_reference_init(&psurf->reference, 1);
3270 pipe_resource_reference(&psurf->texture, tex);
3271 psurf->context = ctx;
3272 psurf->format = tmpl->format;
3273 psurf->width = isl_surf.logical_level0_px.width;
3274 psurf->height = isl_surf.logical_level0_px.height;
3275 psurf->texture = tex;
3276 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
3277 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
3278 psurf->u.tex.level = tmpl->u.tex.level;
3279
3280 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
3281 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
3282 ISL_SURF_USAGE_STENCIL_BIT))
3283 return psurf;
3284
3285 /* Fill out a SURFACE_STATE for each possible auxiliary surface mode and
3286 * return the pipe_surface.
3287 */
3288 unsigned aux_usages = 0;
3289
3290 if ((res->aux.usage == ISL_AUX_USAGE_CCS_E ||
3291 res->aux.usage == ISL_AUX_USAGE_FCV_CCS_E) &&
3292 !isl_format_supports_ccs_e(devinfo, view->format)) {
3293 aux_usages = 1 << ISL_AUX_USAGE_NONE;
3294 } else {
3295 aux_usages = 1 << ISL_AUX_USAGE_NONE |
3296 1 << res->aux.usage;
3297 }
3298
3299 alloc_surface_states(&surf->surface_state, aux_usages);
3300 surf->surface_state.bo_address = res->bo->address;
3301 fill_surface_states(&screen->isl_dev, &surf->surface_state, res,
3302 &isl_surf, view, offset_B, tile_x_el, tile_y_el);
3303
3304 #if GFX_VER == 8
3305 alloc_surface_states(&surf->surface_state_read, aux_usages);
3306 surf->surface_state_read.bo_address = res->bo->address;
3307 fill_surface_states(&screen->isl_dev, &surf->surface_state_read, res,
3308 &read_surf, read_view, read_surf_offset_B,
3309 read_surf_tile_x_sa, read_surf_tile_y_sa);
3310 #endif
3311
3312 return psurf;
3313 }
3314
3315 #if GFX_VER < 9
3316 static void
fill_default_image_param(struct isl_image_param * param)3317 fill_default_image_param(struct isl_image_param *param)
3318 {
3319 memset(param, 0, sizeof(*param));
3320 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
3321 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
3322 * detailed explanation of these parameters.
3323 */
3324 param->swizzling[0] = 0xff;
3325 param->swizzling[1] = 0xff;
3326 }
3327
3328 static void
fill_buffer_image_param(struct isl_image_param * param,enum pipe_format pfmt,unsigned size)3329 fill_buffer_image_param(struct isl_image_param *param,
3330 enum pipe_format pfmt,
3331 unsigned size)
3332 {
3333 const unsigned cpp = util_format_get_blocksize(pfmt);
3334
3335 fill_default_image_param(param);
3336 param->size[0] = size / cpp;
3337 param->stride[0] = cpp;
3338 }
3339 #else
3340 #define isl_surf_fill_image_param(x, ...)
3341 #define fill_default_image_param(x, ...)
3342 #define fill_buffer_image_param(x, ...)
3343 #endif
3344
3345 /**
3346 * The pipe->set_shader_images() driver hook.
3347 */
3348 static void
iris_set_shader_images(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start_slot,unsigned count,unsigned unbind_num_trailing_slots,const struct pipe_image_view * p_images)3349 iris_set_shader_images(struct pipe_context *ctx,
3350 enum pipe_shader_type p_stage,
3351 unsigned start_slot, unsigned count,
3352 unsigned unbind_num_trailing_slots,
3353 const struct pipe_image_view *p_images)
3354 {
3355 struct iris_context *ice = (struct iris_context *) ctx;
3356 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3357 gl_shader_stage stage = stage_from_pipe(p_stage);
3358 struct iris_shader_state *shs = &ice->state.shaders[stage];
3359 #if GFX_VER == 8
3360 struct iris_genx_state *genx = ice->state.genx;
3361 struct isl_image_param *image_params = genx->shaders[stage].image_param;
3362 #endif
3363
3364 shs->bound_image_views &=
3365 ~u_bit_consecutive64(start_slot, count + unbind_num_trailing_slots);
3366
3367 for (unsigned i = 0; i < count; i++) {
3368 struct iris_image_view *iv = &shs->image[start_slot + i];
3369
3370 if (p_images && p_images[i].resource) {
3371 const struct pipe_image_view *img = &p_images[i];
3372 struct iris_resource *res = (void *) img->resource;
3373
3374 util_copy_image_view(&iv->base, img);
3375
3376 shs->bound_image_views |= BITFIELD64_BIT(start_slot + i);
3377
3378 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
3379 res->bind_stages |= 1 << stage;
3380
3381 enum isl_format isl_fmt = iris_image_view_get_format(ice, img);
3382
3383 unsigned aux_usages = 1 << ISL_AUX_USAGE_NONE;
3384
3385 /* Gfx12+ supports render compression for images */
3386 if (GFX_VER >= 12 && isl_aux_usage_has_ccs_e(res->aux.usage))
3387 aux_usages |= 1 << ISL_AUX_USAGE_CCS_E;
3388
3389 alloc_surface_states(&iv->surface_state, aux_usages);
3390 iv->surface_state.bo_address = res->bo->address;
3391
3392 if (res->base.b.target != PIPE_BUFFER) {
3393 struct isl_view view = {
3394 .format = isl_fmt,
3395 .base_level = img->u.tex.level,
3396 .levels = 1,
3397 .base_array_layer = img->u.tex.first_layer,
3398 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
3399 .swizzle = ISL_SWIZZLE_IDENTITY,
3400 .usage = ISL_SURF_USAGE_STORAGE_BIT,
3401 };
3402
3403 /* If using untyped fallback. */
3404 if (isl_fmt == ISL_FORMAT_RAW) {
3405 fill_buffer_surface_state(&screen->isl_dev, res,
3406 iv->surface_state.cpu,
3407 isl_fmt, ISL_SWIZZLE_IDENTITY,
3408 0, res->bo->size,
3409 ISL_SURF_USAGE_STORAGE_BIT);
3410 } else {
3411 fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
3412 &res->surf, &view, 0, 0, 0);
3413 }
3414
3415 isl_surf_fill_image_param(&screen->isl_dev,
3416 &image_params[start_slot + i],
3417 &res->surf, &view);
3418 } else if (img->access & PIPE_IMAGE_ACCESS_TEX2D_FROM_BUFFER) {
3419 /* In case it's a 2d image created from a buffer, we should
3420 * use fill_surface_states function with image parameters provided
3421 * by the CL application
3422 */
3423 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
3424 struct isl_view view = {
3425 .format = isl_fmt,
3426 .base_level = 0,
3427 .levels = 1,
3428 .base_array_layer = 0,
3429 .array_len = 1,
3430 .swizzle = ISL_SWIZZLE_IDENTITY,
3431 .usage = usage,
3432 };
3433
3434 /* Create temp_surf and fill with values provided by CL application */
3435 struct isl_surf temp_surf;
3436 enum isl_format fmt = iris_image_view_get_format(ice, img);
3437 fill_surf_for_tex2d_from_buffer(&screen->isl_dev, fmt,
3438 img->u.tex2d_from_buf.width,
3439 img->u.tex2d_from_buf.height,
3440 img->u.tex2d_from_buf.row_stride,
3441 usage,
3442 &temp_surf);
3443
3444 fill_surface_states(&screen->isl_dev, &iv->surface_state, res,
3445 &temp_surf, &view, 0, 0, 0);
3446 isl_surf_fill_image_param(&screen->isl_dev,
3447 &image_params[start_slot + i],
3448 &temp_surf, &view);
3449 } else {
3450 util_range_add(&res->base.b, &res->valid_buffer_range, img->u.buf.offset,
3451 img->u.buf.offset + img->u.buf.size);
3452
3453 fill_buffer_surface_state(&screen->isl_dev, res,
3454 iv->surface_state.cpu,
3455 isl_fmt, ISL_SWIZZLE_IDENTITY,
3456 img->u.buf.offset, img->u.buf.size,
3457 ISL_SURF_USAGE_STORAGE_BIT);
3458 fill_buffer_image_param(&image_params[start_slot + i],
3459 img->format, img->u.buf.size);
3460 }
3461
3462 upload_surface_states(ice->state.surface_uploader, &iv->surface_state);
3463 } else {
3464 pipe_resource_reference(&iv->base.resource, NULL);
3465 pipe_resource_reference(&iv->surface_state.ref.res, NULL);
3466 fill_default_image_param(&image_params[start_slot + i]);
3467 }
3468 }
3469
3470 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
3471 ice->state.dirty |=
3472 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
3473 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3474
3475 /* Broadwell also needs isl_image_params re-uploaded */
3476 if (GFX_VER < 9) {
3477 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
3478 shs->sysvals_need_upload = true;
3479 }
3480
3481 if (unbind_num_trailing_slots) {
3482 iris_set_shader_images(ctx, p_stage, start_slot + count,
3483 unbind_num_trailing_slots, 0, NULL);
3484 }
3485 }
3486
3487 UNUSED static bool
is_sampler_view_3d(const struct iris_sampler_view * view)3488 is_sampler_view_3d(const struct iris_sampler_view *view)
3489 {
3490 return view && view->res->base.b.target == PIPE_TEXTURE_3D;
3491 }
3492
3493 /**
3494 * The pipe->set_sampler_views() driver hook.
3495 */
3496 static void
iris_set_sampler_views(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start,unsigned count,unsigned unbind_num_trailing_slots,bool take_ownership,struct pipe_sampler_view ** views)3497 iris_set_sampler_views(struct pipe_context *ctx,
3498 enum pipe_shader_type p_stage,
3499 unsigned start, unsigned count,
3500 unsigned unbind_num_trailing_slots,
3501 bool take_ownership,
3502 struct pipe_sampler_view **views)
3503 {
3504 struct iris_context *ice = (struct iris_context *) ctx;
3505 UNUSED struct iris_screen *screen = (void *) ctx->screen;
3506 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
3507 gl_shader_stage stage = stage_from_pipe(p_stage);
3508 struct iris_shader_state *shs = &ice->state.shaders[stage];
3509 unsigned i;
3510
3511 if (count == 0 && unbind_num_trailing_slots == 0)
3512 return;
3513
3514 BITSET_CLEAR_RANGE(shs->bound_sampler_views, start,
3515 start + count + unbind_num_trailing_slots - 1);
3516
3517 for (i = 0; i < count; i++) {
3518 struct pipe_sampler_view *pview = views ? views[i] : NULL;
3519 struct iris_sampler_view *view = (void *) pview;
3520
3521 #if GFX_VERx10 == 125
3522 if (intel_needs_workaround(screen->devinfo, 14014414195)) {
3523 if (is_sampler_view_3d(shs->textures[start + i]) !=
3524 is_sampler_view_3d(view))
3525 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage;
3526 }
3527 #endif
3528
3529 if (take_ownership) {
3530 pipe_sampler_view_reference((struct pipe_sampler_view **)
3531 &shs->textures[start + i], NULL);
3532 shs->textures[start + i] = (struct iris_sampler_view *)pview;
3533 } else {
3534 pipe_sampler_view_reference((struct pipe_sampler_view **)
3535 &shs->textures[start + i], pview);
3536 }
3537 if (view) {
3538 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
3539 view->res->bind_stages |= 1 << stage;
3540
3541 BITSET_SET(shs->bound_sampler_views, start + i);
3542
3543 update_surface_state_addrs(ice->state.surface_uploader,
3544 &view->surface_state, view->res->bo);
3545 }
3546 }
3547 for (; i < count + unbind_num_trailing_slots; i++) {
3548 pipe_sampler_view_reference((struct pipe_sampler_view **)
3549 &shs->textures[start + i], NULL);
3550 }
3551
3552 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_BINDINGS_VS << stage);
3553 ice->state.dirty |=
3554 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
3555 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3556 }
3557
3558 static void
iris_set_compute_resources(struct pipe_context * ctx,unsigned start,unsigned count,struct pipe_surface ** resources)3559 iris_set_compute_resources(struct pipe_context *ctx,
3560 unsigned start, unsigned count,
3561 struct pipe_surface **resources)
3562 {
3563 assert(count == 0);
3564 }
3565
3566 static void
iris_set_global_binding(struct pipe_context * ctx,unsigned start_slot,unsigned count,struct pipe_resource ** resources,uint32_t ** handles)3567 iris_set_global_binding(struct pipe_context *ctx,
3568 unsigned start_slot, unsigned count,
3569 struct pipe_resource **resources,
3570 uint32_t **handles)
3571 {
3572 struct iris_context *ice = (struct iris_context *) ctx;
3573
3574 assert(start_slot + count <= IRIS_MAX_GLOBAL_BINDINGS);
3575 for (unsigned i = 0; i < count; i++) {
3576 if (resources && resources[i]) {
3577 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
3578 resources[i]);
3579
3580 struct iris_resource *res = (void *) resources[i];
3581 assert(res->base.b.target == PIPE_BUFFER);
3582 util_range_add(&res->base.b, &res->valid_buffer_range,
3583 0, res->base.b.width0);
3584
3585 uint64_t addr = 0;
3586 memcpy(&addr, handles[i], sizeof(addr));
3587 addr += res->bo->address + res->offset;
3588 memcpy(handles[i], &addr, sizeof(addr));
3589 } else {
3590 pipe_resource_reference(&ice->state.global_bindings[start_slot + i],
3591 NULL);
3592 }
3593 }
3594
3595 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_CS;
3596 }
3597
3598 /**
3599 * The pipe->set_tess_state() driver hook.
3600 */
3601 static void
iris_set_tess_state(struct pipe_context * ctx,const float default_outer_level[4],const float default_inner_level[2])3602 iris_set_tess_state(struct pipe_context *ctx,
3603 const float default_outer_level[4],
3604 const float default_inner_level[2])
3605 {
3606 struct iris_context *ice = (struct iris_context *) ctx;
3607 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
3608
3609 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
3610 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
3611
3612 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_TCS;
3613 shs->sysvals_need_upload = true;
3614 }
3615
3616 static void
iris_set_patch_vertices(struct pipe_context * ctx,uint8_t patch_vertices)3617 iris_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
3618 {
3619 struct iris_context *ice = (struct iris_context *) ctx;
3620
3621 ice->state.patch_vertices = patch_vertices;
3622 }
3623
3624 static void
iris_surface_destroy(struct pipe_context * ctx,struct pipe_surface * p_surf)3625 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
3626 {
3627 struct iris_surface *surf = (void *) p_surf;
3628 pipe_resource_reference(&p_surf->texture, NULL);
3629 pipe_resource_reference(&surf->surface_state.ref.res, NULL);
3630 pipe_resource_reference(&surf->surface_state_read.ref.res, NULL);
3631 free(surf->surface_state.cpu);
3632 free(surf->surface_state_read.cpu);
3633 free(surf);
3634 }
3635
3636 static void
iris_set_clip_state(struct pipe_context * ctx,const struct pipe_clip_state * state)3637 iris_set_clip_state(struct pipe_context *ctx,
3638 const struct pipe_clip_state *state)
3639 {
3640 struct iris_context *ice = (struct iris_context *) ctx;
3641 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
3642 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
3643 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
3644
3645 memcpy(&ice->state.clip_planes, state, sizeof(*state));
3646
3647 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS |
3648 IRIS_STAGE_DIRTY_CONSTANTS_GS |
3649 IRIS_STAGE_DIRTY_CONSTANTS_TES;
3650 shs->sysvals_need_upload = true;
3651 gshs->sysvals_need_upload = true;
3652 tshs->sysvals_need_upload = true;
3653 }
3654
3655 /**
3656 * The pipe->set_polygon_stipple() driver hook.
3657 */
3658 static void
iris_set_polygon_stipple(struct pipe_context * ctx,const struct pipe_poly_stipple * state)3659 iris_set_polygon_stipple(struct pipe_context *ctx,
3660 const struct pipe_poly_stipple *state)
3661 {
3662 struct iris_context *ice = (struct iris_context *) ctx;
3663 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
3664 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
3665 }
3666
3667 /**
3668 * The pipe->set_sample_mask() driver hook.
3669 */
3670 static void
iris_set_sample_mask(struct pipe_context * ctx,unsigned sample_mask)3671 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
3672 {
3673 struct iris_context *ice = (struct iris_context *) ctx;
3674
3675 /* We only support 16x MSAA, so we have 16 bits of sample maks.
3676 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
3677 */
3678 ice->state.sample_mask = sample_mask & 0xffff;
3679 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
3680 }
3681
3682 /**
3683 * The pipe->set_scissor_states() driver hook.
3684 *
3685 * This corresponds to our SCISSOR_RECT state structures. It's an
3686 * exact match, so we just store them, and memcpy them out later.
3687 */
3688 static void
iris_set_scissor_states(struct pipe_context * ctx,unsigned start_slot,unsigned num_scissors,const struct pipe_scissor_state * rects)3689 iris_set_scissor_states(struct pipe_context *ctx,
3690 unsigned start_slot,
3691 unsigned num_scissors,
3692 const struct pipe_scissor_state *rects)
3693 {
3694 struct iris_context *ice = (struct iris_context *) ctx;
3695
3696 for (unsigned i = 0; i < num_scissors; i++) {
3697 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
3698 /* If the scissor was out of bounds and got clamped to 0 width/height
3699 * at the bounds, the subtraction of 1 from maximums could produce a
3700 * negative number and thus not clip anything. Instead, just provide
3701 * a min > max scissor inside the bounds, which produces the expected
3702 * no rendering.
3703 */
3704 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
3705 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
3706 };
3707 } else {
3708 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
3709 .minx = rects[i].minx, .miny = rects[i].miny,
3710 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
3711 };
3712 }
3713 }
3714
3715 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
3716 }
3717
3718 /**
3719 * The pipe->set_stencil_ref() driver hook.
3720 *
3721 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
3722 */
3723 static void
iris_set_stencil_ref(struct pipe_context * ctx,const struct pipe_stencil_ref state)3724 iris_set_stencil_ref(struct pipe_context *ctx,
3725 const struct pipe_stencil_ref state)
3726 {
3727 struct iris_context *ice = (struct iris_context *) ctx;
3728 memcpy(&ice->state.stencil_ref, &state, sizeof(state));
3729 if (GFX_VER >= 12)
3730 ice->state.dirty |= IRIS_DIRTY_STENCIL_REF;
3731 else if (GFX_VER >= 9)
3732 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
3733 else
3734 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
3735 }
3736
3737 static float
viewport_extent(const struct pipe_viewport_state * state,int axis,float sign)3738 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
3739 {
3740 return copysignf(state->scale[axis], sign) + state->translate[axis];
3741 }
3742
3743 /**
3744 * The pipe->set_viewport_states() driver hook.
3745 *
3746 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
3747 * the guardband yet, as we need the framebuffer dimensions, but we can
3748 * at least fill out the rest.
3749 */
3750 static void
iris_set_viewport_states(struct pipe_context * ctx,unsigned start_slot,unsigned count,const struct pipe_viewport_state * states)3751 iris_set_viewport_states(struct pipe_context *ctx,
3752 unsigned start_slot,
3753 unsigned count,
3754 const struct pipe_viewport_state *states)
3755 {
3756 struct iris_context *ice = (struct iris_context *) ctx;
3757 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3758
3759 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
3760
3761 /* Fix depth test misrenderings by lowering translated depth range */
3762 if (screen->driconf.lower_depth_range_rate != 1.0f)
3763 ice->state.viewports[start_slot].translate[2] *=
3764 screen->driconf.lower_depth_range_rate;
3765
3766 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3767
3768 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
3769 !ice->state.cso_rast->depth_clip_far))
3770 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
3771 }
3772
3773 /**
3774 * The pipe->set_framebuffer_state() driver hook.
3775 *
3776 * Sets the current draw FBO, including color render targets, depth,
3777 * and stencil buffers.
3778 */
3779 static void
iris_set_framebuffer_state(struct pipe_context * ctx,const struct pipe_framebuffer_state * state)3780 iris_set_framebuffer_state(struct pipe_context *ctx,
3781 const struct pipe_framebuffer_state *state)
3782 {
3783 struct iris_context *ice = (struct iris_context *) ctx;
3784 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
3785 const struct intel_device_info *devinfo = screen->devinfo;
3786 struct isl_device *isl_dev = &screen->isl_dev;
3787 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
3788 struct iris_resource *zres;
3789 struct iris_resource *stencil_res;
3790 struct iris_resource *new_res = NULL;
3791 struct pipe_box new_render_area;
3792
3793 unsigned samples = util_framebuffer_get_num_samples(state);
3794 unsigned layers = util_framebuffer_get_num_layers(state);
3795
3796 /* multiview not supported */
3797 assert(!state->viewmask);
3798
3799 if (cso->samples != samples) {
3800 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
3801
3802 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
3803 if (GFX_VER >= 9 && (cso->samples == 16 || samples == 16))
3804 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_FS;
3805
3806 /* We may need to emit blend state for Wa_14018912822. */
3807 if ((cso->samples > 1) != (samples > 1) &&
3808 intel_needs_workaround(devinfo, 14018912822)) {
3809 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3810 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
3811 }
3812 }
3813
3814 if (cso->nr_cbufs != state->nr_cbufs) {
3815 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
3816 }
3817
3818 if ((cso->layers == 0) != (layers == 0)) {
3819 ice->state.dirty |= IRIS_DIRTY_CLIP;
3820 }
3821
3822 if (state->nr_cbufs > 0 && state->cbufs[0])
3823 new_res = (struct iris_resource *)state->cbufs[0]->texture;
3824
3825 if (new_res && new_res->use_damage) {
3826 new_render_area = new_res->damage;
3827 } else {
3828 new_render_area.x = 0;
3829 new_render_area.y = 0;
3830 new_render_area.z = 0;
3831 new_render_area.width = state->width;
3832 new_render_area.height = state->height;
3833 new_render_area.depth = 0;
3834 }
3835
3836 if (memcmp(&ice->state.render_area, &new_render_area, sizeof(new_render_area))) {
3837 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
3838 ice->state.render_area = new_render_area;
3839 }
3840
3841 if (cso->zsbuf || state->zsbuf) {
3842 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
3843 }
3844
3845 bool has_integer_rt = false;
3846 for (unsigned i = 0; i < state->nr_cbufs; i++) {
3847 if (state->cbufs[i]) {
3848 enum isl_format ifmt =
3849 isl_format_for_pipe_format(state->cbufs[i]->format);
3850 has_integer_rt |= isl_format_has_int_channel(ifmt);
3851 }
3852 }
3853
3854 /* 3DSTATE_RASTER::AntialiasingEnable */
3855 if (has_integer_rt != ice->state.has_integer_rt ||
3856 cso->samples != samples) {
3857 ice->state.dirty |= IRIS_DIRTY_RASTER;
3858 }
3859
3860 util_copy_framebuffer_state(cso, state);
3861 cso->samples = samples;
3862 cso->layers = layers;
3863
3864 ice->state.has_integer_rt = has_integer_rt;
3865
3866 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
3867
3868 struct isl_view view = {
3869 .base_level = 0,
3870 .levels = 1,
3871 .base_array_layer = 0,
3872 .array_len = 1,
3873 .swizzle = ISL_SWIZZLE_IDENTITY,
3874 };
3875
3876 struct isl_depth_stencil_hiz_emit_info info = {
3877 .view = &view,
3878 .mocs = iris_mocs(NULL, isl_dev, ISL_SURF_USAGE_DEPTH_BIT),
3879 };
3880
3881 if (cso->zsbuf) {
3882 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
3883 &stencil_res);
3884
3885 view.base_level = cso->zsbuf->u.tex.level;
3886 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
3887 view.array_len =
3888 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
3889
3890 if (zres) {
3891 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
3892
3893 info.depth_surf = &zres->surf;
3894 info.depth_address = zres->bo->address + zres->offset;
3895 info.mocs = iris_mocs(zres->bo, isl_dev, view.usage);
3896
3897 view.format = zres->surf.format;
3898
3899 if (iris_resource_level_has_hiz(devinfo, zres, view.base_level)) {
3900 info.hiz_usage = zres->aux.usage;
3901 info.hiz_surf = &zres->aux.surf;
3902 info.hiz_address = zres->aux.bo->address + zres->aux.offset;
3903 }
3904
3905 ice->state.hiz_usage = info.hiz_usage;
3906 }
3907
3908 if (stencil_res) {
3909 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
3910 info.stencil_aux_usage = stencil_res->aux.usage;
3911 info.stencil_surf = &stencil_res->surf;
3912 info.stencil_address = stencil_res->bo->address + stencil_res->offset;
3913 if (!zres) {
3914 view.format = stencil_res->surf.format;
3915 info.mocs = iris_mocs(stencil_res->bo, isl_dev, view.usage);
3916 }
3917 }
3918 }
3919
3920 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
3921
3922 /* Make a null surface for unbound buffers */
3923 void *null_surf_map =
3924 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
3925 4 * GENX(RENDER_SURFACE_STATE_length), 64);
3926 isl_null_fill_state(&screen->isl_dev, null_surf_map,
3927 .size = isl_extent3d(MAX2(cso->width, 1),
3928 MAX2(cso->height, 1),
3929 cso->layers ? cso->layers : 1));
3930 ice->state.null_fb.offset +=
3931 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
3932
3933 /* Render target change */
3934 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_FS;
3935
3936 ice->state.dirty |= IRIS_DIRTY_RENDER_BUFFER;
3937
3938 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
3939
3940 ice->state.stage_dirty |=
3941 ice->state.stage_dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
3942
3943 if (GFX_VER == 8)
3944 ice->state.dirty |= IRIS_DIRTY_PMA_FIX;
3945 }
3946
3947 /**
3948 * The pipe->set_constant_buffer() driver hook.
3949 *
3950 * This uploads any constant data in user buffers, and references
3951 * any UBO resources containing constant data.
3952 */
3953 static void
iris_set_constant_buffer(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned index,bool take_ownership,const struct pipe_constant_buffer * input)3954 iris_set_constant_buffer(struct pipe_context *ctx,
3955 enum pipe_shader_type p_stage, unsigned index,
3956 bool take_ownership,
3957 const struct pipe_constant_buffer *input)
3958 {
3959 struct iris_context *ice = (struct iris_context *) ctx;
3960 gl_shader_stage stage = stage_from_pipe(p_stage);
3961 struct iris_shader_state *shs = &ice->state.shaders[stage];
3962 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
3963
3964 /* TODO: Only do this if the buffer changes? */
3965 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
3966
3967 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
3968 shs->bound_cbufs |= 1u << index;
3969
3970 if (input->user_buffer) {
3971 void *map = NULL;
3972 pipe_resource_reference(&cbuf->buffer, NULL);
3973 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
3974 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
3975
3976 if (!cbuf->buffer) {
3977 /* Allocation was unsuccessful - just unbind */
3978 iris_set_constant_buffer(ctx, p_stage, index, false, NULL);
3979 return;
3980 }
3981
3982 assert(map);
3983 memcpy(map, input->user_buffer, input->buffer_size);
3984 } else if (input->buffer) {
3985 if (cbuf->buffer != input->buffer) {
3986 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
3987 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
3988 shs->dirty_cbufs |= 1u << index;
3989 }
3990
3991 if (take_ownership) {
3992 pipe_resource_reference(&cbuf->buffer, NULL);
3993 cbuf->buffer = input->buffer;
3994 } else {
3995 pipe_resource_reference(&cbuf->buffer, input->buffer);
3996 }
3997
3998 cbuf->buffer_offset = input->buffer_offset;
3999 }
4000
4001 cbuf->buffer_size =
4002 MIN2(input->buffer_size,
4003 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
4004
4005 struct iris_resource *res = (void *) cbuf->buffer;
4006 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
4007 res->bind_stages |= 1 << stage;
4008 } else {
4009 shs->bound_cbufs &= ~(1u << index);
4010 pipe_resource_reference(&cbuf->buffer, NULL);
4011 }
4012
4013 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << stage;
4014 }
4015
4016 static void
upload_sysvals(struct iris_context * ice,gl_shader_stage stage,const struct pipe_grid_info * grid)4017 upload_sysvals(struct iris_context *ice,
4018 gl_shader_stage stage,
4019 const struct pipe_grid_info *grid)
4020 {
4021 UNUSED struct iris_genx_state *genx = ice->state.genx;
4022 struct iris_shader_state *shs = &ice->state.shaders[stage];
4023
4024 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4025 if (!shader || (shader->num_system_values == 0 &&
4026 shader->kernel_input_size == 0))
4027 return;
4028
4029 assert(shader->num_cbufs > 0);
4030
4031 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
4032 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
4033 unsigned system_values_start =
4034 ALIGN(shader->kernel_input_size, sizeof(uint32_t));
4035 unsigned upload_size = system_values_start +
4036 shader->num_system_values * sizeof(uint32_t);
4037 void *map = NULL;
4038
4039 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
4040 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
4041 &cbuf->buffer_offset, &cbuf->buffer, &map);
4042
4043 if (shader->kernel_input_size > 0)
4044 memcpy(map, grid->input, shader->kernel_input_size);
4045
4046 uint32_t *sysval_map = map + system_values_start;
4047 for (int i = 0; i < shader->num_system_values; i++) {
4048 uint32_t sysval = shader->system_values[i];
4049 uint32_t value = 0;
4050
4051 #if GFX_VER >= 9
4052 #define COMPILER(x) BRW_##x
4053 #else
4054 #define COMPILER(x) ELK_##x
4055 #endif
4056
4057 if (ELK_PARAM_DOMAIN(sysval) == ELK_PARAM_DOMAIN_IMAGE) {
4058 #if GFX_VER == 8
4059 unsigned img = ELK_PARAM_IMAGE_IDX(sysval);
4060 unsigned offset = ELK_PARAM_IMAGE_OFFSET(sysval);
4061 struct isl_image_param *param =
4062 &genx->shaders[stage].image_param[img];
4063
4064 assert(offset < sizeof(struct isl_image_param));
4065 value = ((uint32_t *) param)[offset];
4066 #endif
4067 } else if (sysval == COMPILER(PARAM_BUILTIN_ZERO)) {
4068 value = 0;
4069 } else if (COMPILER(PARAM_BUILTIN_IS_CLIP_PLANE(sysval))) {
4070 int plane = COMPILER(PARAM_BUILTIN_CLIP_PLANE_IDX(sysval));
4071 int comp = COMPILER(PARAM_BUILTIN_CLIP_PLANE_COMP(sysval));
4072 value = fui(ice->state.clip_planes.ucp[plane][comp]);
4073 } else if (sysval == COMPILER(PARAM_BUILTIN_PATCH_VERTICES_IN)) {
4074 if (stage == MESA_SHADER_TESS_CTRL) {
4075 value = ice->state.vertices_per_patch;
4076 } else {
4077 assert(stage == MESA_SHADER_TESS_EVAL);
4078 const struct shader_info *tcs_info =
4079 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
4080 if (tcs_info)
4081 value = tcs_info->tess.tcs_vertices_out;
4082 else
4083 value = ice->state.vertices_per_patch;
4084 }
4085 } else if (sysval >= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X) &&
4086 sysval <= COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_W)) {
4087 unsigned i = sysval - COMPILER(PARAM_BUILTIN_TESS_LEVEL_OUTER_X);
4088 value = fui(ice->state.default_outer_level[i]);
4089 } else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_X)) {
4090 value = fui(ice->state.default_inner_level[0]);
4091 } else if (sysval == COMPILER(PARAM_BUILTIN_TESS_LEVEL_INNER_Y)) {
4092 value = fui(ice->state.default_inner_level[1]);
4093 } else if (sysval >= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X) &&
4094 sysval <= COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_Z)) {
4095 unsigned i = sysval - COMPILER(PARAM_BUILTIN_WORK_GROUP_SIZE_X);
4096 value = ice->state.last_block[i];
4097 } else if (sysval == COMPILER(PARAM_BUILTIN_WORK_DIM)) {
4098 value = grid->work_dim;
4099 } else {
4100 assert(!"unhandled system value");
4101 }
4102
4103 *sysval_map++ = value;
4104 }
4105
4106 cbuf->buffer_size = upload_size;
4107 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
4108 &shs->constbuf_surf_state[sysval_cbuf_index],
4109 ISL_SURF_USAGE_CONSTANT_BUFFER_BIT);
4110
4111 shs->sysvals_need_upload = false;
4112 }
4113
4114 /**
4115 * The pipe->set_shader_buffers() driver hook.
4116 *
4117 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
4118 * SURFACE_STATE here, as the buffer offset may change each time.
4119 */
4120 static void
iris_set_shader_buffers(struct pipe_context * ctx,enum pipe_shader_type p_stage,unsigned start_slot,unsigned count,const struct pipe_shader_buffer * buffers,unsigned writable_bitmask)4121 iris_set_shader_buffers(struct pipe_context *ctx,
4122 enum pipe_shader_type p_stage,
4123 unsigned start_slot, unsigned count,
4124 const struct pipe_shader_buffer *buffers,
4125 unsigned writable_bitmask)
4126 {
4127 struct iris_context *ice = (struct iris_context *) ctx;
4128 gl_shader_stage stage = stage_from_pipe(p_stage);
4129 struct iris_shader_state *shs = &ice->state.shaders[stage];
4130
4131 unsigned modified_bits = u_bit_consecutive(start_slot, count);
4132
4133 shs->bound_ssbos &= ~modified_bits;
4134 shs->writable_ssbos &= ~modified_bits;
4135 shs->writable_ssbos |= writable_bitmask << start_slot;
4136
4137 for (unsigned i = 0; i < count; i++) {
4138 if (buffers && buffers[i].buffer) {
4139 struct iris_resource *res = (void *) buffers[i].buffer;
4140 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
4141 struct iris_state_ref *surf_state =
4142 &shs->ssbo_surf_state[start_slot + i];
4143 pipe_resource_reference(&ssbo->buffer, &res->base.b);
4144 ssbo->buffer_offset = buffers[i].buffer_offset;
4145 ssbo->buffer_size =
4146 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
4147
4148 shs->bound_ssbos |= 1 << (start_slot + i);
4149
4150 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
4151
4152 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, usage);
4153
4154 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
4155 res->bind_stages |= 1 << stage;
4156
4157 util_range_add(&res->base.b, &res->valid_buffer_range, ssbo->buffer_offset,
4158 ssbo->buffer_offset + ssbo->buffer_size);
4159 } else {
4160 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
4161 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
4162 NULL);
4163 }
4164 }
4165
4166 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
4167 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
4168 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << stage;
4169 }
4170
4171 static void
iris_delete_state(struct pipe_context * ctx,void * state)4172 iris_delete_state(struct pipe_context *ctx, void *state)
4173 {
4174 free(state);
4175 }
4176
4177 /**
4178 * The pipe->set_vertex_buffers() driver hook.
4179 *
4180 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
4181 */
4182 static void
iris_set_vertex_buffers(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_buffer * buffers)4183 iris_set_vertex_buffers(struct pipe_context *ctx,
4184 unsigned count,
4185 const struct pipe_vertex_buffer *buffers)
4186 {
4187 struct iris_context *ice = (struct iris_context *) ctx;
4188 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
4189 struct iris_genx_state *genx = ice->state.genx;
4190
4191 unsigned last_count = util_last_bit64(ice->state.bound_vertex_buffers);
4192 ice->state.bound_vertex_buffers = 0;
4193
4194 for (unsigned i = 0; i < count; i++) {
4195 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
4196 struct iris_vertex_buffer_state *state =
4197 &genx->vertex_buffers[i];
4198
4199 if (!buffer) {
4200 pipe_resource_reference(&state->resource, NULL);
4201 continue;
4202 }
4203
4204 /* We may see user buffers that are NULL bindings. */
4205 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
4206
4207 if (buffer->buffer.resource &&
4208 state->resource != buffer->buffer.resource)
4209 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
4210
4211 pipe_resource_reference(&state->resource, NULL);
4212 state->resource = buffer->buffer.resource;
4213
4214 struct iris_resource *res = (void *) state->resource;
4215
4216 state->offset = (int) buffer->buffer_offset;
4217
4218 if (res) {
4219 ice->state.bound_vertex_buffers |= 1ull << i;
4220 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
4221 }
4222
4223 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
4224 vb.VertexBufferIndex = i;
4225 vb.AddressModifyEnable = true;
4226 /* vb.BufferPitch is merged in dynamically from VE state later */
4227 if (res) {
4228 vb.BufferSize = res->base.b.width0 - (int) buffer->buffer_offset;
4229 vb.BufferStartingAddress =
4230 ro_bo(NULL, res->bo->address + (int) buffer->buffer_offset);
4231 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
4232 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
4233 #if GFX_VER >= 12
4234 vb.L3BypassDisable = true;
4235 #endif
4236 } else {
4237 vb.NullVertexBuffer = true;
4238 vb.MOCS = iris_mocs(NULL, &screen->isl_dev,
4239 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
4240 }
4241 }
4242 }
4243
4244 for (unsigned i = count; i < last_count; i++) {
4245 struct iris_vertex_buffer_state *state =
4246 &genx->vertex_buffers[i];
4247
4248 pipe_resource_reference(&state->resource, NULL);
4249 }
4250
4251 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
4252 }
4253
4254 /**
4255 * Gallium CSO for vertex elements.
4256 */
4257 struct iris_vertex_element_state {
4258 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
4259 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
4260 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
4261 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
4262 uint32_t stride[PIPE_MAX_ATTRIBS];
4263 unsigned vb_count;
4264 unsigned count;
4265 };
4266
4267 /**
4268 * The pipe->create_vertex_elements_state() driver hook.
4269 *
4270 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
4271 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
4272 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
4273 * needed. In these cases we will need information available at draw time.
4274 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
4275 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
4276 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
4277 */
4278 static void *
iris_create_vertex_elements(struct pipe_context * ctx,unsigned count,const struct pipe_vertex_element * state)4279 iris_create_vertex_elements(struct pipe_context *ctx,
4280 unsigned count,
4281 const struct pipe_vertex_element *state)
4282 {
4283 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
4284 const struct intel_device_info *devinfo = screen->devinfo;
4285 struct iris_vertex_element_state *cso =
4286 calloc(1, sizeof(struct iris_vertex_element_state));
4287
4288 cso->count = count;
4289 cso->vb_count = 0;
4290
4291 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
4292 ve.DWordLength =
4293 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
4294 }
4295
4296 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
4297 uint32_t *vfi_pack_dest = cso->vf_instancing;
4298
4299 if (count == 0) {
4300 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4301 ve.Valid = true;
4302 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
4303 ve.Component0Control = VFCOMP_STORE_0;
4304 ve.Component1Control = VFCOMP_STORE_0;
4305 ve.Component2Control = VFCOMP_STORE_0;
4306 ve.Component3Control = VFCOMP_STORE_1_FP;
4307 }
4308
4309 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4310 }
4311 }
4312
4313 for (int i = 0; i < count; i++) {
4314 const struct iris_format_info fmt =
4315 iris_format_for_usage(devinfo, state[i].src_format, 0);
4316 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
4317 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
4318
4319 switch (isl_format_get_num_channels(fmt.fmt)) {
4320 case 0: comp[0] = VFCOMP_STORE_0; FALLTHROUGH;
4321 case 1: comp[1] = VFCOMP_STORE_0; FALLTHROUGH;
4322 case 2: comp[2] = VFCOMP_STORE_0; FALLTHROUGH;
4323 case 3:
4324 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
4325 : VFCOMP_STORE_1_FP;
4326 break;
4327 }
4328 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
4329 ve.EdgeFlagEnable = false;
4330 ve.VertexBufferIndex = state[i].vertex_buffer_index;
4331 ve.Valid = true;
4332 ve.SourceElementOffset = state[i].src_offset;
4333 ve.SourceElementFormat = fmt.fmt;
4334 ve.Component0Control = comp[0];
4335 ve.Component1Control = comp[1];
4336 ve.Component2Control = comp[2];
4337 ve.Component3Control = comp[3];
4338 }
4339
4340 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
4341 vi.VertexElementIndex = i;
4342 vi.InstancingEnable = state[i].instance_divisor > 0;
4343 vi.InstanceDataStepRate = state[i].instance_divisor;
4344 }
4345
4346 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
4347 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
4348 cso->stride[state[i].vertex_buffer_index] = state[i].src_stride;
4349 cso->vb_count = MAX2(state[i].vertex_buffer_index + 1, cso->vb_count);
4350 }
4351
4352 /* An alternative version of the last VE and VFI is stored so it
4353 * can be used at draw time in case Vertex Shader uses EdgeFlag
4354 */
4355 if (count) {
4356 const unsigned edgeflag_index = count - 1;
4357 const struct iris_format_info fmt =
4358 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
4359 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
4360 ve.EdgeFlagEnable = true ;
4361 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
4362 ve.Valid = true;
4363 ve.SourceElementOffset = state[edgeflag_index].src_offset;
4364 ve.SourceElementFormat = fmt.fmt;
4365 ve.Component0Control = VFCOMP_STORE_SRC;
4366 ve.Component1Control = VFCOMP_STORE_0;
4367 ve.Component2Control = VFCOMP_STORE_0;
4368 ve.Component3Control = VFCOMP_STORE_0;
4369 }
4370 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
4371 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
4372 * at draw time, as it should change if SGVs are emitted.
4373 */
4374 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
4375 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
4376 }
4377 }
4378
4379 return cso;
4380 }
4381
4382 /**
4383 * The pipe->bind_vertex_elements_state() driver hook.
4384 */
4385 static void
iris_bind_vertex_elements_state(struct pipe_context * ctx,void * state)4386 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
4387 {
4388 struct iris_context *ice = (struct iris_context *) ctx;
4389 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
4390 struct iris_vertex_element_state *new_cso = state;
4391
4392 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
4393 * we need to re-emit it to ensure we're overriding the right one.
4394 */
4395 if (new_cso && cso_changed(count))
4396 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
4397
4398 ice->state.cso_vertex_elements = state;
4399 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
4400 if (new_cso) {
4401 /* re-emit vertex buffer state if stride changes */
4402 if (cso_changed(vb_count) ||
4403 cso_changed_memcmp_elts(stride, new_cso->vb_count))
4404 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
4405 }
4406 }
4407
4408 /**
4409 * The pipe->create_stream_output_target() driver hook.
4410 *
4411 * "Target" here refers to a destination buffer. We translate this into
4412 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
4413 * know which buffer this represents, or whether we ought to zero the
4414 * write-offsets, or append. Those are handled in the set() hook.
4415 */
4416 static struct pipe_stream_output_target *
iris_create_stream_output_target(struct pipe_context * ctx,struct pipe_resource * p_res,unsigned buffer_offset,unsigned buffer_size)4417 iris_create_stream_output_target(struct pipe_context *ctx,
4418 struct pipe_resource *p_res,
4419 unsigned buffer_offset,
4420 unsigned buffer_size)
4421 {
4422 struct iris_resource *res = (void *) p_res;
4423 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
4424 if (!cso)
4425 return NULL;
4426
4427 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
4428
4429 pipe_reference_init(&cso->base.reference, 1);
4430 pipe_resource_reference(&cso->base.buffer, p_res);
4431 cso->base.buffer_offset = buffer_offset;
4432 cso->base.buffer_size = buffer_size;
4433 cso->base.context = ctx;
4434
4435 util_range_add(&res->base.b, &res->valid_buffer_range, buffer_offset,
4436 buffer_offset + buffer_size);
4437
4438 return &cso->base;
4439 }
4440
4441 static void
iris_stream_output_target_destroy(struct pipe_context * ctx,struct pipe_stream_output_target * state)4442 iris_stream_output_target_destroy(struct pipe_context *ctx,
4443 struct pipe_stream_output_target *state)
4444 {
4445 struct iris_stream_output_target *cso = (void *) state;
4446
4447 pipe_resource_reference(&cso->base.buffer, NULL);
4448 pipe_resource_reference(&cso->offset.res, NULL);
4449
4450 free(cso);
4451 }
4452
4453 /**
4454 * The pipe->set_stream_output_targets() driver hook.
4455 *
4456 * At this point, we know which targets are bound to a particular index,
4457 * and also whether we want to append or start over. We can finish the
4458 * 3DSTATE_SO_BUFFER packets we started earlier.
4459 */
4460 static void
iris_set_stream_output_targets(struct pipe_context * ctx,unsigned num_targets,struct pipe_stream_output_target ** targets,const unsigned * offsets,enum mesa_prim output_prim)4461 iris_set_stream_output_targets(struct pipe_context *ctx,
4462 unsigned num_targets,
4463 struct pipe_stream_output_target **targets,
4464 const unsigned *offsets,
4465 enum mesa_prim output_prim)
4466 {
4467 struct iris_context *ice = (struct iris_context *) ctx;
4468 struct iris_genx_state *genx = ice->state.genx;
4469 uint32_t *so_buffers = genx->so_buffers;
4470 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
4471
4472 const bool active = num_targets > 0;
4473 if (ice->state.streamout_active != active) {
4474 ice->state.streamout_active = active;
4475 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
4476
4477 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
4478 * it's a non-pipelined command. If we're switching streamout on, we
4479 * may have missed emitting it earlier, so do so now. (We're already
4480 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
4481 */
4482 if (active) {
4483 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
4484 } else {
4485 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
4486 struct iris_stream_output_target *tgt =
4487 (void *) ice->state.so_target[i];
4488
4489 if (tgt)
4490 iris_dirty_for_history(ice, (void *)tgt->base.buffer);
4491 }
4492 }
4493 }
4494
4495 for (int i = 0; i < 4; i++) {
4496 pipe_so_target_reference(&ice->state.so_target[i],
4497 i < num_targets ? targets[i] : NULL);
4498 }
4499
4500 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
4501 if (!active)
4502 return;
4503
4504 for (unsigned i = 0; i < 4; i++,
4505 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
4506
4507 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
4508 unsigned offset = offsets[i];
4509
4510 if (!tgt) {
4511 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
4512 #if GFX_VER < 12
4513 sob.SOBufferIndex = i;
4514 #else
4515 sob._3DCommandOpcode = 0;
4516 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
4517 #endif
4518 sob.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
4519 }
4520 continue;
4521 }
4522
4523 if (!tgt->offset.res)
4524 upload_state(ctx->const_uploader, &tgt->offset, sizeof(uint32_t), 4);
4525
4526 struct iris_resource *res = (void *) tgt->base.buffer;
4527
4528 /* Note that offsets[i] will either be 0, causing us to zero
4529 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
4530 * "continue appending at the existing offset."
4531 */
4532 assert(offset == 0 || offset == 0xFFFFFFFF);
4533
4534 /* When we're first called with an offset of 0, we want the next
4535 * 3DSTATE_SO_BUFFER packets to reset the offset to the beginning.
4536 * Any further times we emit those packets, we want to use 0xFFFFFFFF
4537 * to continue appending from the current offset.
4538 *
4539 * Note that we might be called by Begin (offset = 0), Pause, then
4540 * Resume (offset = 0xFFFFFFFF) before ever drawing (where these
4541 * commands will actually be sent to the GPU). In this case, we
4542 * don't want to append - we still want to do our initial zeroing.
4543 */
4544 if (offset == 0)
4545 tgt->zero_offset = true;
4546
4547 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
4548 #if GFX_VER < 12
4549 sob.SOBufferIndex = i;
4550 #else
4551 sob._3DCommandOpcode = 0;
4552 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + i;
4553 #endif
4554 sob.SurfaceBaseAddress =
4555 rw_bo(NULL, res->bo->address + tgt->base.buffer_offset,
4556 IRIS_DOMAIN_OTHER_WRITE);
4557 sob.SOBufferEnable = true;
4558 sob.StreamOffsetWriteEnable = true;
4559 sob.StreamOutputBufferOffsetAddressEnable = true;
4560 sob.MOCS = iris_mocs(res->bo, &screen->isl_dev,
4561 ISL_SURF_USAGE_STREAM_OUT_BIT);
4562
4563 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
4564 sob.StreamOutputBufferOffsetAddress =
4565 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->address +
4566 tgt->offset.offset, IRIS_DOMAIN_OTHER_WRITE);
4567 sob.StreamOffset = 0xFFFFFFFF; /* not offset, see above */
4568 }
4569 }
4570
4571 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
4572 }
4573
4574 /**
4575 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
4576 * 3DSTATE_STREAMOUT packets.
4577 *
4578 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
4579 * hardware to record. We can create it entirely based on the shader, with
4580 * no dynamic state dependencies.
4581 *
4582 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
4583 * state-based settings. We capture the shader-related ones here, and merge
4584 * the rest in at draw time.
4585 */
4586 static uint32_t *
iris_create_so_decl_list(const struct pipe_stream_output_info * info,const struct intel_vue_map * vue_map)4587 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
4588 const struct intel_vue_map *vue_map)
4589 {
4590 struct GENX(SO_DECL) so_decl[PIPE_MAX_VERTEX_STREAMS][128];
4591 int buffer_mask[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
4592 int next_offset[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
4593 int decls[PIPE_MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
4594 int max_decls = 0;
4595 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= PIPE_MAX_SO_OUTPUTS);
4596
4597 memset(so_decl, 0, sizeof(so_decl));
4598
4599 /* Construct the list of SO_DECLs to be emitted. The formatting of the
4600 * command feels strange -- each dword pair contains a SO_DECL per stream.
4601 */
4602 for (unsigned i = 0; i < info->num_outputs; i++) {
4603 const struct pipe_stream_output *output = &info->output[i];
4604 const int buffer = output->output_buffer;
4605 const int varying = output->register_index;
4606 const unsigned stream_id = output->stream;
4607 assert(stream_id < PIPE_MAX_VERTEX_STREAMS);
4608
4609 buffer_mask[stream_id] |= 1 << buffer;
4610
4611 assert(vue_map->varying_to_slot[varying] >= 0);
4612
4613 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
4614 * array. Instead, it simply increments DstOffset for the following
4615 * input by the number of components that should be skipped.
4616 *
4617 * Our hardware is unusual in that it requires us to program SO_DECLs
4618 * for fake "hole" components, rather than simply taking the offset
4619 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
4620 * program as many size = 4 holes as we can, then a final hole to
4621 * accommodate the final 1, 2, or 3 remaining.
4622 */
4623 int skip_components = output->dst_offset - next_offset[buffer];
4624
4625 while (skip_components > 0) {
4626 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
4627 .HoleFlag = 1,
4628 .OutputBufferSlot = output->output_buffer,
4629 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
4630 };
4631 skip_components -= 4;
4632 }
4633
4634 next_offset[buffer] = output->dst_offset + output->num_components;
4635
4636 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
4637 .OutputBufferSlot = output->output_buffer,
4638 .RegisterIndex = vue_map->varying_to_slot[varying],
4639 .ComponentMask =
4640 ((1 << output->num_components) - 1) << output->start_component,
4641 };
4642
4643 if (decls[stream_id] > max_decls)
4644 max_decls = decls[stream_id];
4645 }
4646
4647 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
4648 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
4649 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
4650
4651 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
4652 int urb_entry_read_offset = 0;
4653 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
4654 urb_entry_read_offset;
4655
4656 /* We always read the whole vertex. This could be reduced at some
4657 * point by reading less and offsetting the register index in the
4658 * SO_DECLs.
4659 */
4660 sol.Stream0VertexReadOffset = urb_entry_read_offset;
4661 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
4662 sol.Stream1VertexReadOffset = urb_entry_read_offset;
4663 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
4664 sol.Stream2VertexReadOffset = urb_entry_read_offset;
4665 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
4666 sol.Stream3VertexReadOffset = urb_entry_read_offset;
4667 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
4668
4669 /* Set buffer pitches; 0 means unbound. */
4670 sol.Buffer0SurfacePitch = 4 * info->stride[0];
4671 sol.Buffer1SurfacePitch = 4 * info->stride[1];
4672 sol.Buffer2SurfacePitch = 4 * info->stride[2];
4673 sol.Buffer3SurfacePitch = 4 * info->stride[3];
4674 }
4675
4676 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
4677 list.DWordLength = 3 + 2 * max_decls - 2;
4678 list.StreamtoBufferSelects0 = buffer_mask[0];
4679 list.StreamtoBufferSelects1 = buffer_mask[1];
4680 list.StreamtoBufferSelects2 = buffer_mask[2];
4681 list.StreamtoBufferSelects3 = buffer_mask[3];
4682 list.NumEntries0 = decls[0];
4683 list.NumEntries1 = decls[1];
4684 list.NumEntries2 = decls[2];
4685 list.NumEntries3 = decls[3];
4686 }
4687
4688 for (int i = 0; i < max_decls; i++) {
4689 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
4690 entry.Stream0Decl = so_decl[0][i];
4691 entry.Stream1Decl = so_decl[1][i];
4692 entry.Stream2Decl = so_decl[2][i];
4693 entry.Stream3Decl = so_decl[3][i];
4694 }
4695 }
4696
4697 return map;
4698 }
4699
4700 static inline int
iris_compute_first_urb_slot_required(uint64_t inputs_read,const struct intel_vue_map * prev_stage_vue_map)4701 iris_compute_first_urb_slot_required(uint64_t inputs_read,
4702 const struct intel_vue_map *prev_stage_vue_map)
4703 {
4704 #if GFX_VER >= 9
4705 return brw_compute_first_urb_slot_required(inputs_read, prev_stage_vue_map);
4706 #else
4707 return elk_compute_first_urb_slot_required(inputs_read, prev_stage_vue_map);
4708 #endif
4709 }
4710
4711 static void
iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,const struct intel_vue_map * last_vue_map,bool two_sided_color,unsigned * out_offset,unsigned * out_length)4712 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
4713 const struct intel_vue_map *last_vue_map,
4714 bool two_sided_color,
4715 unsigned *out_offset,
4716 unsigned *out_length)
4717 {
4718 /* The compiler computes the first URB slot without considering COL/BFC
4719 * swizzling (because it doesn't know whether it's enabled), so we need
4720 * to do that here too. This may result in a smaller offset, which
4721 * should be safe.
4722 */
4723 const unsigned first_slot =
4724 iris_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
4725
4726 /* This becomes the URB read offset (counted in pairs of slots). */
4727 assert(first_slot % 2 == 0);
4728 *out_offset = first_slot / 2;
4729
4730 /* We need to adjust the inputs read to account for front/back color
4731 * swizzling, as it can make the URB length longer.
4732 */
4733 for (int c = 0; c <= 1; c++) {
4734 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
4735 /* If two sided color is enabled, the fragment shader's gl_Color
4736 * (COL0) input comes from either the gl_FrontColor (COL0) or
4737 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
4738 */
4739 if (two_sided_color)
4740 fs_input_slots |= (VARYING_BIT_BFC0 << c);
4741
4742 /* If front color isn't written, we opt to give them back color
4743 * instead of an undefined value. Switch from COL to BFC.
4744 */
4745 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
4746 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
4747 fs_input_slots |= (VARYING_BIT_BFC0 << c);
4748 }
4749 }
4750 }
4751
4752 /* Compute the minimum URB Read Length necessary for the FS inputs.
4753 *
4754 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
4755 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
4756 *
4757 * "This field should be set to the minimum length required to read the
4758 * maximum source attribute. The maximum source attribute is indicated
4759 * by the maximum value of the enabled Attribute # Source Attribute if
4760 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
4761 * enable is not set.
4762 * read_length = ceiling((max_source_attr + 1) / 2)
4763 *
4764 * [errata] Corruption/Hang possible if length programmed larger than
4765 * recommended"
4766 *
4767 * Similar text exists for Ivy Bridge.
4768 *
4769 * We find the last URB slot that's actually read by the FS.
4770 */
4771 unsigned last_read_slot = last_vue_map->num_slots - 1;
4772 while (last_read_slot > first_slot && !(fs_input_slots &
4773 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
4774 --last_read_slot;
4775
4776 /* The URB read length is the difference of the two, counted in pairs. */
4777 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
4778 }
4779
4780 static void
iris_emit_sbe_swiz(struct iris_batch * batch,const struct iris_context * ice,const struct intel_vue_map * vue_map,unsigned urb_read_offset,unsigned sprite_coord_enables)4781 iris_emit_sbe_swiz(struct iris_batch *batch,
4782 const struct iris_context *ice,
4783 const struct intel_vue_map *vue_map,
4784 unsigned urb_read_offset,
4785 unsigned sprite_coord_enables)
4786 {
4787 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
4788 const struct iris_fs_data *fs_data =
4789 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
4790 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4791
4792 /* XXX: this should be generated when putting programs in place */
4793
4794 for (uint8_t idx = 0; idx < fs_data->urb_setup_attribs_count; idx++) {
4795 const uint8_t fs_attr = fs_data->urb_setup_attribs[idx];
4796 const int input_index = fs_data->urb_setup[fs_attr];
4797 if (input_index < 0 || input_index >= 16)
4798 continue;
4799
4800 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
4801 &attr_overrides[input_index];
4802 int slot = vue_map->varying_to_slot[fs_attr];
4803
4804 /* Viewport and Layer are stored in the VUE header. We need to override
4805 * them to zero if earlier stages didn't write them, as GL requires that
4806 * they read back as zero when not explicitly set.
4807 */
4808 switch (fs_attr) {
4809 case VARYING_SLOT_VIEWPORT:
4810 case VARYING_SLOT_LAYER:
4811 attr->ComponentOverrideX = true;
4812 attr->ComponentOverrideW = true;
4813 attr->ConstantSource = CONST_0000;
4814
4815 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
4816 attr->ComponentOverrideY = true;
4817 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
4818 attr->ComponentOverrideZ = true;
4819 continue;
4820
4821 default:
4822 break;
4823 }
4824
4825 if (sprite_coord_enables & (1 << input_index))
4826 continue;
4827
4828 /* If there was only a back color written but not front, use back
4829 * as the color instead of undefined.
4830 */
4831 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
4832 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
4833 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
4834 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
4835
4836 /* Not written by the previous stage - undefined. */
4837 if (slot == -1) {
4838 attr->ComponentOverrideX = true;
4839 attr->ComponentOverrideY = true;
4840 attr->ComponentOverrideZ = true;
4841 attr->ComponentOverrideW = true;
4842 attr->ConstantSource = CONST_0001_FLOAT;
4843 continue;
4844 }
4845
4846 /* Compute the location of the attribute relative to the read offset,
4847 * which is counted in 256-bit increments (two 128-bit VUE slots).
4848 */
4849 const int source_attr = slot - 2 * urb_read_offset;
4850 assert(source_attr >= 0 && source_attr <= 32);
4851 attr->SourceAttribute = source_attr;
4852
4853 /* If we are doing two-sided color, and the VUE slot following this one
4854 * represents a back-facing color, then we need to instruct the SF unit
4855 * to do back-facing swizzling.
4856 */
4857 if (cso_rast->light_twoside &&
4858 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
4859 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
4860 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
4861 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
4862 attr->SwizzleSelect = INPUTATTR_FACING;
4863 }
4864
4865 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
4866 for (int i = 0; i < 16; i++)
4867 sbes.Attribute[i] = attr_overrides[i];
4868 }
4869 }
4870
4871 static bool
iris_is_drawing_points(const struct iris_context * ice)4872 iris_is_drawing_points(const struct iris_context *ice)
4873 {
4874 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4875
4876 if (cso_rast->fill_mode_point) {
4877 return true;
4878 }
4879
4880 if (ice->shaders.prog[MESA_SHADER_GEOMETRY]) {
4881 const struct iris_gs_data *gs_data =
4882 iris_gs_data(ice->shaders.prog[MESA_SHADER_GEOMETRY]);
4883 return gs_data->output_topology == _3DPRIM_POINTLIST;
4884 } else if (ice->shaders.prog[MESA_SHADER_TESS_EVAL]) {
4885 const struct iris_tes_data *tes_data =
4886 iris_tes_data(ice->shaders.prog[MESA_SHADER_TESS_EVAL]);
4887 return tes_data->output_topology == INTEL_TESS_OUTPUT_TOPOLOGY_POINT;
4888 } else {
4889 return ice->state.prim_mode == MESA_PRIM_POINTS;
4890 }
4891 }
4892
4893 static unsigned
iris_calculate_point_sprite_overrides(const struct iris_fs_data * fs_data,const struct iris_rasterizer_state * cso)4894 iris_calculate_point_sprite_overrides(const struct iris_fs_data *fs_data,
4895 const struct iris_rasterizer_state *cso)
4896 {
4897 unsigned overrides = 0;
4898
4899 if (fs_data->urb_setup[VARYING_SLOT_PNTC] != -1)
4900 overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_PNTC];
4901
4902 for (int i = 0; i < 8; i++) {
4903 if ((cso->sprite_coord_enable & (1 << i)) &&
4904 fs_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
4905 overrides |= 1 << fs_data->urb_setup[VARYING_SLOT_TEX0 + i];
4906 }
4907
4908 return overrides;
4909 }
4910
4911 static void
iris_emit_sbe(struct iris_batch * batch,const struct iris_context * ice)4912 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
4913 {
4914 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4915 const struct iris_fs_data *fs_data =
4916 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
4917 const struct intel_vue_map *last_vue_map =
4918 &iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
4919
4920 unsigned urb_read_offset, urb_read_length;
4921 iris_compute_sbe_urb_read_interval(fs_data->inputs,
4922 last_vue_map,
4923 cso_rast->light_twoside,
4924 &urb_read_offset, &urb_read_length);
4925
4926 unsigned sprite_coord_overrides =
4927 iris_is_drawing_points(ice) ?
4928 iris_calculate_point_sprite_overrides(fs_data, cso_rast) : 0;
4929
4930 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
4931 sbe.AttributeSwizzleEnable = true;
4932 sbe.NumberofSFOutputAttributes = fs_data->num_varying_inputs;
4933 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
4934 sbe.VertexURBEntryReadOffset = urb_read_offset;
4935 sbe.VertexURBEntryReadLength = urb_read_length;
4936 sbe.ForceVertexURBEntryReadOffset = true;
4937 sbe.ForceVertexURBEntryReadLength = true;
4938 sbe.ConstantInterpolationEnable = fs_data->flat_inputs;
4939 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
4940 #if GFX_VER >= 9
4941 for (int i = 0; i < 32; i++) {
4942 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
4943 }
4944 #endif
4945
4946 /* Ask the hardware to supply PrimitiveID if the fragment shader
4947 * reads it but a previous stage didn't write one.
4948 */
4949 if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
4950 last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) {
4951 sbe.PrimitiveIDOverrideAttributeSelect =
4952 fs_data->urb_setup[VARYING_SLOT_PRIMITIVE_ID];
4953 sbe.PrimitiveIDOverrideComponentX = true;
4954 sbe.PrimitiveIDOverrideComponentY = true;
4955 sbe.PrimitiveIDOverrideComponentZ = true;
4956 sbe.PrimitiveIDOverrideComponentW = true;
4957 }
4958 }
4959
4960 iris_emit_sbe_swiz(batch, ice, last_vue_map, urb_read_offset,
4961 sprite_coord_overrides);
4962 }
4963
4964 /* ------------------------------------------------------------------- */
4965
4966 /**
4967 * Populate VS program key fields based on the current state.
4968 */
4969 static void
iris_populate_vs_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_vs_prog_key * key)4970 iris_populate_vs_key(const struct iris_context *ice,
4971 const struct shader_info *info,
4972 gl_shader_stage last_stage,
4973 struct iris_vs_prog_key *key)
4974 {
4975 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4976
4977 if (info->clip_distance_array_size == 0 &&
4978 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
4979 last_stage == MESA_SHADER_VERTEX)
4980 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
4981 }
4982
4983 /**
4984 * Populate TCS program key fields based on the current state.
4985 */
4986 static void
iris_populate_tcs_key(const struct iris_context * ice,struct iris_tcs_prog_key * key)4987 iris_populate_tcs_key(const struct iris_context *ice,
4988 struct iris_tcs_prog_key *key)
4989 {
4990 }
4991
4992 /**
4993 * Populate TES program key fields based on the current state.
4994 */
4995 static void
iris_populate_tes_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_tes_prog_key * key)4996 iris_populate_tes_key(const struct iris_context *ice,
4997 const struct shader_info *info,
4998 gl_shader_stage last_stage,
4999 struct iris_tes_prog_key *key)
5000 {
5001 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5002
5003 if (info->clip_distance_array_size == 0 &&
5004 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
5005 last_stage == MESA_SHADER_TESS_EVAL)
5006 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
5007 }
5008
5009 /**
5010 * Populate GS program key fields based on the current state.
5011 */
5012 static void
iris_populate_gs_key(const struct iris_context * ice,const struct shader_info * info,gl_shader_stage last_stage,struct iris_gs_prog_key * key)5013 iris_populate_gs_key(const struct iris_context *ice,
5014 const struct shader_info *info,
5015 gl_shader_stage last_stage,
5016 struct iris_gs_prog_key *key)
5017 {
5018 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5019
5020 if (info->clip_distance_array_size == 0 &&
5021 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
5022 last_stage == MESA_SHADER_GEOMETRY)
5023 key->vue.nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
5024 }
5025
5026 /**
5027 * Populate FS program key fields based on the current state.
5028 */
5029 static void
iris_populate_fs_key(const struct iris_context * ice,const struct shader_info * info,struct iris_fs_prog_key * key)5030 iris_populate_fs_key(const struct iris_context *ice,
5031 const struct shader_info *info,
5032 struct iris_fs_prog_key *key)
5033 {
5034 struct iris_screen *screen = (void *) ice->ctx.screen;
5035 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
5036 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
5037 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
5038 const struct iris_blend_state *blend = ice->state.cso_blend;
5039
5040 key->nr_color_regions = fb->nr_cbufs;
5041
5042 key->clamp_fragment_color = rast->clamp_fragment_color;
5043
5044 key->alpha_to_coverage = blend->alpha_to_coverage;
5045
5046 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha_enabled;
5047
5048 key->flat_shade = rast->flatshade &&
5049 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
5050
5051 key->persample_interp = rast->force_persample_interp;
5052 key->multisample_fbo = rast->multisample && fb->samples > 1;
5053
5054 key->coherent_fb_fetch = GFX_VER >= 9 && GFX_VER < 20;
5055
5056 key->force_dual_color_blend =
5057 screen->driconf.dual_color_blend_by_location &&
5058 (blend->blend_enables & 1) && blend->dual_color_blending;
5059 }
5060
5061 static void
iris_populate_cs_key(const struct iris_context * ice,struct iris_cs_prog_key * key)5062 iris_populate_cs_key(const struct iris_context *ice,
5063 struct iris_cs_prog_key *key)
5064 {
5065 }
5066
5067 static inline uint32_t
encode_sampler_count(const struct iris_compiled_shader * shader)5068 encode_sampler_count(const struct iris_compiled_shader *shader)
5069 {
5070 /* We can potentially have way more than 32 samplers and that's ok.
5071 * However, the 3DSTATE_XS packets only have 3 bits to specify how
5072 * many to pre-fetch and all values above 4 are marked reserved.
5073 */
5074 uint32_t count = util_last_bit64(shader->bt.samplers_used_mask);
5075 return DIV_ROUND_UP(CLAMP(count, 0, 16), 4);
5076 }
5077
5078 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
5079 pkt.KernelStartPointer = KSP(shader); \
5080 pkt.BindingTableEntryCount = shader->bt.size_bytes / 4; \
5081 pkt.SamplerCount = encode_sampler_count(shader); \
5082 pkt.FloatingPointMode = shader->use_alt_mode; \
5083 \
5084 pkt.DispatchGRFStartRegisterForURBData = \
5085 shader->dispatch_grf_start_reg; \
5086 pkt.prefix##URBEntryReadLength = vue_data->urb_read_length; \
5087 pkt.prefix##URBEntryReadOffset = 0; \
5088 \
5089 pkt.StatisticsEnable = true; \
5090 pkt.Enable = true; \
5091 \
5092 if (shader->total_scratch) { \
5093 INIT_THREAD_SCRATCH_SIZE(pkt) \
5094 }
5095
5096 /* Note that on Gfx12HP we pass a scratch space surface state offset
5097 * shifted by 2 relative to the value specified on the BSpec, since
5098 * that allows the compiler to save a shift instruction while
5099 * constructing the extended descriptor for SS addressing. That
5100 * worked because we limit the scratch surface state pool to 8 MB and
5101 * because we relied on the legacy (ExBSO=0) encoding of the extended
5102 * descriptor in order to save the shift, which is no longer supported
5103 * for the UGM shared function on Xe2 platforms, so we no longer
5104 * attempt to do that trick.
5105 */
5106 #define SCRATCH_SPACE_BUFFER_SHIFT (GFX_VER >= 20 ? 6 : 4)
5107
5108 #if GFX_VERx10 >= 125
5109 #define INIT_THREAD_SCRATCH_SIZE(pkt)
5110 #define MERGE_SCRATCH_ADDR(name) \
5111 { \
5112 uint32_t pkt2[GENX(name##_length)] = {0}; \
5113 _iris_pack_command(batch, GENX(name), pkt2, p) { \
5114 p.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT; \
5115 } \
5116 iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
5117 }
5118 #else
5119 #define INIT_THREAD_SCRATCH_SIZE(pkt) \
5120 pkt.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
5121 #define MERGE_SCRATCH_ADDR(name) \
5122 { \
5123 uint32_t pkt2[GENX(name##_length)] = {0}; \
5124 _iris_pack_command(batch, GENX(name), pkt2, p) { \
5125 p.ScratchSpaceBasePointer = \
5126 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE); \
5127 } \
5128 iris_emit_merge(batch, pkt, pkt2, GENX(name##_length)); \
5129 }
5130 #endif
5131
5132
5133 /**
5134 * Encode most of 3DSTATE_VS based on the compiled shader.
5135 */
5136 static void
iris_store_vs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5137 iris_store_vs_state(const struct intel_device_info *devinfo,
5138 struct iris_compiled_shader *shader)
5139 {
5140 struct iris_vue_data *vue_data = iris_vue_data(shader);
5141
5142 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
5143 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
5144 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
5145 #if GFX_VER < 20
5146 vs.SIMD8DispatchEnable = true;
5147 #endif
5148 vs.UserClipDistanceCullTestEnableBitmask =
5149 vue_data->cull_distance_mask;
5150 #if GFX_VER >= 30
5151 vs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
5152 #endif
5153 }
5154 }
5155
5156 /**
5157 * Encode most of 3DSTATE_HS based on the compiled shader.
5158 */
5159 static void
iris_store_tcs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5160 iris_store_tcs_state(const struct intel_device_info *devinfo,
5161 struct iris_compiled_shader *shader)
5162 {
5163 struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
5164 struct iris_vue_data *vue_data = &tcs_data->base;
5165
5166 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
5167 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
5168
5169 #if GFX_VER >= 12
5170 /* Wa_1604578095:
5171 *
5172 * Hang occurs when the number of max threads is less than 2 times
5173 * the number of instance count. The number of max threads must be
5174 * more than 2 times the number of instance count.
5175 */
5176 assert((devinfo->max_tcs_threads / 2) > tcs_data->instances);
5177 hs.DispatchGRFStartRegisterForURBData = shader->dispatch_grf_start_reg & 0x1f;
5178 hs.DispatchGRFStartRegisterForURBData5 = shader->dispatch_grf_start_reg >> 5;
5179 #endif
5180
5181 hs.InstanceCount = tcs_data->instances - 1;
5182 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
5183 hs.IncludeVertexHandles = true;
5184
5185 #if GFX_VER == 12
5186 /* Patch Count threshold specifies the maximum number of patches that
5187 * will be accumulated before a thread dispatch is forced.
5188 */
5189 hs.PatchCountThreshold = tcs_data->patch_count_threshold;
5190 #endif
5191
5192 #if GFX_VER >= 9
5193 #if GFX_VER < 20
5194 hs.DispatchMode = vue_data->dispatch_mode;
5195 #endif
5196 hs.IncludePrimitiveID = tcs_data->include_primitive_id;
5197 #endif
5198
5199 #if GFX_VER >= 30
5200 hs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
5201 #endif
5202 }
5203 }
5204
5205 /**
5206 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
5207 */
5208 static void
iris_store_tes_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5209 iris_store_tes_state(const struct intel_device_info *devinfo,
5210 struct iris_compiled_shader *shader)
5211 {
5212 struct iris_tes_data *tes_data = iris_tes_data(shader);
5213 struct iris_vue_data *vue_data = &tes_data->base;
5214
5215 uint32_t *ds_state = (void *) shader->derived_data;
5216 uint32_t *te_state = ds_state + GENX(3DSTATE_DS_length);
5217
5218 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
5219 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
5220
5221 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
5222 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
5223 ds.ComputeWCoordinateEnable =
5224 tes_data->domain == INTEL_TESS_DOMAIN_TRI;
5225
5226 #if GFX_VER >= 12
5227 ds.PrimitiveIDNotRequired = !tes_data->include_primitive_id;
5228 #endif
5229 ds.UserClipDistanceCullTestEnableBitmask =
5230 vue_data->cull_distance_mask;
5231
5232 #if GFX_VER >= 30
5233 ds.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
5234 #endif
5235 }
5236
5237 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
5238 te.Partitioning = tes_data->partitioning;
5239 #if GFX_VER >= 20
5240 te.NumberOfRegionsPerPatch = 2;
5241 #endif
5242 te.OutputTopology = tes_data->output_topology;
5243 te.TEDomain = tes_data->domain;
5244 te.TEEnable = true;
5245 te.MaximumTessellationFactorOdd = 63.0;
5246 te.MaximumTessellationFactorNotOdd = 64.0;
5247 #if GFX_VERx10 >= 125
5248 STATIC_ASSERT(TEDMODE_OFF == 0);
5249 if (intel_needs_workaround(devinfo, 14015055625)) {
5250 te.TessellationDistributionMode = TEDMODE_OFF;
5251 } else if (intel_needs_workaround(devinfo, 22012699309)) {
5252 te.TessellationDistributionMode = TEDMODE_RR_STRICT;
5253 } else {
5254 te.TessellationDistributionMode = TEDMODE_RR_FREE;
5255 }
5256
5257 #if GFX_VER >= 20
5258 te.TessellationDistributionLevel = TEDLEVEL_REGION;
5259 #else
5260 te.TessellationDistributionLevel = TEDLEVEL_PATCH;
5261 #endif
5262 /* 64_TRIANGLES */
5263 te.SmallPatchThreshold = 3;
5264 /* 1K_TRIANGLES */
5265 te.TargetBlockSize = 8;
5266 /* 1K_TRIANGLES */
5267 te.LocalBOPAccumulatorThreshold = 1;
5268 #endif
5269 }
5270 }
5271
5272 /**
5273 * Encode most of 3DSTATE_GS based on the compiled shader.
5274 */
5275 static void
iris_store_gs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5276 iris_store_gs_state(const struct intel_device_info *devinfo,
5277 struct iris_compiled_shader *shader)
5278 {
5279 struct iris_gs_data *gs_data = iris_gs_data(shader);
5280 struct iris_vue_data *vue_data = &gs_data->base;
5281
5282 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
5283 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
5284
5285 gs.OutputVertexSize = gs_data->output_vertex_size_hwords * 2 - 1;
5286 gs.OutputTopology = gs_data->output_topology;
5287 gs.ControlDataHeaderSize = gs_data->control_data_header_size_hwords;
5288 gs.InstanceControl = gs_data->invocations - 1;
5289 #if GFX_VER < 20
5290 gs.DispatchMode = DISPATCH_MODE_SIMD8;
5291 #endif
5292 gs.IncludePrimitiveID = gs_data->include_primitive_id;
5293 gs.ControlDataFormat = gs_data->control_data_format;
5294 gs.ExpectedVertexCount = gs_data->vertices_in;
5295 gs.MaximumNumberofThreads =
5296 GFX_VER == 8 ? (devinfo->max_gs_threads / 2 - 1)
5297 : (devinfo->max_gs_threads - 1);
5298
5299 if (gs_data->static_vertex_count != -1) {
5300 gs.StaticOutput = true;
5301 gs.StaticOutputVertexCount = gs_data->static_vertex_count;
5302 }
5303 gs.IncludeVertexHandles = vue_data->include_vue_handles;
5304
5305 gs.UserClipDistanceCullTestEnableBitmask = vue_data->cull_distance_mask;
5306
5307 const int urb_entry_write_offset = 1;
5308 const uint32_t urb_entry_output_length =
5309 DIV_ROUND_UP(vue_data->vue_map.num_slots, 2) - urb_entry_write_offset;
5310
5311 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
5312 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
5313
5314 #if GFX_VER >= 30
5315 gs.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
5316 #endif
5317 }
5318 }
5319
5320 /**
5321 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
5322 */
5323 static void
iris_store_fs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5324 iris_store_fs_state(const struct intel_device_info *devinfo,
5325 struct iris_compiled_shader *shader)
5326 {
5327 struct iris_fs_data *fs_data = iris_fs_data(shader);
5328
5329 uint32_t *ps_state = (void *) shader->derived_data;
5330 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
5331
5332 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
5333 ps.VectorMaskEnable = fs_data->uses_vmask;
5334 ps.BindingTableEntryCount = shader->bt.size_bytes / 4;
5335 ps.SamplerCount = encode_sampler_count(shader);
5336 ps.FloatingPointMode = shader->use_alt_mode;
5337 ps.MaximumNumberofThreadsPerPSD =
5338 devinfo->max_threads_per_psd - (GFX_VER == 8 ? 2 : 1);
5339
5340 #if GFX_VER < 20
5341 ps.PushConstantEnable = devinfo->needs_null_push_constant_tbimr_workaround ||
5342 shader->ubo_ranges[0].length > 0;
5343 #endif
5344
5345 #if GFX_VER >= 30
5346 ps.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
5347 #endif
5348
5349 /* From the documentation for this packet:
5350 * "If the PS kernel does not need the Position XY Offsets to
5351 * compute a Position Value, then this field should be programmed
5352 * to POSOFFSET_NONE."
5353 *
5354 * "SW Recommendation: If the PS kernel needs the Position Offsets
5355 * to compute a Position XY value, this field should match Position
5356 * ZW Interpolation Mode to ensure a consistent position.xyzw
5357 * computation."
5358 *
5359 * We only require XY sample offsets. So, this recommendation doesn't
5360 * look useful at the moment. We might need this in future.
5361 */
5362 ps.PositionXYOffsetSelect =
5363 fs_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
5364
5365 if (shader->total_scratch) {
5366 INIT_THREAD_SCRATCH_SIZE(ps);
5367 }
5368 }
5369
5370 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5371 psx.PixelShaderValid = true;
5372 psx.PixelShaderComputedDepthMode = fs_data->computed_depth_mode;
5373 psx.PixelShaderKillsPixel = fs_data->uses_kill;
5374 #if GFX_VER < 20
5375 psx.AttributeEnable = fs_data->num_varying_inputs != 0;
5376 #endif
5377 psx.PixelShaderUsesSourceDepth = fs_data->uses_src_depth;
5378 psx.PixelShaderUsesSourceW = fs_data->uses_src_w;
5379 psx.PixelShaderIsPerSample = fs_data->is_per_sample;
5380 psx.oMaskPresenttoRenderTarget = fs_data->uses_omask;
5381
5382 #if GFX_VER >= 9
5383 #if GFX_VER >= 20
5384 assert(!fs_data->pulls_bary);
5385 #else
5386 psx.PixelShaderPullsBary = fs_data->pulls_bary;
5387 #endif
5388 psx.PixelShaderComputesStencil = fs_data->computed_stencil;
5389 #endif
5390
5391 #if GFX_VER >= 11
5392 psx.PixelShaderRequiresSubpixelSampleOffsets =
5393 fs_data->uses_sample_offsets;
5394 psx.PixelShaderRequiresNonPerspectiveBaryPlaneCoefficients =
5395 fs_data->uses_npc_bary_coefficients;
5396 psx.PixelShaderRequiresPerspectiveBaryPlaneCoefficients =
5397 fs_data->uses_pc_bary_coefficients;
5398 psx.PixelShaderRequiresSourceDepthandorWPlaneCoefficients =
5399 fs_data->uses_depth_w_coefficients;
5400 #endif
5401 }
5402 }
5403
5404 /**
5405 * Compute the size of the derived data (shader command packets).
5406 *
5407 * This must match the data written by the iris_store_xs_state() functions.
5408 */
5409 static void
iris_store_cs_state(const struct intel_device_info * devinfo,struct iris_compiled_shader * shader)5410 iris_store_cs_state(const struct intel_device_info *devinfo,
5411 struct iris_compiled_shader *shader)
5412 {
5413 struct iris_cs_data *cs_data = iris_cs_data(shader);
5414 void *map = shader->derived_data;
5415
5416 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
5417 #if GFX_VERx10 < 125
5418 desc.ConstantURBEntryReadLength = cs_data->push.per_thread.regs;
5419 desc.CrossThreadConstantDataReadLength =
5420 cs_data->push.cross_thread.regs;
5421 #else
5422 assert(cs_data->push.per_thread.regs == 0);
5423 assert(cs_data->push.cross_thread.regs == 0);
5424 #endif
5425 #if GFX_VERx10 <= 125
5426 desc.BarrierEnable = cs_data->uses_barrier;
5427 #endif
5428 /* Typically set to 0 to avoid prefetching on every thread dispatch. */
5429 desc.BindingTableEntryCount = devinfo->verx10 == 125 ?
5430 0 : MIN2(shader->bt.size_bytes / 4, 31);
5431 desc.SamplerCount = encode_sampler_count(shader);
5432 /* TODO: Check if we are missing workarounds and enable mid-thread
5433 * preemption.
5434 *
5435 * We still have issues with mid-thread preemption (it was already
5436 * disabled by the kernel on gfx11, due to missing workarounds). It's
5437 * possible that we are just missing some workarounds, and could enable
5438 * it later, but for now let's disable it to fix a GPU in compute in Car
5439 * Chase (and possibly more).
5440 */
5441 #if GFX_VER >= 20
5442 desc.ThreadPreemption = false;
5443 #elif GFX_VER >= 12
5444 desc.ThreadPreemptionDisable = true;
5445 #endif
5446 #if GFX_VER >= 30
5447 desc.RegistersPerThread = ptl_register_blocks(
5448 shader->brw_prog_data->grf_used);
5449 #endif
5450 }
5451 }
5452
5453 static unsigned
iris_derived_program_state_size(enum iris_program_cache_id cache_id)5454 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
5455 {
5456 assert(cache_id <= IRIS_CACHE_BLORP);
5457
5458 static const unsigned dwords[] = {
5459 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
5460 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
5461 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
5462 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
5463 [IRIS_CACHE_FS] =
5464 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
5465 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
5466 [IRIS_CACHE_BLORP] = 0,
5467 };
5468
5469 return sizeof(uint32_t) * dwords[cache_id];
5470 }
5471
5472 /**
5473 * Create any state packets corresponding to the given shader stage
5474 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
5475 * This means that we can look up a program in the in-memory cache and
5476 * get most of the state packet without having to reconstruct it.
5477 */
5478 static void
iris_store_derived_program_state(const struct intel_device_info * devinfo,enum iris_program_cache_id cache_id,struct iris_compiled_shader * shader)5479 iris_store_derived_program_state(const struct intel_device_info *devinfo,
5480 enum iris_program_cache_id cache_id,
5481 struct iris_compiled_shader *shader)
5482 {
5483 switch (cache_id) {
5484 case IRIS_CACHE_VS:
5485 iris_store_vs_state(devinfo, shader);
5486 break;
5487 case IRIS_CACHE_TCS:
5488 iris_store_tcs_state(devinfo, shader);
5489 break;
5490 case IRIS_CACHE_TES:
5491 iris_store_tes_state(devinfo, shader);
5492 break;
5493 case IRIS_CACHE_GS:
5494 iris_store_gs_state(devinfo, shader);
5495 break;
5496 case IRIS_CACHE_FS:
5497 iris_store_fs_state(devinfo, shader);
5498 break;
5499 case IRIS_CACHE_CS:
5500 iris_store_cs_state(devinfo, shader);
5501 break;
5502 case IRIS_CACHE_BLORP:
5503 break;
5504 }
5505 }
5506
5507 /* ------------------------------------------------------------------- */
5508
5509 static const uint32_t push_constant_opcodes[] = {
5510 [MESA_SHADER_VERTEX] = 21,
5511 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
5512 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
5513 [MESA_SHADER_GEOMETRY] = 22,
5514 [MESA_SHADER_FRAGMENT] = 23,
5515 [MESA_SHADER_COMPUTE] = 0,
5516 };
5517
5518 static uint32_t
use_null_surface(struct iris_batch * batch,struct iris_context * ice)5519 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
5520 {
5521 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
5522
5523 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
5524
5525 return ice->state.unbound_tex.offset;
5526 }
5527
5528 static uint32_t
use_null_fb_surface(struct iris_batch * batch,struct iris_context * ice)5529 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
5530 {
5531 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
5532 if (!ice->state.null_fb.res)
5533 return use_null_surface(batch, ice);
5534
5535 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
5536
5537 iris_use_pinned_bo(batch, state_bo, false, IRIS_DOMAIN_NONE);
5538
5539 return ice->state.null_fb.offset;
5540 }
5541
5542 static uint32_t
surf_state_offset_for_aux(unsigned aux_modes,enum isl_aux_usage aux_usage)5543 surf_state_offset_for_aux(unsigned aux_modes,
5544 enum isl_aux_usage aux_usage)
5545 {
5546 assert(aux_modes & (1 << aux_usage));
5547 return SURFACE_STATE_ALIGNMENT *
5548 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
5549 }
5550
5551 #if GFX_VER == 9
5552 static void
surf_state_update_clear_value(struct iris_batch * batch,struct iris_resource * res,struct iris_surface_state * surf_state,enum isl_aux_usage aux_usage)5553 surf_state_update_clear_value(struct iris_batch *batch,
5554 struct iris_resource *res,
5555 struct iris_surface_state *surf_state,
5556 enum isl_aux_usage aux_usage)
5557 {
5558 struct isl_device *isl_dev = &batch->screen->isl_dev;
5559 struct iris_bo *state_bo = iris_resource_bo(surf_state->ref.res);
5560 uint64_t real_offset = surf_state->ref.offset + IRIS_MEMZONE_BINDER_START;
5561 uint32_t offset_into_bo = real_offset - state_bo->address;
5562 uint32_t clear_offset = offset_into_bo +
5563 isl_dev->ss.clear_value_offset +
5564 surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
5565 uint32_t *color = res->aux.clear_color.u32;
5566
5567 assert(isl_dev->ss.clear_value_size == 16);
5568
5569 if (aux_usage == ISL_AUX_USAGE_HIZ) {
5570 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
5571 PIPE_CONTROL_WRITE_IMMEDIATE,
5572 state_bo, clear_offset, color[0]);
5573 } else {
5574 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
5575 PIPE_CONTROL_WRITE_IMMEDIATE,
5576 state_bo, clear_offset,
5577 (uint64_t) color[0] |
5578 (uint64_t) color[1] << 32);
5579 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
5580 PIPE_CONTROL_WRITE_IMMEDIATE,
5581 state_bo, clear_offset + 8,
5582 (uint64_t) color[2] |
5583 (uint64_t) color[3] << 32);
5584 }
5585
5586 iris_emit_pipe_control_flush(batch,
5587 "update fast clear: state cache invalidate",
5588 PIPE_CONTROL_FLUSH_ENABLE |
5589 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
5590 }
5591 #endif
5592
5593 static void
update_clear_value(struct iris_context * ice,struct iris_batch * batch,struct iris_resource * res,struct iris_surface_state * surf_state,struct isl_view * view)5594 update_clear_value(struct iris_context *ice,
5595 struct iris_batch *batch,
5596 struct iris_resource *res,
5597 struct iris_surface_state *surf_state,
5598 struct isl_view *view)
5599 {
5600 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
5601 UNUSED unsigned aux_modes = surf_state->aux_usages;
5602
5603 /* We only need to update the clear color in the surface state for gfx8 and
5604 * gfx9. Newer gens can read it directly from the clear color state buffer.
5605 */
5606 #if GFX_VER == 9
5607 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
5608 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
5609
5610 while (aux_modes) {
5611 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
5612
5613 surf_state_update_clear_value(batch, res, surf_state, aux_usage);
5614 }
5615 #elif GFX_VER == 8
5616 /* TODO: Could update rather than re-filling */
5617 alloc_surface_states(surf_state, surf_state->aux_usages);
5618
5619 fill_surface_states(isl_dev, surf_state, res, &res->surf, view, 0, 0, 0);
5620
5621 upload_surface_states(ice->state.surface_uploader, surf_state);
5622 #endif
5623 }
5624
5625 static uint32_t
use_surface_state(struct iris_batch * batch,struct iris_surface_state * surf_state,enum isl_aux_usage aux_usage)5626 use_surface_state(struct iris_batch *batch,
5627 struct iris_surface_state *surf_state,
5628 enum isl_aux_usage aux_usage)
5629 {
5630 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->ref.res), false,
5631 IRIS_DOMAIN_NONE);
5632
5633 return surf_state->ref.offset +
5634 surf_state_offset_for_aux(surf_state->aux_usages, aux_usage);
5635 }
5636
5637 /**
5638 * Add a surface to the validation list, as well as the buffer containing
5639 * the corresponding SURFACE_STATE.
5640 *
5641 * Returns the binding table entry (offset to SURFACE_STATE).
5642 */
5643 static uint32_t
use_surface(struct iris_context * ice,struct iris_batch * batch,struct pipe_surface * p_surf,bool writeable,enum isl_aux_usage aux_usage,bool is_read_surface,enum iris_domain access)5644 use_surface(struct iris_context *ice,
5645 struct iris_batch *batch,
5646 struct pipe_surface *p_surf,
5647 bool writeable,
5648 enum isl_aux_usage aux_usage,
5649 bool is_read_surface,
5650 enum iris_domain access)
5651 {
5652 struct iris_surface *surf = (void *) p_surf;
5653 struct iris_resource *res = (void *) p_surf->texture;
5654
5655 if (GFX_VER == 8 && is_read_surface && !surf->surface_state_read.ref.res) {
5656 upload_surface_states(ice->state.surface_uploader,
5657 &surf->surface_state_read);
5658 }
5659
5660 if (!surf->surface_state.ref.res) {
5661 upload_surface_states(ice->state.surface_uploader,
5662 &surf->surface_state);
5663 }
5664
5665 if (memcmp(&res->aux.clear_color, &surf->clear_color,
5666 sizeof(surf->clear_color)) != 0) {
5667 update_clear_value(ice, batch, res, &surf->surface_state, &surf->view);
5668 if (GFX_VER == 8) {
5669 update_clear_value(ice, batch, res, &surf->surface_state_read,
5670 &surf->read_view);
5671 }
5672 surf->clear_color = res->aux.clear_color;
5673 }
5674
5675 if (res->aux.clear_color_bo)
5676 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false, access);
5677
5678 if (res->aux.bo)
5679 iris_use_pinned_bo(batch, res->aux.bo, writeable, access);
5680
5681 iris_use_pinned_bo(batch, res->bo, writeable, access);
5682
5683 if (GFX_VER == 8 && is_read_surface) {
5684 return use_surface_state(batch, &surf->surface_state_read, aux_usage);
5685 } else {
5686 return use_surface_state(batch, &surf->surface_state, aux_usage);
5687 }
5688 }
5689
5690 static uint32_t
use_sampler_view(struct iris_context * ice,struct iris_batch * batch,struct iris_sampler_view * isv)5691 use_sampler_view(struct iris_context *ice,
5692 struct iris_batch *batch,
5693 struct iris_sampler_view *isv)
5694 {
5695 enum isl_aux_usage aux_usage =
5696 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format,
5697 isv->view.base_level, isv->view.levels);
5698
5699 if (!isv->surface_state.ref.res)
5700 upload_surface_states(ice->state.surface_uploader, &isv->surface_state);
5701
5702 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
5703 sizeof(isv->clear_color)) != 0) {
5704 update_clear_value(ice, batch, isv->res, &isv->surface_state,
5705 &isv->view);
5706 isv->clear_color = isv->res->aux.clear_color;
5707 }
5708
5709 if (isv->res->aux.clear_color_bo) {
5710 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo,
5711 false, IRIS_DOMAIN_SAMPLER_READ);
5712 }
5713
5714 if (isv->res->aux.bo) {
5715 iris_use_pinned_bo(batch, isv->res->aux.bo,
5716 false, IRIS_DOMAIN_SAMPLER_READ);
5717 }
5718
5719 iris_use_pinned_bo(batch, isv->res->bo, false, IRIS_DOMAIN_SAMPLER_READ);
5720
5721 return use_surface_state(batch, &isv->surface_state, aux_usage);
5722 }
5723
5724 static uint32_t
use_ubo_ssbo(struct iris_batch * batch,struct iris_context * ice,struct pipe_shader_buffer * buf,struct iris_state_ref * surf_state,bool writable,enum iris_domain access)5725 use_ubo_ssbo(struct iris_batch *batch,
5726 struct iris_context *ice,
5727 struct pipe_shader_buffer *buf,
5728 struct iris_state_ref *surf_state,
5729 bool writable, enum iris_domain access)
5730 {
5731 if (!buf->buffer || !surf_state->res)
5732 return use_null_surface(batch, ice);
5733
5734 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable, access);
5735 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false,
5736 IRIS_DOMAIN_NONE);
5737
5738 return surf_state->offset;
5739 }
5740
5741 static uint32_t
use_image(struct iris_batch * batch,struct iris_context * ice,struct iris_shader_state * shs,const struct shader_info * info,int i)5742 use_image(struct iris_batch *batch, struct iris_context *ice,
5743 struct iris_shader_state *shs, const struct shader_info *info,
5744 int i)
5745 {
5746 struct iris_image_view *iv = &shs->image[i];
5747 struct iris_resource *res = (void *) iv->base.resource;
5748
5749 if (!res)
5750 return use_null_surface(batch, ice);
5751
5752 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
5753
5754 iris_use_pinned_bo(batch, res->bo, write, IRIS_DOMAIN_NONE);
5755
5756 if (res->aux.bo)
5757 iris_use_pinned_bo(batch, res->aux.bo, write, IRIS_DOMAIN_NONE);
5758
5759 if (res->aux.clear_color_bo) {
5760 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false,
5761 IRIS_DOMAIN_NONE);
5762 }
5763
5764 enum isl_aux_usage aux_usage = shs->image_aux_usage[i];
5765
5766 return use_surface_state(batch, &iv->surface_state, aux_usage);
5767 }
5768
5769 #define push_bt_entry(addr) \
5770 assert(addr >= surf_base_offset); \
5771 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
5772 if (!pin_only) bt_map[s++] = (addr) - surf_base_offset;
5773
5774 #define bt_assert(section) \
5775 if (!pin_only && shader->bt.used_mask[section] != 0) \
5776 assert(shader->bt.offsets[section] == s);
5777
5778 /**
5779 * Populate the binding table for a given shader stage.
5780 *
5781 * This fills out the table of pointers to surfaces required by the shader,
5782 * and also adds those buffers to the validation list so the kernel can make
5783 * resident before running our batch.
5784 */
5785 static void
iris_populate_binding_table(struct iris_context * ice,struct iris_batch * batch,gl_shader_stage stage,bool pin_only)5786 iris_populate_binding_table(struct iris_context *ice,
5787 struct iris_batch *batch,
5788 gl_shader_stage stage,
5789 bool pin_only)
5790 {
5791 const struct iris_binder *binder = &ice->state.binder;
5792 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
5793 if (!shader)
5794 return;
5795
5796 struct iris_binding_table *bt = &shader->bt;
5797 struct iris_shader_state *shs = &ice->state.shaders[stage];
5798 uint32_t surf_base_offset = GFX_VER < 11 ? binder->bo->address : 0;
5799
5800 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
5801 int s = 0;
5802
5803 const struct shader_info *info = iris_get_shader_info(ice, stage);
5804 if (!info) {
5805 /* TCS passthrough doesn't need a binding table. */
5806 assert(stage == MESA_SHADER_TESS_CTRL);
5807 return;
5808 }
5809
5810 if (stage == MESA_SHADER_COMPUTE &&
5811 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
5812 /* surface for gl_NumWorkGroups */
5813 struct iris_state_ref *grid_data = &ice->state.grid_size;
5814 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
5815 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false,
5816 IRIS_DOMAIN_PULL_CONSTANT_READ);
5817 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false,
5818 IRIS_DOMAIN_NONE);
5819 push_bt_entry(grid_state->offset);
5820 }
5821
5822 if (stage == MESA_SHADER_FRAGMENT) {
5823 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5824 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
5825 if (cso_fb->nr_cbufs) {
5826 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
5827 uint32_t addr;
5828 if (cso_fb->cbufs[i]) {
5829 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
5830 ice->state.draw_aux_usage[i], false,
5831 IRIS_DOMAIN_RENDER_WRITE);
5832 } else {
5833 addr = use_null_fb_surface(batch, ice);
5834 }
5835 push_bt_entry(addr);
5836 }
5837 } else if (bt->use_null_rt) {
5838 uint32_t addr = use_null_fb_surface(batch, ice);
5839 push_bt_entry(addr);
5840 }
5841 }
5842
5843 #define foreach_surface_used(index, group) \
5844 bt_assert(group); \
5845 for (int index = 0; index < bt->sizes[group]; index++) \
5846 if (iris_group_index_to_bti(bt, group, index) != \
5847 IRIS_SURFACE_NOT_USED)
5848
5849 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
5850 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5851 uint32_t addr;
5852 if (cso_fb->cbufs[i]) {
5853 addr = use_surface(ice, batch, cso_fb->cbufs[i],
5854 false, ice->state.draw_aux_usage[i], true,
5855 IRIS_DOMAIN_SAMPLER_READ);
5856 push_bt_entry(addr);
5857 }
5858 }
5859
5860 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_LOW64) {
5861 struct iris_sampler_view *view = shs->textures[i];
5862 uint32_t addr = view ? use_sampler_view(ice, batch, view)
5863 : use_null_surface(batch, ice);
5864 push_bt_entry(addr);
5865 }
5866
5867 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE_HIGH64) {
5868 struct iris_sampler_view *view = shs->textures[64 + i];
5869 uint32_t addr = view ? use_sampler_view(ice, batch, view)
5870 : use_null_surface(batch, ice);
5871 push_bt_entry(addr);
5872 }
5873
5874 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
5875 uint32_t addr = use_image(batch, ice, shs, info, i);
5876 push_bt_entry(addr);
5877 }
5878
5879 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
5880 uint32_t addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
5881 &shs->constbuf_surf_state[i], false,
5882 IRIS_DOMAIN_PULL_CONSTANT_READ);
5883 push_bt_entry(addr);
5884 }
5885
5886 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
5887 uint32_t addr =
5888 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
5889 shs->writable_ssbos & (1u << i), IRIS_DOMAIN_NONE);
5890 push_bt_entry(addr);
5891 }
5892
5893 #if 0
5894 /* XXX: YUV surfaces not implemented yet */
5895 bt_assert(plane_start[1], ...);
5896 bt_assert(plane_start[2], ...);
5897 #endif
5898 }
5899
5900 static void
iris_use_optional_res(struct iris_batch * batch,struct pipe_resource * res,bool writeable,enum iris_domain access)5901 iris_use_optional_res(struct iris_batch *batch,
5902 struct pipe_resource *res,
5903 bool writeable,
5904 enum iris_domain access)
5905 {
5906 if (res) {
5907 struct iris_bo *bo = iris_resource_bo(res);
5908 iris_use_pinned_bo(batch, bo, writeable, access);
5909 }
5910 }
5911
5912 static void
pin_depth_and_stencil_buffers(struct iris_batch * batch,struct pipe_surface * zsbuf,struct iris_depth_stencil_alpha_state * cso_zsa)5913 pin_depth_and_stencil_buffers(struct iris_batch *batch,
5914 struct pipe_surface *zsbuf,
5915 struct iris_depth_stencil_alpha_state *cso_zsa)
5916 {
5917 if (!zsbuf)
5918 return;
5919
5920 struct iris_resource *zres, *sres;
5921 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
5922
5923 if (zres) {
5924 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled,
5925 IRIS_DOMAIN_DEPTH_WRITE);
5926 if (zres->aux.bo) {
5927 iris_use_pinned_bo(batch, zres->aux.bo,
5928 cso_zsa->depth_writes_enabled,
5929 IRIS_DOMAIN_DEPTH_WRITE);
5930 }
5931 }
5932
5933 if (sres) {
5934 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled,
5935 IRIS_DOMAIN_DEPTH_WRITE);
5936 }
5937 }
5938
5939 static uint32_t
pin_scratch_space(struct iris_context * ice,struct iris_batch * batch,const struct iris_compiled_shader * shader,gl_shader_stage stage)5940 pin_scratch_space(struct iris_context *ice,
5941 struct iris_batch *batch,
5942 const struct iris_compiled_shader *shader,
5943 gl_shader_stage stage)
5944 {
5945 uint32_t scratch_addr = 0;
5946
5947 if (shader->total_scratch > 0) {
5948 struct iris_bo *scratch_bo =
5949 iris_get_scratch_space(ice, shader->total_scratch, stage);
5950 iris_use_pinned_bo(batch, scratch_bo, true, IRIS_DOMAIN_NONE);
5951
5952 #if GFX_VERx10 >= 125
5953 const struct iris_state_ref *ref =
5954 iris_get_scratch_surf(ice, shader->total_scratch);
5955 iris_use_pinned_bo(batch, iris_resource_bo(ref->res),
5956 false, IRIS_DOMAIN_NONE);
5957 scratch_addr = ref->offset +
5958 iris_resource_bo(ref->res)->address -
5959 IRIS_MEMZONE_SCRATCH_START;
5960 assert((scratch_addr & 0x3f) == 0 && scratch_addr < (1 << 26));
5961 #else
5962 scratch_addr = scratch_bo->address;
5963 #endif
5964 }
5965
5966 return scratch_addr;
5967 }
5968
5969 /* ------------------------------------------------------------------- */
5970
5971 /**
5972 * Pin any BOs which were installed by a previous batch, and restored
5973 * via the hardware logical context mechanism.
5974 *
5975 * We don't need to re-emit all state every batch - the hardware context
5976 * mechanism will save and restore it for us. This includes pointers to
5977 * various BOs...which won't exist unless we ask the kernel to pin them
5978 * by adding them to the validation list.
5979 *
5980 * We can skip buffers if we've re-emitted those packets, as we're
5981 * overwriting those stale pointers with new ones, and don't actually
5982 * refer to the old BOs.
5983 */
5984 static void
iris_restore_render_saved_bos(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)5985 iris_restore_render_saved_bos(struct iris_context *ice,
5986 struct iris_batch *batch,
5987 const struct pipe_draw_info *draw)
5988 {
5989 struct iris_genx_state *genx = ice->state.genx;
5990
5991 const uint64_t clean = ~ice->state.dirty;
5992 const uint64_t stage_clean = ~ice->state.stage_dirty;
5993
5994 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
5995 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false,
5996 IRIS_DOMAIN_NONE);
5997 }
5998
5999 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
6000 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false,
6001 IRIS_DOMAIN_NONE);
6002 }
6003
6004 if (clean & IRIS_DIRTY_BLEND_STATE) {
6005 iris_use_optional_res(batch, ice->state.last_res.blend, false,
6006 IRIS_DOMAIN_NONE);
6007 }
6008
6009 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
6010 iris_use_optional_res(batch, ice->state.last_res.color_calc, false,
6011 IRIS_DOMAIN_NONE);
6012 }
6013
6014 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
6015 iris_use_optional_res(batch, ice->state.last_res.scissor, false,
6016 IRIS_DOMAIN_NONE);
6017 }
6018
6019 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
6020 for (int i = 0; i < 4; i++) {
6021 struct iris_stream_output_target *tgt =
6022 (void *) ice->state.so_target[i];
6023 if (tgt) {
6024 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
6025 true, IRIS_DOMAIN_OTHER_WRITE);
6026 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
6027 true, IRIS_DOMAIN_OTHER_WRITE);
6028 }
6029 }
6030 }
6031
6032 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
6033 if (!(stage_clean & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)))
6034 continue;
6035
6036 struct iris_shader_state *shs = &ice->state.shaders[stage];
6037 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
6038
6039 if (!shader)
6040 continue;
6041
6042 for (int i = 0; i < 4; i++) {
6043 const struct iris_ubo_range *range = &shader->ubo_ranges[i];
6044
6045 if (range->length == 0)
6046 continue;
6047
6048 /* Range block is a binding table index, map back to UBO index. */
6049 unsigned block_index = iris_bti_to_group_index(
6050 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
6051 assert(block_index != IRIS_SURFACE_NOT_USED);
6052
6053 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
6054 struct iris_resource *res = (void *) cbuf->buffer;
6055
6056 if (res)
6057 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_OTHER_READ);
6058 else
6059 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false,
6060 IRIS_DOMAIN_OTHER_READ);
6061 }
6062 }
6063
6064 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
6065 if (stage_clean & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
6066 /* Re-pin any buffers referred to by the binding table. */
6067 iris_populate_binding_table(ice, batch, stage, true);
6068 }
6069 }
6070
6071 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
6072 struct iris_shader_state *shs = &ice->state.shaders[stage];
6073 struct pipe_resource *res = shs->sampler_table.res;
6074 if (res)
6075 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
6076 IRIS_DOMAIN_NONE);
6077 }
6078
6079 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
6080 if (stage_clean & (IRIS_STAGE_DIRTY_VS << stage)) {
6081 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
6082
6083 if (shader) {
6084 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
6085 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
6086
6087 pin_scratch_space(ice, batch, shader, stage);
6088 }
6089 }
6090 }
6091
6092 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
6093 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
6094 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6095 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
6096 }
6097
6098 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false,
6099 IRIS_DOMAIN_VF_READ);
6100
6101 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
6102 uint64_t bound = ice->state.bound_vertex_buffers;
6103 while (bound) {
6104 const int i = u_bit_scan64(&bound);
6105 struct pipe_resource *res = genx->vertex_buffers[i].resource;
6106 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
6107 IRIS_DOMAIN_VF_READ);
6108 }
6109 }
6110 }
6111
6112 static void
iris_restore_compute_saved_bos(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)6113 iris_restore_compute_saved_bos(struct iris_context *ice,
6114 struct iris_batch *batch,
6115 const struct pipe_grid_info *grid)
6116 {
6117 const uint64_t stage_clean = ~ice->state.stage_dirty;
6118
6119 const int stage = MESA_SHADER_COMPUTE;
6120 struct iris_shader_state *shs = &ice->state.shaders[stage];
6121
6122 if (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) {
6123 /* Re-pin any buffers referred to by the binding table. */
6124 iris_populate_binding_table(ice, batch, stage, true);
6125 }
6126
6127 struct pipe_resource *sampler_res = shs->sampler_table.res;
6128 if (sampler_res)
6129 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false,
6130 IRIS_DOMAIN_NONE);
6131
6132 if ((stage_clean & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS) &&
6133 (stage_clean & IRIS_STAGE_DIRTY_BINDINGS_CS) &&
6134 (stage_clean & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
6135 (stage_clean & IRIS_STAGE_DIRTY_CS)) {
6136 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false,
6137 IRIS_DOMAIN_NONE);
6138 }
6139
6140 if (stage_clean & IRIS_STAGE_DIRTY_CS) {
6141 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
6142
6143 if (shader) {
6144 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
6145 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_NONE);
6146
6147 if (GFX_VERx10 < 125) {
6148 struct iris_bo *curbe_bo =
6149 iris_resource_bo(ice->state.last_res.cs_thread_ids);
6150 iris_use_pinned_bo(batch, curbe_bo, false, IRIS_DOMAIN_NONE);
6151 }
6152
6153 pin_scratch_space(ice, batch, shader, stage);
6154 }
6155 }
6156 }
6157
6158 /**
6159 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
6160 */
6161 static void
iris_update_binder_address(struct iris_batch * batch,struct iris_binder * binder)6162 iris_update_binder_address(struct iris_batch *batch,
6163 struct iris_binder *binder)
6164 {
6165 if (batch->last_binder_address == binder->bo->address)
6166 return;
6167
6168 struct isl_device *isl_dev = &batch->screen->isl_dev;
6169 uint32_t mocs = isl_mocs(isl_dev, 0, false);
6170
6171 iris_batch_sync_region_start(batch);
6172
6173 #if GFX_VER >= 11
6174 /* Use 3DSTATE_BINDING_TABLE_POOL_ALLOC on Icelake and later */
6175
6176 #if GFX_VERx10 == 120
6177 /* Wa_1607854226:
6178 *
6179 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
6180 * mode by putting the pipeline temporarily in 3D mode..
6181 */
6182 if (batch->name == IRIS_BATCH_COMPUTE)
6183 emit_pipeline_select(batch, _3D);
6184 #endif
6185
6186 iris_emit_pipe_control_flush(batch, "Stall for binder realloc",
6187 PIPE_CONTROL_CS_STALL);
6188
6189 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POOL_ALLOC), btpa) {
6190 btpa.BindingTablePoolBaseAddress = ro_bo(binder->bo, 0);
6191 btpa.BindingTablePoolBufferSize = binder->size / 4096;
6192 #if GFX_VERx10 < 125
6193 btpa.BindingTablePoolEnable = true;
6194 #endif
6195 btpa.MOCS = mocs;
6196 }
6197
6198 #if GFX_VERx10 == 120
6199 /* Wa_1607854226:
6200 *
6201 * Put the pipeline back into compute mode.
6202 */
6203 if (batch->name == IRIS_BATCH_COMPUTE)
6204 emit_pipeline_select(batch, GPGPU);
6205 #endif
6206 #else
6207 /* Use STATE_BASE_ADDRESS on older platforms */
6208 flush_before_state_base_change(batch);
6209
6210 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
6211 sba.SurfaceStateBaseAddressModifyEnable = true;
6212 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
6213
6214 /* The hardware appears to pay attention to the MOCS fields even
6215 * if you don't set the "Address Modify Enable" bit for the base.
6216 */
6217 sba.GeneralStateMOCS = mocs;
6218 sba.StatelessDataPortAccessMOCS = mocs;
6219 sba.DynamicStateMOCS = mocs;
6220 sba.IndirectObjectMOCS = mocs;
6221 sba.InstructionMOCS = mocs;
6222 sba.SurfaceStateMOCS = mocs;
6223 #if GFX_VER >= 9
6224 sba.BindlessSurfaceStateMOCS = mocs;
6225 #endif
6226 #if GFX_VERx10 >= 125
6227 sba.L1CacheControl = L1CC_WB;
6228 #endif
6229 }
6230 #endif
6231
6232 flush_after_state_base_change(batch);
6233 iris_batch_sync_region_end(batch);
6234
6235 batch->last_binder_address = binder->bo->address;
6236 }
6237
6238 static inline void
iris_viewport_zmin_zmax(const struct pipe_viewport_state * vp,bool halfz,bool window_space_position,float * zmin,float * zmax)6239 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
6240 bool window_space_position, float *zmin, float *zmax)
6241 {
6242 if (window_space_position) {
6243 *zmin = 0.f;
6244 *zmax = 1.f;
6245 return;
6246 }
6247 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
6248 }
6249
6250 /* Wa_16018063123 */
6251 static inline void
batch_emit_fast_color_dummy_blit(struct iris_batch * batch)6252 batch_emit_fast_color_dummy_blit(struct iris_batch *batch)
6253 {
6254 #if GFX_VERx10 >= 125
6255 iris_emit_cmd(batch, GENX(XY_FAST_COLOR_BLT), blt) {
6256 blt.DestinationBaseAddress = batch->screen->workaround_address;
6257 blt.DestinationMOCS = iris_mocs(batch->screen->workaround_address.bo,
6258 &batch->screen->isl_dev,
6259 ISL_SURF_USAGE_BLITTER_DST_BIT);
6260 blt.DestinationPitch = 63;
6261 blt.DestinationX2 = 1;
6262 blt.DestinationY2 = 4;
6263 blt.DestinationSurfaceWidth = 1;
6264 blt.DestinationSurfaceHeight = 4;
6265 blt.DestinationSurfaceType = XY_SURFTYPE_2D;
6266 blt.DestinationSurfaceQPitch = 4;
6267 blt.DestinationTiling = XY_TILE_LINEAR;
6268 }
6269 #endif
6270 }
6271
6272 #if GFX_VER >= 12
6273 static void
invalidate_aux_map_state_per_engine(struct iris_batch * batch)6274 invalidate_aux_map_state_per_engine(struct iris_batch *batch)
6275 {
6276 uint64_t register_addr = 0;
6277
6278 switch (batch->name) {
6279 case IRIS_BATCH_RENDER: {
6280 /* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
6281 * RCS engine idle sequence:
6282 *
6283 * Gfx12+:
6284 * PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
6285 * Target Cache Flush + Depth Cache
6286 *
6287 * Gfx125+:
6288 * PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + Render
6289 * Target Cache Flush + Depth Cache + CCS flush
6290 */
6291 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
6292 PIPE_CONTROL_DATA_CACHE_FLUSH |
6293 PIPE_CONTROL_L3_FABRIC_FLUSH |
6294 PIPE_CONTROL_CS_STALL |
6295 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6296 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6297 (GFX_VERx10 == 125 ?
6298 PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
6299
6300 register_addr = GENX(GFX_CCS_AUX_INV_num);
6301 break;
6302 }
6303 case IRIS_BATCH_COMPUTE: {
6304 /* From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
6305 * Compute engine idle sequence:
6306 *
6307 * Gfx12+:
6308 * PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall
6309 *
6310 * Gfx125+:
6311 * PIPE_CONTROL:- DC Flush + L3 Fabric Flush + CS Stall + CCS flush
6312 */
6313 iris_emit_end_of_pipe_sync(batch, "Invalidate aux map table",
6314 PIPE_CONTROL_DATA_CACHE_FLUSH |
6315 PIPE_CONTROL_L3_FABRIC_FLUSH |
6316 PIPE_CONTROL_CS_STALL |
6317 (GFX_VERx10 == 125 ?
6318 PIPE_CONTROL_CCS_CACHE_FLUSH : 0));
6319
6320 register_addr = GENX(COMPCS0_CCS_AUX_INV_num);
6321 break;
6322 }
6323 case IRIS_BATCH_BLITTER: {
6324 #if GFX_VERx10 >= 125
6325 /* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
6326 if (intel_needs_workaround(batch->screen->devinfo, 16018063123))
6327 batch_emit_fast_color_dummy_blit(batch);
6328
6329 /*
6330 * Notice we don't set the L3 Fabric Flush here, because we have
6331 * PIPE_CONTROL_CS_STALL. The PIPE_CONTROL::L3 Fabric Flush
6332 * documentation says :
6333 *
6334 * "L3 Fabric Flush will ensure all the pending transactions in the
6335 * L3 Fabric are flushed to global observation point. HW does
6336 * implicit L3 Fabric Flush on all stalling flushes (both explicit
6337 * and implicit) and on PIPECONTROL having Post Sync Operation
6338 * enabled."
6339 *
6340 * Therefore setting L3 Fabric Flush here would be redundant.
6341 *
6342 * From Bspec 43904 (Register_CCSAuxiliaryTableInvalidate):
6343 * Blitter engine idle sequence:
6344 *
6345 * Gfx125+:
6346 * MI_FLUSH_DW (dw0;b16 – flush CCS)
6347 */
6348 iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
6349 fd.FlushCCS = true;
6350 }
6351 register_addr = GENX(BCS_CCS_AUX_INV_num);
6352 #endif
6353 break;
6354 }
6355 default:
6356 unreachable("Invalid batch for aux map invalidation");
6357 break;
6358 }
6359
6360 if (register_addr != 0) {
6361 /* If the aux-map state number increased, then we need to rewrite the
6362 * register. Rewriting the register is used to both set the aux-map
6363 * translation table address, and also to invalidate any previously
6364 * cached translations.
6365 */
6366 iris_load_register_imm32(batch, register_addr, 1);
6367
6368 /* HSD 22012751911: SW Programming sequence when issuing aux invalidation:
6369 *
6370 * "Poll Aux Invalidation bit once the invalidation is set (Register
6371 * 4208 bit 0)"
6372 */
6373 iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
6374 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
6375 sem.WaitMode = PollingMode;
6376 sem.RegisterPollMode = true;
6377 sem.SemaphoreDataDword = 0x0;
6378 sem.SemaphoreAddress = ro_bo(NULL, register_addr);
6379 }
6380 }
6381 }
6382
6383 void
genX(invalidate_aux_map_state)6384 genX(invalidate_aux_map_state)(struct iris_batch *batch)
6385 {
6386 struct iris_screen *screen = batch->screen;
6387 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
6388 if (!aux_map_ctx)
6389 return;
6390 uint32_t aux_map_state_num = intel_aux_map_get_state_num(aux_map_ctx);
6391 if (batch->last_aux_map_state != aux_map_state_num) {
6392 invalidate_aux_map_state_per_engine(batch);
6393 batch->last_aux_map_state = aux_map_state_num;
6394 }
6395 }
6396
6397 static void
init_aux_map_state(struct iris_batch * batch)6398 init_aux_map_state(struct iris_batch *batch)
6399 {
6400 struct iris_screen *screen = batch->screen;
6401 void *aux_map_ctx = iris_bufmgr_get_aux_map_context(screen->bufmgr);
6402 if (!aux_map_ctx)
6403 return;
6404
6405 uint64_t base_addr = intel_aux_map_get_base(aux_map_ctx);
6406 assert(base_addr != 0 && align64(base_addr, 32 * 1024) == base_addr);
6407
6408 uint32_t reg = 0;
6409 switch (batch->name) {
6410 case IRIS_BATCH_COMPUTE:
6411 if (iris_bufmgr_compute_engine_supported(screen->bufmgr)) {
6412 reg = GENX(COMPCS0_AUX_TABLE_BASE_ADDR_num);
6413 break;
6414 }
6415 /* fallthrough */
6416 FALLTHROUGH;
6417 case IRIS_BATCH_RENDER:
6418 reg = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
6419 break;
6420 case IRIS_BATCH_BLITTER:
6421 #if GFX_VERx10 >= 125
6422 reg = GENX(BCS_AUX_TABLE_BASE_ADDR_num);
6423 #endif
6424 break;
6425 default:
6426 unreachable("Invalid batch for aux map init.");
6427 }
6428
6429 if (reg)
6430 iris_load_register_imm64(batch, reg, base_addr);
6431 }
6432 #endif
6433
6434 struct push_bos {
6435 struct {
6436 struct iris_address addr;
6437 uint32_t length;
6438 } buffers[4];
6439 int buffer_count;
6440 uint32_t max_length;
6441 };
6442
6443 static void
setup_constant_buffers(struct iris_context * ice,struct iris_batch * batch,int stage,struct push_bos * push_bos)6444 setup_constant_buffers(struct iris_context *ice,
6445 struct iris_batch *batch,
6446 int stage,
6447 struct push_bos *push_bos)
6448 {
6449 struct iris_shader_state *shs = &ice->state.shaders[stage];
6450 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
6451
6452 uint32_t push_range_sum = 0;
6453
6454 int n = 0;
6455 for (int i = 0; i < 4; i++) {
6456 const struct iris_ubo_range *range = &shader->ubo_ranges[i];
6457
6458 if (range->length == 0)
6459 continue;
6460
6461 push_range_sum += range->length;
6462
6463 if (range->length > push_bos->max_length)
6464 push_bos->max_length = range->length;
6465
6466 /* Range block is a binding table index, map back to UBO index. */
6467 unsigned block_index = iris_bti_to_group_index(
6468 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
6469 assert(block_index != IRIS_SURFACE_NOT_USED);
6470
6471 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
6472 struct iris_resource *res = (void *) cbuf->buffer;
6473
6474 assert(cbuf->buffer_offset % 32 == 0);
6475
6476 if (res)
6477 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_OTHER_READ);
6478
6479 push_bos->buffers[n].length = range->length;
6480 push_bos->buffers[n].addr =
6481 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
6482 : batch->screen->workaround_address;
6483 n++;
6484 }
6485
6486 /* From the 3DSTATE_CONSTANT_XS and 3DSTATE_CONSTANT_ALL programming notes:
6487 *
6488 * "The sum of all four read length fields must be less than or
6489 * equal to the size of 64."
6490 */
6491 assert(push_range_sum <= 64);
6492
6493 push_bos->buffer_count = n;
6494 }
6495
6496 static void
emit_push_constant_packets(struct iris_context * ice,struct iris_batch * batch,int stage,const struct push_bos * push_bos)6497 emit_push_constant_packets(struct iris_context *ice,
6498 struct iris_batch *batch,
6499 int stage,
6500 const struct push_bos *push_bos)
6501 {
6502 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
6503
6504 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
6505 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
6506
6507 #if GFX_VER >= 9
6508 pkt.MOCS = isl_mocs(isl_dev, 0, false);
6509 #endif
6510
6511 /* The Skylake PRM contains the following restriction:
6512 *
6513 * "The driver must ensure The following case does not occur
6514 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
6515 * buffer 3 read length equal to zero committed followed by a
6516 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
6517 * zero committed."
6518 *
6519 * To avoid this, we program the buffers in the highest slots.
6520 * This way, slot 0 is only used if slot 3 is also used.
6521 */
6522 const int n = push_bos->buffer_count;
6523 assert(n <= 4);
6524 const unsigned shift = 4 - n;
6525 for (int i = 0; i < n; i++) {
6526 pkt.ConstantBody.ReadLength[i + shift] =
6527 push_bos->buffers[i].length;
6528 pkt.ConstantBody.Buffer[i + shift] = push_bos->buffers[i].addr;
6529 }
6530 }
6531 }
6532
6533 #if GFX_VER >= 12
6534 static void
emit_null_push_constant_tbimr_workaround(struct iris_batch * batch)6535 emit_null_push_constant_tbimr_workaround(struct iris_batch *batch)
6536 {
6537 struct isl_device *isl_dev = &batch->screen->isl_dev;
6538 /* Pass a single-register push constant payload for the PS
6539 * stage even if empty, since PS invocations with zero push
6540 * constant cycles have been found to cause hangs with TBIMR
6541 * enabled. See HSDES #22020184996.
6542 *
6543 * XXX - Use workaround infrastructure and final workaround
6544 * when provided by hardware team.
6545 */
6546 const struct iris_address null_addr = {
6547 .bo = batch->screen->workaround_bo,
6548 .offset = 1024,
6549 };
6550 const uint32_t num_dwords = 2 + 2 * 1;
6551 uint32_t const_all[num_dwords];
6552 uint32_t *dw = &const_all[0];
6553
6554 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
6555 all.DWordLength = num_dwords - 2;
6556 all.MOCS = isl_mocs(isl_dev, 0, false);
6557 all.ShaderUpdateEnable = (1 << MESA_SHADER_FRAGMENT);
6558 all.PointerBufferMask = 1;
6559 }
6560 dw += 2;
6561
6562 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA), dw, data) {
6563 data.PointerToConstantBuffer = null_addr;
6564 data.ConstantBufferReadLength = 1;
6565 }
6566
6567 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
6568 }
6569
6570 static void
emit_push_constant_packet_all(struct iris_context * ice,struct iris_batch * batch,uint32_t shader_mask,const struct push_bos * push_bos)6571 emit_push_constant_packet_all(struct iris_context *ice,
6572 struct iris_batch *batch,
6573 uint32_t shader_mask,
6574 const struct push_bos *push_bos)
6575 {
6576 struct isl_device *isl_dev = &batch->screen->isl_dev;
6577
6578 if (!push_bos) {
6579 if (batch->screen->devinfo->needs_null_push_constant_tbimr_workaround &&
6580 (shader_mask & (1 << MESA_SHADER_FRAGMENT))) {
6581 emit_null_push_constant_tbimr_workaround(batch);
6582 shader_mask &= ~(1 << MESA_SHADER_FRAGMENT);
6583 }
6584
6585 if (shader_mask) {
6586 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_ALL), pc) {
6587 pc.ShaderUpdateEnable = shader_mask;
6588 pc.MOCS = iris_mocs(NULL, isl_dev, 0);
6589 }
6590 }
6591 return;
6592 }
6593
6594 const uint32_t n = push_bos->buffer_count;
6595 const uint32_t max_pointers = 4;
6596 const uint32_t num_dwords = 2 + 2 * n;
6597 uint32_t const_all[2 + 2 * max_pointers];
6598 uint32_t *dw = &const_all[0];
6599
6600 assert(n <= max_pointers);
6601 iris_pack_command(GENX(3DSTATE_CONSTANT_ALL), dw, all) {
6602 all.DWordLength = num_dwords - 2;
6603 all.MOCS = isl_mocs(isl_dev, 0, false);
6604 all.ShaderUpdateEnable = shader_mask;
6605 all.PointerBufferMask = (1 << n) - 1;
6606 }
6607 dw += 2;
6608
6609 for (int i = 0; i < n; i++) {
6610 _iris_pack_state(batch, GENX(3DSTATE_CONSTANT_ALL_DATA),
6611 dw + i * 2, data) {
6612 data.PointerToConstantBuffer = push_bos->buffers[i].addr;
6613 data.ConstantBufferReadLength = push_bos->buffers[i].length;
6614 }
6615 }
6616 iris_batch_emit(batch, const_all, sizeof(uint32_t) * num_dwords);
6617 }
6618 #endif
6619
6620 void
genX(emit_depth_state_workarounds)6621 genX(emit_depth_state_workarounds)(struct iris_context *ice,
6622 struct iris_batch *batch,
6623 const struct isl_surf *surf)
6624 {
6625 #if INTEL_NEEDS_WA_1808121037
6626 const bool is_d16_1x_msaa = surf->format == ISL_FORMAT_R16_UNORM &&
6627 surf->samples == 1;
6628
6629 switch (ice->state.genx->depth_reg_mode) {
6630 case IRIS_DEPTH_REG_MODE_HW_DEFAULT:
6631 if (!is_d16_1x_msaa)
6632 return;
6633 break;
6634 case IRIS_DEPTH_REG_MODE_D16_1X_MSAA:
6635 if (is_d16_1x_msaa)
6636 return;
6637 break;
6638 case IRIS_DEPTH_REG_MODE_UNKNOWN:
6639 break;
6640 }
6641
6642 /* We'll change some CHICKEN registers depending on the depth surface
6643 * format. Do a depth flush and stall so the pipeline is not using these
6644 * settings while we change the registers.
6645 */
6646 iris_emit_end_of_pipe_sync(batch,
6647 "Workaround: Stop pipeline for Wa_1808121037",
6648 PIPE_CONTROL_DEPTH_STALL |
6649 PIPE_CONTROL_DEPTH_CACHE_FLUSH);
6650
6651 /* Wa_1808121037
6652 *
6653 * To avoid sporadic corruptions “Set 0x7010[9] when Depth Buffer
6654 * Surface Format is D16_UNORM , surface type is not NULL & 1X_MSAA”.
6655 */
6656 iris_emit_reg(batch, GENX(COMMON_SLICE_CHICKEN1), reg) {
6657 reg.HIZPlaneOptimizationdisablebit = is_d16_1x_msaa;
6658 reg.HIZPlaneOptimizationdisablebitMask = true;
6659 }
6660
6661 ice->state.genx->depth_reg_mode =
6662 is_d16_1x_msaa ? IRIS_DEPTH_REG_MODE_D16_1X_MSAA :
6663 IRIS_DEPTH_REG_MODE_HW_DEFAULT;
6664 #endif
6665 }
6666
6667 /* Calculate TBIMR tiling parameters adequate for the current pipeline
6668 * setup. Return true if TBIMR should be enabled.
6669 */
6670 UNUSED static bool
calculate_tile_dimensions(struct iris_context * ice,unsigned * tile_width,unsigned * tile_height)6671 calculate_tile_dimensions(struct iris_context *ice,
6672 unsigned *tile_width, unsigned *tile_height)
6673 {
6674 struct iris_screen *screen = (void *)ice->ctx.screen;
6675 const struct intel_device_info *devinfo = screen->devinfo;
6676
6677 assert(GFX_VER == 12);
6678 const unsigned aux_scale = ISL_MAIN_TO_CCS_SIZE_RATIO_XE;
6679
6680 /* Perform a rough calculation of the tile cache footprint of the
6681 * pixel pipeline, approximating it as the sum of the amount of
6682 * memory used per pixel by every render target, depth, stencil and
6683 * auxiliary surfaces bound to the pipeline.
6684 */
6685 unsigned pixel_size = 0;
6686
6687 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
6688
6689 if (cso->width == 0 || cso->height == 0)
6690 return false;
6691
6692 for (unsigned i = 0; i < cso->nr_cbufs; i++) {
6693 const struct iris_surface *surf = (void *)cso->cbufs[i];
6694
6695 if (surf) {
6696 const struct iris_resource *res = (void *)surf->base.texture;
6697
6698 pixel_size += intel_calculate_surface_pixel_size(&res->surf);
6699
6700 /* XXX - Pessimistic, in some cases it might be helpful to neglect
6701 * aux surface traffic.
6702 */
6703 if (ice->state.draw_aux_usage[i]) {
6704 pixel_size += intel_calculate_surface_pixel_size(&res->aux.surf);
6705
6706 if (isl_aux_usage_has_ccs(res->aux.usage)) {
6707 pixel_size += DIV_ROUND_UP(intel_calculate_surface_pixel_size(
6708 &res->surf), aux_scale);
6709 }
6710 }
6711 }
6712 }
6713
6714 if (cso->zsbuf) {
6715 struct iris_resource *zres;
6716 struct iris_resource *sres;
6717 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres, &sres);
6718
6719 if (zres) {
6720 pixel_size += intel_calculate_surface_pixel_size(&zres->surf);
6721
6722 /* XXX - Pessimistic, in some cases it might be helpful to neglect
6723 * aux surface traffic.
6724 */
6725 if (iris_resource_level_has_hiz(devinfo, zres, cso->zsbuf->u.tex.level)) {
6726 pixel_size += intel_calculate_surface_pixel_size(&zres->aux.surf);
6727
6728 if (isl_aux_usage_has_ccs(zres->aux.usage)) {
6729 pixel_size += DIV_ROUND_UP(intel_calculate_surface_pixel_size(
6730 &zres->surf), aux_scale);
6731 }
6732 }
6733 }
6734
6735 if (sres) {
6736 pixel_size += intel_calculate_surface_pixel_size(&sres->surf);
6737 }
6738 }
6739
6740 /* Compute a tile layout that allows reasonable utilization of the
6741 * tile cache based on the per-pixel cache footprint estimated
6742 * above.
6743 */
6744 intel_calculate_tile_dimensions(devinfo, screen->l3_config_3d,
6745 32, 32, cso->width, cso->height, pixel_size,
6746 tile_width, tile_height);
6747
6748 /* Perform TBIMR tile passes only if the framebuffer covers more
6749 * than a single tile.
6750 */
6751 return *tile_width < cso->width || *tile_height < cso->height;
6752 }
6753
6754 static void
iris_preemption_streamout_wa(struct iris_context * ice,struct iris_batch * batch,bool enable)6755 iris_preemption_streamout_wa(struct iris_context *ice,
6756 struct iris_batch *batch,
6757 bool enable)
6758 {
6759 #if GFX_VERx10 >= 120
6760 if (!intel_needs_workaround(batch->screen->devinfo, 16013994831))
6761 return;
6762
6763 iris_emit_reg(batch, GENX(CS_CHICKEN1), reg) {
6764 reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommand = !enable;
6765 reg.DisablePreemptionandHighPriorityPausingdueto3DPRIMITIVECommandMask = true;
6766 }
6767
6768 /* Emit CS_STALL and 250 noops. */
6769 iris_emit_pipe_control_flush(batch, "workaround: Wa_16013994831",
6770 PIPE_CONTROL_CS_STALL);
6771 for (unsigned i = 0; i < 250; i++)
6772 iris_emit_cmd(batch, GENX(MI_NOOP), noop);
6773
6774 ice->state.genx->object_preemption = enable;
6775 #endif
6776 }
6777
6778 static void
shader_program_uses_primitive_id(struct iris_context * ice,struct iris_batch * batch,struct iris_compiled_shader * shader,gl_shader_stage stage,bool * uses_primitive_id)6779 shader_program_uses_primitive_id(struct iris_context *ice,
6780 struct iris_batch *batch,
6781 struct iris_compiled_shader *shader,
6782 gl_shader_stage stage,
6783 bool *uses_primitive_id)
6784 {
6785 switch (stage) {
6786 case MESA_SHADER_TESS_CTRL: {
6787 struct iris_tcs_data *tcs_data = iris_tcs_data(shader);
6788 *uses_primitive_id |= tcs_data->include_primitive_id;
6789 break;
6790 }
6791 case MESA_SHADER_TESS_EVAL: {
6792 struct iris_tes_data *tes_data = iris_tes_data(shader);
6793 *uses_primitive_id |= tes_data->include_primitive_id;
6794 break;
6795 }
6796 default:
6797 break;
6798 }
6799
6800 struct iris_compiled_shader *gs_shader =
6801 ice->shaders.prog[MESA_SHADER_GEOMETRY];
6802 const struct iris_gs_data *gs_data =
6803 gs_shader ? iris_gs_data(gs_shader) : NULL;
6804
6805 *uses_primitive_id |= gs_data && gs_data->include_primitive_id;
6806 }
6807
6808 static void
emit_wa_18020335297_dummy_draw(struct iris_batch * batch)6809 emit_wa_18020335297_dummy_draw(struct iris_batch *batch)
6810 {
6811 #if GFX_VERx10 >= 125
6812 iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
6813 vfg.DistributionMode = RR_STRICT;
6814 }
6815 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
6816 vf.GeometryDistributionEnable = true;
6817 }
6818 #endif
6819
6820 #if GFX_VER >= 12
6821 iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
6822 pr.ReplicaMask = 1;
6823 }
6824 #endif
6825
6826 iris_emit_cmd(batch, GENX(3DSTATE_RASTER), rr) {
6827 rr.CullMode = CULLMODE_NONE;
6828 rr.FrontFaceFillMode = FILL_MODE_SOLID;
6829 rr.BackFaceFillMode = FILL_MODE_SOLID;
6830 }
6831
6832 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) { }
6833 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgvs) { }
6834
6835 #if GFX_VER >= 11
6836 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS_2), sgvs2) { }
6837 #endif
6838
6839 iris_emit_cmd(batch, GENX(3DSTATE_CLIP), clip) {
6840 clip.ClipEnable = true;
6841 clip.ClipMode = CLIPMODE_REJECT_ALL;
6842 }
6843
6844 iris_emit_cmd(batch, GENX(3DSTATE_VS), vs) { }
6845 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs) { }
6846 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs) { }
6847 iris_emit_cmd(batch, GENX(3DSTATE_TE), te) { }
6848 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds) { }
6849 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), so) { }
6850
6851 uint32_t vertex_elements[1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)];
6852 uint32_t *ve_pack_dest = &vertex_elements[1];
6853
6854 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), vertex_elements, ve) {
6855 ve.DWordLength = 1 + GENX(VERTEX_ELEMENT_STATE_length) * 2 -
6856 GENX(3DSTATE_VERTEX_ELEMENTS_length_bias);
6857 }
6858
6859 for (int i = 0; i < 2; i++) {
6860 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
6861 ve.Valid = true;
6862 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
6863 ve.Component0Control = VFCOMP_STORE_0;
6864 ve.Component1Control = VFCOMP_STORE_0;
6865 ve.Component2Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
6866 ve.Component3Control = i == 0 ? VFCOMP_STORE_0 : VFCOMP_STORE_1_FP;
6867 }
6868 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
6869 }
6870
6871 iris_batch_emit(batch, vertex_elements, sizeof(uint32_t) *
6872 (1 + 2 * GENX(VERTEX_ELEMENT_STATE_length)));
6873
6874 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
6875 topo.PrimitiveTopologyType = _3DPRIM_TRILIST;
6876 }
6877
6878 /* Emit dummy draw per slice. */
6879 for (unsigned i = 0; i < batch->screen->devinfo->num_slices; i++) {
6880 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
6881 prim.VertexCountPerInstance = 3;
6882 prim.PrimitiveTopologyType = _3DPRIM_TRILIST;
6883 prim.InstanceCount = 1;
6884 prim.VertexAccessType = SEQUENTIAL;
6885 }
6886 }
6887 }
6888
6889 static void
iris_upload_dirty_render_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw,bool skip_vb_params)6890 iris_upload_dirty_render_state(struct iris_context *ice,
6891 struct iris_batch *batch,
6892 const struct pipe_draw_info *draw,
6893 bool skip_vb_params)
6894 {
6895 struct iris_screen *screen = batch->screen;
6896 struct iris_border_color_pool *border_color_pool =
6897 iris_bufmgr_get_border_color_pool(screen->bufmgr);
6898
6899 /* Re-emit 3DSTATE_DS before any 3DPRIMITIVE when tessellation is on */
6900 if (intel_needs_workaround(batch->screen->devinfo, 22018402687) &&
6901 ice->shaders.prog[MESA_SHADER_TESS_EVAL])
6902 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TES;
6903
6904 uint64_t dirty = ice->state.dirty;
6905 uint64_t stage_dirty = ice->state.stage_dirty;
6906
6907 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER) &&
6908 !(stage_dirty & IRIS_ALL_STAGE_DIRTY_FOR_RENDER))
6909 return;
6910
6911 struct iris_genx_state *genx = ice->state.genx;
6912 struct iris_binder *binder = &ice->state.binder;
6913 struct iris_fs_data *fs_data =
6914 iris_fs_data(ice->shaders.prog[MESA_SHADER_FRAGMENT]);
6915
6916 /* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
6917 * CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
6918 */
6919 bool needs_wa_14018912822 =
6920 screen->driconf.intel_enable_wa_14018912822 &&
6921 intel_needs_workaround(batch->screen->devinfo, 14018912822) &&
6922 util_framebuffer_get_num_samples(&ice->state.framebuffer) > 1;
6923
6924 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
6925 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
6926 uint32_t cc_vp_address;
6927 bool wa_18020335297_applied = false;
6928
6929 /* Wa_18020335297 - Apply the WA when viewport ptr is reprogrammed. */
6930 if (intel_needs_workaround(screen->devinfo, 18020335297) &&
6931 batch->name == IRIS_BATCH_RENDER &&
6932 ice->state.viewport_ptr_set) {
6933 emit_wa_18020335297_dummy_draw(batch);
6934 wa_18020335297_applied = true;
6935 }
6936
6937 /* XXX: could avoid streaming for depth_clip [0,1] case. */
6938 uint32_t *cc_vp_map =
6939 stream_state(batch, ice->state.dynamic_uploader,
6940 &ice->state.last_res.cc_vp,
6941 4 * ice->state.num_viewports *
6942 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
6943 for (int i = 0; i < ice->state.num_viewports; i++) {
6944 float zmin, zmax;
6945 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
6946 ice->state.window_space_position,
6947 &zmin, &zmax);
6948 if (cso_rast->depth_clip_near)
6949 zmin = 0.0;
6950 if (cso_rast->depth_clip_far)
6951 zmax = 1.0;
6952
6953 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
6954 ccv.MinimumDepth = zmin;
6955 ccv.MaximumDepth = zmax;
6956 }
6957
6958 cc_vp_map += GENX(CC_VIEWPORT_length);
6959 }
6960
6961 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
6962 ptr.CCViewportPointer = cc_vp_address;
6963 }
6964
6965 if (wa_18020335297_applied) {
6966 #if GFX_VER >= 12
6967 iris_emit_cmd(batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) { }
6968 #endif
6969 /* Dirty all emitted WA state to make sure that current real
6970 * state is restored.
6971 */
6972 dirty |= IRIS_DIRTY_VFG |
6973 IRIS_DIRTY_VF |
6974 IRIS_DIRTY_RASTER |
6975 IRIS_DIRTY_VF_STATISTICS |
6976 IRIS_DIRTY_VF_SGVS |
6977 IRIS_DIRTY_CLIP |
6978 IRIS_DIRTY_STREAMOUT |
6979 IRIS_DIRTY_VERTEX_ELEMENTS |
6980 IRIS_DIRTY_VF_TOPOLOGY;
6981
6982 for (int stage = 0; stage < MESA_SHADER_FRAGMENT; stage++) {
6983 if (ice->shaders.prog[stage])
6984 stage_dirty |= (IRIS_STAGE_DIRTY_VS << stage);
6985 }
6986 }
6987 ice->state.viewport_ptr_set = true;
6988 }
6989
6990 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
6991 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
6992 int32_t x_min, y_min, x_max, y_max;
6993 uint32_t sf_cl_vp_address;
6994 uint32_t *vp_map =
6995 stream_state(batch, ice->state.dynamic_uploader,
6996 &ice->state.last_res.sf_cl_vp,
6997 4 * ice->state.num_viewports *
6998 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
6999
7000 x_min = ice->state.render_area.x;
7001 y_min = ice->state.render_area.y;
7002 x_max = ice->state.render_area.width;
7003 y_max = ice->state.render_area.height;
7004
7005 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
7006 const struct pipe_viewport_state *state = &ice->state.viewports[i];
7007 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
7008
7009 float vp_xmin = viewport_extent(state, 0, -1.0f);
7010 float vp_xmax = viewport_extent(state, 0, 1.0f);
7011 float vp_ymin = viewport_extent(state, 1, -1.0f);
7012 float vp_ymax = viewport_extent(state, 1, 1.0f);
7013
7014 intel_calculate_guardband_size(x_min, x_max, y_min, y_max,
7015 state->scale[0], state->scale[1],
7016 state->translate[0], state->translate[1],
7017 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
7018
7019 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
7020 vp.ViewportMatrixElementm00 = state->scale[0];
7021 vp.ViewportMatrixElementm11 = state->scale[1];
7022 vp.ViewportMatrixElementm22 = state->scale[2];
7023 vp.ViewportMatrixElementm30 = state->translate[0];
7024 vp.ViewportMatrixElementm31 = state->translate[1];
7025 vp.ViewportMatrixElementm32 = state->translate[2];
7026 vp.XMinClipGuardband = gb_xmin;
7027 vp.XMaxClipGuardband = gb_xmax;
7028 vp.YMinClipGuardband = gb_ymin;
7029 vp.YMaxClipGuardband = gb_ymax;
7030 vp.XMinViewPort = MAX2(vp_xmin, 0);
7031 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
7032 vp.YMinViewPort = MAX2(vp_ymin, 0);
7033 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
7034 }
7035
7036 vp_map += GENX(SF_CLIP_VIEWPORT_length);
7037 }
7038
7039 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
7040 ptr.SFClipViewportPointer = sf_cl_vp_address;
7041 }
7042 }
7043
7044 if (dirty & IRIS_DIRTY_URB) {
7045 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
7046 if (!ice->shaders.prog[i]) {
7047 ice->shaders.urb.cfg.size[i] = 1;
7048 } else {
7049 struct iris_vue_data *vue_data =
7050 iris_vue_data(ice->shaders.prog[i]);
7051 ice->shaders.urb.cfg.size[i] = vue_data->urb_entry_size;
7052 }
7053 assert(ice->shaders.urb.cfg.size[i] != 0);
7054 }
7055
7056 genX(emit_urb_config)(batch,
7057 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
7058 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
7059 }
7060
7061 if (dirty & IRIS_DIRTY_BLEND_STATE) {
7062 struct iris_blend_state *cso_blend = ice->state.cso_blend;
7063 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7064 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
7065
7066 bool color_blend_zero = false;
7067 bool alpha_blend_zero = false;
7068
7069 /* Always write at least one BLEND_STATE - the final RT message will
7070 * reference BLEND_STATE[0] even if there aren't color writes. There
7071 * may still be alpha testing, computed depth, and so on.
7072 */
7073 const int rt_dwords =
7074 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
7075
7076 uint32_t blend_offset;
7077 uint32_t *blend_map =
7078 stream_state(batch, ice->state.dynamic_uploader,
7079 &ice->state.last_res.blend,
7080 96, 64, &blend_offset);
7081
7082 /* Copy of blend entries for merging dynamic changes. */
7083 uint32_t blend_entries[4 * rt_dwords];
7084 memcpy(blend_entries, &cso_blend->blend_state[1], sizeof(blend_entries));
7085
7086 unsigned cbufs = MAX2(cso_fb->nr_cbufs, 1);
7087
7088 uint32_t *blend_entry = blend_entries;
7089 for (unsigned i = 0; i < cbufs; i++) {
7090 int dst_blend_factor = cso_blend->ps_dst_blend_factor[i];
7091 int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[i];
7092 uint32_t entry[GENX(BLEND_STATE_ENTRY_length)];
7093 iris_pack_state(GENX(BLEND_STATE_ENTRY), entry, be) {
7094 if (needs_wa_14018912822) {
7095 if (dst_blend_factor == BLENDFACTOR_ZERO) {
7096 dst_blend_factor = BLENDFACTOR_CONST_COLOR;
7097 color_blend_zero = true;
7098 }
7099 if (dst_alpha_blend_factor == BLENDFACTOR_ZERO) {
7100 dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
7101 alpha_blend_zero = true;
7102 }
7103 }
7104 be.DestinationBlendFactor = dst_blend_factor;
7105 be.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
7106 }
7107
7108 /* Merge entry. */
7109 uint32_t *dst = blend_entry;
7110 uint32_t *src = entry;
7111 for (unsigned j = 0; j < GENX(BLEND_STATE_ENTRY_length); j++)
7112 *dst |= *src;
7113
7114 blend_entry += GENX(BLEND_STATE_ENTRY_length);
7115 }
7116
7117 /* Blend constants modified for Wa_14018912822. */
7118 if (ice->state.color_blend_zero != color_blend_zero) {
7119 ice->state.color_blend_zero = color_blend_zero;
7120 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
7121 }
7122 if (ice->state.alpha_blend_zero != alpha_blend_zero) {
7123 ice->state.alpha_blend_zero = alpha_blend_zero;
7124 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
7125 }
7126
7127 uint32_t blend_state_header;
7128 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
7129 bs.AlphaTestEnable = cso_zsa->alpha_enabled;
7130 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha_func);
7131 }
7132
7133 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
7134 memcpy(&blend_map[1], blend_entries, 4 * rt_dwords);
7135
7136 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
7137 ptr.BlendStatePointer = blend_offset;
7138 ptr.BlendStatePointerValid = true;
7139 }
7140 }
7141
7142 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
7143 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
7144 #if GFX_VER == 8
7145 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
7146 #endif
7147 uint32_t cc_offset;
7148 void *cc_map =
7149 stream_state(batch, ice->state.dynamic_uploader,
7150 &ice->state.last_res.color_calc,
7151 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
7152 64, &cc_offset);
7153 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
7154 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
7155 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha_ref_value;
7156 cc.BlendConstantColorRed = ice->state.color_blend_zero ?
7157 0.0 : ice->state.blend_color.color[0];
7158 cc.BlendConstantColorGreen = ice->state.color_blend_zero ?
7159 0.0 : ice->state.blend_color.color[1];
7160 cc.BlendConstantColorBlue = ice->state.color_blend_zero ?
7161 0.0 : ice->state.blend_color.color[2];
7162 cc.BlendConstantColorAlpha = ice->state.alpha_blend_zero ?
7163 0.0 : ice->state.blend_color.color[3];
7164 #if GFX_VER == 8
7165 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
7166 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
7167 #endif
7168 }
7169 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
7170 ptr.ColorCalcStatePointer = cc_offset;
7171 ptr.ColorCalcStatePointerValid = true;
7172 }
7173 }
7174
7175 #if GFX_VERx10 == 125
7176 if (dirty & (IRIS_DIRTY_RENDER_BUFFER | IRIS_DIRTY_DEPTH_BUFFER)) {
7177 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7178 unsigned tile_width, tile_height;
7179
7180 ice->state.use_tbimr = batch->screen->driconf.enable_tbimr &&
7181 calculate_tile_dimensions(ice, &tile_width, &tile_height);
7182
7183 if (ice->state.use_tbimr) {
7184 /* Use a batch size of 128 polygons per slice as recommended
7185 * by BSpec 68436 "TBIMR Programming".
7186 */
7187 const unsigned num_slices = screen->devinfo->num_slices;
7188 const unsigned batch_size = DIV_ROUND_UP(num_slices, 2) * 256;
7189
7190 iris_emit_cmd(batch, GENX(3DSTATE_TBIMR_TILE_PASS_INFO), tbimr) {
7191 tbimr.TileRectangleHeight = tile_height;
7192 tbimr.TileRectangleWidth = tile_width;
7193 tbimr.VerticalTileCount = DIV_ROUND_UP(cso_fb->height, tile_height);
7194 tbimr.HorizontalTileCount = DIV_ROUND_UP(cso_fb->width, tile_width);
7195 tbimr.TBIMRBatchSize = util_logbase2(batch_size) - 5;
7196 tbimr.TileBoxCheck = true;
7197 }
7198 }
7199 }
7200 #endif
7201
7202 /* Wa_1604061319
7203 *
7204 * 3DSTATE_CONSTANT_* needs to be programmed before BTP_*
7205 *
7206 * Testing shows that all the 3DSTATE_CONSTANT_XS need to be emitted if
7207 * any stage has a dirty binding table.
7208 */
7209 const bool emit_const_wa = GFX_VER >= 11 &&
7210 ((dirty & IRIS_DIRTY_RENDER_BUFFER) ||
7211 (stage_dirty & IRIS_ALL_STAGE_DIRTY_BINDINGS_FOR_RENDER));
7212
7213 #if GFX_VER >= 12
7214 uint32_t nobuffer_stages = 0;
7215 #endif
7216
7217 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7218 if (!(stage_dirty & (IRIS_STAGE_DIRTY_CONSTANTS_VS << stage)) &&
7219 !emit_const_wa)
7220 continue;
7221
7222 struct iris_shader_state *shs = &ice->state.shaders[stage];
7223 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
7224
7225 if (!shader)
7226 continue;
7227
7228 if (shs->sysvals_need_upload)
7229 upload_sysvals(ice, stage, NULL);
7230
7231 struct push_bos push_bos = {};
7232 setup_constant_buffers(ice, batch, stage, &push_bos);
7233
7234 #if GFX_VER >= 12
7235 /* If this stage doesn't have any push constants, emit it later in a
7236 * single CONSTANT_ALL packet with all the other stages.
7237 */
7238 if (push_bos.buffer_count == 0) {
7239 nobuffer_stages |= 1 << stage;
7240 continue;
7241 }
7242
7243 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
7244 * contains only 5 bits, so we can only use it for buffers smaller than
7245 * 32.
7246 *
7247 * According to Wa_16011448509, Gfx12.0 misinterprets some address bits
7248 * in 3DSTATE_CONSTANT_ALL. It should still be safe to use the command
7249 * for disabling stages, where all address bits are zero. However, we
7250 * can't safely use it for general buffers with arbitrary addresses.
7251 * Just fall back to the individual 3DSTATE_CONSTANT_XS commands in that
7252 * case.
7253 */
7254 if (push_bos.max_length < 32 && GFX_VERx10 > 120) {
7255 emit_push_constant_packet_all(ice, batch, 1 << stage, &push_bos);
7256 continue;
7257 }
7258 #endif
7259 emit_push_constant_packets(ice, batch, stage, &push_bos);
7260 }
7261
7262 #if GFX_VER >= 12
7263 if (nobuffer_stages)
7264 /* Wa_16011448509: all address bits are zero */
7265 emit_push_constant_packet_all(ice, batch, nobuffer_stages, NULL);
7266 #endif
7267
7268 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7269 /* Gfx9 requires 3DSTATE_BINDING_TABLE_POINTERS_XS to be re-emitted
7270 * in order to commit constants. TODO: Investigate "Disable Gather
7271 * at Set Shader" to go back to legacy mode...
7272 */
7273 if (stage_dirty & ((IRIS_STAGE_DIRTY_BINDINGS_VS |
7274 (GFX_VER == 9 ? IRIS_STAGE_DIRTY_CONSTANTS_VS : 0))
7275 << stage)) {
7276 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
7277 ptr._3DCommandSubOpcode = 38 + stage;
7278 ptr.PointertoVSBindingTable =
7279 binder->bt_offset[stage] >> IRIS_BT_OFFSET_SHIFT;
7280 }
7281 }
7282 }
7283
7284 if (GFX_VER >= 11 && (dirty & IRIS_DIRTY_RENDER_BUFFER)) {
7285 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
7286 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
7287
7288 /* The PIPE_CONTROL command description says:
7289 *
7290 * "Whenever a Binding Table Index (BTI) used by a Render Target
7291 * Message points to a different RENDER_SURFACE_STATE, SW must issue a
7292 * Render Target Cache Flush by enabling this bit. When render target
7293 * flush is set due to new association of BTI, PS Scoreboard Stall bit
7294 * must be set in this packet."
7295 */
7296 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
7297 iris_emit_pipe_control_flush(batch, "workaround: RT BTI change [draw]",
7298 PIPE_CONTROL_RENDER_TARGET_FLUSH |
7299 PIPE_CONTROL_STALL_AT_SCOREBOARD);
7300 }
7301
7302 if (dirty & IRIS_DIRTY_RENDER_BUFFER)
7303 trace_framebuffer_state(&batch->trace, NULL, &ice->state.framebuffer);
7304
7305 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7306 if (stage_dirty & (IRIS_STAGE_DIRTY_BINDINGS_VS << stage)) {
7307 iris_populate_binding_table(ice, batch, stage, false);
7308 }
7309 }
7310
7311 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7312 if (!(stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_VS << stage)) ||
7313 !ice->shaders.prog[stage])
7314 continue;
7315
7316 iris_upload_sampler_states(ice, stage);
7317
7318 struct iris_shader_state *shs = &ice->state.shaders[stage];
7319 struct pipe_resource *res = shs->sampler_table.res;
7320 if (res)
7321 iris_use_pinned_bo(batch, iris_resource_bo(res), false,
7322 IRIS_DOMAIN_NONE);
7323
7324 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
7325 ptr._3DCommandSubOpcode = 43 + stage;
7326 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
7327 }
7328 }
7329
7330 if (ice->state.need_border_colors)
7331 iris_use_pinned_bo(batch, border_color_pool->bo, false, IRIS_DOMAIN_NONE);
7332
7333 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
7334 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
7335 ms.PixelLocation =
7336 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
7337 if (ice->state.framebuffer.samples > 0)
7338 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
7339 }
7340 }
7341
7342 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
7343 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
7344 ms.SampleMask = ice->state.sample_mask;
7345 }
7346 }
7347
7348 #if GFX_VERx10 >= 125
7349 /* This is only used on >= gfx125 for dynamic 3DSTATE_TE and
7350 * 3DSTATE_VFG emission related workarounds.
7351 */
7352 bool program_uses_primitive_id = false;
7353
7354 /* Check if FS stage will use primitive ID overrides. */
7355 const struct intel_vue_map *last_vue_map =
7356 &iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
7357 if ((fs_data->inputs & VARYING_BIT_PRIMITIVE_ID) &&
7358 last_vue_map->varying_to_slot[VARYING_SLOT_PRIMITIVE_ID] == -1) {
7359 program_uses_primitive_id = true;
7360 }
7361 #endif
7362
7363 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
7364 if (!(stage_dirty & (IRIS_STAGE_DIRTY_VS << stage)))
7365 continue;
7366
7367 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
7368
7369 if (shader) {
7370 struct iris_resource *cache = (void *) shader->assembly.res;
7371 iris_use_pinned_bo(batch, cache->bo, false, IRIS_DOMAIN_NONE);
7372
7373 uint32_t scratch_addr =
7374 pin_scratch_space(ice, batch, shader, stage);
7375
7376 #if GFX_VERx10 >= 125
7377 shader_program_uses_primitive_id(ice, batch, shader, stage,
7378 &program_uses_primitive_id);
7379 #endif
7380
7381 if (stage == MESA_SHADER_FRAGMENT) {
7382 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
7383 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7384
7385 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
7386 _iris_pack_command(batch, GENX(3DSTATE_PS), ps_state, ps) {
7387 #if GFX_VER >= 9
7388 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(shader->brw_prog_data);
7389 #else
7390 struct elk_wm_prog_data *wm_prog_data = elk_wm_prog_data(shader->elk_prog_data);
7391 #endif
7392 intel_set_ps_dispatch_state(&ps, batch->screen->devinfo,
7393 wm_prog_data, util_framebuffer_get_num_samples(cso_fb),
7394 0 /* msaa_flags */);
7395
7396 #if GFX_VER == 12
7397 assert(fs_data->dispatch_multi == 0 ||
7398 (fs_data->dispatch_multi == 16 && fs_data->max_polygons == 2));
7399 ps.DualSIMD8DispatchEnable = fs_data->dispatch_multi;
7400 /* XXX - No major improvement observed from enabling
7401 * overlapping subspans, but it could be helpful
7402 * in theory when the requirements listed on the
7403 * BSpec page for 3DSTATE_PS_BODY are met.
7404 */
7405 ps.OverlappingSubspansEnable = false;
7406 #endif
7407
7408 #if GFX_VER >= 9
7409 ps.DispatchGRFStartRegisterForConstantSetupData0 =
7410 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
7411 ps.DispatchGRFStartRegisterForConstantSetupData1 =
7412 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
7413 #if GFX_VER < 20
7414 ps.DispatchGRFStartRegisterForConstantSetupData2 =
7415 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
7416 #endif
7417
7418 ps.KernelStartPointer0 = KSP(shader) +
7419 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
7420 ps.KernelStartPointer1 = KSP(shader) +
7421 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
7422 #if GFX_VER < 20
7423 ps.KernelStartPointer2 = KSP(shader) +
7424 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
7425 #endif
7426 #else
7427 ps.DispatchGRFStartRegisterForConstantSetupData0 =
7428 elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
7429 ps.DispatchGRFStartRegisterForConstantSetupData1 =
7430 elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
7431 ps.DispatchGRFStartRegisterForConstantSetupData2 =
7432 elk_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
7433
7434 ps.KernelStartPointer0 = KSP(shader) +
7435 elk_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
7436 ps.KernelStartPointer1 = KSP(shader) +
7437 elk_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
7438 ps.KernelStartPointer2 = KSP(shader) +
7439 elk_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
7440 #endif
7441
7442 #if GFX_VERx10 >= 125
7443 ps.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
7444 #else
7445 ps.ScratchSpaceBasePointer =
7446 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
7447 #endif
7448 }
7449
7450 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
7451 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
7452 #if GFX_VER >= 9
7453 if (!fs_data->uses_sample_mask)
7454 psx.InputCoverageMaskState = ICMS_NONE;
7455 else if (fs_data->post_depth_coverage)
7456 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
7457 else if (fs_data->inner_coverage &&
7458 cso->conservative_rasterization)
7459 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
7460 else
7461 psx.InputCoverageMaskState = ICMS_NORMAL;
7462 #else
7463 psx.PixelShaderUsesInputCoverageMask =
7464 fs_data->uses_sample_mask;
7465 #endif
7466 }
7467
7468 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
7469 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
7470 iris_emit_merge(batch, shader_ps, ps_state,
7471 GENX(3DSTATE_PS_length));
7472 iris_emit_merge(batch, shader_psx, psx_state,
7473 GENX(3DSTATE_PS_EXTRA_length));
7474 #if GFX_VERx10 >= 125
7475 } else if (stage == MESA_SHADER_TESS_EVAL) {
7476 uint32_t te_state[GENX(3DSTATE_TE_length)] = { 0 };
7477 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
7478 if (intel_needs_workaround(screen->devinfo, 14015055625) &&
7479 program_uses_primitive_id)
7480 te.TessellationDistributionMode = TEDMODE_OFF;
7481 else if (intel_needs_workaround(screen->devinfo, 22012699309))
7482 te.TessellationDistributionMode = TEDMODE_RR_STRICT;
7483 else
7484 te.TessellationDistributionMode = TEDMODE_RR_FREE;
7485 }
7486
7487 uint32_t ds_state[GENX(3DSTATE_DS_length)] = { 0 };
7488 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
7489 if (scratch_addr)
7490 ds.ScratchSpaceBuffer =
7491 scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
7492 }
7493
7494 uint32_t *shader_ds = (uint32_t *) shader->derived_data;
7495 uint32_t *shader_te = shader_ds + GENX(3DSTATE_DS_length);
7496
7497 iris_emit_merge(batch, shader_ds, ds_state,
7498 GENX(3DSTATE_DS_length));
7499 iris_emit_merge(batch, shader_te, te_state,
7500 GENX(3DSTATE_TE_length));
7501 #endif
7502 } else if (stage == MESA_SHADER_GEOMETRY) {
7503 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
7504
7505 uint32_t gs_state[GENX(3DSTATE_GS_length)] = { 0 };
7506 iris_pack_command(GENX(3DSTATE_GS), gs_state, gs) {
7507 gs.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
7508
7509 if (scratch_addr)
7510 #if GFX_VERx10 >= 125
7511 gs.ScratchSpaceBuffer =
7512 scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
7513 #else
7514 gs.ScratchSpaceBasePointer =
7515 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
7516 #endif
7517 }
7518
7519 uint32_t *shader_gs = (uint32_t *) shader->derived_data;
7520 iris_emit_merge(batch, shader_gs, gs_state,
7521 GENX(3DSTATE_GS_length));
7522 } else if (scratch_addr) {
7523 uint32_t *pkt = (uint32_t *) shader->derived_data;
7524 switch (stage) {
7525 case MESA_SHADER_VERTEX: MERGE_SCRATCH_ADDR(3DSTATE_VS); break;
7526 case MESA_SHADER_TESS_CTRL: MERGE_SCRATCH_ADDR(3DSTATE_HS); break;
7527 case MESA_SHADER_TESS_EVAL: {
7528 uint32_t *shader_ds = (uint32_t *) shader->derived_data;
7529 uint32_t *shader_te = shader_ds + GENX(3DSTATE_DS_length);
7530 iris_batch_emit(batch, shader_te, 4 * GENX(3DSTATE_TE_length));
7531 MERGE_SCRATCH_ADDR(3DSTATE_DS);
7532 break;
7533 }
7534 }
7535 } else {
7536 iris_batch_emit(batch, shader->derived_data,
7537 iris_derived_program_state_size(stage));
7538 }
7539 } else {
7540 if (stage == MESA_SHADER_TESS_EVAL) {
7541 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
7542 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
7543 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
7544 } else if (stage == MESA_SHADER_GEOMETRY) {
7545 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
7546 }
7547 }
7548 }
7549
7550 #if GFX_VERx10 >= 125
7551 /* Inspect program_uses_primitive_id state and dirty VFG if required. */
7552 if (intel_needs_workaround(batch->screen->devinfo, 14019166699) &&
7553 program_uses_primitive_id != ice->state.uses_primitive_id) {
7554 dirty |= IRIS_DIRTY_VFG;
7555 ice->state.uses_primitive_id = program_uses_primitive_id;
7556 }
7557 #endif
7558
7559 if (ice->state.streamout_active) {
7560 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
7561 /* Wa_16011411144
7562 * SW must insert a PIPE_CONTROL cmd before and after the
7563 * 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_* state is
7564 * not combined with other state changes.
7565 */
7566 if (intel_device_info_is_dg2(batch->screen->devinfo)) {
7567 iris_emit_pipe_control_flush(batch,
7568 "SO pre change stall WA",
7569 PIPE_CONTROL_CS_STALL);
7570 }
7571
7572 for (int i = 0; i < 4; i++) {
7573 struct iris_stream_output_target *tgt =
7574 (void *) ice->state.so_target[i];
7575 enum { dwords = GENX(3DSTATE_SO_BUFFER_length) };
7576 uint32_t *so_buffers = genx->so_buffers + i * dwords;
7577 bool zero_offset = false;
7578
7579 if (tgt) {
7580 zero_offset = tgt->zero_offset;
7581 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
7582 true, IRIS_DOMAIN_OTHER_WRITE);
7583 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
7584 true, IRIS_DOMAIN_OTHER_WRITE);
7585 }
7586
7587 if (zero_offset) {
7588 /* Skip the last DWord which contains "Stream Offset" of
7589 * 0xFFFFFFFF and instead emit a dword of zero directly.
7590 */
7591 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_StreamOffset_start) ==
7592 32 * (dwords - 1));
7593 const uint32_t zero = 0;
7594 iris_batch_emit(batch, so_buffers, 4 * (dwords - 1));
7595 iris_batch_emit(batch, &zero, sizeof(zero));
7596 tgt->zero_offset = false;
7597 } else {
7598 iris_batch_emit(batch, so_buffers, 4 * dwords);
7599 }
7600 }
7601
7602 /* Wa_16011411144 */
7603 if (intel_device_info_is_dg2(batch->screen->devinfo)) {
7604 iris_emit_pipe_control_flush(batch,
7605 "SO post change stall WA",
7606 PIPE_CONTROL_CS_STALL);
7607 }
7608 }
7609
7610 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
7611 /* Wa_16011773973:
7612 * If SOL is enabled and SO_DECL state has to be programmed,
7613 * 1. Send 3D State SOL state with SOL disabled
7614 * 2. Send SO_DECL NP state
7615 * 3. Send 3D State SOL with SOL Enabled
7616 */
7617 if (intel_device_info_is_dg2(batch->screen->devinfo))
7618 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
7619
7620 uint32_t *decl_list =
7621 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
7622 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
7623
7624 #if GFX_VER >= 11 && GFX_VER < 20
7625 /* ICL PRMs, Volume 2a - Command Reference: Instructions,
7626 * 3DSTATE_SO_DECL_LIST:
7627 *
7628 * "Workaround: This command must be followed by a PIPE_CONTROL
7629 * with CS Stall bit set."
7630 *
7631 * On DG2+ also known as Wa_1509820217.
7632 */
7633 iris_emit_pipe_control_flush(batch,
7634 "workaround: cs stall after so_decl",
7635 PIPE_CONTROL_CS_STALL);
7636 #endif
7637 }
7638
7639 if (dirty & IRIS_DIRTY_STREAMOUT) {
7640 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
7641
7642 #if GFX_VERx10 >= 120
7643 /* Wa_16013994831 - Disable preemption. */
7644 if (intel_needs_workaround(batch->screen->devinfo, 16013994831))
7645 iris_preemption_streamout_wa(ice, batch, false);
7646 #endif
7647
7648 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
7649 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
7650 sol.SOFunctionEnable = true;
7651 sol.SOStatisticsEnable = true;
7652
7653 sol.RenderingDisable = cso_rast->rasterizer_discard &&
7654 !ice->state.prims_generated_query_active;
7655 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
7656
7657
7658 #if INTEL_NEEDS_WA_18022508906
7659 /* Wa_14017076903 :
7660 *
7661 * SKL PRMs, Volume 7: 3D-Media-GPGPU, Stream Output Logic (SOL) Stage:
7662 *
7663 * SOL_INT::Render_Enable =
7664 * (3DSTATE_STREAMOUT::Force_Rending == Force_On) ||
7665 * (
7666 * (3DSTATE_STREAMOUT::Force_Rending != Force_Off) &&
7667 * !(3DSTATE_GS::Enable && 3DSTATE_GS::Output Vertex Size == 0) &&
7668 * !3DSTATE_STREAMOUT::API_Render_Disable &&
7669 * (
7670 * 3DSTATE_DEPTH_STENCIL_STATE::Stencil_TestEnable ||
7671 * 3DSTATE_DEPTH_STENCIL_STATE::Depth_TestEnable ||
7672 * 3DSTATE_DEPTH_STENCIL_STATE::Depth_WriteEnable ||
7673 * 3DSTATE_PS_EXTRA::PS_Valid ||
7674 * 3DSTATE_WM::Legacy Depth_Buffer_Clear ||
7675 * 3DSTATE_WM::Legacy Depth_Buffer_Resolve_Enable ||
7676 * 3DSTATE_WM::Legacy Hierarchical_Depth_Buffer_Resolve_Enable
7677 * )
7678 * )
7679 *
7680 * If SOL_INT::Render_Enable is false, the SO stage will not forward any
7681 * topologies down the pipeline. Which is not what we want for occlusion
7682 * queries.
7683 *
7684 * Here we force rendering to get SOL_INT::Render_Enable when occlusion
7685 * queries are active.
7686 */
7687 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
7688 if (!cso_rast->rasterizer_discard && ice->state.occlusion_query_active)
7689 sol.ForceRendering = Force_on;
7690 #endif
7691 }
7692
7693 assert(ice->state.streamout);
7694
7695 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
7696 GENX(3DSTATE_STREAMOUT_length));
7697 }
7698 } else {
7699 if (dirty & IRIS_DIRTY_STREAMOUT) {
7700
7701 #if GFX_VERx10 >= 120
7702 /* Wa_16013994831 - Enable preemption. */
7703 if (!ice->state.genx->object_preemption)
7704 iris_preemption_streamout_wa(ice, batch, true);
7705 #endif
7706
7707 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
7708 }
7709 }
7710
7711 if (dirty & IRIS_DIRTY_CLIP) {
7712 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
7713 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7714
7715 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
7716 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
7717 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
7718 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
7719 : ice->state.prim_is_points_or_lines);
7720 const struct intel_vue_map *last =
7721 &iris_vue_data(ice->shaders.last_vue_shader)->vue_map;
7722
7723 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
7724 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
7725 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
7726 if (cso_rast->rasterizer_discard)
7727 cl.ClipMode = CLIPMODE_REJECT_ALL;
7728 else if (ice->state.window_space_position)
7729 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
7730 else
7731 cl.ClipMode = CLIPMODE_NORMAL;
7732
7733 cl.PerspectiveDivideDisable = ice->state.window_space_position;
7734 cl.ViewportXYClipTestEnable = !points_or_lines;
7735
7736 cl.NonPerspectiveBarycentricEnable = fs_data->uses_nonperspective_interp_modes;
7737
7738 cl.ForceZeroRTAIndexEnable = cso_fb->layers <= 1 ||
7739 !(last->slots_valid & VARYING_BIT_LAYER);
7740 cl.MaximumVPIndex = ice->state.num_viewports - 1;
7741 }
7742 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
7743 ARRAY_SIZE(cso_rast->clip));
7744 }
7745
7746 if (dirty & (IRIS_DIRTY_RASTER | IRIS_DIRTY_URB)) {
7747 /* From the Browadwell PRM, Volume 2, documentation for
7748 * 3DSTATE_RASTER, "Antialiasing Enable":
7749 *
7750 * "This field must be disabled if any of the render targets
7751 * have integer (UINT or SINT) surface format."
7752 *
7753 * Additionally internal documentation for Gfx12+ states:
7754 *
7755 * "This bit MUST not be set when NUM_MULTISAMPLES > 1 OR
7756 * FORCED_SAMPLE_COUNT > 1."
7757 */
7758 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7759 unsigned samples = util_framebuffer_get_num_samples(cso_fb);
7760 struct iris_rasterizer_state *cso = ice->state.cso_rast;
7761
7762 bool aa_enable = cso->line_smooth &&
7763 !ice->state.has_integer_rt &&
7764 !(batch->screen->devinfo->ver >= 12 && samples > 1);
7765
7766 uint32_t dynamic_raster[GENX(3DSTATE_RASTER_length)];
7767 iris_pack_command(GENX(3DSTATE_RASTER), &dynamic_raster, raster) {
7768 raster.AntialiasingEnable = aa_enable;
7769 }
7770 iris_emit_merge(batch, cso->raster, dynamic_raster,
7771 ARRAY_SIZE(cso->raster));
7772
7773 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
7774 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
7775 sf.ViewportTransformEnable = !ice->state.window_space_position;
7776
7777 #if GFX_VER >= 12
7778 sf.DerefBlockSize = ice->state.urb_deref_block_size;
7779 #endif
7780 }
7781 iris_emit_merge(batch, cso->sf, dynamic_sf,
7782 ARRAY_SIZE(dynamic_sf));
7783 }
7784
7785 if (dirty & IRIS_DIRTY_WM) {
7786 struct iris_rasterizer_state *cso = ice->state.cso_rast;
7787 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
7788
7789 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
7790 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
7791
7792 wm.BarycentricInterpolationMode =
7793 iris_fs_barycentric_modes(ice->shaders.prog[MESA_SHADER_FRAGMENT], 0);
7794
7795 if (fs_data->early_fragment_tests)
7796 wm.EarlyDepthStencilControl = EDSC_PREPS;
7797 else if (fs_data->has_side_effects)
7798 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
7799 else
7800 wm.EarlyDepthStencilControl = EDSC_NORMAL;
7801
7802 /* We could skip this bit if color writes are enabled. */
7803 if (fs_data->has_side_effects || fs_data->uses_kill)
7804 wm.ForceThreadDispatchEnable = ForceON;
7805 }
7806 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
7807 }
7808
7809 if (dirty & IRIS_DIRTY_SBE) {
7810 iris_emit_sbe(batch, ice);
7811 }
7812
7813 if (dirty & IRIS_DIRTY_PS_BLEND) {
7814 struct iris_blend_state *cso_blend = ice->state.cso_blend;
7815 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
7816 const struct shader_info *fs_info =
7817 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
7818
7819 int dst_blend_factor = cso_blend->ps_dst_blend_factor[0];
7820 int dst_alpha_blend_factor = cso_blend->ps_dst_alpha_blend_factor[0];
7821
7822 /* When MSAA is enabled, instead of using BLENDFACTOR_ZERO use
7823 * CONST_COLOR, CONST_ALPHA and supply zero by using blend constants.
7824 */
7825 if (needs_wa_14018912822) {
7826 if (ice->state.color_blend_zero)
7827 dst_blend_factor = BLENDFACTOR_CONST_COLOR;
7828 if (ice->state.alpha_blend_zero)
7829 dst_alpha_blend_factor = BLENDFACTOR_CONST_ALPHA;
7830 }
7831
7832 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
7833 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
7834 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
7835 pb.AlphaTestEnable = cso_zsa->alpha_enabled;
7836
7837 pb.DestinationBlendFactor = dst_blend_factor;
7838 pb.DestinationAlphaBlendFactor = dst_alpha_blend_factor;
7839
7840 /* The dual source blending docs caution against using SRC1 factors
7841 * when the shader doesn't use a dual source render target write.
7842 * Empirically, this can lead to GPU hangs, and the results are
7843 * undefined anyway, so simply disable blending to avoid the hang.
7844 */
7845 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
7846 (!cso_blend->dual_color_blending || fs_data->dual_src_blend);
7847 }
7848
7849 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
7850 ARRAY_SIZE(cso_blend->ps_blend));
7851 }
7852
7853 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
7854 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
7855 #if GFX_VER >= 9 && GFX_VER < 12
7856 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
7857 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
7858 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
7859 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
7860 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
7861 }
7862 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
7863 #else
7864 /* Use modify disable fields which allow us to emit packets
7865 * directly instead of merging them later.
7866 */
7867 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
7868 #endif
7869
7870 /* Depth or stencil write changed in cso. */
7871 if (intel_needs_workaround(batch->screen->devinfo, 18019816803) &&
7872 (dirty & IRIS_DIRTY_DS_WRITE_ENABLE)) {
7873 iris_emit_pipe_control_flush(
7874 batch, "workaround: PSS stall after DS write enable change",
7875 PIPE_CONTROL_PSS_STALL_SYNC);
7876 }
7877
7878 #if GFX_VER >= 12
7879 iris_batch_emit(batch, cso->depth_bounds, sizeof(cso->depth_bounds));
7880 #endif
7881 }
7882
7883 if (dirty & IRIS_DIRTY_STENCIL_REF) {
7884 #if GFX_VER >= 12
7885 /* Use modify disable fields which allow us to emit packets
7886 * directly instead of merging them later.
7887 */
7888 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
7889 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
7890 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
7891 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
7892 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
7893 wmds.StencilTestMaskModifyDisable = true;
7894 wmds.StencilWriteMaskModifyDisable = true;
7895 wmds.StencilStateModifyDisable = true;
7896 wmds.DepthStateModifyDisable = true;
7897 }
7898 iris_batch_emit(batch, stencil_refs, sizeof(stencil_refs));
7899 #endif
7900 }
7901
7902 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
7903 /* Wa_1409725701:
7904 * "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
7905 * stored as an array of up to 16 elements. The location of first
7906 * element of the array, as specified by Pointer to SCISSOR_RECT,
7907 * should be aligned to a 64-byte boundary.
7908 */
7909 uint32_t alignment = 64;
7910 uint32_t scissor_offset =
7911 emit_state(batch, ice->state.dynamic_uploader,
7912 &ice->state.last_res.scissor,
7913 ice->state.scissors,
7914 sizeof(struct pipe_scissor_state) *
7915 ice->state.num_viewports, alignment);
7916
7917 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
7918 ptr.ScissorRectPointer = scissor_offset;
7919 }
7920 }
7921
7922 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
7923 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
7924
7925 /* Do not emit the cso yet. We may need to update clear params first. */
7926 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7927 struct iris_resource *zres = NULL, *sres = NULL;
7928 if (cso_fb->zsbuf) {
7929 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
7930 &zres, &sres);
7931 }
7932
7933 if (zres && ice->state.hiz_usage != ISL_AUX_USAGE_NONE) {
7934 #if GFX_VER < 20
7935 uint32_t *clear_params =
7936 cso_z->packets + ARRAY_SIZE(cso_z->packets) -
7937 GENX(3DSTATE_CLEAR_PARAMS_length);
7938
7939 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
7940 clear.DepthClearValueValid = true;
7941 clear.DepthClearValue = zres->aux.clear_color.f32[0];
7942 }
7943 #endif
7944 }
7945
7946 iris_batch_emit(batch, cso_z->packets, sizeof(cso_z->packets));
7947
7948 if (intel_needs_workaround(batch->screen->devinfo, 1408224581) ||
7949 intel_needs_workaround(batch->screen->devinfo, 14014097488) ||
7950 intel_needs_workaround(batch->screen->devinfo, 14016712196)) {
7951 /* Wa_1408224581
7952 *
7953 * Workaround: Gfx12LP Astep only An additional pipe control with
7954 * post-sync = store dword operation would be required.( w/a is to
7955 * have an additional pipe control after the stencil state whenever
7956 * the surface state bits of this state is changing).
7957 *
7958 * This also seems sufficient to handle Wa_14014097488 and
7959 * Wa_14016712196.
7960 */
7961 iris_emit_pipe_control_write(batch, "WA for depth/stencil state",
7962 PIPE_CONTROL_WRITE_IMMEDIATE,
7963 screen->workaround_address.bo,
7964 screen->workaround_address.offset, 0);
7965 }
7966
7967 if (zres)
7968 genX(emit_depth_state_workarounds)(ice, batch, &zres->surf);
7969 }
7970
7971 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
7972 /* Listen for buffer changes, and also write enable changes. */
7973 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
7974 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
7975 }
7976
7977 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
7978 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
7979 for (int i = 0; i < 32; i++) {
7980 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
7981 }
7982 }
7983 }
7984
7985 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
7986 struct iris_rasterizer_state *cso = ice->state.cso_rast;
7987 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
7988 #if GFX_VER >= 11
7989 /* ICL PRMs, Volume 2a - Command Reference: Instructions,
7990 * 3DSTATE_LINE_STIPPLE:
7991 *
7992 * "Workaround: This command must be followed by a PIPE_CONTROL with
7993 * CS Stall bit set."
7994 */
7995 iris_emit_pipe_control_flush(batch,
7996 "workaround: post 3DSTATE_LINE_STIPPLE",
7997 PIPE_CONTROL_CS_STALL);
7998 #endif
7999 }
8000
8001 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
8002 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
8003 topo.PrimitiveTopologyType =
8004 translate_prim_type(draw->mode, ice->state.vertices_per_patch);
8005 }
8006 }
8007
8008 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
8009 int count = util_bitcount64(ice->state.bound_vertex_buffers);
8010 uint64_t dynamic_bound = ice->state.bound_vertex_buffers;
8011
8012 if (ice->state.vs_uses_draw_params && !skip_vb_params) {
8013 assert(ice->draw.draw_params.res);
8014
8015 struct iris_vertex_buffer_state *state =
8016 &(ice->state.genx->vertex_buffers[count]);
8017 pipe_resource_reference(&state->resource, ice->draw.draw_params.res);
8018 struct iris_resource *res = (void *) state->resource;
8019
8020 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
8021 vb.VertexBufferIndex = count;
8022 vb.AddressModifyEnable = true;
8023 vb.BufferPitch = 0;
8024 vb.BufferSize = res->bo->size - ice->draw.draw_params.offset;
8025 vb.BufferStartingAddress =
8026 ro_bo(NULL, res->bo->address +
8027 (int) ice->draw.draw_params.offset);
8028 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
8029 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
8030 #if GFX_VER >= 12
8031 vb.L3BypassDisable = true;
8032 #endif
8033 }
8034 dynamic_bound |= 1ull << count;
8035 count++;
8036 }
8037
8038 if (ice->state.vs_uses_derived_draw_params && !skip_vb_params) {
8039 struct iris_vertex_buffer_state *state =
8040 &(ice->state.genx->vertex_buffers[count]);
8041 pipe_resource_reference(&state->resource,
8042 ice->draw.derived_draw_params.res);
8043 struct iris_resource *res = (void *) ice->draw.derived_draw_params.res;
8044
8045 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
8046 vb.VertexBufferIndex = count;
8047 vb.AddressModifyEnable = true;
8048 vb.BufferPitch = 0;
8049 vb.BufferSize =
8050 res->bo->size - ice->draw.derived_draw_params.offset;
8051 vb.BufferStartingAddress =
8052 ro_bo(NULL, res->bo->address +
8053 (int) ice->draw.derived_draw_params.offset);
8054 vb.MOCS = iris_mocs(res->bo, &screen->isl_dev,
8055 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
8056 #if GFX_VER >= 12
8057 vb.L3BypassDisable = true;
8058 #endif
8059 }
8060 dynamic_bound |= 1ull << count;
8061 count++;
8062 }
8063
8064 if (count) {
8065 #if GFX_VER >= 11
8066 /* Gfx11+ doesn't need the cache workaround below */
8067 uint64_t bound = dynamic_bound;
8068 while (bound) {
8069 const int i = u_bit_scan64(&bound);
8070 iris_use_optional_res(batch, genx->vertex_buffers[i].resource,
8071 false, IRIS_DOMAIN_VF_READ);
8072 }
8073 #else
8074 /* The VF cache designers cut corners, and made the cache key's
8075 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
8076 * 32 bits of the address. If you have two vertex buffers which get
8077 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
8078 * you can get collisions (even within a single batch).
8079 *
8080 * So, we need to do a VF cache invalidate if the buffer for a VB
8081 * slot slot changes [48:32] address bits from the previous time.
8082 */
8083 unsigned flush_flags = 0;
8084
8085 uint64_t bound = dynamic_bound;
8086 while (bound) {
8087 const int i = u_bit_scan64(&bound);
8088 uint16_t high_bits = 0;
8089
8090 struct iris_resource *res =
8091 (void *) genx->vertex_buffers[i].resource;
8092 if (res) {
8093 iris_use_pinned_bo(batch, res->bo, false, IRIS_DOMAIN_VF_READ);
8094
8095 high_bits = res->bo->address >> 32ull;
8096 if (high_bits != ice->state.last_vbo_high_bits[i]) {
8097 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
8098 PIPE_CONTROL_CS_STALL;
8099 ice->state.last_vbo_high_bits[i] = high_bits;
8100 }
8101 }
8102 }
8103
8104 if (flush_flags) {
8105 iris_emit_pipe_control_flush(batch,
8106 "workaround: VF cache 32-bit key [VB]",
8107 flush_flags);
8108 }
8109 #endif
8110
8111 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
8112
8113 uint32_t *map =
8114 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
8115 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
8116 vb.DWordLength = (vb_dwords * count + 1) - 2;
8117 }
8118 map += 1;
8119
8120 const struct iris_vertex_element_state *cso_ve =
8121 ice->state.cso_vertex_elements;
8122
8123 bound = dynamic_bound;
8124 while (bound) {
8125 const int i = u_bit_scan64(&bound);
8126
8127 uint32_t vb_stride[GENX(VERTEX_BUFFER_STATE_length)];
8128 struct iris_bo *bo =
8129 iris_resource_bo(genx->vertex_buffers[i].resource);
8130 iris_pack_state(GENX(VERTEX_BUFFER_STATE), &vb_stride, vbs) {
8131 vbs.BufferPitch = cso_ve->stride[i];
8132 /* Unnecessary except to defeat the genxml nonzero checker */
8133 vbs.MOCS = iris_mocs(bo, &screen->isl_dev,
8134 ISL_SURF_USAGE_VERTEX_BUFFER_BIT);
8135 }
8136 for (unsigned d = 0; d < vb_dwords; d++)
8137 map[d] = genx->vertex_buffers[i].state[d] | vb_stride[d];
8138
8139 map += vb_dwords;
8140 }
8141 }
8142 }
8143
8144 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
8145 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
8146 const unsigned entries = MAX2(cso->count, 1);
8147 if (!(ice->state.vs_needs_sgvs_element ||
8148 ice->state.vs_uses_derived_draw_params ||
8149 ice->state.vs_needs_edge_flag)) {
8150 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
8151 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
8152 } else {
8153 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
8154 const unsigned dyn_count = cso->count +
8155 ice->state.vs_needs_sgvs_element +
8156 ice->state.vs_uses_derived_draw_params;
8157
8158 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
8159 &dynamic_ves, ve) {
8160 ve.DWordLength =
8161 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
8162 }
8163 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
8164 (cso->count - ice->state.vs_needs_edge_flag) *
8165 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
8166 uint32_t *ve_pack_dest =
8167 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
8168 GENX(VERTEX_ELEMENT_STATE_length)];
8169
8170 if (ice->state.vs_needs_sgvs_element) {
8171 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
8172 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
8173 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
8174 ve.Valid = true;
8175 ve.VertexBufferIndex =
8176 util_bitcount64(ice->state.bound_vertex_buffers);
8177 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
8178 ve.Component0Control = base_ctrl;
8179 ve.Component1Control = base_ctrl;
8180 ve.Component2Control = VFCOMP_STORE_0;
8181 ve.Component3Control = VFCOMP_STORE_0;
8182 }
8183 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
8184 }
8185 if (ice->state.vs_uses_derived_draw_params) {
8186 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
8187 ve.Valid = true;
8188 ve.VertexBufferIndex =
8189 util_bitcount64(ice->state.bound_vertex_buffers) +
8190 ice->state.vs_uses_draw_params;
8191 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
8192 ve.Component0Control = VFCOMP_STORE_SRC;
8193 ve.Component1Control = VFCOMP_STORE_SRC;
8194 ve.Component2Control = VFCOMP_STORE_0;
8195 ve.Component3Control = VFCOMP_STORE_0;
8196 }
8197 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
8198 }
8199 if (ice->state.vs_needs_edge_flag) {
8200 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
8201 ve_pack_dest[i] = cso->edgeflag_ve[i];
8202 }
8203
8204 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
8205 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
8206 }
8207
8208 if (!ice->state.vs_needs_edge_flag) {
8209 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
8210 entries * GENX(3DSTATE_VF_INSTANCING_length));
8211 } else {
8212 assert(cso->count > 0);
8213 const unsigned edgeflag_index = cso->count - 1;
8214 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
8215 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
8216 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
8217
8218 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
8219 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
8220 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
8221 vi.VertexElementIndex = edgeflag_index +
8222 ice->state.vs_needs_sgvs_element +
8223 ice->state.vs_uses_derived_draw_params;
8224 }
8225 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
8226 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
8227
8228 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
8229 entries * GENX(3DSTATE_VF_INSTANCING_length));
8230 }
8231 }
8232
8233 if (dirty & IRIS_DIRTY_VF_SGVS) {
8234 const struct iris_vs_data *vs_data =
8235 iris_vs_data(ice->shaders.prog[MESA_SHADER_VERTEX]);
8236 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
8237
8238 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
8239 if (vs_data->uses_vertexid) {
8240 sgv.VertexIDEnable = true;
8241 sgv.VertexIDComponentNumber = 2;
8242 sgv.VertexIDElementOffset =
8243 cso->count - ice->state.vs_needs_edge_flag;
8244 }
8245
8246 if (vs_data->uses_instanceid) {
8247 sgv.InstanceIDEnable = true;
8248 sgv.InstanceIDComponentNumber = 3;
8249 sgv.InstanceIDElementOffset =
8250 cso->count - ice->state.vs_needs_edge_flag;
8251 }
8252 }
8253 }
8254
8255 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
8256 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
8257 vf.StatisticsEnable = true;
8258 }
8259 }
8260
8261 if (dirty & IRIS_DIRTY_VF) {
8262 #if INTEL_WA_16012775297_GFX_VER
8263 /* Emit dummy VF statistics before each 3DSTATE_VF. */
8264 if (intel_needs_workaround(batch->screen->devinfo, 16012775297) &&
8265 (dirty & IRIS_DIRTY_VF_STATISTICS) == 0) {
8266 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
8267 vfs.StatisticsEnable = true;
8268 }
8269 }
8270 #endif
8271
8272 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
8273 #if GFX_VERx10 >= 125
8274 vf.GeometryDistributionEnable = true;
8275 #endif
8276 if (draw->primitive_restart) {
8277 vf.IndexedDrawCutIndexEnable = true;
8278 vf.CutIndex = draw->restart_index;
8279 }
8280 }
8281 }
8282
8283 #if GFX_VERx10 >= 125
8284 if (dirty & IRIS_DIRTY_VFG) {
8285 iris_emit_cmd(batch, GENX(3DSTATE_VFG), vfg) {
8286 /* Gfx12.5: If 3DSTATE_TE: TE Enable == 1 then RR_STRICT else RR_FREE */
8287 vfg.DistributionMode =
8288 #if GFX_VER < 20
8289 ice->shaders.prog[MESA_SHADER_TESS_EVAL] == NULL ? RR_FREE :
8290 #endif
8291 RR_STRICT;
8292 if (intel_needs_workaround(batch->screen->devinfo, 14019166699) &&
8293 program_uses_primitive_id)
8294 vfg.DistributionGranularity = InstanceLevelGranularity;
8295 else
8296 vfg.DistributionGranularity = BatchLevelGranularity;
8297 #if INTEL_WA_14014851047_GFX_VER
8298 vfg.GranularityThresholdDisable =
8299 intel_needs_workaround(batch->screen->devinfo, 14014851047);
8300 #endif
8301 vfg.ListCutIndexEnable = draw->primitive_restart;
8302 /* 192 vertices for TRILIST_ADJ */
8303 vfg.ListNBatchSizeScale = 0;
8304 /* Batch size of 384 vertices */
8305 vfg.List3BatchSizeScale = 2;
8306 /* Batch size of 128 vertices */
8307 vfg.List2BatchSizeScale = 1;
8308 /* Batch size of 128 vertices */
8309 vfg.List1BatchSizeScale = 2;
8310 /* Batch size of 256 vertices for STRIP topologies */
8311 vfg.StripBatchSizeScale = 3;
8312 /* 192 control points for PATCHLIST_3 */
8313 vfg.PatchBatchSizeScale = 1;
8314 /* 192 control points for PATCHLIST_3 */
8315 vfg.PatchBatchSizeMultiplier = 31;
8316 }
8317 }
8318 #endif
8319
8320 #if GFX_VER == 8
8321 if (dirty & IRIS_DIRTY_PMA_FIX) {
8322 bool enable = want_pma_fix(ice);
8323 genX(update_pma_fix)(ice, batch, enable);
8324 }
8325 #endif
8326
8327 if (ice->state.current_hash_scale != 1)
8328 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
8329
8330 #if GFX_VER >= 12
8331 genX(invalidate_aux_map_state)(batch);
8332 #endif
8333 }
8334
8335 static void
flush_vbos(struct iris_context * ice,struct iris_batch * batch)8336 flush_vbos(struct iris_context *ice, struct iris_batch *batch)
8337 {
8338 struct iris_genx_state *genx = ice->state.genx;
8339 uint64_t bound = ice->state.bound_vertex_buffers;
8340 while (bound) {
8341 const int i = u_bit_scan64(&bound);
8342 struct iris_bo *bo = iris_resource_bo(genx->vertex_buffers[i].resource);
8343 iris_emit_buffer_barrier_for(batch, bo, IRIS_DOMAIN_VF_READ);
8344 }
8345 }
8346
8347 static bool
point_or_line_list(enum mesa_prim prim_type)8348 point_or_line_list(enum mesa_prim prim_type)
8349 {
8350 switch (prim_type) {
8351 case MESA_PRIM_POINTS:
8352 case MESA_PRIM_LINES:
8353 case MESA_PRIM_LINE_STRIP:
8354 case MESA_PRIM_LINES_ADJACENCY:
8355 case MESA_PRIM_LINE_STRIP_ADJACENCY:
8356 case MESA_PRIM_LINE_LOOP:
8357 return true;
8358 default:
8359 return false;
8360 }
8361 return false;
8362 }
8363
8364 void
genX(emit_breakpoint)8365 genX(emit_breakpoint)(struct iris_batch *batch, bool emit_before_draw)
8366 {
8367 struct iris_context *ice = batch->ice;
8368 uint32_t draw_count = emit_before_draw ?
8369 p_atomic_inc_return(&ice->draw_call_count) :
8370 p_atomic_read(&ice->draw_call_count);
8371
8372 if (((draw_count == intel_debug_bkp_before_draw_count &&
8373 emit_before_draw) ||
8374 (draw_count == intel_debug_bkp_after_draw_count &&
8375 !emit_before_draw))) {
8376 iris_emit_cmd(batch, GENX(MI_SEMAPHORE_WAIT), sem) {
8377 sem.WaitMode = PollingMode;
8378 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD;
8379 sem.SemaphoreDataDword = 0x1;
8380 sem.SemaphoreAddress = rw_bo(batch->screen->breakpoint_bo, 0,
8381 IRIS_DOMAIN_OTHER_WRITE);
8382 };
8383 }
8384 }
8385
8386 void
genX(emit_3dprimitive_was)8387 genX(emit_3dprimitive_was)(struct iris_batch *batch,
8388 const struct pipe_draw_indirect_info *indirect,
8389 uint32_t primitive_type,
8390 uint32_t vertex_count)
8391 {
8392 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
8393 UNUSED const struct iris_context *ice = batch->ice;
8394
8395 #if INTEL_WA_22014412737_GFX_VER || INTEL_WA_16014538804_GFX_VER
8396 if (intel_needs_workaround(devinfo, 22014412737) &&
8397 (point_or_line_list(primitive_type) || indirect ||
8398 (vertex_count == 1 || vertex_count == 2))) {
8399 iris_emit_pipe_control_write(batch, "Wa_22014412737",
8400 PIPE_CONTROL_WRITE_IMMEDIATE,
8401 batch->screen->workaround_bo,
8402 batch->screen->workaround_address.offset,
8403 0ull);
8404 batch->num_3d_primitives_emitted = 0;
8405 } else if (intel_needs_workaround(devinfo, 16014538804)) {
8406 batch->num_3d_primitives_emitted++;
8407
8408 /* Wa_16014538804 - Send empty/dummy pipe control after 3 3DPRIMITIVE. */
8409 if (batch->num_3d_primitives_emitted == 3) {
8410 iris_emit_pipe_control_flush(batch, "Wa_16014538804", 0);
8411 batch->num_3d_primitives_emitted = 0;
8412 }
8413 }
8414 #endif
8415 }
8416
8417 void
genX(urb_workaround)8418 genX(urb_workaround)(struct iris_batch *batch,
8419 const struct intel_urb_config *urb_cfg)
8420 {
8421 #if INTEL_NEEDS_WA_16014912113
8422 if (intel_urb_setup_changed(urb_cfg, &batch->ice->shaders.last_urb,
8423 MESA_SHADER_TESS_EVAL) &&
8424 batch->ice->shaders.last_urb.size[0] != 0) {
8425 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
8426 #if GFX_VER >= 12
8427 iris_emit_cmd(batch, GENX(3DSTATE_URB_ALLOC_VS), urb) {
8428 urb._3DCommandSubOpcode += i;
8429 urb.VSURBEntryAllocationSize =
8430 batch->ice->shaders.last_urb.size[i] - 1;
8431 urb.VSURBStartingAddressSlice0 =
8432 batch->ice->shaders.last_urb.start[i];
8433 urb.VSURBStartingAddressSliceN =
8434 batch->ice->shaders.last_urb.start[i];
8435 urb.VSNumberofURBEntriesSlice0 = i == 0 ? 256 : 0;
8436 urb.VSNumberofURBEntriesSliceN = i == 0 ? 256 : 0;
8437 }
8438 #else
8439 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
8440 urb._3DCommandSubOpcode += i;
8441 urb.VSURBStartingAddress =
8442 batch->ice->shaders.last_urb.start[i];
8443 urb.VSURBEntryAllocationSize =
8444 batch->ice->shaders.last_urb.size[i] - 1;
8445 urb.VSNumberofURBEntries = i == 0 ? 256 : 0;
8446 }
8447 #endif
8448 }
8449 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
8450 pc.HDCPipelineFlushEnable = true;
8451 }
8452 }
8453 #endif
8454
8455 /* Update current urb config. */
8456 memcpy(&batch->ice->shaders.last_urb, &batch->ice->shaders.urb.cfg,
8457 sizeof(struct intel_urb_config));
8458 }
8459
8460 static void
iris_emit_index_buffer(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw,const struct pipe_draw_start_count_bias * sc)8461 iris_emit_index_buffer(struct iris_context *ice,
8462 struct iris_batch *batch,
8463 const struct pipe_draw_info *draw,
8464 const struct pipe_draw_start_count_bias *sc)
8465 {
8466 unsigned offset;
8467
8468 if (draw->has_user_indices) {
8469 unsigned start_offset = draw->index_size * sc->start;
8470
8471 u_upload_data(ice->ctx.const_uploader, start_offset,
8472 sc->count * draw->index_size, 4,
8473 (char*)draw->index.user + start_offset,
8474 &offset, &ice->state.last_res.index_buffer);
8475 offset -= start_offset;
8476 } else {
8477 struct iris_resource *res = (void *) draw->index.resource;
8478 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
8479
8480 pipe_resource_reference(&ice->state.last_res.index_buffer,
8481 draw->index.resource);
8482 offset = 0;
8483
8484 iris_emit_buffer_barrier_for(batch, res->bo, IRIS_DOMAIN_VF_READ);
8485 }
8486
8487 struct iris_genx_state *genx = ice->state.genx;
8488 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
8489
8490 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
8491 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
8492 ib.IndexFormat = draw->index_size >> 1;
8493 ib.MOCS = iris_mocs(bo, &batch->screen->isl_dev,
8494 ISL_SURF_USAGE_INDEX_BUFFER_BIT);
8495 ib.BufferSize = bo->size - offset;
8496 ib.BufferStartingAddress = ro_bo(NULL, bo->address + offset);
8497 #if GFX_VER >= 12
8498 ib.L3BypassDisable = true;
8499 #endif
8500 }
8501
8502 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
8503 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
8504 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
8505 iris_use_pinned_bo(batch, bo, false, IRIS_DOMAIN_VF_READ);
8506 }
8507
8508 #if GFX_VER < 11
8509 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
8510 uint16_t high_bits = bo->address >> 32ull;
8511 if (high_bits != ice->state.last_index_bo_high_bits) {
8512 iris_emit_pipe_control_flush(batch,
8513 "workaround: VF cache 32-bit key [IB]",
8514 PIPE_CONTROL_VF_CACHE_INVALIDATE |
8515 PIPE_CONTROL_CS_STALL);
8516 ice->state.last_index_bo_high_bits = high_bits;
8517 }
8518 #endif
8519 }
8520
8521
8522 static void
iris_upload_render_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw,unsigned drawid_offset,const struct pipe_draw_indirect_info * indirect,const struct pipe_draw_start_count_bias * sc)8523 iris_upload_render_state(struct iris_context *ice,
8524 struct iris_batch *batch,
8525 const struct pipe_draw_info *draw,
8526 unsigned drawid_offset,
8527 const struct pipe_draw_indirect_info *indirect,
8528 const struct pipe_draw_start_count_bias *sc)
8529 {
8530 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
8531 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
8532
8533 trace_intel_begin_draw(&batch->trace);
8534
8535 if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
8536 flush_vbos(ice, batch);
8537
8538 iris_batch_sync_region_start(batch);
8539
8540 /* Always pin the binder. If we're emitting new binding table pointers,
8541 * we need it. If not, we're probably inheriting old tables via the
8542 * context, and need it anyway. Since true zero-bindings cases are
8543 * practically non-existent, just pin it and avoid last_res tracking.
8544 */
8545 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8546 IRIS_DOMAIN_NONE);
8547
8548 if (!batch->contains_draw) {
8549 if (GFX_VER == 12) {
8550 /* Re-emit constants when starting a new batch buffer in order to
8551 * work around push constant corruption on context switch.
8552 *
8553 * XXX - Provide hardware spec quotation when available.
8554 */
8555 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
8556 IRIS_STAGE_DIRTY_CONSTANTS_TCS |
8557 IRIS_STAGE_DIRTY_CONSTANTS_TES |
8558 IRIS_STAGE_DIRTY_CONSTANTS_GS |
8559 IRIS_STAGE_DIRTY_CONSTANTS_FS);
8560 }
8561 batch->contains_draw = true;
8562 }
8563
8564 if (!batch->contains_draw_with_next_seqno) {
8565 iris_restore_render_saved_bos(ice, batch, draw);
8566 batch->contains_draw_with_next_seqno = true;
8567 }
8568
8569 /* Wa_1306463417 - Send HS state for every primitive on gfx11.
8570 * Wa_16011107343 (same for gfx12)
8571 * We implement this by setting TCS dirty on each draw.
8572 */
8573 if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
8574 ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
8575 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
8576 }
8577
8578 iris_upload_dirty_render_state(ice, batch, draw, false);
8579
8580 if (draw->index_size > 0)
8581 iris_emit_index_buffer(ice, batch, draw, sc);
8582
8583 if (indirect) {
8584 struct mi_builder b;
8585 uint32_t mocs;
8586 mi_builder_init(&b, batch->screen->devinfo, batch);
8587
8588 #define _3DPRIM_END_OFFSET 0x2420
8589 #define _3DPRIM_START_VERTEX 0x2430
8590 #define _3DPRIM_VERTEX_COUNT 0x2434
8591 #define _3DPRIM_INSTANCE_COUNT 0x2438
8592 #define _3DPRIM_START_INSTANCE 0x243C
8593 #define _3DPRIM_BASE_VERTEX 0x2440
8594
8595 if (!indirect->count_from_stream_output) {
8596 if (indirect->indirect_draw_count) {
8597 use_predicate = true;
8598
8599 struct iris_bo *draw_count_bo =
8600 iris_resource_bo(indirect->indirect_draw_count);
8601 unsigned draw_count_offset =
8602 indirect->indirect_draw_count_offset;
8603 mocs = iris_mocs(draw_count_bo, &batch->screen->isl_dev, 0);
8604 mi_builder_set_mocs(&b, mocs);
8605
8606 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
8607 /* comparison = draw id < draw count */
8608 struct mi_value comparison =
8609 mi_ult(&b, mi_imm(drawid_offset),
8610 mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
8611
8612 /* predicate = comparison & conditional rendering predicate */
8613 mi_store(&b, mi_reg32(MI_PREDICATE_RESULT),
8614 mi_iand(&b, comparison, mi_reg32(CS_GPR(15))));
8615 } else {
8616 uint32_t mi_predicate;
8617
8618 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
8619 mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(drawid_offset));
8620 /* Upload the current draw count from the draw parameters buffer
8621 * to MI_PREDICATE_SRC0. Zero the top 32-bits of
8622 * MI_PREDICATE_SRC0.
8623 */
8624 mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
8625 mi_mem32(ro_bo(draw_count_bo, draw_count_offset)));
8626
8627 if (drawid_offset == 0) {
8628 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
8629 MI_PREDICATE_COMBINEOP_SET |
8630 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
8631 } else {
8632 /* While draw_index < draw_count the predicate's result will be
8633 * (draw_index == draw_count) ^ TRUE = TRUE
8634 * When draw_index == draw_count the result is
8635 * (TRUE) ^ TRUE = FALSE
8636 * After this all results will be:
8637 * (FALSE) ^ FALSE = FALSE
8638 */
8639 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
8640 MI_PREDICATE_COMBINEOP_XOR |
8641 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
8642 }
8643 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
8644 }
8645 }
8646 struct iris_bo *bo = iris_resource_bo(indirect->buffer);
8647 assert(bo);
8648
8649 mocs = iris_mocs(bo, &batch->screen->isl_dev, 0);
8650 mi_builder_set_mocs(&b, mocs);
8651
8652 mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
8653 mi_mem32(ro_bo(bo, indirect->offset + 0)));
8654 mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
8655 mi_mem32(ro_bo(bo, indirect->offset + 4)));
8656 mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX),
8657 mi_mem32(ro_bo(bo, indirect->offset + 8)));
8658 if (draw->index_size) {
8659 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX),
8660 mi_mem32(ro_bo(bo, indirect->offset + 12)));
8661 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
8662 mi_mem32(ro_bo(bo, indirect->offset + 16)));
8663 } else {
8664 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE),
8665 mi_mem32(ro_bo(bo, indirect->offset + 12)));
8666 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
8667 }
8668 } else if (indirect->count_from_stream_output) {
8669 struct iris_stream_output_target *so =
8670 (void *) indirect->count_from_stream_output;
8671 struct iris_bo *so_bo = iris_resource_bo(so->offset.res);
8672
8673 mocs = iris_mocs(so_bo, &batch->screen->isl_dev, 0);
8674 mi_builder_set_mocs(&b, mocs);
8675
8676 iris_emit_buffer_barrier_for(batch, so_bo, IRIS_DOMAIN_OTHER_READ);
8677
8678 struct iris_address addr = ro_bo(so_bo, so->offset.offset);
8679 struct mi_value offset =
8680 mi_iadd_imm(&b, mi_mem32(addr), -so->base.buffer_offset);
8681 mi_store(&b, mi_reg32(_3DPRIM_VERTEX_COUNT),
8682 mi_udiv32_imm(&b, offset, so->stride));
8683 mi_store(&b, mi_reg32(_3DPRIM_START_VERTEX), mi_imm(0));
8684 mi_store(&b, mi_reg32(_3DPRIM_BASE_VERTEX), mi_imm(0));
8685 mi_store(&b, mi_reg32(_3DPRIM_START_INSTANCE), mi_imm(0));
8686 mi_store(&b, mi_reg32(_3DPRIM_INSTANCE_COUNT),
8687 mi_imm(draw->instance_count));
8688 }
8689 }
8690
8691 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
8692
8693 genX(maybe_emit_breakpoint)(batch, true);
8694
8695 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
8696 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
8697 prim.PredicateEnable = use_predicate;
8698 #if GFX_VERx10 >= 125
8699 prim.TBIMREnable = ice->state.use_tbimr;
8700 #endif
8701 if (indirect) {
8702 prim.IndirectParameterEnable = true;
8703 } else {
8704 prim.StartInstanceLocation = draw->start_instance;
8705 prim.InstanceCount = draw->instance_count;
8706 prim.VertexCountPerInstance = sc->count;
8707
8708 prim.StartVertexLocation = sc->start;
8709
8710 if (draw->index_size) {
8711 prim.BaseVertexLocation += sc->index_bias;
8712 }
8713 }
8714 }
8715
8716 genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
8717 genX(maybe_emit_breakpoint)(batch, false);
8718
8719 iris_batch_sync_region_end(batch);
8720
8721 uint32_t count = (sc) ? sc->count : 0;
8722 count *= draw->instance_count ? draw->instance_count : 1;
8723 trace_intel_end_draw(&batch->trace, count, 0, 0);
8724 }
8725
8726 static void
iris_upload_indirect_render_state(struct iris_context * ice,const struct pipe_draw_info * draw,const struct pipe_draw_indirect_info * indirect,const struct pipe_draw_start_count_bias * sc)8727 iris_upload_indirect_render_state(struct iris_context *ice,
8728 const struct pipe_draw_info *draw,
8729 const struct pipe_draw_indirect_info *indirect,
8730 const struct pipe_draw_start_count_bias *sc)
8731 {
8732 #if GFX_VERx10 >= 125
8733 assert(indirect);
8734
8735 struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
8736 UNUSED struct iris_screen *screen = batch->screen;
8737 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
8738 const bool use_predicate =
8739 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
8740
8741 trace_intel_begin_draw(&batch->trace);
8742
8743 if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
8744 flush_vbos(ice, batch);
8745
8746 iris_batch_sync_region_start(batch);
8747
8748 /* Always pin the binder. If we're emitting new binding table pointers,
8749 * we need it. If not, we're probably inheriting old tables via the
8750 * context, and need it anyway. Since true zero-bindings cases are
8751 * practically non-existent, just pin it and avoid last_res tracking.
8752 */
8753 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8754 IRIS_DOMAIN_NONE);
8755
8756 if (!batch->contains_draw) {
8757 /* Re-emit constants when starting a new batch buffer in order to
8758 * work around push constant corruption on context switch.
8759 *
8760 * XXX - Provide hardware spec quotation when available.
8761 */
8762 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
8763 IRIS_STAGE_DIRTY_CONSTANTS_TCS |
8764 IRIS_STAGE_DIRTY_CONSTANTS_TES |
8765 IRIS_STAGE_DIRTY_CONSTANTS_GS |
8766 IRIS_STAGE_DIRTY_CONSTANTS_FS);
8767 batch->contains_draw = true;
8768 }
8769
8770 if (!batch->contains_draw_with_next_seqno) {
8771 iris_restore_render_saved_bos(ice, batch, draw);
8772 batch->contains_draw_with_next_seqno = true;
8773 }
8774
8775 /* Wa_1306463417 - Send HS state for every primitive on gfx11.
8776 * Wa_16011107343 (same for gfx12)
8777 * We implement this by setting TCS dirty on each draw.
8778 */
8779 if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
8780 ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
8781 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
8782 }
8783
8784 iris_upload_dirty_render_state(ice, batch, draw, false);
8785
8786 if (draw->index_size > 0)
8787 iris_emit_index_buffer(ice, batch, draw, sc);
8788
8789 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
8790
8791 genX(maybe_emit_breakpoint)(batch, true);
8792
8793 iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DRAW), ind) {
8794 ind.ArgumentFormat =
8795 draw->index_size > 0 ? XI_DRAWINDEXED : XI_DRAW;
8796 ind.PredicateEnable = use_predicate;
8797 ind.TBIMREnabled = ice->state.use_tbimr;
8798 ind.MaxCount = indirect->draw_count;
8799
8800 if (indirect->buffer) {
8801 struct iris_bo *bo = iris_resource_bo(indirect->buffer);
8802 ind.ArgumentBufferStartAddress = ro_bo(bo, indirect->offset);
8803 ind.MOCS = iris_mocs(bo, &screen->isl_dev, 0);
8804 } else {
8805 ind.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
8806 }
8807
8808 if (indirect->indirect_draw_count) {
8809 struct iris_bo *draw_count_bo =
8810 iris_resource_bo(indirect->indirect_draw_count);
8811 ind.CountBufferIndirectEnable = true;
8812 ind.CountBufferAddress =
8813 ro_bo(draw_count_bo, indirect->indirect_draw_count_offset);
8814 }
8815 }
8816
8817 genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
8818 genX(maybe_emit_breakpoint)(batch, false);
8819
8820 iris_batch_sync_region_end(batch);
8821
8822 uint32_t count = (sc) ? sc->count : 0;
8823 count *= draw->instance_count ? draw->instance_count : 1;
8824 trace_intel_end_draw(&batch->trace, count, 0, 0);
8825 #else
8826 unreachable("Unsupported path");
8827 #endif /* GFX_VERx10 >= 125 */
8828 }
8829
8830 static void
iris_upload_indirect_shader_render_state(struct iris_context * ice,const struct pipe_draw_info * draw,const struct pipe_draw_indirect_info * indirect,const struct pipe_draw_start_count_bias * sc)8831 iris_upload_indirect_shader_render_state(struct iris_context *ice,
8832 const struct pipe_draw_info *draw,
8833 const struct pipe_draw_indirect_info *indirect,
8834 const struct pipe_draw_start_count_bias *sc)
8835 {
8836 assert(indirect);
8837
8838 struct iris_batch *batch = &ice->batches[IRIS_BATCH_RENDER];
8839 UNUSED struct iris_screen *screen = batch->screen;
8840 UNUSED const struct intel_device_info *devinfo = screen->devinfo;
8841
8842 if (ice->state.dirty & IRIS_DIRTY_VERTEX_BUFFER_FLUSHES)
8843 flush_vbos(ice, batch);
8844
8845 iris_batch_sync_region_start(batch);
8846
8847 /* Always pin the binder. If we're emitting new binding table pointers,
8848 * we need it. If not, we're probably inheriting old tables via the
8849 * context, and need it anyway. Since true zero-bindings cases are
8850 * practically non-existent, just pin it and avoid last_res tracking.
8851 */
8852 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8853 IRIS_DOMAIN_NONE);
8854
8855 if (!batch->contains_draw) {
8856 if (GFX_VER == 12) {
8857 /* Re-emit constants when starting a new batch buffer in order to
8858 * work around push constant corruption on context switch.
8859 *
8860 * XXX - Provide hardware spec quotation when available.
8861 */
8862 ice->state.stage_dirty |= (IRIS_STAGE_DIRTY_CONSTANTS_VS |
8863 IRIS_STAGE_DIRTY_CONSTANTS_TCS |
8864 IRIS_STAGE_DIRTY_CONSTANTS_TES |
8865 IRIS_STAGE_DIRTY_CONSTANTS_GS |
8866 IRIS_STAGE_DIRTY_CONSTANTS_FS);
8867 }
8868 batch->contains_draw = true;
8869 }
8870
8871 if (!batch->contains_draw_with_next_seqno) {
8872 iris_restore_render_saved_bos(ice, batch, draw);
8873 batch->contains_draw_with_next_seqno = true;
8874 }
8875
8876 if (draw->index_size > 0)
8877 iris_emit_index_buffer(ice, batch, draw, sc);
8878
8879 /* Make sure we have enough space to keep all the commands in the single BO
8880 * (because of the jumps)
8881 */
8882 iris_require_command_space(batch, 2000);
8883
8884 #ifndef NDEBUG
8885 struct iris_bo *command_bo = batch->bo;
8886 #endif
8887
8888 /* Jump point to generate more draw if we run out of space in the ring
8889 * buffer.
8890 */
8891 uint64_t gen_addr = iris_batch_current_address_u64(batch);
8892
8893 iris_handle_always_flush_cache(batch);
8894
8895 #if GFX_VER == 9
8896 iris_emit_pipe_control_flush(batch, "before generation",
8897 PIPE_CONTROL_VF_CACHE_INVALIDATE);
8898 #endif
8899
8900 struct iris_address params_addr;
8901 struct iris_gen_indirect_params *params =
8902 genX(emit_indirect_generate)(batch, draw, indirect, sc,
8903 ¶ms_addr);
8904
8905 iris_emit_pipe_control_flush(batch, "after generation flush",
8906 ((ice->state.vs_uses_draw_params ||
8907 ice->state.vs_uses_derived_draw_params) ?
8908 PIPE_CONTROL_VF_CACHE_INVALIDATE : 0) |
8909 PIPE_CONTROL_STALL_AT_SCOREBOARD |
8910 PIPE_CONTROL_DATA_CACHE_FLUSH |
8911 PIPE_CONTROL_CS_STALL);
8912
8913 trace_intel_begin_draw(&batch->trace);
8914
8915 /* Always pin the binder. If we're emitting new binding table pointers,
8916 * we need it. If not, we're probably inheriting old tables via the
8917 * context, and need it anyway. Since true zero-bindings cases are
8918 * practically non-existent, just pin it and avoid last_res tracking.
8919 */
8920 iris_use_pinned_bo(batch, ice->state.binder.bo, false,
8921 IRIS_DOMAIN_NONE);
8922
8923 /* Wa_1306463417 - Send HS state for every primitive on gfx11.
8924 * Wa_16011107343 (same for gfx12)
8925 * We implement this by setting TCS dirty on each draw.
8926 */
8927 if ((INTEL_NEEDS_WA_1306463417 || INTEL_NEEDS_WA_16011107343) &&
8928 ice->shaders.prog[MESA_SHADER_TESS_CTRL]) {
8929 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_TCS;
8930 }
8931
8932 iris_upload_dirty_render_state(ice, batch, draw, true);
8933
8934 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_DRAW, draw, indirect, sc);
8935
8936 genX(maybe_emit_breakpoint)(batch, true);
8937
8938 #if GFX_VER >= 12
8939 iris_emit_cmd(batch, GENX(MI_ARB_CHECK), arb) {
8940 arb.PreParserDisableMask = true;
8941 arb.PreParserDisable = true;
8942 }
8943 #endif
8944
8945 iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
8946 bbs.AddressSpaceIndicator = ASI_PPGTT;
8947 bbs.BatchBufferStartAddress = (struct iris_address) {
8948 .bo = ice->draw.generation.ring_bo,
8949 };
8950 }
8951
8952 /* Run the ring buffer one more time with the next set of commands */
8953 uint64_t inc_addr = iris_batch_current_address_u64(batch);
8954 {
8955 iris_emit_pipe_control_flush(batch,
8956 "post generated draws wait",
8957 PIPE_CONTROL_STALL_AT_SCOREBOARD |
8958 PIPE_CONTROL_CS_STALL);
8959
8960 struct mi_builder b;
8961 mi_builder_init(&b, batch->screen->devinfo, batch);
8962
8963 struct iris_address draw_base_addr = iris_address_add(
8964 params_addr,
8965 offsetof(struct iris_gen_indirect_params, draw_base));
8966
8967 const uint32_t mocs =
8968 iris_mocs(draw_base_addr.bo, &screen->isl_dev, 0);
8969 mi_builder_set_mocs(&b, mocs);
8970
8971 mi_store(&b, mi_mem32(draw_base_addr),
8972 mi_iadd(&b, mi_mem32(draw_base_addr),
8973 mi_imm(params->ring_count)));
8974
8975 iris_emit_pipe_control_flush(batch,
8976 "post generation base increment",
8977 PIPE_CONTROL_CS_STALL |
8978 PIPE_CONTROL_CONST_CACHE_INVALIDATE);
8979
8980 iris_emit_cmd(batch, GENX(MI_BATCH_BUFFER_START), bbs) {
8981 bbs.AddressSpaceIndicator = ASI_PPGTT;
8982 bbs.BatchBufferStartAddress = (struct iris_address) {
8983 .offset = gen_addr,
8984 };
8985 }
8986 }
8987
8988 /* Exit of the ring buffer */
8989 uint64_t end_addr = iris_batch_current_address_u64(batch);
8990
8991 #ifndef NDEBUG
8992 assert(command_bo == batch->bo);
8993 #endif
8994
8995 genX(emit_3dprimitive_was)(batch, indirect, ice->state.prim_mode, sc->count);
8996 genX(maybe_emit_breakpoint)(batch, false);
8997
8998 iris_emit_pipe_control_flush(batch,
8999 "post generated draws wait",
9000 PIPE_CONTROL_STALL_AT_SCOREBOARD |
9001 PIPE_CONTROL_CS_STALL);
9002
9003 params->gen_addr = inc_addr;
9004 params->end_addr = end_addr;
9005
9006 iris_batch_sync_region_end(batch);
9007
9008 uint32_t count = (sc) ? sc->count : 0;
9009 count *= draw->instance_count ? draw->instance_count : 1;
9010 trace_intel_end_draw(&batch->trace, count, 0, 0);
9011 }
9012
9013 static void
iris_load_indirect_location(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)9014 iris_load_indirect_location(struct iris_context *ice,
9015 struct iris_batch *batch,
9016 const struct pipe_grid_info *grid)
9017 {
9018 #define GPGPU_DISPATCHDIMX 0x2500
9019 #define GPGPU_DISPATCHDIMY 0x2504
9020 #define GPGPU_DISPATCHDIMZ 0x2508
9021
9022 assert(grid->indirect);
9023
9024 struct iris_state_ref *grid_size = &ice->state.grid_size;
9025 struct iris_bo *bo = iris_resource_bo(grid_size->res);
9026 struct mi_builder b;
9027 mi_builder_init(&b, batch->screen->devinfo, batch);
9028 struct mi_value size_x = mi_mem32(ro_bo(bo, grid_size->offset + 0));
9029 struct mi_value size_y = mi_mem32(ro_bo(bo, grid_size->offset + 4));
9030 struct mi_value size_z = mi_mem32(ro_bo(bo, grid_size->offset + 8));
9031 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
9032 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
9033 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
9034 }
9035
iris_emit_indirect_dispatch_supported(const struct intel_device_info * devinfo)9036 static bool iris_emit_indirect_dispatch_supported(const struct intel_device_info *devinfo)
9037 {
9038 // TODO: Swizzling X and Y workgroup sizes is not supported in execute indirect dispatch
9039 return devinfo->has_indirect_unroll;
9040 }
9041
9042 #if GFX_VERx10 >= 125
9043
iris_emit_execute_indirect_dispatch(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid,const struct GENX (INTERFACE_DESCRIPTOR_DATA)idd)9044 static void iris_emit_execute_indirect_dispatch(struct iris_context *ice,
9045 struct iris_batch *batch,
9046 const struct pipe_grid_info *grid,
9047 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd)
9048 {
9049 const struct iris_screen *screen = batch->screen;
9050 struct iris_compiled_shader *shader =
9051 ice->shaders.prog[MESA_SHADER_COMPUTE];
9052 const struct iris_cs_data *cs_data = iris_cs_data(shader);
9053 const struct intel_cs_dispatch_info dispatch =
9054 iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
9055 struct iris_bo *indirect = iris_resource_bo(grid->indirect);
9056 const int dispatch_size = dispatch.simd_size / 16;
9057
9058 struct GENX(COMPUTE_WALKER_BODY) body = {};
9059 body.SIMDSize = dispatch_size;
9060 body.MessageSIMD = dispatch_size;
9061 body.GenerateLocalID = cs_data->generate_local_id != 0;
9062 body.EmitLocal = cs_data->generate_local_id;
9063 body.WalkOrder = cs_data->walk_order;
9064 body.TileLayout = cs_data->walk_order == INTEL_WALK_ORDER_YXZ ?
9065 TileY32bpe : Linear;
9066 body.LocalXMaximum = grid->block[0] - 1;
9067 body.LocalYMaximum = grid->block[1] - 1;
9068 body.LocalZMaximum = grid->block[2] - 1;
9069 body.ExecutionMask = dispatch.right_mask;
9070 body.PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0);
9071 body.InterfaceDescriptor = idd;
9072 /* HSD 14016252163: Use of Morton walk order (and batching using a batch
9073 * size of 4) is expected to increase sampler cache hit rates by
9074 * increasing sample address locality within a subslice.
9075 */
9076 #if GFX_VER >= 30
9077 body.DispatchWalkOrder =
9078 cs_data->uses_sampler ? MortonWalk : LinearWalk;
9079 body.ThreadGroupBatchSize =
9080 cs_data->uses_sampler ? TG_BATCH_4 : TG_BATCH_1;
9081 #endif
9082
9083 struct iris_address indirect_bo = ro_bo(indirect, grid->indirect_offset);
9084 iris_emit_cmd(batch, GENX(EXECUTE_INDIRECT_DISPATCH), ind) {
9085 ind.PredicateEnable =
9086 ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
9087 ind.MaxCount = 1;
9088 ind.COMPUTE_WALKER_BODY = body;
9089 ind.ArgumentBufferStartAddress = indirect_bo;
9090 ind.MOCS =
9091 iris_mocs(indirect_bo.bo, &screen->isl_dev, 0);
9092 }
9093 }
9094
9095 static void
iris_upload_compute_walker(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)9096 iris_upload_compute_walker(struct iris_context *ice,
9097 struct iris_batch *batch,
9098 const struct pipe_grid_info *grid)
9099 {
9100 const uint64_t stage_dirty = ice->state.stage_dirty;
9101 struct iris_screen *screen = batch->screen;
9102 const struct intel_device_info *devinfo = screen->devinfo;
9103 struct iris_binder *binder = &ice->state.binder;
9104 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
9105 struct iris_compiled_shader *shader =
9106 ice->shaders.prog[MESA_SHADER_COMPUTE];
9107 const struct iris_cs_data *cs_data = iris_cs_data(shader);
9108 const struct intel_cs_dispatch_info dispatch =
9109 iris_get_cs_dispatch_info(devinfo, shader, grid->block);
9110
9111 trace_intel_begin_compute(&batch->trace);
9112
9113 if (stage_dirty & IRIS_STAGE_DIRTY_CS) {
9114 iris_emit_cmd(batch, GENX(CFE_STATE), cfe) {
9115 cfe.MaximumNumberofThreads =
9116 devinfo->max_cs_threads * devinfo->subslice_total;
9117 uint32_t scratch_addr = pin_scratch_space(ice, batch, shader,
9118 MESA_SHADER_COMPUTE);
9119 cfe.ScratchSpaceBuffer = scratch_addr >> SCRATCH_SPACE_BUFFER_SHIFT;
9120 }
9121 }
9122
9123 struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {};
9124 idd.KernelStartPointer = KSP(shader);
9125 idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
9126 idd.SharedLocalMemorySize =
9127 intel_compute_slm_encode_size(GFX_VER, shader->total_shared);
9128 idd.PreferredSLMAllocationSize =
9129 intel_compute_preferred_slm_calc_encode_size(devinfo,
9130 shader->total_shared,
9131 dispatch.group_size,
9132 dispatch.simd_size);
9133 idd.SamplerStatePointer = shs->sampler_table.offset;
9134 idd.SamplerCount = encode_sampler_count(shader),
9135 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
9136 /* Typically set to 0 to avoid prefetching on every thread dispatch. */
9137 idd.BindingTableEntryCount = devinfo->verx10 == 125 ?
9138 0 : MIN2(shader->bt.size_bytes / 4, 31);
9139 idd.NumberOfBarriers = cs_data->uses_barrier;
9140 #if GFX_VER >= 30
9141 idd.RegistersPerThread = ptl_register_blocks(shader->brw_prog_data->grf_used);
9142 #endif
9143
9144 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
9145
9146 if (iris_emit_indirect_dispatch_supported(devinfo) && grid->indirect) {
9147 iris_emit_execute_indirect_dispatch(ice, batch, grid, idd);
9148 } else {
9149 if (grid->indirect)
9150 iris_load_indirect_location(ice, batch, grid);
9151
9152 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
9153
9154 ice->utrace.last_compute_walker =
9155 iris_emit_dwords(batch, GENX(COMPUTE_WALKER_length));
9156
9157 struct GENX(COMPUTE_WALKER_BODY) body = {
9158 .SIMDSize = dispatch.simd_size / 16,
9159 .MessageSIMD = dispatch.simd_size / 16,
9160 .LocalXMaximum = grid->block[0] - 1,
9161 .LocalYMaximum = grid->block[1] - 1,
9162 .LocalZMaximum = grid->block[2] - 1,
9163 .ThreadGroupIDXDimension = grid->grid[0],
9164 .ThreadGroupIDYDimension = grid->grid[1],
9165 .ThreadGroupIDZDimension = grid->grid[2],
9166 .ExecutionMask = dispatch.right_mask,
9167 .PostSync.MOCS = iris_mocs(NULL, &screen->isl_dev, 0),
9168 .InterfaceDescriptor = idd,
9169
9170 #if GFX_VERx10 >= 125
9171 .GenerateLocalID = cs_data->generate_local_id != 0,
9172 .EmitLocal = cs_data->generate_local_id,
9173 .WalkOrder = cs_data->walk_order,
9174 .TileLayout = cs_data->walk_order == INTEL_WALK_ORDER_YXZ ?
9175 TileY32bpe : Linear,
9176 #endif
9177 };
9178
9179 _iris_pack_command(batch, GENX(COMPUTE_WALKER),
9180 ice->utrace.last_compute_walker, cw) {
9181 cw.IndirectParameterEnable = grid->indirect;
9182 cw.body = body;
9183 assert(iris_cs_push_const_total_size(shader, dispatch.threads) == 0);
9184 }
9185 }
9186
9187 trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2], 0);
9188 }
9189
9190 #else /* #if GFX_VERx10 >= 125 */
9191
9192 static void
iris_upload_gpgpu_walker(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)9193 iris_upload_gpgpu_walker(struct iris_context *ice,
9194 struct iris_batch *batch,
9195 const struct pipe_grid_info *grid)
9196 {
9197 const uint64_t stage_dirty = ice->state.stage_dirty;
9198 struct iris_screen *screen = batch->screen;
9199 const struct intel_device_info *devinfo = screen->devinfo;
9200 struct iris_binder *binder = &ice->state.binder;
9201 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
9202 struct iris_uncompiled_shader *ish =
9203 ice->shaders.uncompiled[MESA_SHADER_COMPUTE];
9204 struct iris_compiled_shader *shader =
9205 ice->shaders.prog[MESA_SHADER_COMPUTE];
9206 struct iris_cs_data *cs_data = iris_cs_data(shader);
9207 const struct intel_cs_dispatch_info dispatch =
9208 iris_get_cs_dispatch_info(screen->devinfo, shader, grid->block);
9209
9210 trace_intel_begin_compute(&batch->trace);
9211
9212 if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
9213 cs_data->local_size[0] == 0 /* Variable local group size */) {
9214 /* The MEDIA_VFE_STATE documentation for Gfx8+ says:
9215 *
9216 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
9217 * the only bits that are changed are scoreboard related: Scoreboard
9218 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
9219 * these scoreboard related states, a MEDIA_STATE_FLUSH is
9220 * sufficient."
9221 */
9222 iris_emit_pipe_control_flush(batch,
9223 "workaround: stall before MEDIA_VFE_STATE",
9224 PIPE_CONTROL_CS_STALL);
9225
9226 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
9227 if (shader->total_scratch) {
9228 uint32_t scratch_addr =
9229 pin_scratch_space(ice, batch, shader, MESA_SHADER_COMPUTE);
9230
9231 vfe.PerThreadScratchSpace = ffs(shader->total_scratch) - 11;
9232 vfe.ScratchSpaceBasePointer =
9233 rw_bo(NULL, scratch_addr, IRIS_DOMAIN_NONE);
9234 }
9235
9236 vfe.MaximumNumberofThreads =
9237 devinfo->max_cs_threads * devinfo->subslice_total - 1;
9238 #if GFX_VER < 11
9239 vfe.ResetGatewayTimer =
9240 Resettingrelativetimerandlatchingtheglobaltimestamp;
9241 #endif
9242 #if GFX_VER == 8
9243 vfe.BypassGatewayControl = true;
9244 #endif
9245 vfe.NumberofURBEntries = 2;
9246 vfe.URBEntryAllocationSize = 2;
9247
9248 vfe.CURBEAllocationSize =
9249 ALIGN(cs_data->push.per_thread.regs * dispatch.threads +
9250 cs_data->push.cross_thread.regs, 2);
9251 }
9252 }
9253
9254 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
9255 if ((stage_dirty & IRIS_STAGE_DIRTY_CS) ||
9256 cs_data->local_size[0] == 0 /* Variable local group size */) {
9257 uint32_t curbe_data_offset = 0;
9258 assert(cs_data->push.cross_thread.dwords == 0 &&
9259 cs_data->push.per_thread.dwords == 1 &&
9260 cs_data->first_param_is_builtin_subgroup_id);
9261 const unsigned push_const_size =
9262 iris_cs_push_const_total_size(shader, dispatch.threads);
9263 uint32_t *curbe_data_map =
9264 stream_state(batch, ice->state.dynamic_uploader,
9265 &ice->state.last_res.cs_thread_ids,
9266 ALIGN(push_const_size, 64), 64,
9267 &curbe_data_offset);
9268 assert(curbe_data_map);
9269 memset(curbe_data_map, 0x5a, ALIGN(push_const_size, 64));
9270 iris_fill_cs_push_const_buffer(screen, shader, dispatch.threads,
9271 curbe_data_map);
9272
9273 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
9274 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
9275 curbe.CURBEDataStartAddress = curbe_data_offset;
9276 }
9277 }
9278
9279 for (unsigned i = 0; i < IRIS_MAX_GLOBAL_BINDINGS; i++) {
9280 struct pipe_resource *res = ice->state.global_bindings[i];
9281 if (!res)
9282 break;
9283
9284 iris_use_pinned_bo(batch, iris_resource_bo(res),
9285 true, IRIS_DOMAIN_NONE);
9286 }
9287
9288 if (stage_dirty & (IRIS_STAGE_DIRTY_SAMPLER_STATES_CS |
9289 IRIS_STAGE_DIRTY_BINDINGS_CS |
9290 IRIS_STAGE_DIRTY_CONSTANTS_CS |
9291 IRIS_STAGE_DIRTY_CS)) {
9292 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
9293
9294 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
9295 idd.SharedLocalMemorySize =
9296 intel_compute_slm_encode_size(GFX_VER, ish->kernel_shared_size + grid->variable_shared_mem);
9297 idd.KernelStartPointer =
9298 KSP(shader) + iris_cs_data_prog_offset(cs_data, dispatch.simd_size);
9299 idd.SamplerStatePointer = shs->sampler_table.offset;
9300 idd.BindingTablePointer =
9301 binder->bt_offset[MESA_SHADER_COMPUTE] >> IRIS_BT_OFFSET_SHIFT;
9302 idd.NumberofThreadsinGPGPUThreadGroup = dispatch.threads;
9303 }
9304
9305 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
9306 desc[i] |= ((uint32_t *) shader->derived_data)[i];
9307
9308 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
9309 load.InterfaceDescriptorTotalLength =
9310 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
9311 load.InterfaceDescriptorDataStartAddress =
9312 emit_state(batch, ice->state.dynamic_uploader,
9313 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
9314 }
9315 }
9316
9317 if (grid->indirect)
9318 iris_load_indirect_location(ice, batch, grid);
9319
9320 iris_measure_snapshot(ice, batch, INTEL_SNAPSHOT_COMPUTE, NULL, NULL, NULL);
9321
9322 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
9323 ggw.IndirectParameterEnable = grid->indirect != NULL;
9324 ggw.SIMDSize = dispatch.simd_size / 16;
9325 ggw.ThreadDepthCounterMaximum = 0;
9326 ggw.ThreadHeightCounterMaximum = 0;
9327 ggw.ThreadWidthCounterMaximum = dispatch.threads - 1;
9328 ggw.ThreadGroupIDXDimension = grid->grid[0];
9329 ggw.ThreadGroupIDYDimension = grid->grid[1];
9330 ggw.ThreadGroupIDZDimension = grid->grid[2];
9331 ggw.RightExecutionMask = dispatch.right_mask;
9332 ggw.BottomExecutionMask = 0xffffffff;
9333 }
9334
9335 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
9336
9337 trace_intel_end_compute(&batch->trace, grid->grid[0], grid->grid[1], grid->grid[2], 0);
9338 }
9339
9340 #endif /* #if GFX_VERx10 >= 125 */
9341
9342 static void
iris_upload_compute_state(struct iris_context * ice,struct iris_batch * batch,const struct pipe_grid_info * grid)9343 iris_upload_compute_state(struct iris_context *ice,
9344 struct iris_batch *batch,
9345 const struct pipe_grid_info *grid)
9346 {
9347 struct iris_screen *screen = batch->screen;
9348 const uint64_t stage_dirty = ice->state.stage_dirty;
9349 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
9350 struct iris_compiled_shader *shader =
9351 ice->shaders.prog[MESA_SHADER_COMPUTE];
9352 struct iris_border_color_pool *border_color_pool =
9353 iris_bufmgr_get_border_color_pool(screen->bufmgr);
9354
9355 iris_batch_sync_region_start(batch);
9356
9357 /* Always pin the binder. If we're emitting new binding table pointers,
9358 * we need it. If not, we're probably inheriting old tables via the
9359 * context, and need it anyway. Since true zero-bindings cases are
9360 * practically non-existent, just pin it and avoid last_res tracking.
9361 */
9362 iris_use_pinned_bo(batch, ice->state.binder.bo, false, IRIS_DOMAIN_NONE);
9363
9364 if (((stage_dirty & IRIS_STAGE_DIRTY_CONSTANTS_CS) &&
9365 shs->sysvals_need_upload) ||
9366 shader->kernel_input_size > 0)
9367 upload_sysvals(ice, MESA_SHADER_COMPUTE, grid);
9368
9369 if (stage_dirty & IRIS_STAGE_DIRTY_BINDINGS_CS)
9370 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
9371
9372 if (stage_dirty & IRIS_STAGE_DIRTY_SAMPLER_STATES_CS)
9373 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
9374
9375 iris_use_optional_res(batch, shs->sampler_table.res, false,
9376 IRIS_DOMAIN_NONE);
9377 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false,
9378 IRIS_DOMAIN_NONE);
9379
9380 if (ice->state.need_border_colors)
9381 iris_use_pinned_bo(batch, border_color_pool->bo, false,
9382 IRIS_DOMAIN_NONE);
9383
9384 #if GFX_VER >= 12
9385 genX(invalidate_aux_map_state)(batch);
9386 #endif
9387
9388 #if GFX_VERx10 >= 125
9389 iris_upload_compute_walker(ice, batch, grid);
9390 #else
9391 iris_upload_gpgpu_walker(ice, batch, grid);
9392 #endif
9393
9394 if (!batch->contains_draw_with_next_seqno) {
9395 iris_restore_compute_saved_bos(ice, batch, grid);
9396 batch->contains_draw_with_next_seqno = batch->contains_draw = true;
9397 }
9398
9399 iris_batch_sync_region_end(batch);
9400 }
9401
9402 /**
9403 * State module teardown.
9404 */
9405 static void
iris_destroy_state(struct iris_context * ice)9406 iris_destroy_state(struct iris_context *ice)
9407 {
9408 struct iris_genx_state *genx = ice->state.genx;
9409
9410 pipe_resource_reference(&ice->state.pixel_hashing_tables, NULL);
9411
9412 pipe_resource_reference(&ice->draw.draw_params.res, NULL);
9413 pipe_resource_reference(&ice->draw.derived_draw_params.res, NULL);
9414 pipe_resource_reference(&ice->draw.generation.params.res, NULL);
9415 pipe_resource_reference(&ice->draw.generation.vertices.res, NULL);
9416
9417 /* Loop over all VBOs, including ones for draw parameters */
9418 for (unsigned i = 0; i < ARRAY_SIZE(genx->vertex_buffers); i++) {
9419 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
9420 }
9421
9422 free(ice->state.genx);
9423
9424 for (int i = 0; i < 4; i++) {
9425 pipe_so_target_reference(&ice->state.so_target[i], NULL);
9426 }
9427
9428 util_unreference_framebuffer_state(&ice->state.framebuffer);
9429
9430 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
9431 struct iris_shader_state *shs = &ice->state.shaders[stage];
9432 pipe_resource_reference(&shs->sampler_table.res, NULL);
9433 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
9434 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
9435 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
9436 }
9437 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
9438 pipe_resource_reference(&shs->image[i].base.resource, NULL);
9439 pipe_resource_reference(&shs->image[i].surface_state.ref.res, NULL);
9440 free(shs->image[i].surface_state.cpu);
9441 }
9442 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
9443 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
9444 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
9445 }
9446 for (int i = 0; i < IRIS_MAX_TEXTURES; i++) {
9447 pipe_sampler_view_reference((struct pipe_sampler_view **)
9448 &shs->textures[i], NULL);
9449 }
9450 }
9451
9452 pipe_resource_reference(&ice->state.grid_size.res, NULL);
9453 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
9454
9455 pipe_resource_reference(&ice->state.null_fb.res, NULL);
9456 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
9457
9458 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
9459 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
9460 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
9461 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
9462 pipe_resource_reference(&ice->state.last_res.blend, NULL);
9463 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
9464 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
9465 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
9466 }
9467
9468 /* ------------------------------------------------------------------- */
9469
9470 static void
iris_rebind_buffer(struct iris_context * ice,struct iris_resource * res)9471 iris_rebind_buffer(struct iris_context *ice,
9472 struct iris_resource *res)
9473 {
9474 struct pipe_context *ctx = &ice->ctx;
9475 struct iris_genx_state *genx = ice->state.genx;
9476
9477 assert(res->base.b.target == PIPE_BUFFER);
9478
9479 /* Buffers can't be framebuffer attachments, nor display related,
9480 * and we don't have upstream Clover support.
9481 */
9482 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
9483 PIPE_BIND_RENDER_TARGET |
9484 PIPE_BIND_BLENDABLE |
9485 PIPE_BIND_DISPLAY_TARGET |
9486 PIPE_BIND_CURSOR |
9487 PIPE_BIND_COMPUTE_RESOURCE |
9488 PIPE_BIND_GLOBAL)));
9489
9490 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
9491 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
9492 while (bound_vbs) {
9493 const int i = u_bit_scan64(&bound_vbs);
9494 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
9495
9496 /* Update the CPU struct */
9497 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
9498 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
9499 uint64_t *addr = (uint64_t *) &state->state[1];
9500 struct iris_bo *bo = iris_resource_bo(state->resource);
9501
9502 if (*addr != bo->address + state->offset) {
9503 *addr = bo->address + state->offset;
9504 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS |
9505 IRIS_DIRTY_VERTEX_BUFFER_FLUSHES;
9506 }
9507 }
9508 }
9509
9510 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
9511 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
9512 *
9513 * There is also no need to handle these:
9514 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
9515 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
9516 */
9517
9518 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
9519 uint32_t *so_buffers = genx->so_buffers;
9520 for (unsigned i = 0; i < 4; i++,
9521 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
9522
9523 /* There are no other fields in bits 127:64 */
9524 uint64_t *addr = (uint64_t *) &so_buffers[2];
9525 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_start) == 66);
9526 STATIC_ASSERT(GENX(3DSTATE_SO_BUFFER_SurfaceBaseAddress_bits) == 46);
9527
9528 struct pipe_stream_output_target *tgt = ice->state.so_target[i];
9529 if (tgt) {
9530 struct iris_bo *bo = iris_resource_bo(tgt->buffer);
9531 if (*addr != bo->address + tgt->buffer_offset) {
9532 *addr = bo->address + tgt->buffer_offset;
9533 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
9534 }
9535 }
9536 }
9537 }
9538
9539 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
9540 struct iris_shader_state *shs = &ice->state.shaders[s];
9541 enum pipe_shader_type p_stage = stage_to_pipe(s);
9542
9543 if (!(res->bind_stages & (1 << s)))
9544 continue;
9545
9546 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
9547 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
9548 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
9549 while (bound_cbufs) {
9550 const int i = u_bit_scan(&bound_cbufs);
9551 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
9552 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
9553
9554 if (res->bo == iris_resource_bo(cbuf->buffer)) {
9555 pipe_resource_reference(&surf_state->res, NULL);
9556 shs->dirty_cbufs |= 1u << i;
9557 ice->state.dirty |= (IRIS_DIRTY_RENDER_MISC_BUFFER_FLUSHES |
9558 IRIS_DIRTY_COMPUTE_MISC_BUFFER_FLUSHES);
9559 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_CONSTANTS_VS << s;
9560 }
9561 }
9562 }
9563
9564 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
9565 uint32_t bound_ssbos = shs->bound_ssbos;
9566 while (bound_ssbos) {
9567 const int i = u_bit_scan(&bound_ssbos);
9568 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
9569
9570 if (res->bo == iris_resource_bo(ssbo->buffer)) {
9571 struct pipe_shader_buffer buf = {
9572 .buffer = &res->base.b,
9573 .buffer_offset = ssbo->buffer_offset,
9574 .buffer_size = ssbo->buffer_size,
9575 };
9576 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
9577 (shs->writable_ssbos >> i) & 1);
9578 }
9579 }
9580 }
9581
9582 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
9583 int i;
9584 BITSET_FOREACH_SET(i, shs->bound_sampler_views, IRIS_MAX_TEXTURES) {
9585 struct iris_sampler_view *isv = shs->textures[i];
9586 struct iris_bo *bo = isv->res->bo;
9587
9588 if (update_surface_state_addrs(ice->state.surface_uploader,
9589 &isv->surface_state, bo)) {
9590 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
9591 }
9592 }
9593 }
9594
9595 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
9596 uint64_t bound_image_views = shs->bound_image_views;
9597 while (bound_image_views) {
9598 const int i = u_bit_scan64(&bound_image_views);
9599 struct iris_image_view *iv = &shs->image[i];
9600 struct iris_bo *bo = iris_resource_bo(iv->base.resource);
9601
9602 if (update_surface_state_addrs(ice->state.surface_uploader,
9603 &iv->surface_state, bo)) {
9604 ice->state.stage_dirty |= IRIS_STAGE_DIRTY_BINDINGS_VS << s;
9605 }
9606 }
9607 }
9608 }
9609 }
9610
9611 /* ------------------------------------------------------------------- */
9612
9613 /**
9614 * Introduce a batch synchronization boundary, and update its cache coherency
9615 * status to reflect the execution of a PIPE_CONTROL command with the
9616 * specified flags.
9617 */
9618 static void
batch_mark_sync_for_pipe_control(struct iris_batch * batch,uint32_t flags)9619 batch_mark_sync_for_pipe_control(struct iris_batch *batch, uint32_t flags)
9620 {
9621 const struct intel_device_info *devinfo = batch->screen->devinfo;
9622
9623 iris_batch_sync_boundary(batch);
9624
9625 if ((flags & PIPE_CONTROL_CS_STALL)) {
9626 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
9627 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
9628
9629 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
9630 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
9631
9632 if ((flags & PIPE_CONTROL_TILE_CACHE_FLUSH)) {
9633 /* A tile cache flush makes any C/Z data in L3 visible to memory. */
9634 const unsigned c = IRIS_DOMAIN_RENDER_WRITE;
9635 const unsigned z = IRIS_DOMAIN_DEPTH_WRITE;
9636 batch->coherent_seqnos[c][c] = batch->l3_coherent_seqnos[c];
9637 batch->coherent_seqnos[z][z] = batch->l3_coherent_seqnos[z];
9638 }
9639
9640 if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH)) {
9641 /* HDC and DC flushes both flush the data cache out to L3 */
9642 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_DATA_WRITE);
9643 }
9644
9645 if ((flags & PIPE_CONTROL_DATA_CACHE_FLUSH)) {
9646 /* A DC flush also flushes L3 data cache lines out to memory. */
9647 const unsigned i = IRIS_DOMAIN_DATA_WRITE;
9648 batch->coherent_seqnos[i][i] = batch->l3_coherent_seqnos[i];
9649 }
9650
9651 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
9652 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
9653
9654 if ((flags & (PIPE_CONTROL_CACHE_FLUSH_BITS |
9655 PIPE_CONTROL_STALL_AT_SCOREBOARD))) {
9656 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_VF_READ);
9657 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
9658 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
9659 iris_batch_mark_flush_sync(batch, IRIS_DOMAIN_OTHER_READ);
9660 }
9661 }
9662
9663 if ((flags & PIPE_CONTROL_RENDER_TARGET_FLUSH))
9664 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_RENDER_WRITE);
9665
9666 if ((flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH))
9667 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DEPTH_WRITE);
9668
9669 if (flags & (PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_DATA_CACHE_FLUSH))
9670 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_DATA_WRITE);
9671
9672 if ((flags & PIPE_CONTROL_FLUSH_ENABLE))
9673 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_OTHER_WRITE);
9674
9675 if ((flags & PIPE_CONTROL_VF_CACHE_INVALIDATE))
9676 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_VF_READ);
9677
9678 if ((flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE))
9679 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_SAMPLER_READ);
9680
9681 /* Technically, to invalidate IRIS_DOMAIN_PULL_CONSTANT_READ, we need
9682 * both "Constant Cache Invalidate" and either "Texture Cache Invalidate"
9683 * or "Data Cache Flush" set, depending on the setting of
9684 * iris_indirect_ubos_use_sampler().
9685 *
9686 * However, "Data Cache Flush" and "Constant Cache Invalidate" will never
9687 * appear in the same PIPE_CONTROL command, because one is bottom-of-pipe
9688 * while the other is top-of-pipe. Because we only look at one flush at
9689 * a time, we won't see both together.
9690 *
9691 * To deal with this, we mark it as invalidated when the constant cache
9692 * is invalidated, and trust the callers to also flush the other related
9693 * cache correctly at the same time.
9694 */
9695 if ((flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE))
9696 iris_batch_mark_invalidate_sync(batch, IRIS_DOMAIN_PULL_CONSTANT_READ);
9697
9698 /* IRIS_DOMAIN_OTHER_READ no longer uses any caches. */
9699
9700 if ((flags & PIPE_CONTROL_L3_RO_INVALIDATE_BITS) == PIPE_CONTROL_L3_RO_INVALIDATE_BITS) {
9701 /* If we just invalidated the read-only lines of L3, then writes from non-L3-coherent
9702 * domains will now be visible to those L3 clients.
9703 */
9704 for (unsigned i = 0; i < NUM_IRIS_DOMAINS; i++) {
9705 if (!iris_domain_is_l3_coherent(devinfo, i))
9706 batch->l3_coherent_seqnos[i] = batch->coherent_seqnos[i][i];
9707 }
9708 }
9709 }
9710
9711 static unsigned
flags_to_post_sync_op(uint32_t flags)9712 flags_to_post_sync_op(uint32_t flags)
9713 {
9714 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
9715 return WriteImmediateData;
9716
9717 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
9718 return WritePSDepthCount;
9719
9720 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
9721 return WriteTimestamp;
9722
9723 return 0;
9724 }
9725
9726 /**
9727 * Do the given flags have a Post Sync or LRI Post Sync operation?
9728 */
9729 static enum pipe_control_flags
get_post_sync_flags(enum pipe_control_flags flags)9730 get_post_sync_flags(enum pipe_control_flags flags)
9731 {
9732 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
9733 PIPE_CONTROL_WRITE_DEPTH_COUNT |
9734 PIPE_CONTROL_WRITE_TIMESTAMP |
9735 PIPE_CONTROL_LRI_POST_SYNC_OP;
9736
9737 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
9738 * "LRI Post Sync Operation". So more than one bit set would be illegal.
9739 */
9740 assert(util_bitcount(flags) <= 1);
9741
9742 return flags;
9743 }
9744
9745 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
9746
9747 /**
9748 * Emit a series of PIPE_CONTROL commands, taking into account any
9749 * workarounds necessary to actually accomplish the caller's request.
9750 *
9751 * Unless otherwise noted, spec quotations in this function come from:
9752 *
9753 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
9754 * Restrictions for PIPE_CONTROL.
9755 *
9756 * You should not use this function directly. Use the helpers in
9757 * iris_pipe_control.c instead, which may split the pipe control further.
9758 */
9759 static void
iris_emit_raw_pipe_control(struct iris_batch * batch,const char * reason,uint32_t flags,struct iris_bo * bo,uint32_t offset,uint64_t imm)9760 iris_emit_raw_pipe_control(struct iris_batch *batch,
9761 const char *reason,
9762 uint32_t flags,
9763 struct iris_bo *bo,
9764 uint32_t offset,
9765 uint64_t imm)
9766 {
9767 UNUSED const struct intel_device_info *devinfo = batch->screen->devinfo;
9768 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
9769 enum pipe_control_flags non_lri_post_sync_flags =
9770 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
9771
9772 #if GFX_VER >= 12
9773 if (batch->name == IRIS_BATCH_BLITTER) {
9774 batch_mark_sync_for_pipe_control(batch, flags);
9775 iris_batch_sync_region_start(batch);
9776
9777 assert(!(flags & PIPE_CONTROL_WRITE_DEPTH_COUNT));
9778
9779 /* Wa_16018063123 - emit fast color dummy blit before MI_FLUSH_DW. */
9780 if (intel_needs_workaround(batch->screen->devinfo, 16018063123))
9781 batch_emit_fast_color_dummy_blit(batch);
9782
9783 /* The blitter doesn't actually use PIPE_CONTROL; rather it uses the
9784 * MI_FLUSH_DW command. However, all of our code is set up to flush
9785 * via emitting a pipe control, so we just translate it at this point,
9786 * even if it is a bit hacky.
9787 */
9788 iris_emit_cmd(batch, GENX(MI_FLUSH_DW), fd) {
9789 fd.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
9790 fd.ImmediateData = imm;
9791 fd.PostSyncOperation = flags_to_post_sync_op(flags);
9792 #if GFX_VERx10 >= 125
9793 /* TODO: This may not always be necessary */
9794 fd.FlushCCS = true;
9795 #endif
9796 }
9797 iris_batch_sync_region_end(batch);
9798 return;
9799 }
9800 #endif
9801
9802 /* The "L3 Read Only Cache Invalidation Bit" docs say it "controls the
9803 * invalidation of the Geometry streams cached in L3 cache at the top
9804 * of the pipe". In other words, index & vertex data that gets cached
9805 * in L3 when VERTEX_BUFFER_STATE::L3BypassDisable is set.
9806 *
9807 * Normally, invalidating L1/L2 read-only caches also invalidate their
9808 * related L3 cachelines, but this isn't the case for the VF cache.
9809 * Emulate it by setting the L3 Read Only bit when doing a VF invalidate.
9810 */
9811 if (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)
9812 flags |= PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
9813
9814 /* Recursive PIPE_CONTROL workarounds --------------------------------
9815 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
9816 *
9817 * We do these first because we want to look at the original operation,
9818 * rather than any workarounds we set.
9819 */
9820 if (GFX_VER == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
9821 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
9822 * lists several workarounds:
9823 *
9824 * "Project: SKL, KBL, BXT
9825 *
9826 * If the VF Cache Invalidation Enable is set to a 1 in a
9827 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
9828 * sets to 0, with the VF Cache Invalidation Enable set to 0
9829 * needs to be sent prior to the PIPE_CONTROL with VF Cache
9830 * Invalidation Enable set to a 1."
9831 */
9832 iris_emit_raw_pipe_control(batch,
9833 "workaround: recursive VF cache invalidate",
9834 0, NULL, 0, 0);
9835 }
9836
9837 if (GFX_VER == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
9838 /* Project: SKL / Argument: LRI Post Sync Operation [23]
9839 *
9840 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
9841 * programmed prior to programming a PIPECONTROL command with "LRI
9842 * Post Sync Operation" in GPGPU mode of operation (i.e when
9843 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
9844 *
9845 * The same text exists a few rows below for Post Sync Op.
9846 */
9847 iris_emit_raw_pipe_control(batch,
9848 "workaround: CS stall before gpgpu post-sync",
9849 PIPE_CONTROL_CS_STALL, bo, offset, imm);
9850 }
9851
9852 /* "Flush Types" workarounds ---------------------------------------------
9853 * We do these now because they may add post-sync operations or CS stalls.
9854 */
9855
9856 if (GFX_VER < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
9857 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
9858 *
9859 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
9860 * 'Write PS Depth Count' or 'Write Timestamp'."
9861 */
9862 if (!bo) {
9863 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
9864 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
9865 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
9866 bo = batch->screen->workaround_address.bo;
9867 offset = batch->screen->workaround_address.offset;
9868 }
9869 }
9870
9871 if (flags & PIPE_CONTROL_DEPTH_STALL) {
9872 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
9873 *
9874 * "This bit must be DISABLED for operations other than writing
9875 * PS_DEPTH_COUNT."
9876 *
9877 * This seems like nonsense. An Ivybridge workaround requires us to
9878 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
9879 * operation. Gfx8+ requires us to emit depth stalls and depth cache
9880 * flushes together. So, it's hard to imagine this means anything other
9881 * than "we originally intended this to be used for PS_DEPTH_COUNT".
9882 *
9883 * We ignore the supposed restriction and do nothing.
9884 */
9885 }
9886
9887 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
9888 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
9889 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
9890 *
9891 * "This bit must be DISABLED for End-of-pipe (Read) fences,
9892 * PS_DEPTH_COUNT or TIMESTAMP queries."
9893 *
9894 * TODO: Implement end-of-pipe checking.
9895 */
9896 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
9897 PIPE_CONTROL_WRITE_TIMESTAMP)));
9898 }
9899
9900 if (GFX_VER < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
9901 /* From the PIPE_CONTROL instruction table, bit 1:
9902 *
9903 * "This bit is ignored if Depth Stall Enable is set.
9904 * Further, the render cache is not flushed even if Write Cache
9905 * Flush Enable bit is set."
9906 *
9907 * We assert that the caller doesn't do this combination, to try and
9908 * prevent mistakes. It shouldn't hurt the GPU, though.
9909 *
9910 * We skip this check on Gfx11+ as the "Stall at Pixel Scoreboard"
9911 * and "Render Target Flush" combo is explicitly required for BTI
9912 * update workarounds.
9913 */
9914 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
9915 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
9916 }
9917
9918 /* PIPE_CONTROL page workarounds ------------------------------------- */
9919
9920 if (GFX_VER <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
9921 /* From the PIPE_CONTROL page itself:
9922 *
9923 * "IVB, HSW, BDW
9924 * Restriction: Pipe_control with CS-stall bit set must be issued
9925 * before a pipe-control command that has the State Cache
9926 * Invalidate bit set."
9927 */
9928 flags |= PIPE_CONTROL_CS_STALL;
9929 }
9930
9931 if (flags & PIPE_CONTROL_FLUSH_LLC) {
9932 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
9933 *
9934 * "Project: ALL
9935 * SW must always program Post-Sync Operation to "Write Immediate
9936 * Data" when Flush LLC is set."
9937 *
9938 * For now, we just require the caller to do it.
9939 */
9940 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
9941 }
9942
9943 /* Emulate a HDC flush with a full Data Cache Flush on older hardware which
9944 * doesn't support the new lightweight flush.
9945 */
9946 #if GFX_VER < 12
9947 if (flags & PIPE_CONTROL_FLUSH_HDC)
9948 flags |= PIPE_CONTROL_DATA_CACHE_FLUSH;
9949 #endif
9950
9951 /* "Post-Sync Operation" workarounds -------------------------------- */
9952
9953 /* Project: All / Argument: Global Snapshot Count Reset [19]
9954 *
9955 * "This bit must not be exercised on any product.
9956 * Requires stall bit ([20] of DW1) set."
9957 *
9958 * We don't use this, so we just assert that it isn't used. The
9959 * PIPE_CONTROL instruction page indicates that they intended this
9960 * as a debug feature and don't think it is useful in production,
9961 * but it may actually be usable, should we ever want to.
9962 */
9963 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
9964
9965 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
9966 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
9967 /* Project: All / Arguments:
9968 *
9969 * - Generic Media State Clear [16]
9970 * - Indirect State Pointers Disable [16]
9971 *
9972 * "Requires stall bit ([20] of DW1) set."
9973 *
9974 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
9975 * State Clear) says:
9976 *
9977 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
9978 * programmed prior to programming a PIPECONTROL command with "Media
9979 * State Clear" set in GPGPU mode of operation"
9980 *
9981 * This is a subset of the earlier rule, so there's nothing to do.
9982 */
9983 flags |= PIPE_CONTROL_CS_STALL;
9984 }
9985
9986 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
9987 /* Project: All / Argument: Store Data Index
9988 *
9989 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
9990 * than '0'."
9991 *
9992 * For now, we just assert that the caller does this. We might want to
9993 * automatically add a write to the workaround BO...
9994 */
9995 assert(non_lri_post_sync_flags != 0);
9996 }
9997
9998 if (flags & PIPE_CONTROL_SYNC_GFDT) {
9999 /* Project: All / Argument: Sync GFDT
10000 *
10001 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
10002 * than '0' or 0x2520[13] must be set."
10003 *
10004 * For now, we just assert that the caller does this.
10005 */
10006 assert(non_lri_post_sync_flags != 0);
10007 }
10008
10009 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
10010 /* Project: IVB+ / Argument: TLB inv
10011 *
10012 * "Requires stall bit ([20] of DW1) set."
10013 *
10014 * Also, from the PIPE_CONTROL instruction table:
10015 *
10016 * "Project: SKL+
10017 * Post Sync Operation or CS stall must be set to ensure a TLB
10018 * invalidation occurs. Otherwise no cycle will occur to the TLB
10019 * cache to invalidate."
10020 *
10021 * This is not a subset of the earlier rule, so there's nothing to do.
10022 */
10023 flags |= PIPE_CONTROL_CS_STALL;
10024 }
10025
10026 if (GFX_VER == 9 && devinfo->gt == 4) {
10027 /* TODO: The big Skylake GT4 post sync op workaround */
10028 }
10029
10030 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
10031
10032 if (IS_COMPUTE_PIPELINE(batch)) {
10033 if (GFX_VER >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
10034 /* SKL PRMs, Volume 7: 3D-Media-GPGPU, Programming Restrictions for
10035 * PIPE_CONTROL, Flush Types:
10036 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
10037 * For newer platforms this is documented in the PIPE_CONTROL
10038 * instruction page.
10039 */
10040 flags |= PIPE_CONTROL_CS_STALL;
10041 }
10042
10043 if (GFX_VER == 8 && (post_sync_flags ||
10044 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
10045 PIPE_CONTROL_DEPTH_STALL |
10046 PIPE_CONTROL_RENDER_TARGET_FLUSH |
10047 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
10048 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
10049 /* Project: BDW / Arguments:
10050 *
10051 * - LRI Post Sync Operation [23]
10052 * - Post Sync Op [15:14]
10053 * - Notify En [8]
10054 * - Depth Stall [13]
10055 * - Render Target Cache Flush [12]
10056 * - Depth Cache Flush [0]
10057 * - DC Flush Enable [5]
10058 *
10059 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
10060 * Workloads."
10061 */
10062 flags |= PIPE_CONTROL_CS_STALL;
10063
10064 /* Also, from the PIPE_CONTROL instruction table, bit 20:
10065 *
10066 * "Project: BDW
10067 * This bit must be always set when PIPE_CONTROL command is
10068 * programmed by GPGPU and MEDIA workloads, except for the cases
10069 * when only Read Only Cache Invalidation bits are set (State
10070 * Cache Invalidation Enable, Instruction cache Invalidation
10071 * Enable, Texture Cache Invalidation Enable, Constant Cache
10072 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
10073 * need not implemented when FF_DOP_CG is disable via "Fixed
10074 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
10075 *
10076 * It sounds like we could avoid CS stalls in some cases, but we
10077 * don't currently bother. This list isn't exactly the list above,
10078 * either...
10079 */
10080 }
10081 }
10082
10083 /* "Stall" workarounds ----------------------------------------------
10084 * These have to come after the earlier ones because we may have added
10085 * some additional CS stalls above.
10086 */
10087
10088 if (GFX_VER < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
10089 /* Project: PRE-SKL, VLV, CHV
10090 *
10091 * "[All Stepping][All SKUs]:
10092 *
10093 * One of the following must also be set:
10094 *
10095 * - Render Target Cache Flush Enable ([12] of DW1)
10096 * - Depth Cache Flush Enable ([0] of DW1)
10097 * - Stall at Pixel Scoreboard ([1] of DW1)
10098 * - Depth Stall ([13] of DW1)
10099 * - Post-Sync Operation ([13] of DW1)
10100 * - DC Flush Enable ([5] of DW1)"
10101 *
10102 * If we don't already have one of those bits set, we choose to add
10103 * "Stall at Pixel Scoreboard". Some of the other bits require a
10104 * CS stall as a workaround (see above), which would send us into
10105 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
10106 * appears to be safe, so we choose that.
10107 */
10108 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
10109 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
10110 PIPE_CONTROL_WRITE_IMMEDIATE |
10111 PIPE_CONTROL_WRITE_DEPTH_COUNT |
10112 PIPE_CONTROL_WRITE_TIMESTAMP |
10113 PIPE_CONTROL_STALL_AT_SCOREBOARD |
10114 PIPE_CONTROL_DEPTH_STALL |
10115 PIPE_CONTROL_DATA_CACHE_FLUSH;
10116 if (!(flags & wa_bits))
10117 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
10118 }
10119
10120 if (INTEL_NEEDS_WA_1409600907 && (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH)) {
10121 /* Wa_1409600907:
10122 *
10123 * "PIPE_CONTROL with Depth Stall Enable bit must be set
10124 * with any PIPE_CONTROL with Depth Flush Enable bit set.
10125 */
10126 flags |= PIPE_CONTROL_DEPTH_STALL;
10127 }
10128
10129 /* Wa_14014966230: For COMPUTE Workload - Any PIPE_CONTROL command with
10130 * POST_SYNC Operation Enabled MUST be preceded by a PIPE_CONTROL
10131 * with CS_STALL Bit set (with No POST_SYNC ENABLED)
10132 */
10133 if (intel_device_info_is_adln(devinfo) &&
10134 IS_COMPUTE_PIPELINE(batch) &&
10135 flags_to_post_sync_op(flags) != NoWrite) {
10136 iris_emit_raw_pipe_control(batch, "Wa_14014966230",
10137 PIPE_CONTROL_CS_STALL, NULL, 0, 0);
10138 }
10139
10140 batch_mark_sync_for_pipe_control(batch, flags);
10141
10142 #if INTEL_NEEDS_WA_14010840176
10143 /* "If the intention of “constant cache invalidate” is
10144 * to invalidate the L1 cache (which can cache constants), use “HDC
10145 * pipeline flush” instead of Constant Cache invalidate command."
10146 *
10147 * "If L3 invalidate is needed, the w/a should be to set state invalidate
10148 * in the pipe control command, in addition to the HDC pipeline flush."
10149 */
10150 if (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) {
10151 flags &= ~PIPE_CONTROL_CONST_CACHE_INVALIDATE;
10152 flags |= PIPE_CONTROL_FLUSH_HDC | PIPE_CONTROL_STATE_CACHE_INVALIDATE;
10153 }
10154 #endif
10155
10156 /* Emit --------------------------------------------------------------- */
10157
10158 if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) {
10159 fprintf(stderr,
10160 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
10161 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
10162 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
10163 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
10164 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
10165 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
10166 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
10167 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
10168 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
10169 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
10170 (flags & PIPE_CONTROL_TILE_CACHE_FLUSH) ? "Tile " : "",
10171 (flags & PIPE_CONTROL_L3_FABRIC_FLUSH) ? "L3Fabric " : "",
10172 (flags & PIPE_CONTROL_CCS_CACHE_FLUSH) ? "CCS " : "",
10173 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
10174 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
10175 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
10176 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
10177 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
10178 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
10179 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
10180 "SnapRes" : "",
10181 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
10182 "ISPDis" : "",
10183 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
10184 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
10185 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
10186 (flags & PIPE_CONTROL_FLUSH_HDC) ? "HDC " : "",
10187 (flags & PIPE_CONTROL_PSS_STALL_SYNC) ? "PSS " : "",
10188 (flags & PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH) ? "UntypedDataPortCache " : "",
10189 imm, reason);
10190 }
10191
10192 iris_batch_sync_region_start(batch);
10193
10194 const bool trace_pc =
10195 (flags & (PIPE_CONTROL_CACHE_FLUSH_BITS | PIPE_CONTROL_CACHE_INVALIDATE_BITS)) != 0;
10196
10197 if (trace_pc)
10198 trace_intel_begin_stall(&batch->trace);
10199
10200 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
10201 #if GFX_VERx10 >= 125
10202 pc.PSSStallSyncEnable = flags & PIPE_CONTROL_PSS_STALL_SYNC;
10203 #endif
10204 #if GFX_VER == 12
10205 pc.TileCacheFlushEnable = flags & PIPE_CONTROL_TILE_CACHE_FLUSH;
10206 pc.L3FabricFlush = flags & PIPE_CONTROL_L3_FABRIC_FLUSH;
10207 #endif
10208 #if GFX_VER > 11
10209 pc.HDCPipelineFlushEnable = flags & PIPE_CONTROL_FLUSH_HDC;
10210 #endif
10211 #if GFX_VERx10 >= 125
10212 pc.UntypedDataPortCacheFlushEnable =
10213 (flags & (PIPE_CONTROL_UNTYPED_DATAPORT_CACHE_FLUSH |
10214 PIPE_CONTROL_FLUSH_HDC |
10215 PIPE_CONTROL_DATA_CACHE_FLUSH)) &&
10216 IS_COMPUTE_PIPELINE(batch);
10217 pc.HDCPipelineFlushEnable |= pc.UntypedDataPortCacheFlushEnable;
10218 pc.CCSFlushEnable |= flags & PIPE_CONTROL_CCS_CACHE_FLUSH;
10219 #endif
10220 pc.LRIPostSyncOperation = NoLRIOperation;
10221 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
10222 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
10223 pc.StoreDataIndex = 0;
10224 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
10225 #if GFX_VERx10 < 125
10226 pc.GlobalSnapshotCountReset =
10227 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
10228 #endif
10229 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
10230 #if GFX_VERx10 < 200
10231 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
10232 #endif
10233 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
10234 pc.RenderTargetCacheFlushEnable =
10235 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
10236 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
10237 pc.StateCacheInvalidationEnable =
10238 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
10239 #if GFX_VER >= 12
10240 pc.L3ReadOnlyCacheInvalidationEnable =
10241 flags & PIPE_CONTROL_L3_READ_ONLY_CACHE_INVALIDATE;
10242 #endif
10243 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
10244 pc.ConstantCacheInvalidationEnable =
10245 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
10246 pc.PostSyncOperation = flags_to_post_sync_op(flags);
10247 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
10248 pc.InstructionCacheInvalidateEnable =
10249 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
10250 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
10251 pc.IndirectStatePointersDisable =
10252 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
10253 pc.TextureCacheInvalidationEnable =
10254 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
10255 pc.Address = rw_bo(bo, offset, IRIS_DOMAIN_OTHER_WRITE);
10256 pc.ImmediateData = imm;
10257 }
10258
10259 if (trace_pc) {
10260 trace_intel_end_stall(&batch->trace, flags,
10261 iris_utrace_pipe_flush_bit_to_ds_stall_flag,
10262 reason,0,0,0);
10263 }
10264
10265 iris_batch_sync_region_end(batch);
10266 }
10267
10268 #if GFX_VER == 9
10269 /**
10270 * Preemption on Gfx9 has to be enabled or disabled in various cases.
10271 *
10272 * See these workarounds for preemption:
10273 * - WaDisableMidObjectPreemptionForGSLineStripAdj
10274 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
10275 * - WaDisableMidObjectPreemptionForLineLoop
10276 * - WA#0798
10277 *
10278 * We don't put this in the vtable because it's only used on Gfx9.
10279 */
10280 void
gfx9_toggle_preemption(struct iris_context * ice,struct iris_batch * batch,const struct pipe_draw_info * draw)10281 gfx9_toggle_preemption(struct iris_context *ice,
10282 struct iris_batch *batch,
10283 const struct pipe_draw_info *draw)
10284 {
10285 struct iris_genx_state *genx = ice->state.genx;
10286 bool object_preemption = true;
10287
10288 /* WaDisableMidObjectPreemptionForGSLineStripAdj
10289 *
10290 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
10291 * and GS is enabled."
10292 */
10293 if (draw->mode == MESA_PRIM_LINE_STRIP_ADJACENCY &&
10294 ice->shaders.prog[MESA_SHADER_GEOMETRY])
10295 object_preemption = false;
10296
10297 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
10298 *
10299 * "TriFan miscompare in Execlist Preemption test. Cut index that is
10300 * on a previous context. End the previous, the resume another context
10301 * with a tri-fan or polygon, and the vertex count is corrupted. If we
10302 * prempt again we will cause corruption.
10303 *
10304 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
10305 */
10306 if (draw->mode == MESA_PRIM_TRIANGLE_FAN)
10307 object_preemption = false;
10308
10309 /* WaDisableMidObjectPreemptionForLineLoop
10310 *
10311 * "VF Stats Counters Missing a vertex when preemption enabled.
10312 *
10313 * WA: Disable mid-draw preemption when the draw uses a lineloop
10314 * topology."
10315 */
10316 if (draw->mode == MESA_PRIM_LINE_LOOP)
10317 object_preemption = false;
10318
10319 /* WA#0798
10320 *
10321 * "VF is corrupting GAFS data when preempted on an instance boundary
10322 * and replayed with instancing enabled.
10323 *
10324 * WA: Disable preemption when using instanceing."
10325 */
10326 if (draw->instance_count > 1)
10327 object_preemption = false;
10328
10329 if (genx->object_preemption != object_preemption) {
10330 iris_enable_obj_preemption(batch, object_preemption);
10331 genx->object_preemption = object_preemption;
10332 }
10333 }
10334 #endif
10335
10336 static void
iris_lost_genx_state(struct iris_context * ice,struct iris_batch * batch)10337 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
10338 {
10339 struct iris_genx_state *genx = ice->state.genx;
10340
10341 #if INTEL_NEEDS_WA_1808121037
10342 genx->depth_reg_mode = IRIS_DEPTH_REG_MODE_UNKNOWN;
10343 #endif
10344
10345 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
10346 }
10347
10348 static void
iris_emit_mi_report_perf_count(struct iris_batch * batch,struct iris_bo * bo,uint32_t offset_in_bytes,uint32_t report_id)10349 iris_emit_mi_report_perf_count(struct iris_batch *batch,
10350 struct iris_bo *bo,
10351 uint32_t offset_in_bytes,
10352 uint32_t report_id)
10353 {
10354 iris_batch_sync_region_start(batch);
10355 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
10356 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes,
10357 IRIS_DOMAIN_OTHER_WRITE);
10358 mi_rpc.ReportID = report_id;
10359 }
10360 iris_batch_sync_region_end(batch);
10361 }
10362
10363 /**
10364 * Update the pixel hashing modes that determine the balancing of PS threads
10365 * across subslices and slices.
10366 *
10367 * \param width Width bound of the rendering area (already scaled down if \p
10368 * scale is greater than 1).
10369 * \param height Height bound of the rendering area (already scaled down if \p
10370 * scale is greater than 1).
10371 * \param scale The number of framebuffer samples that could potentially be
10372 * affected by an individual channel of the PS thread. This is
10373 * typically one for single-sampled rendering, but for operations
10374 * like CCS resolves and fast clears a single PS invocation may
10375 * update a huge number of pixels, in which case a finer
10376 * balancing is desirable in order to maximally utilize the
10377 * bandwidth available. UINT_MAX can be used as shorthand for
10378 * "finest hashing mode available".
10379 */
10380 void
genX(emit_hashing_mode)10381 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
10382 unsigned width, unsigned height, unsigned scale)
10383 {
10384 #if GFX_VER == 9
10385 const struct intel_device_info *devinfo = batch->screen->devinfo;
10386 const unsigned slice_hashing[] = {
10387 /* Because all Gfx9 platforms with more than one slice require
10388 * three-way subslice hashing, a single "normal" 16x16 slice hashing
10389 * block is guaranteed to suffer from substantial imbalance, with one
10390 * subslice receiving twice as much work as the other two in the
10391 * slice.
10392 *
10393 * The performance impact of that would be particularly severe when
10394 * three-way hashing is also in use for slice balancing (which is the
10395 * case for all Gfx9 GT4 platforms), because one of the slices
10396 * receives one every three 16x16 blocks in either direction, which
10397 * is roughly the periodicity of the underlying subslice imbalance
10398 * pattern ("roughly" because in reality the hardware's
10399 * implementation of three-way hashing doesn't do exact modulo 3
10400 * arithmetic, which somewhat decreases the magnitude of this effect
10401 * in practice). This leads to a systematic subslice imbalance
10402 * within that slice regardless of the size of the primitive. The
10403 * 32x32 hashing mode guarantees that the subslice imbalance within a
10404 * single slice hashing block is minimal, largely eliminating this
10405 * effect.
10406 */
10407 _32x32,
10408 /* Finest slice hashing mode available. */
10409 NORMAL
10410 };
10411 const unsigned subslice_hashing[] = {
10412 /* 16x16 would provide a slight cache locality benefit especially
10413 * visible in the sampler L1 cache efficiency of low-bandwidth
10414 * non-LLC platforms, but it comes at the cost of greater subslice
10415 * imbalance for primitives of dimensions approximately intermediate
10416 * between 16x4 and 16x16.
10417 */
10418 _16x4,
10419 /* Finest subslice hashing mode available. */
10420 _8x4
10421 };
10422 /* Dimensions of the smallest hashing block of a given hashing mode. If
10423 * the rendering area is smaller than this there can't possibly be any
10424 * benefit from switching to this mode, so we optimize out the
10425 * transition.
10426 */
10427 const unsigned min_size[][2] = {
10428 { 16, 4 },
10429 { 8, 4 }
10430 };
10431 const unsigned idx = scale > 1;
10432
10433 if (width > min_size[idx][0] || height > min_size[idx][1]) {
10434 iris_emit_raw_pipe_control(batch,
10435 "workaround: CS stall before GT_MODE LRI",
10436 PIPE_CONTROL_STALL_AT_SCOREBOARD |
10437 PIPE_CONTROL_CS_STALL,
10438 NULL, 0, 0);
10439
10440 iris_emit_reg(batch, GENX(GT_MODE), reg) {
10441 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
10442 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
10443 reg.SubsliceHashing = subslice_hashing[idx];
10444 reg.SubsliceHashingMask = -1;
10445 };
10446
10447 ice->state.current_hash_scale = scale;
10448 }
10449 #endif
10450 }
10451
10452 static void
iris_set_frontend_noop(struct pipe_context * ctx,bool enable)10453 iris_set_frontend_noop(struct pipe_context *ctx, bool enable)
10454 {
10455 struct iris_context *ice = (struct iris_context *) ctx;
10456
10457 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_RENDER], enable)) {
10458 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_RENDER;
10459 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_RENDER;
10460 }
10461
10462 if (iris_batch_prepare_noop(&ice->batches[IRIS_BATCH_COMPUTE], enable)) {
10463 ice->state.dirty |= IRIS_ALL_DIRTY_FOR_COMPUTE;
10464 ice->state.stage_dirty |= IRIS_ALL_STAGE_DIRTY_FOR_COMPUTE;
10465 }
10466 }
10467
10468 void
genX(init_screen_state)10469 genX(init_screen_state)(struct iris_screen *screen)
10470 {
10471 assert(screen->devinfo->verx10 == GFX_VERx10);
10472 screen->vtbl.destroy_state = iris_destroy_state;
10473 screen->vtbl.init_render_context = iris_init_render_context;
10474 screen->vtbl.init_compute_context = iris_init_compute_context;
10475 screen->vtbl.init_copy_context = iris_init_copy_context;
10476 screen->vtbl.upload_render_state = iris_upload_render_state;
10477 screen->vtbl.upload_indirect_render_state = iris_upload_indirect_render_state;
10478 screen->vtbl.upload_indirect_shader_render_state = iris_upload_indirect_shader_render_state;
10479 screen->vtbl.update_binder_address = iris_update_binder_address;
10480 screen->vtbl.upload_compute_state = iris_upload_compute_state;
10481 screen->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
10482 screen->vtbl.rewrite_compute_walker_pc = iris_rewrite_compute_walker_pc;
10483 screen->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
10484 screen->vtbl.rebind_buffer = iris_rebind_buffer;
10485 screen->vtbl.load_register_reg32 = iris_load_register_reg32;
10486 screen->vtbl.load_register_reg64 = iris_load_register_reg64;
10487 screen->vtbl.load_register_imm32 = iris_load_register_imm32;
10488 screen->vtbl.load_register_imm64 = iris_load_register_imm64;
10489 screen->vtbl.load_register_mem32 = iris_load_register_mem32;
10490 screen->vtbl.load_register_mem64 = iris_load_register_mem64;
10491 screen->vtbl.store_register_mem32 = iris_store_register_mem32;
10492 screen->vtbl.store_register_mem64 = iris_store_register_mem64;
10493 screen->vtbl.store_data_imm32 = iris_store_data_imm32;
10494 screen->vtbl.store_data_imm64 = iris_store_data_imm64;
10495 screen->vtbl.copy_mem_mem = iris_copy_mem_mem;
10496 screen->vtbl.derived_program_state_size = iris_derived_program_state_size;
10497 screen->vtbl.store_derived_program_state = iris_store_derived_program_state;
10498 screen->vtbl.create_so_decl_list = iris_create_so_decl_list;
10499 screen->vtbl.populate_vs_key = iris_populate_vs_key;
10500 screen->vtbl.populate_tcs_key = iris_populate_tcs_key;
10501 screen->vtbl.populate_tes_key = iris_populate_tes_key;
10502 screen->vtbl.populate_gs_key = iris_populate_gs_key;
10503 screen->vtbl.populate_fs_key = iris_populate_fs_key;
10504 screen->vtbl.populate_cs_key = iris_populate_cs_key;
10505 screen->vtbl.lost_genx_state = iris_lost_genx_state;
10506 screen->vtbl.disable_rhwo_optimization = iris_disable_rhwo_optimization;
10507 }
10508
10509 void
genX(init_state)10510 genX(init_state)(struct iris_context *ice)
10511 {
10512 struct pipe_context *ctx = &ice->ctx;
10513 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
10514
10515 ctx->create_blend_state = iris_create_blend_state;
10516 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
10517 ctx->create_rasterizer_state = iris_create_rasterizer_state;
10518 ctx->create_sampler_state = iris_create_sampler_state;
10519 ctx->create_sampler_view = iris_create_sampler_view;
10520 ctx->create_surface = iris_create_surface;
10521 ctx->create_vertex_elements_state = iris_create_vertex_elements;
10522 ctx->bind_blend_state = iris_bind_blend_state;
10523 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
10524 ctx->bind_sampler_states = iris_bind_sampler_states;
10525 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
10526 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
10527 ctx->delete_blend_state = iris_delete_state;
10528 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
10529 ctx->delete_rasterizer_state = iris_delete_state;
10530 ctx->delete_sampler_state = iris_delete_state;
10531 ctx->delete_vertex_elements_state = iris_delete_state;
10532 ctx->set_blend_color = iris_set_blend_color;
10533 ctx->set_clip_state = iris_set_clip_state;
10534 ctx->set_constant_buffer = iris_set_constant_buffer;
10535 ctx->set_shader_buffers = iris_set_shader_buffers;
10536 ctx->set_shader_images = iris_set_shader_images;
10537 ctx->set_sampler_views = iris_set_sampler_views;
10538 ctx->set_compute_resources = iris_set_compute_resources;
10539 ctx->set_global_binding = iris_set_global_binding;
10540 ctx->set_tess_state = iris_set_tess_state;
10541 ctx->set_patch_vertices = iris_set_patch_vertices;
10542 ctx->set_framebuffer_state = iris_set_framebuffer_state;
10543 ctx->set_polygon_stipple = iris_set_polygon_stipple;
10544 ctx->set_sample_mask = iris_set_sample_mask;
10545 ctx->set_scissor_states = iris_set_scissor_states;
10546 ctx->set_stencil_ref = iris_set_stencil_ref;
10547 ctx->set_vertex_buffers = iris_set_vertex_buffers;
10548 ctx->set_viewport_states = iris_set_viewport_states;
10549 ctx->sampler_view_destroy = iris_sampler_view_destroy;
10550 ctx->surface_destroy = iris_surface_destroy;
10551 ctx->draw_vbo = iris_draw_vbo;
10552 ctx->launch_grid = iris_launch_grid;
10553 ctx->create_stream_output_target = iris_create_stream_output_target;
10554 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
10555 ctx->set_stream_output_targets = iris_set_stream_output_targets;
10556 ctx->set_frontend_noop = iris_set_frontend_noop;
10557
10558 ice->state.dirty = ~0ull;
10559 ice->state.stage_dirty = ~0ull;
10560
10561 ice->state.statistics_counters_enabled = true;
10562
10563 ice->state.sample_mask = 0xffff;
10564 ice->state.num_viewports = 1;
10565 ice->state.prim_mode = MESA_PRIM_COUNT;
10566 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
10567 ice->draw.derived_params.drawid = -1;
10568
10569 #if GFX_VERx10 >= 120
10570 ice->state.genx->object_preemption = true;
10571 #endif
10572
10573 /* Make a 1x1x1 null surface for unbound textures */
10574 void *null_surf_map =
10575 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
10576 4 * GENX(RENDER_SURFACE_STATE_length), 64);
10577 isl_null_fill_state(&screen->isl_dev, null_surf_map,
10578 .size = isl_extent3d(1, 1, 1));
10579 ice->state.unbound_tex.offset +=
10580 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
10581
10582 /* Default all scissor rectangles to be empty regions. */
10583 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
10584 ice->state.scissors[i] = (struct pipe_scissor_state) {
10585 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
10586 };
10587 }
10588 }
10589