1 /*
2 * Copyright 2016 Advanced Micro Devices, Inc.
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "ac_debug.h"
8 #include "ac_nir.h"
9 #include "ac_nir_to_llvm.h"
10 #include "ac_rtld.h"
11 #include "si_pipe.h"
12 #include "si_shader_internal.h"
13 #include "si_shader_llvm.h"
14 #include "sid.h"
15 #include "util/u_memory.h"
16 #include "util/u_prim.h"
17
18 struct si_llvm_diagnostics {
19 struct util_debug_callback *debug;
20 unsigned retval;
21 };
22
si_diagnostic_handler(LLVMDiagnosticInfoRef di,void * context)23 static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
24 {
25 struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
26 LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
27 const char *severity_str = NULL;
28
29 switch (severity) {
30 case LLVMDSError:
31 severity_str = "error";
32 break;
33 case LLVMDSWarning:
34 severity_str = "warning";
35 break;
36 case LLVMDSRemark:
37 case LLVMDSNote:
38 default:
39 return;
40 }
41
42 char *description = LLVMGetDiagInfoDescription(di);
43
44 util_debug_message(diag->debug, SHADER_INFO, "LLVM diagnostic (%s): %s", severity_str,
45 description);
46
47 if (severity == LLVMDSError) {
48 diag->retval = 1;
49 fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n", description);
50 }
51
52 LLVMDisposeMessage(description);
53 }
54
si_compile_llvm(struct si_screen * sscreen,struct si_shader_binary * binary,struct ac_shader_config * conf,struct ac_llvm_compiler * compiler,struct ac_llvm_context * ac,struct util_debug_callback * debug,gl_shader_stage stage,const char * name)55 static bool si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary,
56 struct ac_shader_config *conf, struct ac_llvm_compiler *compiler,
57 struct ac_llvm_context *ac, struct util_debug_callback *debug,
58 gl_shader_stage stage, const char *name)
59 {
60 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
61
62 if (si_can_dump_shader(sscreen, stage, SI_DUMP_LLVM_IR)) {
63 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
64
65 fprintf(stderr, "%s LLVM IR:\n\n", name);
66 ac_dump_module(ac->module);
67 fprintf(stderr, "\n");
68 }
69
70 if (sscreen->record_llvm_ir) {
71 char *ir = LLVMPrintModuleToString(ac->module);
72 binary->llvm_ir_string = strdup(ir);
73 LLVMDisposeMessage(ir);
74 }
75
76 if (!si_replace_shader(count, binary)) {
77 struct ac_backend_optimizer *beo = compiler->beo;
78
79 struct si_llvm_diagnostics diag = {debug};
80 LLVMContextSetDiagnosticHandler(ac->context, si_diagnostic_handler, &diag);
81
82 if (!ac_compile_module_to_elf(beo, ac->module, (char **)&binary->code_buffer,
83 &binary->code_size))
84 diag.retval = 1;
85
86 if (diag.retval != 0) {
87 util_debug_message(debug, SHADER_INFO, "LLVM compilation failed");
88 return false;
89 }
90
91 binary->type = SI_SHADER_BINARY_ELF;
92 }
93
94 struct ac_rtld_binary rtld;
95 if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
96 .info = &sscreen->info,
97 .shader_type = stage,
98 .wave_size = ac->wave_size,
99 .num_parts = 1,
100 .elf_ptrs = &binary->code_buffer,
101 .elf_sizes = &binary->code_size}))
102 return false;
103
104 bool ok = ac_rtld_read_config(&sscreen->info, &rtld, conf);
105 ac_rtld_close(&rtld);
106 return ok;
107 }
108
si_llvm_context_init(struct si_shader_context * ctx,struct si_screen * sscreen,struct ac_llvm_compiler * compiler,unsigned wave_size,bool exports_color_null,bool exports_mrtz,enum ac_float_mode float_mode)109 static void si_llvm_context_init(struct si_shader_context *ctx, struct si_screen *sscreen,
110 struct ac_llvm_compiler *compiler, unsigned wave_size,
111 bool exports_color_null, bool exports_mrtz,
112 enum ac_float_mode float_mode)
113 {
114 memset(ctx, 0, sizeof(*ctx));
115 ctx->screen = sscreen;
116 ctx->compiler = compiler;
117
118 ac_llvm_context_init(&ctx->ac, compiler, &sscreen->info, float_mode,
119 wave_size, 64, exports_color_null, exports_mrtz);
120 }
121
si_llvm_create_func(struct si_shader_context * ctx,const char * name,LLVMTypeRef * return_types,unsigned num_return_elems,unsigned max_workgroup_size)122 void si_llvm_create_func(struct si_shader_context *ctx, const char *name, LLVMTypeRef *return_types,
123 unsigned num_return_elems, unsigned max_workgroup_size)
124 {
125 LLVMTypeRef ret_type;
126 enum ac_llvm_calling_convention call_conv;
127
128 if (num_return_elems)
129 ret_type = LLVMStructTypeInContext(ctx->ac.context, return_types, num_return_elems, true);
130 else
131 ret_type = ctx->ac.voidt;
132
133 gl_shader_stage real_stage = ctx->stage;
134
135 /* LS is merged into HS (TCS), and ES is merged into GS. */
136 if (ctx->screen->info.gfx_level >= GFX9 && ctx->stage <= MESA_SHADER_GEOMETRY) {
137 if (ctx->shader->key.ge.as_ls)
138 real_stage = MESA_SHADER_TESS_CTRL;
139 else if (ctx->shader->key.ge.as_es || ctx->shader->key.ge.as_ngg)
140 real_stage = MESA_SHADER_GEOMETRY;
141 }
142
143 switch (real_stage) {
144 case MESA_SHADER_VERTEX:
145 case MESA_SHADER_TESS_EVAL:
146 call_conv = AC_LLVM_AMDGPU_VS;
147 break;
148 case MESA_SHADER_TESS_CTRL:
149 call_conv = AC_LLVM_AMDGPU_HS;
150 break;
151 case MESA_SHADER_GEOMETRY:
152 call_conv = AC_LLVM_AMDGPU_GS;
153 break;
154 case MESA_SHADER_FRAGMENT:
155 call_conv = AC_LLVM_AMDGPU_PS;
156 break;
157 case MESA_SHADER_COMPUTE:
158 case MESA_SHADER_KERNEL:
159 call_conv = AC_LLVM_AMDGPU_CS;
160 break;
161 default:
162 unreachable("Unhandle shader type");
163 }
164
165 /* Setup the function */
166 ctx->return_type = ret_type;
167 ctx->main_fn = ac_build_main(&ctx->args->ac, &ctx->ac, call_conv, name, ret_type, ctx->ac.module);
168 ctx->return_value = LLVMGetUndef(ctx->return_type);
169
170 if (ctx->screen->info.address32_hi) {
171 ac_llvm_add_target_dep_function_attr(ctx->main_fn.value, "amdgpu-32bit-address-high-bits",
172 ctx->screen->info.address32_hi);
173 }
174
175 if (ctx->screen->info.gfx_level < GFX12 && ctx->stage <= MESA_SHADER_GEOMETRY &&
176 ctx->shader->key.ge.as_ngg && si_shader_uses_streamout(ctx->shader))
177 ac_llvm_add_target_dep_function_attr(ctx->main_fn.value, "amdgpu-gds-size", 256);
178
179 ac_llvm_set_workgroup_size(ctx->main_fn.value, max_workgroup_size);
180 ac_llvm_set_target_features(ctx->main_fn.value, &ctx->ac, false);
181 }
182
si_llvm_create_main_func(struct si_shader_context * ctx)183 static void si_llvm_create_main_func(struct si_shader_context *ctx)
184 {
185 struct si_shader *shader = ctx->shader;
186 LLVMTypeRef returns[AC_MAX_ARGS];
187 unsigned i;
188
189 for (i = 0; i < ctx->args->ac.num_sgprs_returned; i++)
190 returns[i] = ctx->ac.i32; /* SGPR */
191 for (; i < ctx->args->ac.return_count; i++)
192 returns[i] = ctx->ac.f32; /* VGPR */
193
194 si_llvm_create_func(ctx, "main", returns, ctx->args->ac.return_count,
195 si_get_max_workgroup_size(shader));
196
197 /* Reserve register locations for VGPR inputs the PS prolog may need. */
198 if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
199 ac_llvm_add_target_dep_function_attr(
200 ctx->main_fn.value, "InitialPSInputAddr", SI_SPI_PS_INPUT_ADDR_FOR_PROLOG);
201 }
202
203
204 if (ctx->stage <= MESA_SHADER_GEOMETRY &&
205 (shader->key.ge.as_ls || ctx->stage == MESA_SHADER_TESS_CTRL)) {
206 /* The LSHS size is not known until draw time, so we append it
207 * at the end of whatever LDS use there may be in the rest of
208 * the shader (currently none, unless LLVM decides to do its
209 * own LDS-based lowering).
210 */
211 ctx->ac.lds = (struct ac_llvm_pointer) {
212 .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
213 "__lds_end", AC_ADDR_SPACE_LDS),
214 .pointee_type = LLVMArrayType(ctx->ac.i32, 0)
215 };
216 LLVMSetAlignment(ctx->ac.lds.value, 256);
217 }
218 }
219
si_llvm_optimize_module(struct si_shader_context * ctx)220 static void si_llvm_optimize_module(struct si_shader_context *ctx)
221 {
222 /* Dump LLVM IR before any optimization passes */
223 if (si_can_dump_shader(ctx->screen, ctx->stage, SI_DUMP_INIT_LLVM_IR))
224 ac_dump_module(ctx->ac.module);
225
226 /* Run the pass */
227 ac_llvm_optimize_module(ctx->compiler->meo, ctx->ac.module);
228 }
229
si_llvm_dispose(struct si_shader_context * ctx)230 static void si_llvm_dispose(struct si_shader_context *ctx)
231 {
232 LLVMDisposeModule(ctx->ac.module);
233 LLVMContextDispose(ctx->ac.context);
234 ac_llvm_context_dispose(&ctx->ac);
235 }
236
237 /**
238 * Load a dword from a constant buffer.
239 */
si_buffer_load_const(struct si_shader_context * ctx,LLVMValueRef resource,LLVMValueRef offset)240 LLVMValueRef si_buffer_load_const(struct si_shader_context *ctx, LLVMValueRef resource,
241 LLVMValueRef offset)
242 {
243 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL, ctx->ac.f32,
244 0, true, true);
245 }
246
si_llvm_build_ret(struct si_shader_context * ctx,LLVMValueRef ret)247 void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
248 {
249 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
250 LLVMBuildRetVoid(ctx->ac.builder);
251 else
252 LLVMBuildRet(ctx->ac.builder, ret);
253 }
254
si_insert_input_ret(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)255 LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
256 struct ac_arg param, unsigned return_index)
257 {
258 return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, "");
259 }
260
si_insert_input_ret_float(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)261 LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
262 struct ac_arg param, unsigned return_index)
263 {
264 LLVMBuilderRef builder = ctx->ac.builder;
265 LLVMValueRef p = ac_get_arg(&ctx->ac, param);
266
267 return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, "");
268 }
269
si_insert_input_ptr(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)270 LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
271 struct ac_arg param, unsigned return_index)
272 {
273 LLVMBuilderRef builder = ctx->ac.builder;
274 LLVMValueRef ptr = ac_get_arg(&ctx->ac, param);
275 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->ac.i32, "");
276 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
277 }
278
si_prolog_get_internal_binding_slot(struct si_shader_context * ctx,unsigned slot)279 LLVMValueRef si_prolog_get_internal_binding_slot(struct si_shader_context *ctx, unsigned slot)
280 {
281 LLVMValueRef list = LLVMBuildIntToPtr(
282 ctx->ac.builder, ac_get_arg(&ctx->ac, ctx->args->internal_bindings),
283 ac_array_in_const32_addr_space(ctx->ac.v4i32), "");
284 LLVMValueRef index = LLVMConstInt(ctx->ac.i32, slot, 0);
285
286 return ac_build_load_to_sgpr(&ctx->ac,
287 (struct ac_llvm_pointer) { .t = ctx->ac.v4i32, .v = list },
288 index);
289 }
290
291 /* Ensure that the esgs ring is declared.
292 *
293 * We declare it with 64KB alignment as a hint that the
294 * pointer value will always be 0.
295 */
si_llvm_declare_lds_esgs_ring(struct si_shader_context * ctx)296 static void si_llvm_declare_lds_esgs_ring(struct si_shader_context *ctx)
297 {
298 if (ctx->ac.lds.value)
299 return;
300
301 assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
302
303 LLVMValueRef esgs_ring =
304 LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
305 "esgs_ring", AC_ADDR_SPACE_LDS);
306 LLVMSetLinkage(esgs_ring, LLVMExternalLinkage);
307 LLVMSetAlignment(esgs_ring, 64 * 1024);
308
309 ctx->ac.lds.value = esgs_ring;
310 ctx->ac.lds.pointee_type = ctx->ac.i32;
311 }
312
si_init_exec_from_input(struct si_shader_context * ctx,struct ac_arg param,unsigned bitoffset)313 static void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param,
314 unsigned bitoffset)
315 {
316 LLVMValueRef args[] = {
317 ac_get_arg(&ctx->ac, param),
318 LLVMConstInt(ctx->ac.i32, bitoffset, 0),
319 };
320 ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->ac.voidt, args, 2, 0);
321 }
322
323 /**
324 * Get the value of a shader input parameter and extract a bitfield.
325 */
unpack_llvm_param(struct si_shader_context * ctx,LLVMValueRef value,unsigned rshift,unsigned bitwidth)326 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value,
327 unsigned rshift, unsigned bitwidth)
328 {
329 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
330 value = ac_to_integer(&ctx->ac, value);
331
332 if (rshift)
333 value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, rshift, 0), "");
334
335 if (rshift + bitwidth < 32) {
336 unsigned mask = (1 << bitwidth) - 1;
337 value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, mask, 0), "");
338 }
339
340 return value;
341 }
342
si_unpack_param(struct si_shader_context * ctx,struct ac_arg param,unsigned rshift,unsigned bitwidth)343 LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift,
344 unsigned bitwidth)
345 {
346 LLVMValueRef value = ac_get_arg(&ctx->ac, param);
347
348 return unpack_llvm_param(ctx, value, rshift, bitwidth);
349 }
350
si_llvm_declare_compute_memory(struct si_shader_context * ctx)351 static void si_llvm_declare_compute_memory(struct si_shader_context *ctx)
352 {
353 struct si_shader_selector *sel = ctx->shader->selector;
354 unsigned lds_size = sel->info.base.shared_size;
355
356 LLVMTypeRef i8p = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
357 LLVMValueRef var;
358
359 assert(!ctx->ac.lds.value);
360
361 LLVMTypeRef type = LLVMArrayType(ctx->ac.i8, lds_size);
362 var = LLVMAddGlobalInAddressSpace(ctx->ac.module, type,
363 "compute_lds", AC_ADDR_SPACE_LDS);
364 LLVMSetAlignment(var, 64 * 1024);
365
366 ctx->ac.lds = (struct ac_llvm_pointer) {
367 .value = LLVMBuildBitCast(ctx->ac.builder, var, i8p, ""),
368 .pointee_type = type,
369 };
370 }
371
372 /**
373 * Given two parts (LS/HS or ES/GS) of a merged shader, build a wrapper function that
374 * runs them in sequence to form a monolithic shader.
375 */
si_build_wrapper_function(struct si_shader_context * ctx,struct ac_llvm_pointer parts[2],bool same_thread_count)376 static void si_build_wrapper_function(struct si_shader_context *ctx,
377 struct ac_llvm_pointer parts[2],
378 bool same_thread_count)
379 {
380 LLVMBuilderRef builder = ctx->ac.builder;
381
382 for (unsigned i = 0; i < 2; ++i) {
383 ac_add_function_attr(ctx->ac.context, parts[i].value, -1, "alwaysinline");
384 LLVMSetLinkage(parts[i].value, LLVMPrivateLinkage);
385 }
386
387 si_llvm_create_func(ctx, "wrapper", NULL, 0, si_get_max_workgroup_size(ctx->shader));
388
389 if (same_thread_count) {
390 si_init_exec_from_input(ctx, ctx->args->ac.merged_wave_info, 0);
391 } else {
392 ac_init_exec_full_mask(&ctx->ac);
393
394 LLVMValueRef count = ac_get_arg(&ctx->ac, ctx->args->ac.merged_wave_info);
395 count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
396
397 LLVMValueRef ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
398 ac_build_ifcc(&ctx->ac, ena, 6506);
399 }
400
401 LLVMValueRef params[AC_MAX_ARGS];
402 unsigned num_params = LLVMCountParams(ctx->main_fn.value);
403 LLVMGetParams(ctx->main_fn.value, params);
404
405 /* wrapper function has same parameter as first part shader */
406 LLVMValueRef ret =
407 ac_build_call(&ctx->ac, parts[0].pointee_type, parts[0].value, params, num_params);
408
409 if (same_thread_count) {
410 LLVMTypeRef type = LLVMTypeOf(ret);
411 assert(LLVMGetTypeKind(type) == LLVMStructTypeKind);
412
413 /* output of first part shader is the input of the second part */
414 num_params = LLVMCountStructElementTypes(type);
415 assert(num_params == LLVMCountParams(parts[1].value));
416
417 for (unsigned i = 0; i < num_params; i++) {
418 params[i] = LLVMBuildExtractValue(builder, ret, i, "");
419
420 /* Convert return value to same type as next shader's input param. */
421 LLVMTypeRef ret_type = LLVMTypeOf(params[i]);
422 LLVMTypeRef param_type = LLVMTypeOf(LLVMGetParam(parts[1].value, i));
423 assert(ac_get_type_size(ret_type) == 4);
424 assert(ac_get_type_size(param_type) == 4);
425
426 if (ret_type != param_type) {
427 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
428 assert(LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT);
429 assert(ret_type == ctx->ac.i32);
430
431 params[i] = LLVMBuildIntToPtr(builder, params[i], param_type, "");
432 } else {
433 params[i] = LLVMBuildBitCast(builder, params[i], param_type, "");
434 }
435 }
436 }
437 } else {
438 ac_build_endif(&ctx->ac, 6506);
439
440 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
441 LLVMValueRef count = ac_get_arg(&ctx->ac, ctx->args->ac.merged_wave_info);
442 count = LLVMBuildLShr(builder, count, LLVMConstInt(ctx->ac.i32, 8, 0), "");
443 count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
444
445 LLVMValueRef ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
446 ac_build_ifcc(&ctx->ac, ena, 6507);
447 }
448
449 /* The second half of the merged shader should use
450 * the inputs from the toplevel (wrapper) function,
451 * not the return value from the last call.
452 *
453 * That's because the last call was executed condi-
454 * tionally, so we can't consume it in the main
455 * block.
456 */
457
458 /* Second part params are same as the preceeding params of the first part. */
459 num_params = LLVMCountParams(parts[1].value);
460 }
461
462 ac_build_call(&ctx->ac, parts[1].pointee_type, parts[1].value, params, num_params);
463
464 /* Close the conditional wrapping the second shader. */
465 if (ctx->stage == MESA_SHADER_TESS_CTRL && !same_thread_count)
466 ac_build_endif(&ctx->ac, 6507);
467
468 LLVMBuildRetVoid(builder);
469 }
470
si_llvm_load_intrinsic(struct ac_shader_abi * abi,nir_intrinsic_instr * intrin)471 static LLVMValueRef si_llvm_load_intrinsic(struct ac_shader_abi *abi, nir_intrinsic_instr *intrin)
472 {
473 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
474
475 switch (intrin->intrinsic) {
476 case nir_intrinsic_load_lds_ngg_scratch_base_amd:
477 return LLVMBuildPtrToInt(ctx->ac.builder, ctx->gs_ngg_scratch.value, ctx->ac.i32, "");
478
479 case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd:
480 return LLVMBuildPtrToInt(ctx->ac.builder, ctx->gs_ngg_emit, ctx->ac.i32, "");
481
482 default:
483 return NULL;
484 }
485 }
486
si_llvm_load_sampler_desc(struct ac_shader_abi * abi,LLVMValueRef index,enum ac_descriptor_type desc_type)487 static LLVMValueRef si_llvm_load_sampler_desc(struct ac_shader_abi *abi, LLVMValueRef index,
488 enum ac_descriptor_type desc_type)
489 {
490 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
491 LLVMBuilderRef builder = ctx->ac.builder;
492
493 if (index && LLVMTypeOf(index) == ctx->ac.i32) {
494 bool is_vec4 = false;
495
496 switch (desc_type) {
497 case AC_DESC_IMAGE:
498 /* The image is at [0:7]. */
499 index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->ac.i32, 2, 0), "");
500 break;
501 case AC_DESC_BUFFER:
502 /* The buffer is in [4:7]. */
503 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 4, 0), ctx->ac.i32_1);
504 is_vec4 = true;
505 break;
506 case AC_DESC_FMASK:
507 /* The FMASK is at [8:15]. */
508 assert(ctx->screen->info.gfx_level < GFX11);
509 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 2, 0), ctx->ac.i32_1);
510 break;
511 case AC_DESC_SAMPLER:
512 /* The sampler state is at [12:15]. */
513 index = ac_build_imad(&ctx->ac, index, LLVMConstInt(ctx->ac.i32, 4, 0),
514 LLVMConstInt(ctx->ac.i32, 3, 0));
515 is_vec4 = true;
516 break;
517 default:
518 unreachable("invalid desc");
519 }
520
521 struct ac_llvm_pointer list = {
522 .value = ac_get_arg(&ctx->ac, ctx->args->samplers_and_images),
523 .pointee_type = is_vec4 ? ctx->ac.v4i32 : ctx->ac.v8i32,
524 };
525
526 return ac_build_load_to_sgpr(&ctx->ac, list, index);
527 }
528
529 return index;
530 }
531
si_llvm_translate_nir(struct si_shader_context * ctx,struct si_shader * shader,struct nir_shader * nir)532 static bool si_llvm_translate_nir(struct si_shader_context *ctx, struct si_shader *shader,
533 struct nir_shader *nir)
534 {
535 struct si_shader_selector *sel = shader->selector;
536 const struct si_shader_info *info = &sel->info;
537
538 ctx->shader = shader;
539 ctx->stage = shader->is_gs_copy_shader ? MESA_SHADER_VERTEX : nir->info.stage;
540
541 ctx->abi.intrinsic_load = si_llvm_load_intrinsic;
542 ctx->abi.load_sampler_desc = si_llvm_load_sampler_desc;
543
544 si_llvm_create_main_func(ctx);
545
546 switch (ctx->stage) {
547 case MESA_SHADER_VERTEX:
548 break;
549
550 case MESA_SHADER_TESS_CTRL:
551 si_llvm_init_tcs_callbacks(ctx);
552 break;
553
554 case MESA_SHADER_GEOMETRY:
555 if (ctx->shader->key.ge.as_ngg) {
556 LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
557 ctx->gs_ngg_scratch = (struct ac_llvm_pointer) {
558 .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, ai32, "ngg_scratch", AC_ADDR_SPACE_LDS),
559 .pointee_type = ai32
560 };
561 LLVMSetInitializer(ctx->gs_ngg_scratch.value, LLVMGetUndef(ai32));
562 LLVMSetAlignment(ctx->gs_ngg_scratch.value, 8);
563
564 ctx->gs_ngg_emit = LLVMAddGlobalInAddressSpace(
565 ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0), "ngg_emit", AC_ADDR_SPACE_LDS);
566 LLVMSetLinkage(ctx->gs_ngg_emit, LLVMExternalLinkage);
567 LLVMSetAlignment(ctx->gs_ngg_emit, 4);
568 }
569 break;
570
571 case MESA_SHADER_FRAGMENT: {
572 ctx->abi.kill_ps_if_inf_interp =
573 ctx->screen->options.no_infinite_interp &&
574 (ctx->shader->selector->info.uses_persp_center ||
575 ctx->shader->selector->info.uses_persp_centroid ||
576 ctx->shader->selector->info.uses_persp_sample);
577 break;
578 }
579
580 case MESA_SHADER_COMPUTE:
581 case MESA_SHADER_KERNEL:
582 if (ctx->shader->selector->info.base.shared_size)
583 si_llvm_declare_compute_memory(ctx);
584 break;
585
586 default:
587 break;
588 }
589
590 bool is_merged_esgs_stage =
591 ctx->screen->info.gfx_level >= GFX9 && ctx->stage <= MESA_SHADER_GEOMETRY &&
592 (ctx->shader->key.ge.as_es || ctx->stage == MESA_SHADER_GEOMETRY);
593
594 bool is_nogs_ngg_stage =
595 (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
596 shader->key.ge.as_ngg && !shader->key.ge.as_es;
597
598 /* Declare the ESGS ring as an explicit LDS symbol.
599 * When NGG VS/TES, unconditionally declare for streamout and vertex compaction.
600 * Whether space is actually allocated is determined during linking / PM4 creation.
601 */
602 if (is_merged_esgs_stage || is_nogs_ngg_stage)
603 si_llvm_declare_lds_esgs_ring(ctx);
604
605 /* This is really only needed when streamout and / or vertex
606 * compaction is enabled.
607 */
608 if (is_nogs_ngg_stage &&
609 (si_shader_uses_streamout(shader) || si_shader_culling_enabled(shader))) {
610 LLVMTypeRef asi32 = LLVMArrayType(ctx->ac.i32, gfx10_ngg_get_scratch_dw_size(shader));
611 ctx->gs_ngg_scratch = (struct ac_llvm_pointer) {
612 .value = LLVMAddGlobalInAddressSpace(ctx->ac.module, asi32, "ngg_scratch",
613 AC_ADDR_SPACE_LDS),
614 .pointee_type = asi32
615 };
616 LLVMSetInitializer(ctx->gs_ngg_scratch.value, LLVMGetUndef(asi32));
617 LLVMSetAlignment(ctx->gs_ngg_scratch.value, 8);
618 }
619
620 /* For merged shaders (VS-TCS, VS-GS, TES-GS): */
621 if (ctx->screen->info.gfx_level >= GFX9 && si_is_merged_shader(shader)) {
622 /* Set EXEC = ~0 before the first shader. For monolithic shaders, the wrapper
623 * function does this.
624 */
625 if (ctx->stage == MESA_SHADER_TESS_EVAL) {
626 /* TES has only 1 shader part, therefore it doesn't use the wrapper function. */
627 if (!shader->is_monolithic || !shader->key.ge.as_es)
628 ac_init_exec_full_mask(&ctx->ac);
629 } else if (ctx->stage == MESA_SHADER_VERTEX) {
630 if (shader->is_monolithic) {
631 /* Only mono VS with TCS/GS present has wrapper function. */
632 if (!shader->key.ge.as_ls && !shader->key.ge.as_es)
633 ac_init_exec_full_mask(&ctx->ac);
634 } else {
635 ac_init_exec_full_mask(&ctx->ac);
636 }
637 }
638
639 /* NGG VS and NGG TES: nir ngg lowering send gs_alloc_req at the beginning when culling
640 * is disabled, but GFX10 may hang if not all waves are launched before gs_alloc_req.
641 * We work around this HW bug by inserting a barrier before gs_alloc_req.
642 */
643 if (ctx->screen->info.gfx_level == GFX10 &&
644 (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL) &&
645 shader->key.ge.as_ngg && !shader->key.ge.as_es && !si_shader_culling_enabled(shader))
646 ac_build_s_barrier(&ctx->ac, ctx->stage);
647
648 LLVMValueRef thread_enabled = NULL;
649
650 if ((ctx->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) ||
651 (ctx->stage == MESA_SHADER_TESS_CTRL && !shader->is_monolithic)) {
652 /* Wrap both shaders in an if statement according to the number of enabled threads
653 * there. For monolithic TCS, the if statement is inserted by the wrapper function,
654 * not here. For NGG GS, the if statement is inserted by nir lowering.
655 */
656 thread_enabled = si_is_gs_thread(ctx); /* 2nd shader: thread enabled bool */
657 } else if ((shader->key.ge.as_ls || shader->key.ge.as_es) && !shader->is_monolithic) {
658 /* For monolithic LS (VS before TCS) and ES (VS before GS and TES before GS),
659 * the if statement is inserted by the wrapper function.
660 */
661 thread_enabled = si_is_es_thread(ctx); /* 1st shader: thread enabled bool */
662 }
663
664 if (thread_enabled) {
665 ac_build_ifcc(&ctx->ac, thread_enabled, SI_MERGED_WRAP_IF_LABEL);
666 }
667
668 /* Execute a barrier before the second shader in
669 * a merged shader.
670 *
671 * Execute the barrier inside the conditional block,
672 * so that empty waves can jump directly to s_endpgm,
673 * which will also signal the barrier.
674 *
675 * This is possible in gfx9, because an empty wave for the second shader does not insert
676 * any ending. With NGG, empty waves may still be required to export data (e.g. GS output
677 * vertices), so we cannot let them exit early.
678 *
679 * If the shader is TCS and the TCS epilog is present
680 * and contains a barrier, it will wait there and then
681 * reach s_endpgm.
682 */
683 if (ctx->stage == MESA_SHADER_TESS_CTRL) {
684 /* We need the barrier only if TCS inputs are read from LDS. */
685 if (!shader->key.ge.opt.same_patch_vertices ||
686 shader->selector->info.tcs_inputs_via_lds) {
687 ac_build_waitcnt(&ctx->ac, AC_WAIT_DS);
688
689 /* If both input and output patches are wholly in one wave, we don't need a barrier.
690 * That's true when both VS and TCS have the same number of patch vertices and
691 * the wave size is a multiple of the number of patch vertices.
692 */
693 if (!shader->key.ge.opt.same_patch_vertices ||
694 ctx->ac.wave_size % nir->info.tess.tcs_vertices_out != 0)
695 ac_build_s_barrier(&ctx->ac, ctx->stage);
696 }
697 } else if (ctx->stage == MESA_SHADER_GEOMETRY) {
698 ac_build_waitcnt(&ctx->ac, AC_WAIT_DS);
699 ac_build_s_barrier(&ctx->ac, ctx->stage);
700 }
701 }
702
703 ctx->abi.clamp_shadow_reference = true;
704 ctx->abi.robust_buffer_access = true;
705 ctx->abi.load_grid_size_from_user_sgpr = true;
706 ctx->abi.clamp_div_by_zero = ctx->screen->options.clamp_div_by_zero ||
707 info->options & SI_PROFILE_CLAMP_DIV_BY_ZERO;
708 ctx->abi.disable_aniso_single_level = true;
709
710 bool ls_need_output =
711 ctx->stage == MESA_SHADER_VERTEX && shader->key.ge.as_ls &&
712 shader->key.ge.opt.same_patch_vertices;
713
714 bool ps_need_output = ctx->stage == MESA_SHADER_FRAGMENT;
715
716 if (ls_need_output || ps_need_output) {
717 for (unsigned i = 0; i < info->num_outputs; i++) {
718 LLVMTypeRef type = ctx->ac.f32;
719
720 /* Only FS uses unpacked f16. Other stages pack 16-bit outputs into low and high bits of f32. */
721 if (nir->info.stage == MESA_SHADER_FRAGMENT &&
722 nir_alu_type_get_type_size(ctx->shader->selector->info.output_type[i]) == 16)
723 type = ctx->ac.f16;
724
725 for (unsigned j = 0; j < 4; j++) {
726 ctx->abi.outputs[i * 4 + j] = ac_build_alloca_undef(&ctx->ac, type, "");
727 ctx->abi.is_16bit[i * 4 + j] = type == ctx->ac.f16;
728 }
729 }
730 }
731
732 if (!ac_nir_translate(&ctx->ac, &ctx->abi, &ctx->args->ac, nir))
733 return false;
734
735 switch (ctx->stage) {
736 case MESA_SHADER_VERTEX:
737 if (shader->key.ge.as_ls)
738 si_llvm_ls_build_end(ctx);
739 else if (shader->key.ge.as_es)
740 si_llvm_es_build_end(ctx);
741 break;
742
743 case MESA_SHADER_TESS_CTRL:
744 if (!shader->is_monolithic)
745 si_llvm_tcs_build_end(ctx);
746 break;
747
748 case MESA_SHADER_TESS_EVAL:
749 if (ctx->shader->key.ge.as_es)
750 si_llvm_es_build_end(ctx);
751 break;
752
753 case MESA_SHADER_GEOMETRY:
754 if (!ctx->shader->key.ge.as_ngg)
755 si_llvm_gs_build_end(ctx);
756 break;
757
758 case MESA_SHADER_FRAGMENT:
759 if (!shader->is_monolithic)
760 si_llvm_ps_build_end(ctx);
761 break;
762
763 default:
764 break;
765 }
766
767 si_llvm_build_ret(ctx, ctx->return_value);
768 return true;
769 }
770
assert_registers_equal(struct si_screen * sscreen,unsigned reg,unsigned nir_value,unsigned llvm_value,bool allow_zero)771 static void assert_registers_equal(struct si_screen *sscreen, unsigned reg, unsigned nir_value,
772 unsigned llvm_value, bool allow_zero)
773 {
774 if (nir_value != llvm_value) {
775 fprintf(stderr, "Error: Unexpected non-matching shader config:\n");
776 fprintf(stderr, "From NIR:\n");
777 ac_dump_reg(stderr, sscreen->info.gfx_level, sscreen->info.family, reg, nir_value, ~0);
778 fprintf(stderr, "From LLVM:\n");
779 ac_dump_reg(stderr, sscreen->info.gfx_level, sscreen->info.family, reg, llvm_value, ~0);
780 }
781 if (0)
782 printf("nir_value = 0x%x, llvm_value = 0x%x\n", nir_value, llvm_value);
783 assert(nir_value || allow_zero);
784 assert(llvm_value || allow_zero);
785 assert(nir_value == llvm_value);
786 }
787
si_llvm_compile_shader(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct si_linked_shaders * linked,struct util_debug_callback * debug)788 bool si_llvm_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
789 struct si_shader *shader, struct si_linked_shaders *linked,
790 struct util_debug_callback *debug)
791 {
792 struct si_shader_selector *sel = shader->selector;
793 struct si_shader_context ctx;
794 nir_shader *nir = linked->consumer.nir;
795 enum ac_float_mode float_mode = nir->info.stage == MESA_SHADER_KERNEL ?
796 AC_FLOAT_MODE_DEFAULT : AC_FLOAT_MODE_DEFAULT_OPENGL;
797 bool exports_color_null = false;
798 bool exports_mrtz = false;
799
800 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
801 exports_color_null = sel->info.colors_written;
802 exports_mrtz = shader->ps.writes_z || shader->ps.writes_stencil ||
803 shader->ps.writes_samplemask ||
804 shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz;
805 if (!exports_mrtz && !exports_color_null)
806 exports_color_null = si_shader_uses_discard(shader) || sscreen->info.gfx_level < GFX10;
807 }
808
809 si_llvm_context_init(&ctx, sscreen, compiler, shader->wave_size, exports_color_null, exports_mrtz,
810 float_mode);
811 ctx.args = &linked->consumer.args;
812
813 if (!si_llvm_translate_nir(&ctx, shader, nir)) {
814 si_llvm_dispose(&ctx);
815 return false;
816 }
817
818 /* For merged shader stage. */
819 if (linked->producer.nir) {
820 /* LS or ES shader. */
821 ctx.args = &linked->producer.args;
822
823 struct ac_llvm_pointer parts[2];
824 parts[1] = ctx.main_fn;
825
826 if (!si_llvm_translate_nir(&ctx, linked->producer.shader, linked->producer.nir)) {
827 si_llvm_dispose(&ctx);
828 return false;
829 }
830
831 parts[0] = ctx.main_fn;
832
833 /* Reset the shader context. */
834 ctx.shader = shader;
835 ctx.stage = nir->info.stage;
836
837 bool same_thread_count = shader->key.ge.opt.same_patch_vertices;
838 si_build_wrapper_function(&ctx, parts, same_thread_count);
839 }
840
841 si_llvm_optimize_module(&ctx);
842
843 /* Make sure the input is a pointer and not integer followed by inttoptr. */
844 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn.value, 0))) == LLVMPointerTypeKind);
845
846 /* Compile to bytecode. */
847 struct ac_shader_config config = {0};
848
849 bool success = si_compile_llvm(sscreen, &shader->binary, &config, compiler, &ctx.ac, debug,
850 nir->info.stage, si_get_shader_name(shader));
851 si_llvm_dispose(&ctx);
852 if (!success) {
853 fprintf(stderr, "LLVM failed to compile shader\n");
854 return false;
855 }
856
857 if (nir->info.stage == MESA_SHADER_FRAGMENT) {
858 assert_registers_equal(sscreen, R_0286CC_SPI_PS_INPUT_ENA, shader->config.spi_ps_input_ena,
859 config.spi_ps_input_ena, !shader->is_monolithic);
860 assert_registers_equal(sscreen, R_0286D0_SPI_PS_INPUT_ADDR, shader->config.spi_ps_input_addr,
861 config.spi_ps_input_addr, false);
862 }
863 shader->config = config;
864 return true;
865 }
866
si_llvm_build_shader_part(struct si_screen * sscreen,gl_shader_stage stage,bool prolog,struct ac_llvm_compiler * compiler,struct util_debug_callback * debug,const char * name,struct si_shader_part * result)867 bool si_llvm_build_shader_part(struct si_screen *sscreen, gl_shader_stage stage,
868 bool prolog, struct ac_llvm_compiler *compiler,
869 struct util_debug_callback *debug, const char *name,
870 struct si_shader_part *result)
871 {
872 union si_shader_part_key *key = &result->key;
873
874 struct si_shader_selector sel = {};
875 sel.screen = sscreen;
876
877 struct si_shader shader = {};
878 shader.selector = &sel;
879 bool wave32 = false;
880 bool exports_color_null = false;
881 bool exports_mrtz = false;
882
883 switch (stage) {
884 case MESA_SHADER_FRAGMENT:
885 if (prolog) {
886 shader.key.ps.part.prolog = key->ps_prolog.states;
887 wave32 = key->ps_prolog.wave32;
888 exports_color_null = key->ps_prolog.states.poly_stipple;
889 } else {
890 shader.key.ps.part.epilog = key->ps_epilog.states;
891 wave32 = key->ps_epilog.wave32;
892 exports_color_null = key->ps_epilog.colors_written;
893 exports_mrtz = (key->ps_epilog.writes_z && !key->ps_epilog.states.kill_z) ||
894 (key->ps_epilog.writes_stencil && !key->ps_epilog.states.kill_stencil) ||
895 (key->ps_epilog.writes_samplemask && !key->ps_epilog.states.kill_samplemask);
896 if (!exports_mrtz && !exports_color_null)
897 exports_color_null = key->ps_epilog.uses_discard || sscreen->info.gfx_level < GFX10;
898 }
899 break;
900 default:
901 unreachable("bad shader part");
902 }
903
904 struct si_shader_context ctx;
905 si_llvm_context_init(&ctx, sscreen, compiler, wave32 ? 32 : 64, exports_color_null, exports_mrtz,
906 AC_FLOAT_MODE_DEFAULT_OPENGL);
907
908 ctx.shader = &shader;
909 ctx.stage = stage;
910
911 struct si_shader_args args;
912 ctx.args = &args;
913
914 void (*build)(struct si_shader_context *, union si_shader_part_key *);
915
916 switch (stage) {
917 case MESA_SHADER_FRAGMENT:
918 build = prolog ? si_llvm_build_ps_prolog : si_llvm_build_ps_epilog;
919 break;
920 default:
921 unreachable("bad shader part");
922 }
923
924 build(&ctx, key);
925
926 /* Compile. */
927 si_llvm_optimize_module(&ctx);
928
929 struct ac_shader_config config = {0};
930 bool ret = si_compile_llvm(sscreen, &result->binary, &config, compiler,
931 &ctx.ac, debug, ctx.stage, name);
932 result->num_vgprs = config.num_vgprs;
933 result->num_sgprs = config.num_sgprs;
934
935 si_llvm_dispose(&ctx);
936 return ret;
937 }
938