• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  *
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #if AMD_LLVM_AVAILABLE
8 #include "ac_llvm_util.h"
9 #endif
10 
11 #include "ac_nir.h"
12 #include "ac_shader_util.h"
13 #include "compiler/nir/nir_serialize.h"
14 #include "nir/tgsi_to_nir.h"
15 #include "si_build_pm4.h"
16 #include "sid.h"
17 #include "util/crc32.h"
18 #include "util/disk_cache.h"
19 #include "util/hash_table.h"
20 #include "util/mesa-sha1.h"
21 #include "util/u_async_debug.h"
22 #include "util/u_math.h"
23 #include "util/u_memory.h"
24 #include "util/u_prim.h"
25 #include "tgsi/tgsi_from_mesa.h"
26 
27 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx);
28 
si_determine_wave_size(struct si_screen * sscreen,struct si_shader * shader)29 unsigned si_determine_wave_size(struct si_screen *sscreen, struct si_shader *shader)
30 {
31    struct si_shader_info *info = &shader->selector->info;
32    gl_shader_stage stage = shader->selector->stage;
33 
34    struct si_shader_selector *prev_sel = NULL;
35    if (stage == MESA_SHADER_TESS_CTRL)
36       prev_sel = shader->key.ge.part.tcs.ls;
37    else if (stage == MESA_SHADER_GEOMETRY)
38       prev_sel = shader->key.ge.part.gs.es;
39 
40    if (sscreen->info.gfx_level < GFX10)
41       return 64;
42 
43    /* Legacy GS only supports Wave64. */
44    if ((stage == MESA_SHADER_VERTEX && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
45        (stage == MESA_SHADER_TESS_EVAL && shader->key.ge.as_es && !shader->key.ge.as_ngg) ||
46        (stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg))
47       return 64;
48 
49    /* For KHR_shader_subgroup which require a constant subgroup size known by user. */
50    if (info->base.subgroup_size == SUBGROUP_SIZE_API_CONSTANT ||
51        (prev_sel && prev_sel->info.base.subgroup_size == SUBGROUP_SIZE_API_CONSTANT))
52       return 64;
53 
54    /* Workgroup sizes that are not divisible by 64 use Wave32. */
55    if (stage == MESA_SHADER_COMPUTE && !info->base.workgroup_size_variable &&
56        (info->base.workgroup_size[0] *
57         info->base.workgroup_size[1] *
58         info->base.workgroup_size[2]) % 64 != 0)
59       return 32;
60 
61    /* AMD_DEBUG wave flags override everything else. */
62    if (sscreen->debug_flags &
63        (stage == MESA_SHADER_COMPUTE ? DBG(W32_CS) :
64         stage == MESA_SHADER_FRAGMENT ? DBG(W32_PS) : DBG(W32_GE)))
65       return 32;
66 
67    if (sscreen->debug_flags &
68        (stage == MESA_SHADER_COMPUTE ? DBG(W64_CS) :
69         stage == MESA_SHADER_FRAGMENT ? DBG(W64_PS) : DBG(W64_GE)))
70       return 64;
71 
72    /* Shader profiles. */
73    if (info->options & SI_PROFILE_WAVE32)
74       return 32;
75 
76    if (info->options & SI_PROFILE_GFX10_WAVE64 &&
77        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3))
78       return 64;
79 
80    /* Gfx10: Pixel shaders without interp instructions don't suffer from reduced interpolation
81     * performance in Wave32, so use Wave32. This helps Piano and Voloplosion.
82     *
83     * Gfx11: Prefer Wave64 to take advantage of doubled VALU performance.
84     */
85    if (sscreen->info.gfx_level < GFX11 && stage == MESA_SHADER_FRAGMENT && !info->num_inputs)
86       return 32;
87 
88    /* Gfx10: There are a few very rare cases where VS is better with Wave32, and there are no
89     * known cases where Wave64 is better.
90     *
91     * Wave32 is disabled for GFX10 when culling is active as a workaround for #6457. I don't
92     * know why this helps.
93     *
94     * Gfx11: Prefer Wave64 because it's slightly better than Wave32.
95     */
96    if (stage <= MESA_SHADER_GEOMETRY &&
97        (sscreen->info.gfx_level == GFX10 || sscreen->info.gfx_level == GFX10_3) &&
98        !(sscreen->info.gfx_level == GFX10 && si_shader_culling_enabled(shader)))
99       return 32;
100 
101    /* Divergent loops in Wave64 can end up having too many iterations in one half of the wave
102     * while the other half is idling but occupying VGPRs, preventing other waves from launching.
103     * Wave32 eliminates the idling half to allow the next wave to start.
104     *
105     * Gfx11: Wave32 continues to be faster with divergent loops despite worse VALU performance.
106     */
107    if (info->has_divergent_loop ||
108        /* Merged shader has to use same wave size for two shader stages. */
109        (prev_sel && prev_sel->info.has_divergent_loop))
110       return 32;
111 
112    return 64;
113 }
114 
si_shader_uses_bindless_samplers(struct si_shader_selector * selector)115 static bool si_shader_uses_bindless_samplers(struct si_shader_selector *selector)
116 {
117    return selector ? selector->info.uses_bindless_samplers : false;
118 }
119 
si_shader_uses_bindless_images(struct si_shader_selector * selector)120 static bool si_shader_uses_bindless_images(struct si_shader_selector *selector)
121 {
122    return selector ? selector->info.uses_bindless_images : false;
123 }
124 
125 /* SHADER_CACHE */
126 
127 /**
128  * Return the IR key for the shader cache.
129  */
si_get_ir_cache_key(struct si_shader_selector * sel,bool ngg,bool es,unsigned wave_size,unsigned char ir_sha1_cache_key[20])130 void si_get_ir_cache_key(struct si_shader_selector *sel, bool ngg, bool es,
131                          unsigned wave_size, unsigned char ir_sha1_cache_key[20])
132 {
133    struct blob blob = {};
134    unsigned ir_size;
135    void *ir_binary;
136 
137    if (sel->nir_binary) {
138       ir_binary = sel->nir_binary;
139       ir_size = sel->nir_size;
140    } else {
141       assert(sel->nir);
142 
143       blob_init(&blob);
144       /* Keep debug info if NIR debug prints are in use. */
145       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
146       ir_binary = blob.data;
147       ir_size = blob.size;
148    }
149 
150    /* These settings affect the compilation, but they are not derived
151     * from the input shader IR.
152     */
153    unsigned shader_variant_flags = 0;
154 
155    if (ngg)
156       shader_variant_flags |= 1 << 0;
157    /* bit gap */
158    if (wave_size == 32)
159       shader_variant_flags |= 1 << 2;
160    /* bit gap */
161    /* use_ngg_culling disables NGG passthrough for non-culling shaders to reduce context
162     * rolls, which can be changed with AMD_DEBUG=nonggc or AMD_DEBUG=nggc.
163     */
164    if (sel->screen->use_ngg_culling)
165       shader_variant_flags |= 1 << 4;
166    if (sel->screen->record_llvm_ir)
167       shader_variant_flags |= 1 << 5;
168    if (sel->screen->info.has_image_opcodes)
169       shader_variant_flags |= 1 << 6;
170    if (sel->screen->options.no_infinite_interp)
171       shader_variant_flags |= 1 << 7;
172    if (sel->screen->options.clamp_div_by_zero)
173       shader_variant_flags |= 1 << 8;
174    if ((sel->stage == MESA_SHADER_VERTEX ||
175         sel->stage == MESA_SHADER_TESS_EVAL ||
176         sel->stage == MESA_SHADER_GEOMETRY) &&
177        !es &&
178        sel->screen->options.vrs2x2)
179       shader_variant_flags |= 1 << 10;
180    if (sel->screen->options.inline_uniforms)
181       shader_variant_flags |= 1 << 11;
182    if (sel->screen->options.clear_lds)
183       shader_variant_flags |= 1 << 12;
184 
185    struct mesa_sha1 ctx;
186    _mesa_sha1_init(&ctx);
187    _mesa_sha1_update(&ctx, &shader_variant_flags, 4);
188    _mesa_sha1_update(&ctx, ir_binary, ir_size);
189    _mesa_sha1_final(&ctx, ir_sha1_cache_key);
190 
191    if (ir_binary == blob.data)
192       blob_finish(&blob);
193 }
194 
195 /** Copy "data" to "ptr" and return the next dword following copied data. */
write_data(uint32_t * ptr,const void * data,unsigned size)196 static uint32_t *write_data(uint32_t *ptr, const void *data, unsigned size)
197 {
198    /* data may be NULL if size == 0 */
199    if (size)
200       memcpy(ptr, data, size);
201    ptr += DIV_ROUND_UP(size, 4);
202    return ptr;
203 }
204 
205 /** Read data from "ptr". Return the next dword following the data. */
read_data(uint32_t * ptr,void * data,unsigned size)206 static uint32_t *read_data(uint32_t *ptr, void *data, unsigned size)
207 {
208    memcpy(data, ptr, size);
209    ptr += DIV_ROUND_UP(size, 4);
210    return ptr;
211 }
212 
213 /**
214  * Write the size as uint followed by the data. Return the next dword
215  * following the copied data.
216  */
write_chunk(uint32_t * ptr,const void * data,unsigned size)217 static uint32_t *write_chunk(uint32_t *ptr, const void *data, unsigned size)
218 {
219    *ptr++ = size;
220    return write_data(ptr, data, size);
221 }
222 
223 /**
224  * Read the size as uint followed by the data. Return both via parameters.
225  * Return the next dword following the data.
226  */
read_chunk(uint32_t * ptr,void ** data,unsigned * size)227 static uint32_t *read_chunk(uint32_t *ptr, void **data, unsigned *size)
228 {
229    *size = *ptr++;
230    assert(*data == NULL);
231    if (!*size)
232       return ptr;
233    *data = malloc(*size);
234    return read_data(ptr, *data, *size);
235 }
236 
237 struct si_shader_blob_head {
238    uint32_t size;
239    uint32_t type;
240    uint32_t crc32;
241 };
242 
243 /**
244  * Return the shader binary in a buffer.
245  */
si_get_shader_binary(struct si_shader * shader)246 static uint32_t *si_get_shader_binary(struct si_shader *shader)
247 {
248    /* There is always a size of data followed by the data itself. */
249    unsigned llvm_ir_size =
250       shader->binary.llvm_ir_string ? strlen(shader->binary.llvm_ir_string) + 1 : 0;
251 
252    /* Refuse to allocate overly large buffers and guard against integer
253     * overflow. */
254    if (shader->binary.code_size > UINT_MAX / 4 || llvm_ir_size > UINT_MAX / 4 ||
255        shader->binary.num_symbols > UINT_MAX / 32)
256       return NULL;
257 
258    unsigned size = sizeof(struct si_shader_blob_head) +
259                    align(sizeof(shader->config), 4) +
260                    align(sizeof(shader->info), 4) +
261                    4 + 4 + align(shader->binary.code_size, 4) +
262                    4 + shader->binary.num_symbols * 8 +
263                    4 + align(llvm_ir_size, 4) +
264                    4 + align(shader->binary.disasm_size, 4);
265    uint32_t *buffer = (uint32_t*)CALLOC(1, size);
266    if (!buffer)
267       return NULL;
268 
269    struct si_shader_blob_head *head = (struct si_shader_blob_head *)buffer;
270    head->type = shader->binary.type;
271    head->size = size;
272 
273    uint32_t *data = buffer + sizeof(*head) / 4;
274    uint32_t *ptr = data;
275 
276    ptr = write_data(ptr, &shader->config, sizeof(shader->config));
277    ptr = write_data(ptr, &shader->info, sizeof(shader->info));
278    ptr = write_data(ptr, &shader->binary.exec_size, 4);
279    ptr = write_chunk(ptr, shader->binary.code_buffer, shader->binary.code_size);
280    ptr = write_chunk(ptr, shader->binary.symbols, shader->binary.num_symbols * 8);
281    ptr = write_chunk(ptr, shader->binary.llvm_ir_string, llvm_ir_size);
282    ptr = write_chunk(ptr, shader->binary.disasm_string, shader->binary.disasm_size);
283    assert((char *)ptr - (char *)buffer == (ptrdiff_t)size);
284 
285    /* Compute CRC32. */
286    head->crc32 = util_hash_crc32(data, size - sizeof(*head));
287 
288    return buffer;
289 }
290 
si_load_shader_binary(struct si_shader * shader,void * binary)291 static bool si_load_shader_binary(struct si_shader *shader, void *binary)
292 {
293    struct si_shader_blob_head *head = (struct si_shader_blob_head *)binary;
294    unsigned chunk_size;
295    unsigned code_size;
296 
297    uint32_t *ptr = (uint32_t *)binary + sizeof(*head) / 4;
298    if (util_hash_crc32(ptr, head->size - sizeof(*head)) != head->crc32) {
299       fprintf(stderr, "radeonsi: binary shader has invalid CRC32\n");
300       return false;
301    }
302 
303    shader->binary.type = (enum si_shader_binary_type)head->type;
304    ptr = read_data(ptr, &shader->config, sizeof(shader->config));
305    ptr = read_data(ptr, &shader->info, sizeof(shader->info));
306    ptr = read_data(ptr, &shader->binary.exec_size, 4);
307    ptr = read_chunk(ptr, (void **)&shader->binary.code_buffer, &code_size);
308    shader->binary.code_size = code_size;
309    ptr = read_chunk(ptr, (void **)&shader->binary.symbols, &chunk_size);
310    shader->binary.num_symbols = chunk_size / 8;
311    ptr = read_chunk(ptr, (void **)&shader->binary.llvm_ir_string, &chunk_size);
312    ptr = read_chunk(ptr, (void **)&shader->binary.disasm_string, &chunk_size);
313    shader->binary.disasm_size = chunk_size;
314 
315    if (!shader->is_gs_copy_shader &&
316        shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
317       shader->gs_copy_shader = CALLOC_STRUCT(si_shader);
318       if (!shader->gs_copy_shader)
319          return false;
320 
321       shader->gs_copy_shader->is_gs_copy_shader = true;
322 
323       if (!si_load_shader_binary(shader->gs_copy_shader, (uint8_t*)binary + head->size)) {
324          FREE(shader->gs_copy_shader);
325          shader->gs_copy_shader = NULL;
326          return false;
327       }
328 
329       util_queue_fence_init(&shader->gs_copy_shader->ready);
330       shader->gs_copy_shader->selector = shader->selector;
331       shader->gs_copy_shader->is_gs_copy_shader = true;
332       shader->gs_copy_shader->wave_size =
333          si_determine_wave_size(shader->selector->screen, shader->gs_copy_shader);
334 
335       si_shader_binary_upload(shader->selector->screen, shader->gs_copy_shader, 0);
336    }
337 
338    return true;
339 }
340 
341 /**
342  * Insert a shader into the cache. It's assumed the shader is not in the cache.
343  * Use si_shader_cache_load_shader before calling this.
344  */
si_shader_cache_insert_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader,bool insert_into_disk_cache)345 void si_shader_cache_insert_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
346                                    struct si_shader *shader, bool insert_into_disk_cache)
347 {
348    uint32_t *hw_binary;
349    struct hash_entry *entry;
350    uint8_t key[CACHE_KEY_SIZE];
351    bool memory_cache_full = sscreen->shader_cache_size >= sscreen->shader_cache_max_size;
352 
353    if (!insert_into_disk_cache && memory_cache_full)
354       return;
355 
356    entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
357    if (entry)
358       return; /* already added */
359 
360    hw_binary = si_get_shader_binary(shader);
361    if (!hw_binary)
362       return;
363 
364    unsigned size = *hw_binary;
365 
366    if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg) {
367       uint32_t *gs_copy_binary = si_get_shader_binary(shader->gs_copy_shader);
368       if (!gs_copy_binary) {
369          FREE(hw_binary);
370          return;
371       }
372 
373       /* Combine both binaries. */
374       size += *gs_copy_binary;
375       uint32_t *combined_binary = (uint32_t*)MALLOC(size);
376       if (!combined_binary) {
377          FREE(hw_binary);
378          FREE(gs_copy_binary);
379          return;
380       }
381 
382       memcpy(combined_binary, hw_binary, *hw_binary);
383       memcpy(combined_binary + *hw_binary / 4, gs_copy_binary, *gs_copy_binary);
384       FREE(hw_binary);
385       FREE(gs_copy_binary);
386       hw_binary = combined_binary;
387    }
388 
389    if (!memory_cache_full) {
390       if (_mesa_hash_table_insert(sscreen->shader_cache,
391                                   mem_dup(ir_sha1_cache_key, 20),
392                                   hw_binary) == NULL) {
393           FREE(hw_binary);
394           return;
395       }
396 
397       sscreen->shader_cache_size += size;
398    }
399 
400    if (sscreen->disk_shader_cache && insert_into_disk_cache) {
401       disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, key);
402       disk_cache_put(sscreen->disk_shader_cache, key, hw_binary, size, NULL);
403    }
404 
405    if (memory_cache_full)
406       FREE(hw_binary);
407 }
408 
si_shader_cache_load_shader(struct si_screen * sscreen,unsigned char ir_sha1_cache_key[20],struct si_shader * shader)409 bool si_shader_cache_load_shader(struct si_screen *sscreen, unsigned char ir_sha1_cache_key[20],
410                                  struct si_shader *shader)
411 {
412    struct hash_entry *entry = _mesa_hash_table_search(sscreen->shader_cache, ir_sha1_cache_key);
413 
414    if (entry) {
415       if (si_load_shader_binary(shader, entry->data)) {
416          p_atomic_inc(&sscreen->num_memory_shader_cache_hits);
417          return true;
418       }
419    }
420    p_atomic_inc(&sscreen->num_memory_shader_cache_misses);
421 
422    if (!sscreen->disk_shader_cache)
423       return false;
424 
425    unsigned char sha1[CACHE_KEY_SIZE];
426    disk_cache_compute_key(sscreen->disk_shader_cache, ir_sha1_cache_key, 20, sha1);
427 
428    size_t total_size;
429    uint32_t *buffer = (uint32_t*)disk_cache_get(sscreen->disk_shader_cache, sha1, &total_size);
430    if (buffer) {
431       unsigned size = *buffer;
432       unsigned gs_copy_binary_size = 0;
433 
434       /* The GS copy shader binary is after the GS binary. */
435       if (shader->selector->stage == MESA_SHADER_GEOMETRY && !shader->key.ge.as_ngg)
436          gs_copy_binary_size = buffer[size / 4];
437 
438       if (total_size >= sizeof(uint32_t) && size + gs_copy_binary_size == total_size) {
439          if (si_load_shader_binary(shader, buffer)) {
440             free(buffer);
441             si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, false);
442             p_atomic_inc(&sscreen->num_disk_shader_cache_hits);
443             return true;
444          }
445       } else {
446          /* Something has gone wrong discard the item from the cache and
447           * rebuild/link from source.
448           */
449          assert(!"Invalid radeonsi shader disk cache item!");
450          disk_cache_remove(sscreen->disk_shader_cache, sha1);
451       }
452    }
453 
454    free(buffer);
455    p_atomic_inc(&sscreen->num_disk_shader_cache_misses);
456    return false;
457 }
458 
si_shader_cache_key_hash(const void * key)459 static uint32_t si_shader_cache_key_hash(const void *key)
460 {
461    /* Take the first dword of SHA1. */
462    return *(uint32_t *)key;
463 }
464 
si_shader_cache_key_equals(const void * a,const void * b)465 static bool si_shader_cache_key_equals(const void *a, const void *b)
466 {
467    /* Compare SHA1s. */
468    return memcmp(a, b, 20) == 0;
469 }
470 
si_destroy_shader_cache_entry(struct hash_entry * entry)471 static void si_destroy_shader_cache_entry(struct hash_entry *entry)
472 {
473    FREE((void *)entry->key);
474    FREE(entry->data);
475 }
476 
si_init_shader_cache(struct si_screen * sscreen)477 bool si_init_shader_cache(struct si_screen *sscreen)
478 {
479    (void)simple_mtx_init(&sscreen->shader_cache_mutex, mtx_plain);
480    sscreen->shader_cache =
481       _mesa_hash_table_create(NULL, si_shader_cache_key_hash, si_shader_cache_key_equals);
482    sscreen->shader_cache_size = 0;
483    /* Maximum size: 64MB on 32 bits, 1GB else */
484    sscreen->shader_cache_max_size = ((sizeof(void *) == 4) ? 64 : 1024) * 1024 * 1024;
485 
486    return sscreen->shader_cache != NULL;
487 }
488 
si_destroy_shader_cache(struct si_screen * sscreen)489 void si_destroy_shader_cache(struct si_screen *sscreen)
490 {
491    if (sscreen->shader_cache)
492       _mesa_hash_table_destroy(sscreen->shader_cache, si_destroy_shader_cache_entry);
493    simple_mtx_destroy(&sscreen->shader_cache_mutex);
494 }
495 
496 /* SHADER STATES */
497 
si_shader_encode_vgprs(struct si_shader * shader)498 unsigned si_shader_encode_vgprs(struct si_shader *shader)
499 {
500    assert(shader->selector->screen->info.gfx_level >= GFX10 || shader->wave_size == 64);
501    return shader->config.num_vgprs / (shader->wave_size == 32 ? 8 : 4) - 1;
502 }
503 
si_shader_encode_sgprs(struct si_shader * shader)504 unsigned si_shader_encode_sgprs(struct si_shader *shader)
505 {
506    if (shader->selector->screen->info.gfx_level >= GFX10)
507       return 0; /* Gfx10+ don't have the SGPRS field and always allocate 128 SGPRs. */
508 
509    return shader->config.num_sgprs / 8 - 1;
510 }
511 
si_shader_mem_ordered(struct si_shader * shader)512 bool si_shader_mem_ordered(struct si_shader *shader)
513 {
514    struct si_screen *sscreen = shader->selector->screen;
515 
516    if (sscreen->info.gfx_level < GFX10 || sscreen->info.gfx_level >= GFX12)
517       return false;
518 
519    /* Return true if both types of VMEM that return something are used. */
520    return shader->info.uses_vmem_sampler_or_bvh &&
521           (shader->info.uses_vmem_load_other ||
522            shader->config.scratch_bytes_per_wave);
523 }
524 
si_set_tesseval_regs(struct si_screen * sscreen,const struct si_shader_selector * tes,struct si_shader * shader)525 static void si_set_tesseval_regs(struct si_screen *sscreen, const struct si_shader_selector *tes,
526                                  struct si_shader *shader)
527 {
528    const struct si_shader_info *info = &tes->info;
529    enum tess_primitive_mode tes_prim_mode = info->base.tess._primitive_mode;
530    unsigned tes_spacing = info->base.tess.spacing;
531    bool tes_vertex_order_cw = !info->base.tess.ccw;
532    bool tes_point_mode = info->base.tess.point_mode;
533    unsigned type, partitioning, topology, distribution_mode;
534 
535    switch (tes_prim_mode) {
536    case TESS_PRIMITIVE_ISOLINES:
537       type = V_028B6C_TESS_ISOLINE;
538       break;
539    case TESS_PRIMITIVE_TRIANGLES:
540       type = V_028B6C_TESS_TRIANGLE;
541       break;
542    case TESS_PRIMITIVE_QUADS:
543       type = V_028B6C_TESS_QUAD;
544       break;
545    default:
546       assert(0);
547       return;
548    }
549 
550    switch (tes_spacing) {
551    case TESS_SPACING_FRACTIONAL_ODD:
552       partitioning = V_028B6C_PART_FRAC_ODD;
553       break;
554    case TESS_SPACING_FRACTIONAL_EVEN:
555       partitioning = V_028B6C_PART_FRAC_EVEN;
556       break;
557    case TESS_SPACING_EQUAL:
558       partitioning = V_028B6C_PART_INTEGER;
559       break;
560    default:
561       assert(0);
562       return;
563    }
564 
565    if (tes_point_mode)
566       topology = V_028B6C_OUTPUT_POINT;
567    else if (tes_prim_mode == TESS_PRIMITIVE_ISOLINES)
568       topology = V_028B6C_OUTPUT_LINE;
569    else if (tes_vertex_order_cw)
570       /* for some reason, this must be the other way around */
571       topology = V_028B6C_OUTPUT_TRIANGLE_CCW;
572    else
573       topology = V_028B6C_OUTPUT_TRIANGLE_CW;
574 
575    if (sscreen->info.has_distributed_tess) {
576       if (sscreen->info.family == CHIP_FIJI || sscreen->info.family >= CHIP_POLARIS10)
577          distribution_mode = V_028B6C_TRAPEZOIDS;
578       else
579          distribution_mode = V_028B6C_DONUTS;
580    } else
581       distribution_mode = V_028B6C_NO_DIST;
582 
583    shader->vgt_tf_param = S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) |
584                           S_028B6C_TOPOLOGY(topology) |
585                           S_028B6C_DISTRIBUTION_MODE(distribution_mode);
586 
587    if (sscreen->info.gfx_level >= GFX12)
588       shader->vgt_tf_param |= S_028AA4_TEMPORAL(gfx12_load_last_use_discard);
589 }
590 
591 /* Polaris needs different VTX_REUSE_DEPTH settings depending on
592  * whether the "fractional odd" tessellation spacing is used.
593  *
594  * Possible VGT configurations and which state should set the register:
595  *
596  *   Reg set in | VGT shader configuration   | Value
597  * ------------------------------------------------------
598  *     VS as VS | VS                         | 30
599  *     VS as ES | ES -> GS -> VS             | 30
600  *    TES as VS | LS -> HS -> VS             | 14 or 30
601  *    TES as ES | LS -> HS -> ES -> GS -> VS | 14 or 30
602  */
polaris_set_vgt_vertex_reuse(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_shader * shader)603 static void polaris_set_vgt_vertex_reuse(struct si_screen *sscreen, struct si_shader_selector *sel,
604                                          struct si_shader *shader)
605 {
606    if (sscreen->info.family < CHIP_POLARIS10 || sscreen->info.gfx_level >= GFX10)
607       return;
608 
609    /* VS as VS, or VS as ES: */
610    if ((sel->stage == MESA_SHADER_VERTEX &&
611         (!shader->key.ge.as_ls && !shader->is_gs_copy_shader)) ||
612        /* TES as VS, or TES as ES: */
613        sel->stage == MESA_SHADER_TESS_EVAL) {
614       unsigned vtx_reuse_depth = 30;
615 
616       if (sel->stage == MESA_SHADER_TESS_EVAL &&
617           sel->info.base.tess.spacing == TESS_SPACING_FRACTIONAL_ODD)
618          vtx_reuse_depth = 14;
619 
620       shader->vgt_vertex_reuse_block_cntl = vtx_reuse_depth;
621    }
622 }
623 
624 static struct si_pm4_state *
si_get_shader_pm4_state(struct si_shader * shader,void (* emit_func)(struct si_context * ctx,unsigned index))625 si_get_shader_pm4_state(struct si_shader *shader,
626                         void (*emit_func)(struct si_context *ctx, unsigned index))
627 {
628    si_pm4_clear_state(&shader->pm4, shader->selector->screen, false);
629    shader->pm4.atom.emit = emit_func;
630    return &shader->pm4;
631 }
632 
si_get_num_vs_user_sgprs(struct si_shader * shader,unsigned num_always_on_user_sgprs)633 static unsigned si_get_num_vs_user_sgprs(struct si_shader *shader,
634                                          unsigned num_always_on_user_sgprs)
635 {
636    struct si_shader_selector *vs =
637       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
638    unsigned num_vbos_in_user_sgprs = vs->info.num_vbos_in_user_sgprs;
639 
640    /* 1 SGPR is reserved for the vertex buffer pointer. */
641    assert(num_always_on_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST - 1);
642 
643    if (num_vbos_in_user_sgprs)
644       return SI_SGPR_VS_VB_DESCRIPTOR_FIRST + num_vbos_in_user_sgprs * 4;
645 
646    /* Add the pointer to VBO descriptors. */
647    return num_always_on_user_sgprs + 1;
648 }
649 
650 /* Return VGPR_COMP_CNT for the API vertex shader. This can be hw LS, LSHS, ES, ESGS, VS. */
si_get_vs_vgpr_comp_cnt(struct si_screen * sscreen,struct si_shader * shader,bool legacy_vs_prim_id)651 static unsigned si_get_vs_vgpr_comp_cnt(struct si_screen *sscreen, struct si_shader *shader,
652                                         bool legacy_vs_prim_id)
653 {
654    assert(shader->selector->stage == MESA_SHADER_VERTEX ||
655           (shader->previous_stage_sel && shader->previous_stage_sel->stage == MESA_SHADER_VERTEX));
656 
657    /* GFX6-9   LS    (VertexID, RelAutoIndex,           InstanceID / StepRate0, InstanceID)
658     * GFX6-9   ES,VS (VertexID, InstanceID / StepRate0, VSPrimID,               InstanceID)
659     * GFX10-11 LS    (VertexID, RelAutoIndex,           UserVGPR1,              UserVGPR2 or InstanceID)
660     * GFX10-11 ES,VS (VertexID, UserVGPR1,              UserVGPR2 or VSPrimID,  UserVGPR3 or InstanceID)
661     * GFX12    LS,ES (VertexID, InstanceID)
662     */
663    bool is_ls = shader->selector->stage == MESA_SHADER_TESS_CTRL || shader->key.ge.as_ls;
664    unsigned max = 0;
665 
666    if (shader->info.uses_instanceid) {
667       if (sscreen->info.gfx_level >= GFX12)
668          max = MAX2(max, 1);
669       else if (sscreen->info.gfx_level >= GFX10)
670          max = MAX2(max, 3);
671       else if (is_ls)
672          max = MAX2(max, 2); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
673       else
674          max = MAX2(max, 1); /* use (InstanceID / StepRate0) because StepRate0 == 1 */
675    }
676 
677    if (legacy_vs_prim_id)
678       max = MAX2(max, 2); /* VSPrimID */
679 
680    /* GFX11: We prefer to compute RelAutoIndex using (WaveID * WaveSize + ThreadID).
681     * Older chips didn't have WaveID in LS.
682     * GFX12 doesn't have RelAutoIndex.
683     */
684    if (is_ls && sscreen->info.gfx_level <= GFX10_3)
685       max = MAX2(max, 1); /* RelAutoIndex */
686 
687    return max;
688 }
689 
si_shader_ls(struct si_screen * sscreen,struct si_shader * shader)690 static void si_shader_ls(struct si_screen *sscreen, struct si_shader *shader)
691 {
692    struct si_pm4_state *pm4;
693    uint64_t va;
694 
695    assert(sscreen->info.gfx_level <= GFX8);
696 
697    pm4 = si_get_shader_pm4_state(shader, NULL);
698    if (!pm4)
699       return;
700 
701    va = shader->bo->gpu_address;
702    ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
703 
704    shader->config.rsrc1 = S_00B528_VGPRS(si_shader_encode_vgprs(shader)) |
705                           S_00B528_SGPRS(si_shader_encode_sgprs(shader)) |
706                           S_00B528_VGPR_COMP_CNT(si_get_vs_vgpr_comp_cnt(sscreen, shader, false)) |
707                           S_00B528_DX10_CLAMP(1) |
708                           S_00B528_FLOAT_MODE(shader->config.float_mode);
709    shader->config.rsrc2 = S_00B52C_USER_SGPR(si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR)) |
710                           S_00B52C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
711    ac_pm4_finalize(&pm4->base);
712 }
713 
si_shader_hs(struct si_screen * sscreen,struct si_shader * shader)714 static void si_shader_hs(struct si_screen *sscreen, struct si_shader *shader)
715 {
716    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
717    if (!pm4)
718       return;
719 
720    uint64_t va = shader->bo->gpu_address;
721    unsigned num_user_sgprs = sscreen->info.gfx_level >= GFX9 ?
722                                 si_get_num_vs_user_sgprs(shader, GFX9_TCS_NUM_USER_SGPR) :
723                                 GFX6_TCS_NUM_USER_SGPR;
724 
725    if (sscreen->info.gfx_level >= GFX12) {
726       ac_pm4_set_reg(&pm4->base, R_00B420_SPI_SHADER_PGM_RSRC4_HS,
727                      S_00B420_WAVE_LIMIT(0x3ff) |
728                      S_00B420_GLG_FORCE_DISABLE(1) |
729                      S_00B420_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)));
730 
731       ac_pm4_set_reg(&pm4->base, R_00B424_SPI_SHADER_PGM_LO_LS, va >> 8);
732    } else if (sscreen->info.gfx_level >= GFX11) {
733       ac_pm4_set_reg_idx3(&pm4->base, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
734                           ac_apply_cu_en(S_00B404_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)) |
735                                          S_00B404_CU_EN(0xffff),
736                                          C_00B404_CU_EN, 16, &sscreen->info));
737 
738       ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
739    } else if (sscreen->info.gfx_level >= GFX10) {
740       ac_pm4_set_reg(&pm4->base, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8);
741    } else if (sscreen->info.gfx_level >= GFX9) {
742       ac_pm4_set_reg(&pm4->base, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8);
743    } else {
744       ac_pm4_set_reg(&pm4->base, R_00B420_SPI_SHADER_PGM_LO_HS, va >> 8);
745       ac_pm4_set_reg(&pm4->base, R_00B424_SPI_SHADER_PGM_HI_HS,
746                      S_00B424_MEM_BASE(sscreen->info.address32_hi >> 8));
747    }
748 
749    ac_pm4_set_reg(&pm4->base, R_00B428_SPI_SHADER_PGM_RSRC1_HS,
750                   S_00B428_VGPRS(si_shader_encode_vgprs(shader)) |
751                   S_00B428_SGPRS(si_shader_encode_sgprs(shader)) |
752                   S_00B428_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
753                   S_00B428_MEM_ORDERED(si_shader_mem_ordered(shader)) |
754                   S_00B428_FLOAT_MODE(shader->config.float_mode) |
755                   S_00B428_LS_VGPR_COMP_CNT(sscreen->info.gfx_level >= GFX9 ?
756                                             si_get_vs_vgpr_comp_cnt(sscreen, shader, false) : 0));
757 
758    shader->config.rsrc2 = S_00B42C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
759                           S_00B42C_USER_SGPR(num_user_sgprs);
760 
761    if (sscreen->info.gfx_level >= GFX10) {
762       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
763                               S_00B42C_SHARED_VGPR_CNT(shader->config.num_shared_vgprs / 8);
764    } else if (sscreen->info.gfx_level >= GFX9) {
765       shader->config.rsrc2 |= S_00B42C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
766    } else {
767       shader->config.rsrc2 |= S_00B42C_OC_LDS_EN(1);
768    }
769 
770    if (sscreen->info.gfx_level <= GFX8)
771       ac_pm4_set_reg(&pm4->base, R_00B42C_SPI_SHADER_PGM_RSRC2_HS, shader->config.rsrc2);
772 
773    ac_pm4_finalize(&pm4->base);
774 }
775 
si_emit_shader_es(struct si_context * sctx,unsigned index)776 static void si_emit_shader_es(struct si_context *sctx, unsigned index)
777 {
778    struct si_shader *shader = sctx->queued.named.es;
779 
780    radeon_begin(&sctx->gfx_cs);
781    radeon_opt_set_context_reg(R_028AAC_VGT_ESGS_RING_ITEMSIZE,
782                               SI_TRACKED_VGT_ESGS_RING_ITEMSIZE,
783                               shader->selector->info.esgs_vertex_stride / 4);
784 
785    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
786       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
787                                  shader->vgt_tf_param);
788 
789    if (shader->vgt_vertex_reuse_block_cntl)
790       radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
791                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
792                                  shader->vgt_vertex_reuse_block_cntl);
793    radeon_end_update_context_roll();
794 }
795 
si_shader_es(struct si_screen * sscreen,struct si_shader * shader)796 static void si_shader_es(struct si_screen *sscreen, struct si_shader *shader)
797 {
798    struct si_pm4_state *pm4;
799    unsigned num_user_sgprs;
800    unsigned vgpr_comp_cnt;
801    uint64_t va;
802    unsigned oc_lds_en;
803 
804    assert(sscreen->info.gfx_level <= GFX8);
805 
806    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_es);
807    if (!pm4)
808       return;
809 
810    va = shader->bo->gpu_address;
811 
812    if (shader->selector->stage == MESA_SHADER_VERTEX) {
813       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
814       num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
815    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
816       vgpr_comp_cnt = shader->selector->info.uses_primid ? 3 : 2;
817       num_user_sgprs = SI_TES_NUM_USER_SGPR;
818    } else
819       unreachable("invalid shader selector type");
820 
821    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
822 
823    ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
824    ac_pm4_set_reg(&pm4->base, R_00B324_SPI_SHADER_PGM_HI_ES,
825                   S_00B324_MEM_BASE(sscreen->info.address32_hi >> 8));
826    ac_pm4_set_reg(&pm4->base, R_00B328_SPI_SHADER_PGM_RSRC1_ES,
827                   S_00B328_VGPRS(si_shader_encode_vgprs(shader)) |
828                   S_00B328_SGPRS(si_shader_encode_sgprs(shader)) |
829                   S_00B328_VGPR_COMP_CNT(vgpr_comp_cnt) |
830                   S_00B328_DX10_CLAMP(1) |
831                   S_00B328_FLOAT_MODE(shader->config.float_mode));
832    ac_pm4_set_reg(&pm4->base, R_00B32C_SPI_SHADER_PGM_RSRC2_ES,
833                   S_00B32C_USER_SGPR(num_user_sgprs) | S_00B32C_OC_LDS_EN(oc_lds_en) |
834                   S_00B32C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
835 
836    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
837       si_set_tesseval_regs(sscreen, shader->selector, shader);
838 
839    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
840    ac_pm4_finalize(&pm4->base);
841 }
842 
gfx9_get_gs_info(struct si_shader_selector * es,struct si_shader_selector * gs,struct gfx9_gs_info * out)843 void gfx9_get_gs_info(struct si_shader_selector *es, struct si_shader_selector *gs,
844                       struct gfx9_gs_info *out)
845 {
846    unsigned gs_num_invocations = MAX2(gs->info.base.gs.invocations, 1);
847    unsigned input_prim = gs->info.base.gs.input_primitive;
848    bool uses_adjacency = mesa_prim_has_adjacency((enum mesa_prim)input_prim);
849 
850    /* All these are in dwords: */
851    /* We can't allow using the whole LDS, because GS waves compete with
852     * other shader stages for LDS space. */
853    const unsigned max_lds_size = 8 * 1024;
854    const unsigned esgs_itemsize = es->info.esgs_vertex_stride / 4;
855    unsigned esgs_lds_size;
856 
857    /* All these are per subgroup: */
858    const unsigned max_out_prims = 32 * 1024;
859    const unsigned max_es_verts = 255;
860    const unsigned ideal_gs_prims = 64;
861    unsigned max_gs_prims, gs_prims;
862    unsigned min_es_verts, es_verts, worst_case_es_verts;
863 
864    if (uses_adjacency || gs_num_invocations > 1)
865       max_gs_prims = 127 / gs_num_invocations;
866    else
867       max_gs_prims = 255;
868 
869    /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations.
870     * Make sure we don't go over the maximum value.
871     */
872    if (gs->info.base.gs.vertices_out > 0) {
873       max_gs_prims =
874          MIN2(max_gs_prims, max_out_prims / (gs->info.base.gs.vertices_out * gs_num_invocations));
875    }
876    assert(max_gs_prims > 0);
877 
878    /* If the primitive has adjacency, halve the number of vertices
879     * that will be reused in multiple primitives.
880     */
881    min_es_verts = gs->info.gs_input_verts_per_prim / (uses_adjacency ? 2 : 1);
882 
883    gs_prims = MIN2(ideal_gs_prims, max_gs_prims);
884    worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
885 
886    /* Compute ESGS LDS size based on the worst case number of ES vertices
887     * needed to create the target number of GS prims per subgroup.
888     */
889    esgs_lds_size = esgs_itemsize * worst_case_es_verts;
890 
891    /* If total LDS usage is too big, refactor partitions based on ratio
892     * of ESGS item sizes.
893     */
894    if (esgs_lds_size > max_lds_size) {
895       /* Our target GS Prims Per Subgroup was too large. Calculate
896        * the maximum number of GS Prims Per Subgroup that will fit
897        * into LDS, capped by the maximum that the hardware can support.
898        */
899       gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims);
900       assert(gs_prims > 0);
901       worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts);
902 
903       esgs_lds_size = esgs_itemsize * worst_case_es_verts;
904       assert(esgs_lds_size <= max_lds_size);
905    }
906 
907    /* Now calculate remaining ESGS information. */
908    if (esgs_lds_size)
909       es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts);
910    else
911       es_verts = max_es_verts;
912 
913    /* Vertices for adjacency primitives are not always reused, so restore
914     * it for ES_VERTS_PER_SUBGRP.
915     */
916    min_es_verts = gs->info.gs_input_verts_per_prim;
917 
918    /* For normal primitives, the VGT only checks if they are past the ES
919     * verts per subgroup after allocating a full GS primitive and if they
920     * are, kick off a new subgroup.  But if those additional ES verts are
921     * unique (e.g. not reused) we need to make sure there is enough LDS
922     * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP.
923     */
924    es_verts -= min_es_verts - 1;
925 
926    out->es_verts_per_subgroup = es_verts;
927    out->gs_prims_per_subgroup = gs_prims;
928    out->gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations;
929    out->max_prims_per_subgroup = out->gs_inst_prims_in_subgroup * gs->info.base.gs.vertices_out;
930    out->esgs_ring_size = esgs_lds_size;
931 
932    assert(out->max_prims_per_subgroup <= max_out_prims);
933 }
934 
gfx9_set_gs_sgpr_num_es_outputs(struct si_context * sctx,unsigned esgs_vertex_stride)935 static void gfx9_set_gs_sgpr_num_es_outputs(struct si_context *sctx, unsigned esgs_vertex_stride)
936 {
937    /* The stride must always be odd (e.g. a multiple of 4 + 1) to reduce LDS bank conflicts. */
938    assert(!esgs_vertex_stride || esgs_vertex_stride % 4 == 1);
939    unsigned num_es_outputs = esgs_vertex_stride / 4;
940 
941    /* If there are no ES outputs, GS doesn't use this SGPR field, so only set it if the number
942     * is non-zero.
943     */
944    if (num_es_outputs)
945       SET_FIELD(sctx->current_gs_state, GS_STATE_NUM_ES_OUTPUTS, num_es_outputs);
946 }
947 
si_emit_shader_gs(struct si_context * sctx,unsigned index)948 static void si_emit_shader_gs(struct si_context *sctx, unsigned index)
949 {
950    struct si_shader *shader = sctx->queued.named.gs;
951 
952    if (sctx->gfx_level >= GFX9)
953       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4);
954 
955    radeon_begin(&sctx->gfx_cs);
956 
957    /* R_028A60_VGT_GSVS_RING_OFFSET_1, R_028A64_VGT_GSVS_RING_OFFSET_2
958     * R_028A68_VGT_GSVS_RING_OFFSET_3 */
959    radeon_opt_set_context_reg3(
960       R_028A60_VGT_GSVS_RING_OFFSET_1, SI_TRACKED_VGT_GSVS_RING_OFFSET_1,
961       shader->gs.vgt_gsvs_ring_offset_1, shader->gs.vgt_gsvs_ring_offset_2,
962       shader->gs.vgt_gsvs_ring_offset_3);
963 
964    /* R_028AB0_VGT_GSVS_RING_ITEMSIZE */
965    radeon_opt_set_context_reg(R_028AB0_VGT_GSVS_RING_ITEMSIZE,
966                               SI_TRACKED_VGT_GSVS_RING_ITEMSIZE,
967                               shader->gs.vgt_gsvs_ring_itemsize);
968 
969    /* R_028B38_VGT_GS_MAX_VERT_OUT */
970    radeon_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
971                               shader->gs.vgt_gs_max_vert_out);
972 
973    /* R_028B5C_VGT_GS_VERT_ITEMSIZE, R_028B60_VGT_GS_VERT_ITEMSIZE_1
974     * R_028B64_VGT_GS_VERT_ITEMSIZE_2, R_028B68_VGT_GS_VERT_ITEMSIZE_3 */
975    radeon_opt_set_context_reg4(
976       R_028B5C_VGT_GS_VERT_ITEMSIZE, SI_TRACKED_VGT_GS_VERT_ITEMSIZE,
977       shader->gs.vgt_gs_vert_itemsize, shader->gs.vgt_gs_vert_itemsize_1,
978       shader->gs.vgt_gs_vert_itemsize_2, shader->gs.vgt_gs_vert_itemsize_3);
979 
980    /* R_028B90_VGT_GS_INSTANCE_CNT */
981    radeon_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
982                               shader->gs.vgt_gs_instance_cnt);
983 
984    if (sctx->gfx_level >= GFX9) {
985       /* R_028A44_VGT_GS_ONCHIP_CNTL */
986       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
987                                  shader->gs.vgt_gs_onchip_cntl);
988       /* R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP */
989       if (sctx->gfx_level == GFX9) {
990          radeon_opt_set_context_reg(R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
991                                     SI_TRACKED_VGT_GS_MAX_PRIMS_PER_SUBGROUP,
992                                     shader->gs.vgt_gs_max_prims_per_subgroup);
993       }
994 
995       if (shader->key.ge.part.gs.es->stage == MESA_SHADER_TESS_EVAL)
996          radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
997                                     shader->vgt_tf_param);
998       if (shader->vgt_vertex_reuse_block_cntl)
999          radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1000                                     SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1001                                     shader->vgt_vertex_reuse_block_cntl);
1002    }
1003    radeon_end_update_context_roll();
1004 
1005    /* These don't cause any context rolls. */
1006    radeon_begin_again(&sctx->gfx_cs);
1007    if (sctx->gfx_level >= GFX7) {
1008       if (sctx->screen->info.uses_kernel_cu_mask) {
1009          radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1010                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1011                                    3, shader->gs.spi_shader_pgm_rsrc3_gs);
1012       } else {
1013          radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1014                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1015                                shader->gs.spi_shader_pgm_rsrc3_gs);
1016       }
1017    }
1018    if (sctx->gfx_level >= GFX10) {
1019       if (sctx->screen->info.uses_kernel_cu_mask) {
1020          radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1021                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1022                                    3, shader->gs.spi_shader_pgm_rsrc4_gs);
1023       } else {
1024          radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1025                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1026                                shader->gs.spi_shader_pgm_rsrc4_gs);
1027       }
1028    }
1029    radeon_end();
1030 }
1031 
si_shader_gs(struct si_screen * sscreen,struct si_shader * shader)1032 static void si_shader_gs(struct si_screen *sscreen, struct si_shader *shader)
1033 {
1034    struct si_shader_selector *sel = shader->selector;
1035    const uint8_t *num_components = sel->info.num_stream_output_components;
1036    unsigned gs_num_invocations = sel->info.base.gs.invocations;
1037    struct si_pm4_state *pm4;
1038    uint64_t va;
1039    unsigned max_stream = util_last_bit(sel->info.base.gs.active_stream_mask);
1040    unsigned offset;
1041 
1042    assert(sscreen->info.gfx_level < GFX11); /* gfx11 doesn't have the legacy pipeline */
1043 
1044    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_gs);
1045    if (!pm4)
1046       return;
1047 
1048    offset = num_components[0] * sel->info.base.gs.vertices_out;
1049    shader->gs.vgt_gsvs_ring_offset_1 = offset;
1050 
1051    if (max_stream >= 2)
1052       offset += num_components[1] * sel->info.base.gs.vertices_out;
1053    shader->gs.vgt_gsvs_ring_offset_2 = offset;
1054 
1055    if (max_stream >= 3)
1056       offset += num_components[2] * sel->info.base.gs.vertices_out;
1057    shader->gs.vgt_gsvs_ring_offset_3 = offset;
1058 
1059    if (max_stream >= 4)
1060       offset += num_components[3] * sel->info.base.gs.vertices_out;
1061    shader->gs.vgt_gsvs_ring_itemsize = offset;
1062 
1063    /* The GSVS_RING_ITEMSIZE register takes 15 bits */
1064    assert(offset < (1 << 15));
1065 
1066    shader->gs.vgt_gs_max_vert_out = sel->info.base.gs.vertices_out;
1067 
1068    shader->gs.vgt_gs_vert_itemsize = num_components[0];
1069    shader->gs.vgt_gs_vert_itemsize_1 = (max_stream >= 2) ? num_components[1] : 0;
1070    shader->gs.vgt_gs_vert_itemsize_2 = (max_stream >= 3) ? num_components[2] : 0;
1071    shader->gs.vgt_gs_vert_itemsize_3 = (max_stream >= 4) ? num_components[3] : 0;
1072 
1073    shader->gs.vgt_gs_instance_cnt =
1074       S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0);
1075 
1076    /* Copy over fields from the GS copy shader to make them easily accessible from GS. */
1077    shader->pa_cl_vs_out_cntl = shader->gs_copy_shader->pa_cl_vs_out_cntl;
1078 
1079    va = shader->bo->gpu_address;
1080 
1081    if (sscreen->info.gfx_level >= GFX9) {
1082       unsigned input_prim = sel->info.base.gs.input_primitive;
1083       gl_shader_stage es_stage = shader->key.ge.part.gs.es->stage;
1084       unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1085 
1086       if (es_stage == MESA_SHADER_VERTEX) {
1087          es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1088       } else if (es_stage == MESA_SHADER_TESS_EVAL)
1089          es_vgpr_comp_cnt = shader->key.ge.part.gs.es->info.uses_primid ? 3 : 2;
1090       else
1091          unreachable("invalid shader selector type");
1092 
1093       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1094        * VGPR[0:4] are always loaded.
1095        */
1096       if (sel->info.uses_invocationid)
1097          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */
1098       else if (sel->info.uses_primid)
1099          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1100       else if (input_prim >= MESA_PRIM_TRIANGLES)
1101          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1102       else
1103          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1104 
1105       unsigned num_user_sgprs;
1106       if (es_stage == MESA_SHADER_VERTEX)
1107          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1108       else
1109          num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1110 
1111       if (sscreen->info.gfx_level >= GFX10) {
1112          ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1113       } else {
1114          ac_pm4_set_reg(&pm4->base, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8);
1115       }
1116 
1117       uint32_t rsrc1 = S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1118                        S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1119                        S_00B228_DX10_CLAMP(1) |
1120                        S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1121                        S_00B228_FLOAT_MODE(shader->config.float_mode) |
1122                        S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt);
1123       uint32_t rsrc2 = S_00B22C_USER_SGPR(num_user_sgprs) |
1124                        S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1125                        S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1126                        S_00B22C_LDS_SIZE(shader->config.lds_size) |
1127                        S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1128 
1129       if (sscreen->info.gfx_level >= GFX10) {
1130          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1131                   S_00B22C_SHARED_VGPR_CNT(shader->config.num_shared_vgprs / 8);
1132       } else {
1133          rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1134       }
1135 
1136       ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS, rsrc1);
1137       ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS, rsrc2);
1138 
1139       shader->gs.spi_shader_pgm_rsrc3_gs =
1140          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1141                         S_00B21C_WAVE_LIMIT(0x3F),
1142                         C_00B21C_CU_EN, 0, &sscreen->info);
1143       shader->gs.spi_shader_pgm_rsrc4_gs =
1144          ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff) |
1145                         S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0),
1146                         C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1147 
1148       shader->gs.vgt_gs_onchip_cntl =
1149          S_028A44_ES_VERTS_PER_SUBGRP(shader->gs_info.es_verts_per_subgroup) |
1150          S_028A44_GS_PRIMS_PER_SUBGRP(shader->gs_info.gs_prims_per_subgroup) |
1151          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->gs_info.gs_inst_prims_in_subgroup);
1152       shader->gs.vgt_gs_max_prims_per_subgroup =
1153          S_028A94_MAX_PRIMS_PER_SUBGROUP(shader->gs_info.max_prims_per_subgroup);
1154       shader->gs.vgt_esgs_ring_itemsize = shader->key.ge.part.gs.es->info.esgs_vertex_stride / 4;
1155 
1156       if (es_stage == MESA_SHADER_TESS_EVAL)
1157          si_set_tesseval_regs(sscreen, shader->key.ge.part.gs.es, shader);
1158 
1159       polaris_set_vgt_vertex_reuse(sscreen, shader->key.ge.part.gs.es, shader);
1160    } else {
1161       shader->gs.spi_shader_pgm_rsrc3_gs =
1162          ac_apply_cu_en(S_00B21C_CU_EN(0xffff) |
1163                         S_00B21C_WAVE_LIMIT(0x3F),
1164                         C_00B21C_CU_EN, 0, &sscreen->info);
1165 
1166       ac_pm4_set_reg(&pm4->base, R_00B220_SPI_SHADER_PGM_LO_GS, va >> 8);
1167       ac_pm4_set_reg(&pm4->base, R_00B224_SPI_SHADER_PGM_HI_GS,
1168                      S_00B224_MEM_BASE(sscreen->info.address32_hi >> 8));
1169 
1170       ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1171                      S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1172                      S_00B228_SGPRS(si_shader_encode_sgprs(shader)) |
1173                      S_00B228_DX10_CLAMP(1) |
1174                      S_00B228_FLOAT_MODE(shader->config.float_mode));
1175       ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1176                      S_00B22C_USER_SGPR(GFX6_GS_NUM_USER_SGPR) |
1177                      S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0));
1178    }
1179    ac_pm4_finalize(&pm4->base);
1180 }
1181 
gfx10_is_ngg_passthrough(struct si_shader * shader)1182 bool gfx10_is_ngg_passthrough(struct si_shader *shader)
1183 {
1184    struct si_shader_selector *sel = shader->selector;
1185 
1186    /* Never use NGG passthrough if culling is possible even when it's not used by this shader,
1187     * so that we don't get context rolls when enabling and disabling NGG passthrough.
1188     */
1189    if (sel->screen->use_ngg_culling)
1190       return false;
1191 
1192    /* The definition of NGG passthrough is:
1193     * - user GS is turned off (no amplification, no GS instancing, and no culling)
1194     * - VGT_ESGS_RING_ITEMSIZE is ignored (behaving as if it was equal to 1)
1195     * - vertex indices are packed into 1 VGPR
1196     * - Navi23 and later chips can optionally skip the gs_alloc_req message
1197     *
1198     * NGG passthrough still allows the use of LDS.
1199     */
1200    return sel->stage != MESA_SHADER_GEOMETRY && !si_shader_culling_enabled(shader);
1201 }
1202 
1203 template <enum si_has_tess HAS_TESS>
gfx10_emit_shader_ngg(struct si_context * sctx,unsigned index)1204 static void gfx10_emit_shader_ngg(struct si_context *sctx, unsigned index)
1205 {
1206    struct si_shader *shader = sctx->queued.named.gs;
1207 
1208    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1209       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1210 
1211    radeon_begin(&sctx->gfx_cs);
1212    if (HAS_TESS) {
1213       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1214                                  shader->vgt_tf_param);
1215    }
1216    radeon_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1217                               SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1218                               shader->ngg.ge_max_output_per_subgroup);
1219    radeon_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1220                               shader->ngg.ge_ngg_subgrp_cntl);
1221    radeon_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1222                               shader->ngg.vgt_primitiveid_en);
1223    if (sctx->gfx_level < GFX11) {
1224       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL, SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1225                                  shader->ngg.vgt_gs_onchip_cntl);
1226    }
1227    radeon_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1228                               shader->ngg.vgt_gs_max_vert_out);
1229    radeon_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1230                               shader->ngg.vgt_gs_instance_cnt);
1231    radeon_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1232                               shader->ngg.spi_vs_out_config);
1233    radeon_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT,
1234                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1235                               shader->ngg.spi_shader_pos_format);
1236    radeon_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1237                               shader->ngg.pa_cl_vte_cntl);
1238    radeon_end_update_context_roll();
1239 
1240    /* These don't cause a context roll. */
1241    radeon_begin_again(&sctx->gfx_cs);
1242    if (sctx->screen->info.uses_kernel_cu_mask) {
1243       radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1244                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1245                                 3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1246       radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1247                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1248                                 3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1249    } else {
1250       radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1251                             SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1252                             shader->ngg.spi_shader_pgm_rsrc3_gs);
1253       radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1254                             SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1255                             shader->ngg.spi_shader_pgm_rsrc4_gs);
1256    }
1257    radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1258                               shader->ngg.ge_pc_alloc);
1259    radeon_end();
1260 }
1261 
1262 template <enum si_has_tess HAS_TESS>
gfx11_dgpu_emit_shader_ngg(struct si_context * sctx,unsigned index)1263 static void gfx11_dgpu_emit_shader_ngg(struct si_context *sctx, unsigned index)
1264 {
1265    struct si_shader *shader = sctx->queued.named.gs;
1266 
1267    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1268       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1269 
1270    radeon_begin(&sctx->gfx_cs);
1271    gfx11_begin_packed_context_regs();
1272    if (HAS_TESS) {
1273       gfx11_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1274                                 shader->vgt_tf_param);
1275    }
1276    gfx11_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1277                              SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1278                              shader->ngg.ge_max_output_per_subgroup);
1279    gfx11_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1280                              shader->ngg.ge_ngg_subgrp_cntl);
1281    gfx11_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1282                              shader->ngg.vgt_primitiveid_en);
1283    gfx11_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1284                              shader->ngg.vgt_gs_max_vert_out);
1285    gfx11_opt_set_context_reg(R_028B90_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1286                              shader->ngg.vgt_gs_instance_cnt);
1287    gfx11_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1288                              shader->ngg.spi_vs_out_config);
1289    gfx11_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT,
1290                              shader->ngg.spi_shader_pos_format);
1291    gfx11_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1292                              shader->ngg.pa_cl_vte_cntl);
1293    gfx11_end_packed_context_regs();
1294 
1295    assert(!sctx->screen->info.uses_kernel_cu_mask);
1296    if (sctx->screen->info.has_set_sh_pairs_packed) {
1297       gfx11_opt_push_gfx_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1298                                 SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1299                                 shader->gs.spi_shader_pgm_rsrc3_gs);
1300       gfx11_opt_push_gfx_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1301                                 SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1302                                 shader->gs.spi_shader_pgm_rsrc4_gs);
1303    } else {
1304       if (sctx->screen->info.uses_kernel_cu_mask) {
1305          radeon_opt_set_sh_reg_idx(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1306                                    SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1307                                    3, shader->ngg.spi_shader_pgm_rsrc3_gs);
1308          radeon_opt_set_sh_reg_idx(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1309                                    SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1310                                    3, shader->ngg.spi_shader_pgm_rsrc4_gs);
1311       } else {
1312          radeon_opt_set_sh_reg(R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
1313                                SI_TRACKED_SPI_SHADER_PGM_RSRC3_GS,
1314                                shader->ngg.spi_shader_pgm_rsrc3_gs);
1315          radeon_opt_set_sh_reg(R_00B204_SPI_SHADER_PGM_RSRC4_GS,
1316                                SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1317                                shader->ngg.spi_shader_pgm_rsrc4_gs);
1318       }
1319    }
1320 
1321    radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1322                               shader->ngg.ge_pc_alloc);
1323    radeon_end();
1324 }
1325 
1326 template <enum si_has_tess HAS_TESS>
gfx12_emit_shader_ngg(struct si_context * sctx,unsigned index)1327 static void gfx12_emit_shader_ngg(struct si_context *sctx, unsigned index)
1328 {
1329    struct si_shader *shader = sctx->queued.named.gs;
1330 
1331    if (shader->selector->stage == MESA_SHADER_GEOMETRY)
1332       gfx9_set_gs_sgpr_num_es_outputs(sctx, shader->ngg.esgs_vertex_stride);
1333 
1334    radeon_begin(&sctx->gfx_cs);
1335    gfx12_begin_context_regs();
1336    if (HAS_TESS) {
1337       gfx12_opt_set_context_reg(R_028AA4_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1338                                 shader->vgt_tf_param);
1339    }
1340    gfx12_opt_set_context_reg(R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP,
1341                              SI_TRACKED_GE_MAX_OUTPUT_PER_SUBGROUP,
1342                              shader->ngg.ge_max_output_per_subgroup);
1343    gfx12_opt_set_context_reg(R_028B4C_GE_NGG_SUBGRP_CNTL, SI_TRACKED_GE_NGG_SUBGRP_CNTL,
1344                              shader->ngg.ge_ngg_subgrp_cntl);
1345    gfx12_opt_set_context_reg(R_028B38_VGT_GS_MAX_VERT_OUT, SI_TRACKED_VGT_GS_MAX_VERT_OUT,
1346                              shader->ngg.vgt_gs_max_vert_out);
1347    gfx12_opt_set_context_reg(R_028B3C_VGT_GS_INSTANCE_CNT, SI_TRACKED_VGT_GS_INSTANCE_CNT,
1348                              shader->ngg.vgt_gs_instance_cnt);
1349    gfx12_opt_set_context_reg(R_02864C_SPI_SHADER_POS_FORMAT, SI_TRACKED_SPI_SHADER_POS_FORMAT,
1350                              shader->ngg.spi_shader_pos_format);
1351    gfx12_opt_set_context_reg(R_028814_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1352                              shader->ngg.pa_cl_vte_cntl);
1353    gfx12_end_context_regs();
1354 
1355    radeon_opt_set_uconfig_reg(R_030988_VGT_PRIMITIVEID_EN,
1356                               SI_TRACKED_VGT_PRIMITIVEID_EN_UCONFIG,
1357                               shader->ngg.vgt_primitiveid_en);
1358    radeon_end(); /* don't track context rolls on GFX12 */
1359 
1360    assert(!sctx->screen->info.uses_kernel_cu_mask);
1361    gfx12_opt_push_gfx_sh_reg(R_00B220_SPI_SHADER_PGM_RSRC4_GS,
1362                              SI_TRACKED_SPI_SHADER_PGM_RSRC4_GS,
1363                              shader->ngg.spi_shader_pgm_rsrc4_gs);
1364 }
1365 
si_get_input_prim(const struct si_shader_selector * gs,const union si_shader_key * key,bool return_unknown)1366 unsigned si_get_input_prim(const struct si_shader_selector *gs, const union si_shader_key *key,
1367                            bool return_unknown)
1368 {
1369    if (gs->stage == MESA_SHADER_GEOMETRY)
1370       return gs->info.base.gs.input_primitive;
1371 
1372    if (gs->stage == MESA_SHADER_TESS_EVAL) {
1373       if (gs->info.base.tess.point_mode)
1374          return MESA_PRIM_POINTS;
1375       if (gs->info.base.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
1376          return MESA_PRIM_LINES;
1377       return MESA_PRIM_TRIANGLES;
1378    }
1379 
1380    assert(gs->stage == MESA_SHADER_VERTEX);
1381 
1382    if (key->ge.opt.ngg_culling & SI_NGG_CULL_VS_LINES)
1383       return MESA_PRIM_LINES;
1384 
1385    switch (key->ge.opt.ngg_vs_streamout_num_verts_per_prim) {
1386    case 3:
1387       return MESA_PRIM_TRIANGLES;
1388    case 2:
1389       return MESA_PRIM_LINES;
1390    case 1:
1391       return MESA_PRIM_POINTS;
1392    }
1393 
1394    if (return_unknown)
1395       return MESA_PRIM_UNKNOWN;
1396    else
1397       return MESA_PRIM_TRIANGLES; /* worst case for all callers */
1398 }
1399 
1400 /* Return a simplified primitive type, e.g. don't return *_STRIP and *_FAN.
1401  * This returns MESA_PRIM_UNKNOWN if the primitive type is not known at compile time.
1402  */
si_get_output_prim_simplified(const struct si_shader_selector * sel,const union si_shader_key * key)1403 unsigned si_get_output_prim_simplified(const struct si_shader_selector *sel,
1404                                        const union si_shader_key *key)
1405 {
1406    if (sel->stage == MESA_SHADER_GEOMETRY) {
1407       if (util_rast_prim_is_triangles(sel->info.base.gs.output_primitive))
1408          return MESA_PRIM_TRIANGLES;
1409       else if (util_prim_is_lines(sel->info.base.gs.output_primitive))
1410          return MESA_PRIM_LINES;
1411       else
1412          return MESA_PRIM_POINTS;
1413    }
1414 
1415    if (sel->stage == MESA_SHADER_VERTEX && sel->info.base.vs.blit_sgprs_amd)
1416       return SI_PRIM_RECTANGLE_LIST;
1417 
1418    /* It's the same as the input primitive type for VS and TES. */
1419    return si_get_input_prim(sel, key, true);
1420 }
1421 
si_get_num_vertices_per_output_prim(struct si_shader * shader)1422 unsigned si_get_num_vertices_per_output_prim(struct si_shader *shader)
1423 {
1424    unsigned prim = si_get_output_prim_simplified(shader->selector, &shader->key);
1425 
1426    switch (prim) {
1427    case MESA_PRIM_TRIANGLES:
1428    case SI_PRIM_RECTANGLE_LIST:
1429       return 3;
1430    case MESA_PRIM_LINES:
1431       return 2;
1432    case MESA_PRIM_POINTS:
1433       return 1;
1434    case MESA_PRIM_UNKNOWN:
1435       return 0;
1436    default:
1437       unreachable("unexpected prim type");
1438    }
1439 }
1440 
si_get_vs_out_cntl(const struct si_shader_selector * sel,const struct si_shader * shader,bool ngg)1441 static unsigned si_get_vs_out_cntl(const struct si_shader_selector *sel,
1442                                    const struct si_shader *shader, bool ngg)
1443 {
1444    /* Clip distances can be killed, but cull distances can't. */
1445    unsigned clipcull_mask = (sel->info.clipdist_mask & ~shader->key.ge.opt.kill_clip_distances) |
1446                             sel->info.culldist_mask;
1447    bool writes_psize = sel->info.writes_psize && !shader->key.ge.opt.kill_pointsize;
1448    bool writes_layer = sel->info.writes_layer && !shader->key.ge.opt.kill_layer;
1449    bool misc_vec_ena = writes_psize || (sel->info.writes_edgeflag && !ngg) ||
1450                        writes_layer || sel->info.writes_viewport_index ||
1451                        sel->screen->options.vrs2x2;
1452 
1453    return S_02881C_VS_OUT_CCDIST0_VEC_ENA((clipcull_mask & 0x0F) != 0) |
1454           S_02881C_VS_OUT_CCDIST1_VEC_ENA((clipcull_mask & 0xF0) != 0) |
1455           S_02881C_USE_VTX_POINT_SIZE(writes_psize) |
1456           S_02881C_USE_VTX_EDGE_FLAG(sel->info.writes_edgeflag && !ngg) |
1457           S_02881C_USE_VTX_VRS_RATE(sel->screen->options.vrs2x2) |
1458           S_02881C_USE_VTX_RENDER_TARGET_INDX(writes_layer) |
1459           S_02881C_USE_VTX_VIEWPORT_INDX(sel->info.writes_viewport_index) |
1460           S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) |
1461           S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena ||
1462                                             (sel->screen->info.gfx_level >= GFX10_3 &&
1463                                              shader->info.nr_pos_exports > 1));
1464 }
1465 
1466 /* Return the number of allocated param exports. This can be more than the number of param
1467  * exports in the shader.
1468  */
si_shader_num_alloc_param_exports(struct si_shader * shader)1469 unsigned si_shader_num_alloc_param_exports(struct si_shader *shader)
1470 {
1471    unsigned num_params = shader->info.nr_param_exports;
1472 
1473    /* Since there is no alloc/dealloc mechanism for the 12-bit ordered IDs on GFX12, they can wrap
1474     * around if there are more than 2^12 workgroups, causing 2 workgroups to get the same
1475     * ordered ID, which can deadlock the "ordered add" loop.
1476     *
1477     * The recommended solution is to use the alloc/dealloc mechanism of the attribute ring to limit
1478     * the number of workgroups in flight and thus the number of ordered IDs in flight.
1479     */
1480    if (shader->selector->screen->info.gfx_level >= GFX12 && si_shader_uses_streamout(shader))
1481       num_params = MAX2(num_params, 8);
1482 
1483    return num_params;
1484 }
1485 
1486 /**
1487  * Prepare the PM4 image for \p shader, which will run as a merged ESGS shader
1488  * in NGG mode.
1489  */
gfx10_shader_ngg(struct si_screen * sscreen,struct si_shader * shader)1490 static void gfx10_shader_ngg(struct si_screen *sscreen, struct si_shader *shader)
1491 {
1492    const struct si_shader_selector *gs_sel = shader->selector;
1493    const struct si_shader_info *gs_info = &gs_sel->info;
1494    const gl_shader_stage gs_stage = shader->selector->stage;
1495    const struct si_shader_selector *es_sel =
1496       shader->previous_stage_sel ? shader->previous_stage_sel : shader->selector;
1497    const struct si_shader_info *es_info = &es_sel->info;
1498    const gl_shader_stage es_stage = es_sel->stage;
1499    unsigned num_user_sgprs;
1500    unsigned es_vgpr_comp_cnt, gs_vgpr_comp_cnt;
1501    uint64_t va;
1502    bool window_space = gs_sel->stage == MESA_SHADER_VERTEX ?
1503                           gs_info->base.vs.window_space_position : 0;
1504    bool es_enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || es_info->uses_primid;
1505    unsigned gs_num_invocations = gs_sel->stage == MESA_SHADER_GEOMETRY ?
1506                                     CLAMP(gs_info->base.gs.invocations, 1, 32) : 0;
1507    unsigned input_prim = si_get_input_prim(gs_sel, &shader->key, false);
1508 
1509    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
1510    if (!pm4)
1511       return;
1512 
1513    if (sscreen->info.gfx_level >= GFX12) {
1514       if (es_stage == MESA_SHADER_TESS_EVAL)
1515          pm4->atom.emit = gfx12_emit_shader_ngg<TESS_ON>;
1516       else
1517          pm4->atom.emit = gfx12_emit_shader_ngg<TESS_OFF>;
1518    } else if (sscreen->info.has_set_context_pairs_packed) {
1519       if (es_stage == MESA_SHADER_TESS_EVAL)
1520          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_ON>;
1521       else
1522          pm4->atom.emit = gfx11_dgpu_emit_shader_ngg<TESS_OFF>;
1523    } else {
1524       if (es_stage == MESA_SHADER_TESS_EVAL)
1525          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_ON>;
1526       else
1527          pm4->atom.emit = gfx10_emit_shader_ngg<TESS_OFF>;
1528    }
1529 
1530    va = shader->bo->gpu_address;
1531 
1532    if (es_stage == MESA_SHADER_VERTEX) {
1533       es_vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, false);
1534 
1535       if (es_info->base.vs.blit_sgprs_amd) {
1536          num_user_sgprs =
1537             SI_SGPR_VS_BLIT_DATA + es_info->base.vs.blit_sgprs_amd;
1538       } else {
1539          num_user_sgprs = si_get_num_vs_user_sgprs(shader, GFX9_GS_NUM_USER_SGPR);
1540       }
1541    } else {
1542       assert(es_stage == MESA_SHADER_TESS_EVAL);
1543       es_vgpr_comp_cnt = es_enable_prim_id ? 3 : 2;
1544       num_user_sgprs = GFX9_GS_NUM_USER_SGPR;
1545    }
1546 
1547    /* Primitives with adjancency can only occur without tessellation. */
1548    assert(gs_info->gs_input_verts_per_prim <= 3 || es_stage == MESA_SHADER_VERTEX);
1549 
1550    if (sscreen->info.gfx_level >= GFX12) {
1551       if (gs_info->gs_input_verts_per_prim >= 4)
1552          gs_vgpr_comp_cnt = 2; /* VGPR2 contains offsets 3-5 */
1553       else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1554                (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1555          gs_vgpr_comp_cnt = 1; /* VGPR1 contains PrimitiveID */
1556       else
1557          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0-2, edgeflags, GS invocation ID. */
1558    } else {
1559       /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and
1560        * VGPR[0:4] are always loaded.
1561        *
1562        * Vertex shaders always need to load VGPR3, because they need to
1563        * pass edge flags for decomposed primitives (such as quads) to the PA
1564        * for the GL_LINE polygon mode to skip rendering lines on inner edges.
1565        */
1566       if (gs_info->uses_invocationid ||
1567           (gfx10_has_variable_edgeflags(shader) && !gfx10_is_ngg_passthrough(shader)))
1568          gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID, edge flags. */
1569       else if ((gs_stage == MESA_SHADER_GEOMETRY && gs_info->uses_primid) ||
1570                (gs_stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1571          gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */
1572       else if (input_prim >= MESA_PRIM_TRIANGLES && !gfx10_is_ngg_passthrough(shader))
1573          gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */
1574       else
1575          gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */
1576    }
1577 
1578    if (sscreen->info.gfx_level >= GFX12) {
1579       ac_pm4_set_reg(&pm4->base, R_00B224_SPI_SHADER_PGM_LO_ES, va >> 8);
1580    } else {
1581       ac_pm4_set_reg(&pm4->base, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8);
1582    }
1583 
1584    ac_pm4_set_reg(&pm4->base, R_00B228_SPI_SHADER_PGM_RSRC1_GS,
1585                   S_00B228_VGPRS(si_shader_encode_vgprs(shader)) |
1586                   S_00B228_FLOAT_MODE(shader->config.float_mode) |
1587                   S_00B228_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
1588                   S_00B228_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1589                   S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt));
1590    ac_pm4_set_reg(&pm4->base, R_00B22C_SPI_SHADER_PGM_RSRC2_GS,
1591                   S_00B22C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
1592                   S_00B22C_USER_SGPR(num_user_sgprs) |
1593                   S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) |
1594                   S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL) |
1595                   S_00B22C_LDS_SIZE(shader->config.lds_size) |
1596                   S_00B22C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1597                   S_00B22C_SHARED_VGPR_CNT(shader->config.num_shared_vgprs / 8));
1598 
1599    /* Set register values emitted conditionally in gfx10_emit_shader_ngg_*. */
1600    shader->ngg.spi_shader_pos_format =
1601       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1602       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1603                                                                   : V_02870C_SPI_SHADER_NONE) |
1604       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1605                                                                   : V_02870C_SPI_SHADER_NONE) |
1606       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1607                                                                   : V_02870C_SPI_SHADER_NONE);
1608    shader->ngg.ge_max_output_per_subgroup = S_0287FC_MAX_VERTS_PER_SUBGROUP(shader->ngg.max_out_verts);
1609    shader->ngg.vgt_gs_instance_cnt =
1610       S_028B90_ENABLE(gs_num_invocations > 1) |
1611       S_028B90_CNT(gs_num_invocations) |
1612       S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(shader->ngg.max_vert_out_per_gs_instance);
1613    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, true);
1614 
1615    if (gs_stage == MESA_SHADER_GEOMETRY) {
1616       shader->ngg.esgs_vertex_stride = es_sel->info.esgs_vertex_stride / 4;
1617       shader->ngg.vgt_gs_max_vert_out = gs_sel->info.base.gs.vertices_out;
1618       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(gs_sel->info.base.gs.vertices_out);
1619    } else {
1620       shader->ngg.esgs_vertex_stride = 1;
1621       shader->ngg.vgt_gs_max_vert_out = 1;
1622       shader->ngg.ge_ngg_subgrp_cntl = S_028B4C_PRIM_AMP_FACTOR(1);
1623    }
1624 
1625    if (es_stage == MESA_SHADER_TESS_EVAL)
1626       si_set_tesseval_regs(sscreen, es_sel, shader);
1627 
1628    shader->ngg.vgt_primitiveid_en =
1629       S_028A84_NGG_DISABLE_PROVOK_REUSE(shader->key.ge.mono.u.vs_export_prim_id ||
1630                                         gs_sel->info.writes_primid);
1631 
1632    if (sscreen->info.gfx_level >= GFX12) {
1633       unsigned num_params = si_shader_num_alloc_param_exports(shader);
1634       unsigned wave_limit_per_se = 0x3ff;
1635 
1636       /* This tuning adds up to 50% streamout performance. */
1637       if (si_shader_uses_streamout(shader)) {
1638          unsigned num_streamout_vec4s = DIV_ROUND_UP(shader->selector->info.num_streamout_components, 4);
1639 
1640          /* TODO: Tested on a pre-production chip. Re-test on the final chip. */
1641          if (num_streamout_vec4s <= 4)
1642             wave_limit_per_se = 48;
1643          else if (num_streamout_vec4s <= 5)
1644             wave_limit_per_se = 24;
1645          else if (num_streamout_vec4s <= 6)
1646             wave_limit_per_se = 20;
1647          else if (num_streamout_vec4s <= 8)
1648             wave_limit_per_se = 18;
1649          else if (num_streamout_vec4s <= 11)
1650             wave_limit_per_se = 17;
1651          else if (num_streamout_vec4s <= 12)
1652             wave_limit_per_se = 16;
1653          else if (num_streamout_vec4s <= 15)
1654             wave_limit_per_se = 15;
1655          else
1656             wave_limit_per_se = 14;
1657       }
1658 
1659       shader->ngg.spi_shader_pgm_rsrc4_gs = S_00B220_SPI_SHADER_LATE_ALLOC_GS(127) |
1660                                             S_00B220_GLG_FORCE_DISABLE(1) |
1661                                             S_00B220_WAVE_LIMIT(wave_limit_per_se) |
1662                                             S_00B220_INST_PREF_SIZE(si_get_shader_prefetch_size(shader));
1663       shader->ngg.spi_vs_out_config = S_00B0C4_VS_EXPORT_COUNT(MAX2(num_params, 1) - 1) |
1664                                       S_00B0C4_NO_PC_EXPORT(num_params == 0);
1665    } else {
1666       unsigned late_alloc_wave64, cu_mask;
1667 
1668       ac_compute_late_alloc(&sscreen->info, true, si_shader_culling_enabled(shader),
1669                             shader->config.scratch_bytes_per_wave > 0,
1670                             &late_alloc_wave64, &cu_mask);
1671 
1672       /* Oversubscribe PC. This improves performance when there are too many varyings. */
1673       unsigned oversub_pc_lines, oversub_pc_factor = 1;
1674 
1675       if (si_shader_culling_enabled(shader)) {
1676          /* Be more aggressive with NGG culling. */
1677          if (shader->info.nr_param_exports > 4)
1678             oversub_pc_factor = 4;
1679          else if (shader->info.nr_param_exports > 2)
1680             oversub_pc_factor = 3;
1681          else
1682             oversub_pc_factor = 2;
1683       }
1684       oversub_pc_lines = late_alloc_wave64 ? (sscreen->info.pc_lines / 4) * oversub_pc_factor : 0;
1685       shader->ngg.ge_pc_alloc = S_030980_OVERSUB_EN(oversub_pc_lines > 0) |
1686                                 S_030980_NUM_PC_LINES(oversub_pc_lines - 1);
1687       shader->ngg.vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(es_enable_prim_id);
1688       shader->ngg.spi_shader_pgm_rsrc3_gs =
1689          ac_apply_cu_en(S_00B21C_CU_EN(cu_mask) |
1690                         S_00B21C_WAVE_LIMIT(0x3F),
1691                         C_00B21C_CU_EN, 0, &sscreen->info);
1692       shader->ngg.spi_shader_pgm_rsrc4_gs = S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64);
1693       shader->ngg.spi_vs_out_config =
1694          S_0286C4_VS_EXPORT_COUNT(MAX2(shader->info.nr_param_exports, 1) - 1) |
1695          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1696 
1697       if (sscreen->info.gfx_level >= GFX11) {
1698          shader->ngg.spi_shader_pgm_rsrc4_gs |=
1699             ac_apply_cu_en(S_00B204_CU_EN_GFX11(0x1) |
1700                            S_00B204_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
1701                            C_00B204_CU_EN_GFX11, 16, &sscreen->info);
1702       } else {
1703          shader->ngg.spi_shader_pgm_rsrc4_gs |=
1704             ac_apply_cu_en(S_00B204_CU_EN_GFX10(0xffff),
1705                            C_00B204_CU_EN_GFX10, 16, &sscreen->info);
1706       }
1707    }
1708 
1709    if (sscreen->info.gfx_level >= GFX11) {
1710       /* This should be <= 252 for performance on Gfx11. 256 works too but is slower. */
1711       unsigned max_prim_grp_size = sscreen->info.gfx_level >= GFX12 ? 256 : 252;
1712       unsigned prim_amp_factor = gs_stage == MESA_SHADER_GEOMETRY ?
1713                                     gs_sel->info.base.gs.vertices_out : 1;
1714 
1715       shader->ge_cntl = S_03096C_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1716                         S_03096C_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1717                         S_03096C_PRIM_GRP_SIZE_GFX11(
1718                            CLAMP(max_prim_grp_size / MAX2(prim_amp_factor, 1), 1, 256)) |
1719                         S_03096C_DIS_PG_SIZE_ADJUST_FOR_STRIP(sscreen->info.gfx_level >= GFX12);
1720    } else {
1721       shader->ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(shader->ngg.max_gsprims) |
1722                         S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts);
1723 
1724       shader->ngg.vgt_gs_onchip_cntl =
1725          S_028A44_ES_VERTS_PER_SUBGRP(shader->ngg.hw_max_esverts) |
1726          S_028A44_GS_PRIMS_PER_SUBGRP(shader->ngg.max_gsprims) |
1727          S_028A44_GS_INST_PRIMS_IN_SUBGRP(shader->ngg.max_gsprims * gs_num_invocations);
1728 
1729       /* On gfx10, the GE only checks against the maximum number of ES verts after
1730        * allocating a full GS primitive. So we need to ensure that whenever
1731        * this check passes, there is enough space for a full primitive without
1732        * vertex reuse. VERT_GRP_SIZE=256 doesn't need this. We should always get 256
1733        * if we have enough LDS.
1734        *
1735        * Tessellation is unaffected because it always sets GE_CNTL.VERT_GRP_SIZE = 0.
1736        */
1737       if ((sscreen->info.gfx_level == GFX10) &&
1738           (es_stage == MESA_SHADER_VERTEX || gs_stage == MESA_SHADER_VERTEX) && /* = no tess */
1739           shader->ngg.hw_max_esverts != 256 &&
1740           shader->ngg.hw_max_esverts > 5) {
1741          /* This could be based on the input primitive type. 5 is the worst case
1742           * for primitive types with adjacency.
1743           */
1744          shader->ge_cntl &= C_03096C_VERT_GRP_SIZE;
1745          shader->ge_cntl |= S_03096C_VERT_GRP_SIZE(shader->ngg.hw_max_esverts - 5);
1746       }
1747    }
1748 
1749    if (window_space) {
1750       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1751    } else {
1752       shader->ngg.pa_cl_vte_cntl = S_028818_VTX_W0_FMT(1) |
1753                                    S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1754                                    S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1755                                    S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1756    }
1757 
1758    if (sscreen->info.gfx_level >= GFX12) {
1759       shader->ngg.vgt_shader_stages_en =
1760          S_028A98_GS_EN(gs_stage == MESA_SHADER_GEOMETRY) |
1761          S_028A98_PRIMGEN_PASSTHRU_NO_MSG(gfx10_is_ngg_passthrough(shader)) |
1762          S_028A98_GS_W32_EN(shader->wave_size == 32) |
1763          S_028A98_NGG_WAVE_ID_EN(si_shader_uses_streamout(shader));
1764    } else {
1765       shader->ngg.vgt_shader_stages_en =
1766          S_028B54_ES_EN(es_stage == MESA_SHADER_TESS_EVAL ?
1767                            V_028B54_ES_STAGE_DS : V_028B54_ES_STAGE_REAL) |
1768          S_028B54_GS_EN(gs_stage == MESA_SHADER_GEOMETRY) |
1769          S_028B54_PRIMGEN_EN(1) |
1770          S_028B54_PRIMGEN_PASSTHRU_EN(gfx10_is_ngg_passthrough(shader)) |
1771          S_028B54_PRIMGEN_PASSTHRU_NO_MSG(gfx10_is_ngg_passthrough(shader) &&
1772                                           sscreen->info.family >= CHIP_NAVI23) |
1773          S_028B54_NGG_WAVE_ID_EN(si_shader_uses_streamout(shader)) |
1774          S_028B54_GS_W32_EN(shader->wave_size == 32) |
1775          S_028B54_MAX_PRIMGRP_IN_WAVE(2);
1776    }
1777 
1778    ac_pm4_finalize(&pm4->base);
1779 }
1780 
si_emit_shader_vs(struct si_context * sctx,unsigned index)1781 static void si_emit_shader_vs(struct si_context *sctx, unsigned index)
1782 {
1783    struct si_shader *shader = sctx->queued.named.vs;
1784 
1785    radeon_begin(&sctx->gfx_cs);
1786    radeon_opt_set_context_reg(R_028A40_VGT_GS_MODE, SI_TRACKED_VGT_GS_MODE,
1787                               shader->vs.vgt_gs_mode);
1788    radeon_opt_set_context_reg(R_028A84_VGT_PRIMITIVEID_EN, SI_TRACKED_VGT_PRIMITIVEID_EN,
1789                               shader->vs.vgt_primitiveid_en);
1790 
1791    if (sctx->gfx_level <= GFX8) {
1792       radeon_opt_set_context_reg(R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
1793                                  shader->vs.vgt_reuse_off);
1794    }
1795 
1796    radeon_opt_set_context_reg(R_0286C4_SPI_VS_OUT_CONFIG, SI_TRACKED_SPI_VS_OUT_CONFIG,
1797                               shader->vs.spi_vs_out_config);
1798 
1799    radeon_opt_set_context_reg(R_02870C_SPI_SHADER_POS_FORMAT,
1800                               SI_TRACKED_SPI_SHADER_POS_FORMAT,
1801                               shader->vs.spi_shader_pos_format);
1802 
1803    radeon_opt_set_context_reg(R_028818_PA_CL_VTE_CNTL, SI_TRACKED_PA_CL_VTE_CNTL,
1804                               shader->vs.pa_cl_vte_cntl);
1805 
1806    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1807       radeon_opt_set_context_reg(R_028B6C_VGT_TF_PARAM, SI_TRACKED_VGT_TF_PARAM,
1808                                  shader->vgt_tf_param);
1809 
1810    if (shader->vgt_vertex_reuse_block_cntl)
1811       radeon_opt_set_context_reg(R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL,
1812                                  SI_TRACKED_VGT_VERTEX_REUSE_BLOCK_CNTL,
1813                                  shader->vgt_vertex_reuse_block_cntl);
1814 
1815    /* Required programming for tessellation. (legacy pipeline only) */
1816    if (sctx->gfx_level >= GFX10 && shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1817       radeon_opt_set_context_reg(R_028A44_VGT_GS_ONCHIP_CNTL,
1818                                  SI_TRACKED_VGT_GS_ONCHIP_CNTL,
1819                                  S_028A44_ES_VERTS_PER_SUBGRP(250) |
1820                                  S_028A44_GS_PRIMS_PER_SUBGRP(126) |
1821                                  S_028A44_GS_INST_PRIMS_IN_SUBGRP(126));
1822    }
1823 
1824    radeon_end_update_context_roll();
1825 
1826    /* GE_PC_ALLOC is not a context register, so it doesn't cause a context roll. */
1827    if (sctx->gfx_level >= GFX10) {
1828       radeon_begin_again(&sctx->gfx_cs);
1829       radeon_opt_set_uconfig_reg(R_030980_GE_PC_ALLOC, SI_TRACKED_GE_PC_ALLOC,
1830                                  shader->vs.ge_pc_alloc);
1831       radeon_end();
1832    }
1833 }
1834 
1835 /**
1836  * Compute the state for \p shader, which will run as a vertex shader on the
1837  * hardware.
1838  *
1839  * If \p gs is non-NULL, it points to the geometry shader for which this shader
1840  * is the copy shader.
1841  */
si_shader_vs(struct si_screen * sscreen,struct si_shader * shader,struct si_shader_selector * gs)1842 static void si_shader_vs(struct si_screen *sscreen, struct si_shader *shader,
1843                          struct si_shader_selector *gs)
1844 {
1845    const struct si_shader_info *info = &shader->selector->info;
1846    struct si_pm4_state *pm4;
1847    unsigned num_user_sgprs, vgpr_comp_cnt;
1848    uint64_t va;
1849    unsigned nparams, oc_lds_en;
1850    bool window_space = shader->selector->stage == MESA_SHADER_VERTEX ?
1851                           info->base.vs.window_space_position : 0;
1852    bool enable_prim_id = shader->key.ge.mono.u.vs_export_prim_id || info->uses_primid;
1853 
1854    assert(sscreen->info.gfx_level < GFX11);
1855 
1856    pm4 = si_get_shader_pm4_state(shader, si_emit_shader_vs);
1857    if (!pm4)
1858       return;
1859 
1860    /* We always write VGT_GS_MODE in the VS state, because every switch
1861     * between different shader pipelines involving a different GS or no
1862     * GS at all involves a switch of the VS (different GS use different
1863     * copy shaders). On the other hand, when the API switches from a GS to
1864     * no GS and then back to the same GS used originally, the GS state is
1865     * not sent again.
1866     */
1867    if (!gs) {
1868       unsigned mode = V_028A40_GS_OFF;
1869 
1870       /* PrimID needs GS scenario A. */
1871       if (enable_prim_id)
1872          mode = V_028A40_GS_SCENARIO_A;
1873 
1874       shader->vs.vgt_gs_mode = S_028A40_MODE(mode);
1875       shader->vs.vgt_primitiveid_en = enable_prim_id;
1876    } else {
1877       shader->vs.vgt_gs_mode =
1878          ac_vgt_gs_mode(gs->info.base.gs.vertices_out, sscreen->info.gfx_level);
1879       shader->vs.vgt_primitiveid_en = 0;
1880    }
1881 
1882    if (sscreen->info.gfx_level <= GFX8) {
1883       /* Reuse needs to be set off if we write oViewport. */
1884       shader->vs.vgt_reuse_off = S_028AB4_REUSE_OFF(info->writes_viewport_index);
1885    }
1886 
1887    va = shader->bo->gpu_address;
1888 
1889    if (gs) {
1890       vgpr_comp_cnt = 0; /* only VertexID is needed for GS-COPY. */
1891       num_user_sgprs = SI_GSCOPY_NUM_USER_SGPR;
1892    } else if (shader->selector->stage == MESA_SHADER_VERTEX) {
1893       vgpr_comp_cnt = si_get_vs_vgpr_comp_cnt(sscreen, shader, enable_prim_id);
1894 
1895       if (info->base.vs.blit_sgprs_amd) {
1896          num_user_sgprs = SI_SGPR_VS_BLIT_DATA + info->base.vs.blit_sgprs_amd;
1897       } else {
1898          num_user_sgprs = si_get_num_vs_user_sgprs(shader, SI_VS_NUM_USER_SGPR);
1899       }
1900    } else if (shader->selector->stage == MESA_SHADER_TESS_EVAL) {
1901       vgpr_comp_cnt = enable_prim_id ? 3 : 2;
1902       num_user_sgprs = SI_TES_NUM_USER_SGPR;
1903    } else
1904       unreachable("invalid shader selector type");
1905 
1906    /* VS is required to export at least one param. */
1907    nparams = MAX2(shader->info.nr_param_exports, 1);
1908    shader->vs.spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1);
1909 
1910    if (sscreen->info.gfx_level >= GFX10) {
1911       shader->vs.spi_vs_out_config |=
1912          S_0286C4_NO_PC_EXPORT(shader->info.nr_param_exports == 0);
1913    }
1914 
1915    shader->vs.spi_shader_pos_format =
1916       S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) |
1917       S_02870C_POS1_EXPORT_FORMAT(shader->info.nr_pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP
1918                                                                   : V_02870C_SPI_SHADER_NONE) |
1919       S_02870C_POS2_EXPORT_FORMAT(shader->info.nr_pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP
1920                                                                   : V_02870C_SPI_SHADER_NONE) |
1921       S_02870C_POS3_EXPORT_FORMAT(shader->info.nr_pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP
1922                                                                   : V_02870C_SPI_SHADER_NONE);
1923    unsigned late_alloc_wave64, cu_mask;
1924    ac_compute_late_alloc(&sscreen->info, false, false,
1925                          shader->config.scratch_bytes_per_wave > 0,
1926                          &late_alloc_wave64, &cu_mask);
1927 
1928    shader->vs.ge_pc_alloc = S_030980_OVERSUB_EN(late_alloc_wave64 > 0) |
1929                             S_030980_NUM_PC_LINES(sscreen->info.pc_lines / 4 - 1);
1930    shader->pa_cl_vs_out_cntl = si_get_vs_out_cntl(shader->selector, shader, false);
1931 
1932    oc_lds_en = shader->selector->stage == MESA_SHADER_TESS_EVAL ? 1 : 0;
1933 
1934    if (sscreen->info.gfx_level >= GFX7) {
1935       ac_pm4_set_reg_idx3(&pm4->base, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
1936                           ac_apply_cu_en(S_00B118_CU_EN(cu_mask) |
1937                                          S_00B118_WAVE_LIMIT(0x3F),
1938                                          C_00B118_CU_EN, 0, &sscreen->info));
1939       ac_pm4_set_reg(&pm4->base, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64));
1940    }
1941 
1942    ac_pm4_set_reg(&pm4->base, R_00B120_SPI_SHADER_PGM_LO_VS, va >> 8);
1943    ac_pm4_set_reg(&pm4->base, R_00B124_SPI_SHADER_PGM_HI_VS,
1944                   S_00B124_MEM_BASE(sscreen->info.address32_hi >> 8));
1945 
1946    uint32_t rsrc1 =
1947       S_00B128_VGPRS(si_shader_encode_vgprs(shader)) |
1948       S_00B128_SGPRS(si_shader_encode_sgprs(shader)) |
1949       S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
1950       S_00B128_DX10_CLAMP(1) |
1951       S_00B128_MEM_ORDERED(si_shader_mem_ordered(shader)) |
1952       S_00B128_FLOAT_MODE(shader->config.float_mode);
1953    uint32_t rsrc2 = S_00B12C_USER_SGPR(num_user_sgprs) | S_00B12C_OC_LDS_EN(oc_lds_en) |
1954                     S_00B12C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0);
1955 
1956    if (sscreen->info.gfx_level >= GFX10)
1957       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX10(num_user_sgprs >> 5) |
1958                S_00B12C_SHARED_VGPR_CNT(shader->config.num_shared_vgprs / 8);
1959    else if (sscreen->info.gfx_level == GFX9)
1960       rsrc2 |= S_00B12C_USER_SGPR_MSB_GFX9(num_user_sgprs >> 5);
1961 
1962    if (si_shader_uses_streamout(shader)) {
1963       rsrc2 |= S_00B12C_SO_BASE0_EN(!!shader->selector->info.base.xfb_stride[0]) |
1964                S_00B12C_SO_BASE1_EN(!!shader->selector->info.base.xfb_stride[1]) |
1965                S_00B12C_SO_BASE2_EN(!!shader->selector->info.base.xfb_stride[2]) |
1966                S_00B12C_SO_BASE3_EN(!!shader->selector->info.base.xfb_stride[3]) |
1967                S_00B12C_SO_EN(1);
1968    }
1969 
1970    ac_pm4_set_reg(&pm4->base, R_00B128_SPI_SHADER_PGM_RSRC1_VS, rsrc1);
1971    ac_pm4_set_reg(&pm4->base, R_00B12C_SPI_SHADER_PGM_RSRC2_VS, rsrc2);
1972 
1973    if (window_space)
1974       shader->vs.pa_cl_vte_cntl = S_028818_VTX_XY_FMT(1) | S_028818_VTX_Z_FMT(1);
1975    else
1976       shader->vs.pa_cl_vte_cntl =
1977          S_028818_VTX_W0_FMT(1) | S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
1978          S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
1979          S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1);
1980 
1981    if (shader->selector->stage == MESA_SHADER_TESS_EVAL)
1982       si_set_tesseval_regs(sscreen, shader->selector, shader);
1983 
1984    polaris_set_vgt_vertex_reuse(sscreen, shader->selector, shader);
1985    ac_pm4_finalize(&pm4->base);
1986 }
1987 
si_get_spi_shader_col_format(struct si_shader * shader)1988 static unsigned si_get_spi_shader_col_format(struct si_shader *shader)
1989 {
1990    unsigned spi_shader_col_format = shader->key.ps.part.epilog.spi_shader_col_format;
1991    unsigned value = 0, num_mrts = 0;
1992    unsigned i, num_targets = (util_last_bit(spi_shader_col_format) + 3) / 4;
1993 
1994    /* Remove holes in spi_shader_col_format. */
1995    for (i = 0; i < num_targets; i++) {
1996       unsigned spi_format = (spi_shader_col_format >> (i * 4)) & 0xf;
1997 
1998       if (spi_format) {
1999          value |= spi_format << (num_mrts * 4);
2000          num_mrts++;
2001       }
2002    }
2003 
2004    return value;
2005 }
2006 
gfx6_emit_shader_ps(struct si_context * sctx,unsigned index)2007 static void gfx6_emit_shader_ps(struct si_context *sctx, unsigned index)
2008 {
2009    struct si_shader *shader = sctx->queued.named.ps;
2010 
2011    radeon_begin(&sctx->gfx_cs);
2012    radeon_opt_set_context_reg2(R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
2013                                shader->ps.spi_ps_input_ena,
2014                                shader->ps.spi_ps_input_addr);
2015    radeon_opt_set_context_reg(R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
2016                               shader->ps.spi_ps_in_control);
2017    radeon_opt_set_context_reg2(R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
2018                                shader->ps.spi_shader_z_format,
2019                                shader->ps.spi_shader_col_format);
2020    radeon_opt_set_context_reg(R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
2021                               shader->ps.cb_shader_mask);
2022    radeon_end_update_context_roll();
2023 }
2024 
gfx11_dgpu_emit_shader_ps(struct si_context * sctx,unsigned index)2025 static void gfx11_dgpu_emit_shader_ps(struct si_context *sctx, unsigned index)
2026 {
2027    struct si_shader *shader = sctx->queued.named.ps;
2028 
2029    radeon_begin(&sctx->gfx_cs);
2030    gfx11_begin_packed_context_regs();
2031    gfx11_opt_set_context_reg(R_0286CC_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
2032                              shader->ps.spi_ps_input_ena);
2033    gfx11_opt_set_context_reg(R_0286D0_SPI_PS_INPUT_ADDR, SI_TRACKED_SPI_PS_INPUT_ADDR,
2034                              shader->ps.spi_ps_input_addr);
2035    gfx11_opt_set_context_reg(R_0286D8_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
2036                              shader->ps.spi_ps_in_control);
2037    gfx11_opt_set_context_reg(R_028710_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
2038                              shader->ps.spi_shader_z_format);
2039    gfx11_opt_set_context_reg(R_028714_SPI_SHADER_COL_FORMAT, SI_TRACKED_SPI_SHADER_COL_FORMAT,
2040                              shader->ps.spi_shader_col_format);
2041    gfx11_opt_set_context_reg(R_02823C_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
2042                              shader->ps.cb_shader_mask);
2043    gfx11_end_packed_context_regs();
2044    radeon_end(); /* don't track context rolls on GFX11 */
2045 }
2046 
gfx12_emit_shader_ps(struct si_context * sctx,unsigned index)2047 static void gfx12_emit_shader_ps(struct si_context *sctx, unsigned index)
2048 {
2049    struct si_shader *shader = sctx->queued.named.ps;
2050 
2051    radeon_begin(&sctx->gfx_cs);
2052    gfx12_begin_context_regs();
2053    gfx12_opt_set_context_reg(R_028640_SPI_PS_IN_CONTROL, SI_TRACKED_SPI_PS_IN_CONTROL,
2054                              shader->ps.spi_ps_in_control);
2055    gfx12_opt_set_context_reg(R_028650_SPI_SHADER_Z_FORMAT, SI_TRACKED_SPI_SHADER_Z_FORMAT,
2056                              shader->ps.spi_shader_z_format);
2057    gfx12_opt_set_context_reg(R_028654_SPI_SHADER_COL_FORMAT, SI_TRACKED_SPI_SHADER_COL_FORMAT,
2058                              shader->ps.spi_shader_col_format);
2059    gfx12_opt_set_context_reg(R_02865C_SPI_PS_INPUT_ENA, SI_TRACKED_SPI_PS_INPUT_ENA,
2060                              shader->ps.spi_ps_input_ena);
2061    gfx12_opt_set_context_reg(R_028660_SPI_PS_INPUT_ADDR, SI_TRACKED_SPI_PS_INPUT_ADDR,
2062                              shader->ps.spi_ps_input_addr);
2063    gfx12_opt_set_context_reg(R_028854_CB_SHADER_MASK, SI_TRACKED_CB_SHADER_MASK,
2064                              shader->ps.cb_shader_mask);
2065    gfx12_opt_set_context_reg(R_028BBC_PA_SC_HISZ_CONTROL, SI_TRACKED_PA_SC_HISZ_CONTROL,
2066                              shader->ps.pa_sc_hisz_control);
2067    gfx12_end_context_regs();
2068    radeon_end(); /* don't track context rolls on GFX12 */
2069 }
2070 
si_shader_ps(struct si_screen * sscreen,struct si_shader * shader)2071 static void si_shader_ps(struct si_screen *sscreen, struct si_shader *shader)
2072 {
2073    struct si_shader_info *info = &shader->selector->info;
2074    const unsigned input_ena = shader->config.spi_ps_input_ena;
2075    /* At least one of these is required to be set. */
2076    ASSERTED unsigned num_required_vgpr_inputs =
2077       G_0286CC_PERSP_SAMPLE_ENA(input_ena) + G_0286CC_PERSP_CENTER_ENA(input_ena) +
2078       G_0286CC_PERSP_CENTROID_ENA(input_ena) + G_0286CC_PERSP_PULL_MODEL_ENA(input_ena) +
2079       G_0286CC_LINEAR_SAMPLE_ENA(input_ena) + G_0286CC_LINEAR_CENTER_ENA(input_ena) +
2080       G_0286CC_LINEAR_CENTROID_ENA(input_ena) + G_0286CC_LINE_STIPPLE_TEX_ENA(input_ena);
2081 
2082    /* we need to enable at least one of them, otherwise we hang the GPU */
2083    assert(num_required_vgpr_inputs > 0);
2084    /* POS_W_FLOAT_ENA requires one of the perspective weights. */
2085    assert(!G_0286CC_POS_W_FLOAT_ENA(input_ena) || G_0286CC_PERSP_SAMPLE_ENA(input_ena) ||
2086           G_0286CC_PERSP_CENTER_ENA(input_ena) || G_0286CC_PERSP_CENTROID_ENA(input_ena) ||
2087           G_0286CC_PERSP_PULL_MODEL_ENA(input_ena));
2088 
2089    /* Validate interpolation optimization flags (read as implications). */
2090    assert(!shader->key.ps.part.prolog.bc_optimize_for_persp ||
2091           (G_0286CC_PERSP_CENTER_ENA(input_ena) && G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2092    assert(!shader->key.ps.part.prolog.bc_optimize_for_linear ||
2093           (G_0286CC_LINEAR_CENTER_ENA(input_ena) && G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2094    assert(!shader->key.ps.part.prolog.force_persp_center_interp || num_required_vgpr_inputs == 1 ||
2095           (!G_0286CC_PERSP_SAMPLE_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2096    assert(!shader->key.ps.part.prolog.force_linear_center_interp || num_required_vgpr_inputs == 1 ||
2097           (!G_0286CC_LINEAR_SAMPLE_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2098    assert(!shader->key.ps.part.prolog.force_persp_sample_interp || num_required_vgpr_inputs == 1 ||
2099           (!G_0286CC_PERSP_CENTER_ENA(input_ena) && !G_0286CC_PERSP_CENTROID_ENA(input_ena)));
2100    assert(!shader->key.ps.part.prolog.force_linear_sample_interp || num_required_vgpr_inputs == 1 ||
2101           (!G_0286CC_LINEAR_CENTER_ENA(input_ena) && !G_0286CC_LINEAR_CENTROID_ENA(input_ena)));
2102 
2103    /* color_two_side always enables FRONT_FACE. Since st/mesa disables two-side colors if the back
2104     * face is culled, the only case when both color_two_side and force_front_face_input can be set
2105     * is when the front face is culled (which means force_front_face_input == -1).
2106     */
2107    assert(!shader->key.ps.opt.force_front_face_input || !G_0286CC_FRONT_FACE_ENA(input_ena) ||
2108           (shader->key.ps.part.prolog.color_two_side &&
2109            shader->key.ps.opt.force_front_face_input == -1));
2110 
2111    /* Validate cases when the optimizations are off (read as implications). */
2112    assert(shader->key.ps.part.prolog.bc_optimize_for_persp ||
2113           !G_0286CC_PERSP_CENTER_ENA(input_ena) || !G_0286CC_PERSP_CENTROID_ENA(input_ena));
2114    assert(shader->key.ps.part.prolog.bc_optimize_for_linear ||
2115           !G_0286CC_LINEAR_CENTER_ENA(input_ena) || !G_0286CC_LINEAR_CENTROID_ENA(input_ena));
2116 
2117    /* DB_SHADER_CONTROL */
2118    shader->ps.db_shader_control =
2119       S_02880C_Z_EXPORT_ENABLE(shader->ps.writes_z) |
2120       S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(shader->ps.writes_stencil) |
2121       S_02880C_MASK_EXPORT_ENABLE(shader->ps.writes_samplemask) |
2122       S_02880C_COVERAGE_TO_MASK_ENABLE(sscreen->info.gfx_level <= GFX10_3 &&
2123                                        shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz) |
2124       S_02880C_KILL_ENABLE(si_shader_uses_discard(shader));
2125 
2126    if (sscreen->info.gfx_level >= GFX12)
2127       shader->ps.pa_sc_hisz_control = S_028BBC_ROUND(2); /* required minimum value */
2128 
2129    switch (info->base.fs.depth_layout) {
2130    case FRAG_DEPTH_LAYOUT_GREATER:
2131       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
2132       if (sscreen->info.gfx_level >= GFX12)
2133          shader->ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_GREATER_THAN_Z);
2134       break;
2135    case FRAG_DEPTH_LAYOUT_LESS:
2136       shader->ps.db_shader_control |= S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
2137       if (sscreen->info.gfx_level >= GFX12)
2138          shader->ps.pa_sc_hisz_control |= S_028BBC_CONSERVATIVE_Z_EXPORT(V_028BBC_EXPORT_LESS_THAN_Z);
2139       break;
2140    default:;
2141    }
2142 
2143    /* Z_ORDER, EXEC_ON_HIER_FAIL and EXEC_ON_NOOP should be set as following:
2144     *
2145     *   | early Z/S | writes_mem | allow_ReZ? |      Z_ORDER       | EXEC_ON_HIER_FAIL | EXEC_ON_NOOP
2146     * --|-----------|------------|------------|--------------------|-------------------|-------------
2147     * 1a|   false   |   false    |   true     | EarlyZ_Then_ReZ    |         0         |     0
2148     * 1b|   false   |   false    |   false    | EarlyZ_Then_LateZ  |         0         |     0
2149     * 2 |   false   |   true     |   n/a      |       LateZ        |         1         |     0
2150     * 3 |   true    |   false    |   n/a      | EarlyZ_Then_LateZ  |         0         |     0
2151     * 4 |   true    |   true     |   n/a      | EarlyZ_Then_LateZ  |         0         |     1
2152     *
2153     * In cases 3 and 4, HW will force Z_ORDER to EarlyZ regardless of what's set in the register.
2154     * In case 2, NOOP_CULL is a don't care field. In case 2, 3 and 4, ReZ doesn't make sense.
2155     *
2156     * Don't use ReZ without profiling !!!
2157     *
2158     * ReZ decreases performance by 15% in DiRT: Showdown on Ultra settings, which has pretty complex
2159     * shaders.
2160     */
2161    if (info->base.fs.early_fragment_tests) {
2162       /* Cases 3, 4. */
2163       shader->ps.db_shader_control |= S_02880C_DEPTH_BEFORE_SHADER(1) |
2164                                       S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z) |
2165                                       S_02880C_EXEC_ON_NOOP(info->base.writes_memory);
2166    } else if (info->base.writes_memory) {
2167       /* Case 2. */
2168       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z) |
2169                                       S_02880C_EXEC_ON_HIER_FAIL(1);
2170    } else {
2171       /* Case 1. */
2172       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_EARLY_Z_THEN_LATE_Z);
2173    }
2174 
2175    if (info->base.fs.post_depth_coverage)
2176       shader->ps.db_shader_control |= S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(1);
2177 
2178    /* Bug workaround for smoothing (overrasterization) on GFX6. */
2179    if (sscreen->info.gfx_level == GFX6 && shader->key.ps.mono.poly_line_smoothing) {
2180       shader->ps.db_shader_control &= C_02880C_Z_ORDER;
2181       shader->ps.db_shader_control |= S_02880C_Z_ORDER(V_02880C_LATE_Z);
2182    }
2183 
2184    if (sscreen->info.has_rbplus && !sscreen->info.rbplus_allowed)
2185       shader->ps.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1);
2186 
2187    shader->ps.spi_shader_col_format = si_get_spi_shader_col_format(shader);
2188    shader->ps.cb_shader_mask = ac_get_cb_shader_mask(shader->key.ps.part.epilog.spi_shader_col_format);
2189    shader->ps.spi_ps_input_ena = shader->config.spi_ps_input_ena;
2190    shader->ps.spi_ps_input_addr = shader->config.spi_ps_input_addr;
2191    shader->ps.num_interp = si_get_ps_num_interp(shader);
2192    shader->ps.spi_shader_z_format =
2193       ac_get_spi_shader_z_format(shader->ps.writes_z, shader->ps.writes_stencil,
2194                                  shader->ps.writes_samplemask,
2195                                  shader->key.ps.part.epilog.alpha_to_coverage_via_mrtz);
2196 
2197    /* Ensure that some export memory is always allocated, for two reasons:
2198     *
2199     * 1) Correctness: The hardware ignores the EXEC mask if no export
2200     *    memory is allocated, so KILL and alpha test do not work correctly
2201     *    without this.
2202     * 2) Performance: Every shader needs at least a NULL export, even when
2203     *    it writes no color/depth output. The NULL export instruction
2204     *    stalls without this setting.
2205     *
2206     * Don't add this to CB_SHADER_MASK.
2207     *
2208     * GFX10 supports pixel shaders without exports by setting both
2209     * the color and Z formats to SPI_SHADER_ZERO. The hw will skip export
2210     * instructions if any are present.
2211     *
2212     * RB+ depth-only rendering requires SPI_SHADER_32_R.
2213     */
2214    bool has_mrtz = shader->ps.spi_shader_z_format != V_028710_SPI_SHADER_ZERO;
2215 
2216    if (!shader->ps.spi_shader_col_format) {
2217       if (shader->key.ps.part.epilog.rbplus_depth_only_opt) {
2218          shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2219       } else if (!has_mrtz) {
2220          if (sscreen->info.gfx_level >= GFX10) {
2221             if (G_02880C_KILL_ENABLE(shader->ps.db_shader_control))
2222                shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2223          } else {
2224             shader->ps.spi_shader_col_format = V_028714_SPI_SHADER_32_R;
2225          }
2226       }
2227    }
2228 
2229    if (sscreen->info.gfx_level >= GFX12) {
2230       shader->ps.spi_ps_in_control = S_028640_PARAM_GEN(shader->key.ps.mono.point_smoothing) |
2231                                      S_028640_PS_W32_EN(shader->wave_size == 32);
2232       shader->ps.spi_gs_out_config_ps = S_00B0C4_NUM_INTERP(shader->ps.num_interp);
2233    } else {
2234       /* Enable PARAM_GEN for point smoothing.
2235        * Gfx11 workaround when there are no PS inputs but LDS is used.
2236        */
2237       bool param_gen = shader->key.ps.mono.point_smoothing ||
2238                        (sscreen->info.gfx_level == GFX11 && !shader->ps.num_interp &&
2239                         shader->config.lds_size);
2240 
2241       shader->ps.spi_ps_in_control = S_0286D8_NUM_INTERP(shader->ps.num_interp) |
2242                                      S_0286D8_PARAM_GEN(param_gen) |
2243                                      S_0286D8_PS_W32_EN(shader->wave_size == 32);
2244    }
2245 
2246    struct si_pm4_state *pm4 = si_get_shader_pm4_state(shader, NULL);
2247    if (!pm4)
2248       return;
2249 
2250    if (sscreen->info.gfx_level >= GFX12)
2251       pm4->atom.emit = gfx12_emit_shader_ps;
2252    else if (sscreen->info.has_set_context_pairs_packed)
2253       pm4->atom.emit = gfx11_dgpu_emit_shader_ps;
2254    else
2255       pm4->atom.emit = gfx6_emit_shader_ps;
2256 
2257    /* If multiple state sets are allowed to be in a bin, break the batch on a new PS. */
2258    if (sscreen->dpbb_allowed &&
2259        (sscreen->pbb_context_states_per_bin > 1 ||
2260         sscreen->pbb_persistent_states_per_bin > 1)) {
2261       ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
2262       ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_BREAK_BATCH) | EVENT_INDEX(0));
2263    }
2264 
2265    if (sscreen->info.gfx_level >= GFX12) {
2266       ac_pm4_set_reg(&pm4->base, R_00B01C_SPI_SHADER_PGM_RSRC4_PS,
2267                      S_00B01C_WAVE_LIMIT_GFX12(0x3FF) |
2268                      S_00B01C_LDS_GROUP_SIZE_GFX12(1) |
2269                      S_00B01C_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)));
2270    } else if (sscreen->info.gfx_level >= GFX11) {
2271       unsigned cu_mask_ps = ac_gfx103_get_cu_mask_ps(&sscreen->info);
2272 
2273       ac_pm4_set_reg_idx3(&pm4->base, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
2274                           ac_apply_cu_en(S_00B004_CU_EN(cu_mask_ps >> 16) |
2275                                          S_00B004_INST_PREF_SIZE(si_get_shader_prefetch_size(shader)),
2276                                          C_00B004_CU_EN, 16, &sscreen->info));
2277    }
2278 
2279    uint64_t va = shader->bo->gpu_address;
2280    ac_pm4_set_reg(&pm4->base, R_00B020_SPI_SHADER_PGM_LO_PS, va >> 8);
2281    ac_pm4_set_reg(&pm4->base, R_00B024_SPI_SHADER_PGM_HI_PS,
2282                   S_00B024_MEM_BASE(sscreen->info.address32_hi >> 8));
2283 
2284    ac_pm4_set_reg(&pm4->base, R_00B028_SPI_SHADER_PGM_RSRC1_PS,
2285                   S_00B028_VGPRS(si_shader_encode_vgprs(shader)) |
2286                   S_00B028_SGPRS(si_shader_encode_sgprs(shader)) |
2287                   S_00B028_DX10_CLAMP(sscreen->info.gfx_level < GFX12) |
2288                   S_00B028_MEM_ORDERED(si_shader_mem_ordered(shader)) |
2289                   S_00B028_FLOAT_MODE(shader->config.float_mode));
2290    ac_pm4_set_reg(&pm4->base, R_00B02C_SPI_SHADER_PGM_RSRC2_PS,
2291                   S_00B02C_EXTRA_LDS_SIZE(shader->config.lds_size) |
2292                   S_00B02C_USER_SGPR(SI_PS_NUM_USER_SGPR) |
2293                   S_00B02C_SCRATCH_EN(shader->config.scratch_bytes_per_wave > 0) |
2294                   S_00B02C_SHARED_VGPR_CNT(shader->config.num_shared_vgprs / 8));
2295    ac_pm4_finalize(&pm4->base);
2296 }
2297 
si_shader_init_pm4_state(struct si_screen * sscreen,struct si_shader * shader)2298 static void si_shader_init_pm4_state(struct si_screen *sscreen, struct si_shader *shader)
2299 {
2300    assert(shader->wave_size);
2301 
2302    switch (shader->selector->stage) {
2303    case MESA_SHADER_VERTEX:
2304       if (shader->key.ge.as_ls)
2305          si_shader_ls(sscreen, shader);
2306       else if (shader->key.ge.as_es)
2307          si_shader_es(sscreen, shader);
2308       else if (shader->key.ge.as_ngg)
2309          gfx10_shader_ngg(sscreen, shader);
2310       else
2311          si_shader_vs(sscreen, shader, NULL);
2312       break;
2313    case MESA_SHADER_TESS_CTRL:
2314       si_shader_hs(sscreen, shader);
2315       break;
2316    case MESA_SHADER_TESS_EVAL:
2317       if (shader->key.ge.as_es)
2318          si_shader_es(sscreen, shader);
2319       else if (shader->key.ge.as_ngg)
2320          gfx10_shader_ngg(sscreen, shader);
2321       else
2322          si_shader_vs(sscreen, shader, NULL);
2323       break;
2324    case MESA_SHADER_GEOMETRY:
2325       if (shader->key.ge.as_ngg) {
2326          gfx10_shader_ngg(sscreen, shader);
2327       } else {
2328          /* VS must be initialized first because GS uses its fields. */
2329          si_shader_vs(sscreen, shader->gs_copy_shader, shader->selector);
2330          si_shader_gs(sscreen, shader);
2331       }
2332       break;
2333    case MESA_SHADER_FRAGMENT:
2334       si_shader_ps(sscreen, shader);
2335       break;
2336    default:
2337       assert(0);
2338    }
2339 
2340    assert(!(sscreen->debug_flags & DBG(SQTT)) || shader->pm4.base.spi_shader_pgm_lo_reg != 0);
2341 }
2342 
si_clear_vs_key_inputs(union si_shader_key * key)2343 static void si_clear_vs_key_inputs(union si_shader_key *key)
2344 {
2345    key->ge.mono.instance_divisor_is_one = 0;
2346    key->ge.mono.instance_divisor_is_fetched = 0;
2347    key->ge.mono.vs_fetch_opencode = 0;
2348    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2349 }
2350 
si_vs_key_update_inputs(struct si_context * sctx)2351 void si_vs_key_update_inputs(struct si_context *sctx)
2352 {
2353    struct si_shader_selector *vs = sctx->shader.vs.cso;
2354    struct si_vertex_elements *elts = sctx->vertex_elements;
2355    union si_shader_key *key = &sctx->shader.vs.key;
2356 
2357    if (!vs)
2358       return;
2359 
2360    if (vs->info.base.vs.blit_sgprs_amd) {
2361       si_clear_vs_key_inputs(key);
2362       key->ge.opt.prefer_mono = 0;
2363       sctx->uses_nontrivial_vs_inputs = false;
2364       return;
2365    }
2366 
2367    bool uses_nontrivial_vs_inputs = false;
2368 
2369    if (elts->instance_divisor_is_one || elts->instance_divisor_is_fetched)
2370       uses_nontrivial_vs_inputs = true;
2371 
2372    key->ge.mono.instance_divisor_is_one = elts->instance_divisor_is_one;
2373    key->ge.mono.instance_divisor_is_fetched = elts->instance_divisor_is_fetched;
2374    key->ge.opt.prefer_mono = elts->instance_divisor_is_fetched;
2375 
2376    unsigned count_mask = (1 << vs->info.num_inputs) - 1;
2377    unsigned fix = elts->fix_fetch_always & count_mask;
2378    unsigned opencode = elts->fix_fetch_opencode & count_mask;
2379 
2380    if (sctx->vertex_buffer_unaligned & elts->vb_alignment_check_mask) {
2381       uint32_t mask = elts->fix_fetch_unaligned & count_mask;
2382       while (mask) {
2383          unsigned i = u_bit_scan(&mask);
2384          unsigned log_hw_load_size = 1 + ((elts->hw_load_is_dword >> i) & 1);
2385          unsigned vbidx = elts->vertex_buffer_index[i];
2386          const struct pipe_vertex_buffer *vb = &sctx->vertex_buffer[vbidx];
2387          unsigned align_mask = (1 << log_hw_load_size) - 1;
2388          if (vb->buffer_offset & align_mask) {
2389             fix |= 1 << i;
2390             opencode |= 1 << i;
2391          }
2392       }
2393    }
2394 
2395    memset(key->ge.mono.vs_fix_fetch, 0, sizeof(key->ge.mono.vs_fix_fetch));
2396 
2397    while (fix) {
2398       unsigned i = u_bit_scan(&fix);
2399       uint8_t fix_fetch = elts->fix_fetch[i];
2400 
2401       key->ge.mono.vs_fix_fetch[i].bits = fix_fetch;
2402       if (fix_fetch)
2403          uses_nontrivial_vs_inputs = true;
2404    }
2405    key->ge.mono.vs_fetch_opencode = opencode;
2406    if (opencode)
2407       uses_nontrivial_vs_inputs = true;
2408 
2409    sctx->uses_nontrivial_vs_inputs = uses_nontrivial_vs_inputs;
2410 
2411    /* draw_vertex_state (display lists) requires that all VS input lowering is disabled
2412     * because its vertex elements never need any lowering.
2413     *
2414     * We just computed the key because we needed to set uses_nontrivial_vs_inputs, so that we know
2415     * whether the VS should be updated when we switch from draw_vertex_state to draw_vbo. Now
2416     * clear the VS input bits for draw_vertex_state. This should happen rarely because VS inputs
2417     * don't usually need any lowering.
2418     */
2419    if (uses_nontrivial_vs_inputs && sctx->force_trivial_vs_inputs)
2420       si_clear_vs_key_inputs(key);
2421 }
2422 
si_get_vs_key_inputs(struct si_context * sctx,union si_shader_key * key)2423 static void si_get_vs_key_inputs(struct si_context *sctx, union si_shader_key *key)
2424 {
2425    key->ge.mono.instance_divisor_is_one = sctx->shader.vs.key.ge.mono.instance_divisor_is_one;
2426    key->ge.mono.instance_divisor_is_fetched = sctx->shader.vs.key.ge.mono.instance_divisor_is_fetched;
2427    key->ge.mono.vs_fetch_opencode = sctx->shader.vs.key.ge.mono.vs_fetch_opencode;
2428    memcpy(key->ge.mono.vs_fix_fetch, sctx->shader.vs.key.ge.mono.vs_fix_fetch,
2429           sizeof(key->ge.mono.vs_fix_fetch));
2430 }
2431 
si_update_ps_inputs_read_or_disabled(struct si_context * sctx)2432 void si_update_ps_inputs_read_or_disabled(struct si_context *sctx)
2433 {
2434    struct si_shader_selector *ps = sctx->shader.ps.cso;
2435 
2436    /* Find out if PS is disabled. */
2437    bool ps_disabled = true;
2438    if (ps) {
2439       bool ps_modifies_zs = ps->info.base.fs.uses_discard ||
2440                             ps->info.writes_z ||
2441                             ps->info.writes_stencil ||
2442                             ps->info.writes_samplemask ||
2443                             sctx->queued.named.blend->alpha_to_coverage ||
2444                             sctx->queued.named.dsa->alpha_func != PIPE_FUNC_ALWAYS ||
2445                             sctx->queued.named.rasterizer->poly_stipple_enable ||
2446                             sctx->queued.named.rasterizer->point_smooth;
2447 
2448       ps_disabled = sctx->queued.named.rasterizer->rasterizer_discard ||
2449                     (!ps_modifies_zs && !ps->info.base.writes_memory &&
2450                      !si_any_colorbuffer_written(sctx));
2451    }
2452 
2453    uint64_t ps_inputs_read_or_disabled;
2454 
2455    if (ps_disabled) {
2456       ps_inputs_read_or_disabled = 0;
2457    } else {
2458       uint64_t inputs_read = ps->info.inputs_read;
2459 
2460       if (ps->info.colors_read && sctx->queued.named.rasterizer->two_side) {
2461          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL0))
2462             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC0);
2463 
2464          if (inputs_read & BITFIELD64_BIT(SI_UNIQUE_SLOT_COL1))
2465             inputs_read |= BITFIELD64_BIT(SI_UNIQUE_SLOT_BFC1);
2466       }
2467 
2468       ps_inputs_read_or_disabled = inputs_read;
2469    }
2470 
2471    if (sctx->ps_inputs_read_or_disabled != ps_inputs_read_or_disabled) {
2472       sctx->ps_inputs_read_or_disabled = ps_inputs_read_or_disabled;
2473       sctx->do_update_shaders = true;
2474    }
2475 }
2476 
si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context * sctx)2477 void si_vs_ps_key_update_rast_prim_smooth_stipple(struct si_context *sctx)
2478 {
2479    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
2480    struct si_shader_selector *ps = sctx->shader.ps.cso;
2481 
2482    if (!hw_vs->cso || !ps)
2483       return;
2484 
2485    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2486    union si_shader_key *vs_key = &hw_vs->key; /* could also be TES or GS before PS */
2487    union si_shader_key *ps_key = &sctx->shader.ps.key;
2488 
2489    bool old_kill_pointsize = vs_key->ge.opt.kill_pointsize;
2490    bool old_color_two_side = ps_key->ps.part.prolog.color_two_side;
2491    bool old_poly_stipple = ps_key->ps.part.prolog.poly_stipple;
2492    bool old_poly_line_smoothing = ps_key->ps.mono.poly_line_smoothing;
2493    bool old_point_smoothing = ps_key->ps.mono.point_smoothing;
2494    int old_force_front_face_input = ps_key->ps.opt.force_front_face_input;
2495 
2496    if (sctx->current_rast_prim == MESA_PRIM_POINTS) {
2497       vs_key->ge.opt.kill_pointsize = 0;
2498       ps_key->ps.part.prolog.color_two_side = 0;
2499       ps_key->ps.part.prolog.poly_stipple = 0;
2500       ps_key->ps.mono.poly_line_smoothing = 0;
2501       ps_key->ps.mono.point_smoothing = rs->point_smooth;
2502       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2503    } else if (util_prim_is_lines(sctx->current_rast_prim)) {
2504       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize;
2505       ps_key->ps.part.prolog.color_two_side = 0;
2506       ps_key->ps.part.prolog.poly_stipple = 0;
2507       ps_key->ps.mono.poly_line_smoothing = rs->line_smooth && sctx->framebuffer.nr_samples <= 1;
2508       ps_key->ps.mono.point_smoothing = 0;
2509       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface;
2510    } else {
2511       /* Triangles. */
2512       vs_key->ge.opt.kill_pointsize = hw_vs->cso->info.writes_psize &&
2513                                       !rs->polygon_mode_is_points;
2514       ps_key->ps.part.prolog.color_two_side = rs->two_side && ps->info.colors_read;
2515       ps_key->ps.part.prolog.poly_stipple = rs->poly_stipple_enable;
2516       ps_key->ps.mono.poly_line_smoothing = rs->poly_smooth && sctx->framebuffer.nr_samples <= 1;
2517       ps_key->ps.mono.point_smoothing = 0;
2518       ps_key->ps.opt.force_front_face_input = ps->info.uses_frontface ? rs->force_front_face_input : 0;
2519    }
2520 
2521    if (vs_key->ge.opt.kill_pointsize != old_kill_pointsize ||
2522        ps_key->ps.part.prolog.color_two_side != old_color_two_side ||
2523        ps_key->ps.part.prolog.poly_stipple != old_poly_stipple ||
2524        ps_key->ps.mono.poly_line_smoothing != old_poly_line_smoothing ||
2525        ps_key->ps.mono.point_smoothing != old_point_smoothing ||
2526        ps_key->ps.opt.force_front_face_input != old_force_front_face_input)
2527       sctx->do_update_shaders = true;
2528 }
2529 
si_get_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2530 static void si_get_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2531                                   union si_shader_key *key)
2532 {
2533    key->ge.opt.kill_clip_distances = vs->info.clipdist_mask & ~sctx->queued.named.rasterizer->clip_plane_enable;
2534 
2535    /* Find out which VS outputs aren't used by the PS. */
2536    uint64_t outputs_written = vs->info.outputs_written_before_ps;
2537    uint64_t linked = outputs_written & sctx->ps_inputs_read_or_disabled;
2538 
2539    key->ge.opt.kill_layer = vs->info.writes_layer &&
2540                             sctx->framebuffer.state.layers <= 1;
2541    key->ge.opt.kill_outputs = ~linked & outputs_written;
2542    key->ge.opt.ngg_culling = sctx->ngg_culling;
2543    key->ge.mono.u.vs_export_prim_id = vs->stage != MESA_SHADER_GEOMETRY &&
2544                                       sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid;
2545 
2546    if (vs->info.enabled_streamout_buffer_mask) {
2547       if (sctx->streamout.enabled_mask) {
2548          key->ge.opt.remove_streamout = 0;
2549          key->ge.opt.ngg_vs_streamout_num_verts_per_prim =
2550             sctx->gfx_level >= GFX11 ? sctx->streamout.num_verts_per_prim : 0;
2551       } else {
2552          key->ge.opt.remove_streamout = 1;
2553          key->ge.opt.ngg_vs_streamout_num_verts_per_prim = 0;
2554       }
2555    } else {
2556       key->ge.opt.remove_streamout = 0;
2557       key->ge.opt.ngg_vs_streamout_num_verts_per_prim = 0;
2558    }
2559 
2560    if (sctx->gfx_level >= GFX12)
2561       key->ge.mono.remove_streamout = key->ge.opt.remove_streamout;
2562 }
2563 
si_clear_vs_key_outputs(struct si_context * sctx,struct si_shader_selector * vs,union si_shader_key * key)2564 static void si_clear_vs_key_outputs(struct si_context *sctx, struct si_shader_selector *vs,
2565                                     union si_shader_key *key)
2566 {
2567    key->ge.opt.kill_clip_distances = 0;
2568    key->ge.opt.kill_outputs = 0;
2569    key->ge.opt.remove_streamout = 0;
2570    key->ge.opt.ngg_culling = 0;
2571    key->ge.opt.ngg_vs_streamout_num_verts_per_prim = 0;
2572    key->ge.mono.u.vs_export_prim_id = 0;
2573    key->ge.mono.remove_streamout = 0;
2574 }
2575 
si_ps_key_update_framebuffer(struct si_context * sctx)2576 void si_ps_key_update_framebuffer(struct si_context *sctx)
2577 {
2578    struct si_shader_selector *sel = sctx->shader.ps.cso;
2579    union si_shader_key *key = &sctx->shader.ps.key;
2580 
2581    if (!sel)
2582       return;
2583 
2584    /* ps_uses_fbfetch is true only if the color buffer is bound. */
2585    if (sctx->ps_uses_fbfetch) {
2586       struct pipe_surface *cb0 = sctx->framebuffer.state.cbufs[0];
2587       struct pipe_resource *tex = cb0->texture;
2588 
2589       /* 1D textures are allocated and used as 2D on GFX9. */
2590       key->ps.mono.fbfetch_msaa = sctx->framebuffer.nr_samples > 1;
2591       key->ps.mono.fbfetch_is_1D =
2592          sctx->gfx_level != GFX9 &&
2593          (tex->target == PIPE_TEXTURE_1D || tex->target == PIPE_TEXTURE_1D_ARRAY);
2594       key->ps.mono.fbfetch_layered =
2595          tex->target == PIPE_TEXTURE_1D_ARRAY || tex->target == PIPE_TEXTURE_2D_ARRAY ||
2596          tex->target == PIPE_TEXTURE_CUBE || tex->target == PIPE_TEXTURE_CUBE_ARRAY ||
2597          tex->target == PIPE_TEXTURE_3D;
2598    } else {
2599       key->ps.mono.fbfetch_msaa = 0;
2600       key->ps.mono.fbfetch_is_1D = 0;
2601       key->ps.mono.fbfetch_layered = 0;
2602    }
2603 }
2604 
si_ps_key_update_framebuffer_blend_dsa_rasterizer(struct si_context * sctx)2605 void si_ps_key_update_framebuffer_blend_dsa_rasterizer(struct si_context *sctx)
2606 {
2607    struct si_shader_selector *sel = sctx->shader.ps.cso;
2608    if (!sel)
2609       return;
2610 
2611    union si_shader_key *key = &sctx->shader.ps.key;
2612    struct si_state_blend *blend = sctx->queued.named.blend;
2613    struct si_state_dsa *dsa = sctx->queued.named.dsa;
2614    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2615    bool alpha_to_coverage = sel->info.colors_written & 0x1 && blend->alpha_to_coverage &&
2616                             rs->multisample_enable && sctx->framebuffer.nr_samples >= 2;
2617    unsigned need_src_alpha_4bit = blend->need_src_alpha_4bit;
2618 
2619    /* Old key data for comparison. */
2620    struct si_ps_epilog_bits old_epilog;
2621    memcpy(&old_epilog, &key->ps.part.epilog, sizeof(old_epilog));
2622    bool old_prefer_mono = key->ps.opt.prefer_mono;
2623 #ifndef NDEBUG
2624    struct si_shader_key_ps old_key;
2625    memcpy(&old_key, &key->ps, sizeof(old_key));
2626 #endif
2627 
2628    key->ps.part.epilog.kill_z = sel->info.writes_z &&
2629                                 (!sctx->framebuffer.state.zsbuf || !dsa->depth_enabled ||
2630                                  (sel->info.output_z_equals_input_z && !rs->multisample_enable));
2631    key->ps.part.epilog.kill_stencil = sel->info.writes_stencil &&
2632                                       (!sctx->framebuffer.has_stencil || !dsa->stencil_enabled);
2633 
2634    /* Remove the gl_SampleMask fragment shader output if MSAA is disabled.
2635     * This is required for correctness and it's also an optimization.
2636     */
2637    key->ps.part.epilog.kill_samplemask = sel->info.writes_samplemask &&
2638                                          (sctx->framebuffer.nr_samples <= 1 ||
2639                                           !rs->multisample_enable);
2640 
2641    key->ps.part.epilog.alpha_to_one = sel->info.colors_written & 0x1 && blend->alpha_to_one &&
2642                                       rs->multisample_enable;
2643    /* GFX11+ always exports alpha for alpha-to-coverage via mrtz. */
2644    key->ps.part.epilog.alpha_to_coverage_via_mrtz =
2645       alpha_to_coverage && (sctx->gfx_level >= GFX11 || key->ps.part.epilog.alpha_to_one) &&
2646       ((sel->info.writes_z && !key->ps.part.epilog.kill_z) ||
2647        (sel->info.writes_stencil && !key->ps.part.epilog.kill_stencil) ||
2648        (sel->info.writes_samplemask && !key->ps.part.epilog.kill_samplemask) ||
2649        /* If both alpha-to-coverage and alpha-to-one are enabled, alpha for alpha-to-coverage must
2650         * be exported from mrtz because mrt0.a must contain 1.0 for alpha-to-one. */
2651        key->ps.part.epilog.alpha_to_one);
2652 
2653    /* If alpha-to-coverage isn't exported via MRTZ, set that we need to export alpha
2654     * through MRT0.
2655     */
2656    if (alpha_to_coverage && !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2657       need_src_alpha_4bit |= 0xf;
2658 
2659    /* Select the shader color format based on whether
2660     * blending or alpha are needed.
2661     */
2662    key->ps.part.epilog.spi_shader_col_format =
2663       (blend->blend_enable_4bit & need_src_alpha_4bit &
2664        sctx->framebuffer.spi_shader_col_format_blend_alpha) |
2665       (blend->blend_enable_4bit & ~need_src_alpha_4bit &
2666        sctx->framebuffer.spi_shader_col_format_blend) |
2667       (~blend->blend_enable_4bit & need_src_alpha_4bit &
2668        sctx->framebuffer.spi_shader_col_format_alpha) |
2669       (~blend->blend_enable_4bit & ~need_src_alpha_4bit &
2670        sctx->framebuffer.spi_shader_col_format);
2671    key->ps.part.epilog.spi_shader_col_format &= blend->cb_target_enabled_4bit;
2672 
2673    key->ps.part.epilog.dual_src_blend_swizzle = sctx->gfx_level >= GFX11 &&
2674                                                 blend->dual_src_blend &&
2675                                                 (sel->info.colors_written_4bit & 0xff) == 0xff;
2676 
2677    /* The output for dual source blending should have
2678     * the same format as the first output.
2679     */
2680    if (blend->dual_src_blend) {
2681       key->ps.part.epilog.spi_shader_col_format |=
2682          (key->ps.part.epilog.spi_shader_col_format & 0xf) << 4;
2683    }
2684 
2685    /* If alpha-to-coverage is enabled, we have to export alpha
2686     * even if there is no color buffer.
2687     *
2688     * Gfx11 exports alpha-to-coverage via MRTZ if MRTZ is present.
2689     */
2690    if (!(key->ps.part.epilog.spi_shader_col_format & 0xf) && alpha_to_coverage &&
2691        !key->ps.part.epilog.alpha_to_coverage_via_mrtz)
2692       key->ps.part.epilog.spi_shader_col_format |= V_028710_SPI_SHADER_32_AR;
2693 
2694    /* On GFX6 and GFX7 except Hawaii, the CB doesn't clamp outputs
2695     * to the range supported by the type if a channel has less
2696     * than 16 bits and the export format is 16_ABGR.
2697     */
2698    if (sctx->gfx_level <= GFX7 && sctx->family != CHIP_HAWAII) {
2699       key->ps.part.epilog.color_is_int8 = sctx->framebuffer.color_is_int8;
2700       key->ps.part.epilog.color_is_int10 = sctx->framebuffer.color_is_int10;
2701    }
2702 
2703    /* Disable unwritten outputs (if WRITE_ALL_CBUFS isn't enabled). */
2704    if (!sel->info.color0_writes_all_cbufs) {
2705       key->ps.part.epilog.spi_shader_col_format &= sel->info.colors_written_4bit;
2706       key->ps.part.epilog.color_is_int8 &= sel->info.colors_written;
2707       key->ps.part.epilog.color_is_int10 &= sel->info.colors_written;
2708    }
2709 
2710    /* Enable RB+ for depth-only rendering. Registers must be programmed as follows:
2711     *    CB_COLOR_CONTROL.MODE = CB_DISABLE
2712     *    CB_COLOR0_INFO.FORMAT = COLOR_32
2713     *    CB_COLOR0_INFO.NUMBER_TYPE = NUMBER_FLOAT
2714     *    SPI_SHADER_COL_FORMAT.COL0_EXPORT_FORMAT = SPI_SHADER_32_R
2715     *    SX_PS_DOWNCONVERT.MRT0 = SX_RT_EXPORT_32_R
2716     *
2717     * Also, the following conditions must be met.
2718     */
2719    key->ps.part.epilog.rbplus_depth_only_opt =
2720       sctx->screen->info.rbplus_allowed &&
2721       blend->cb_target_enabled_4bit == 0 && /* implies CB_DISABLE */
2722       !alpha_to_coverage &&
2723       !sel->info.base.writes_memory &&
2724       !key->ps.part.epilog.spi_shader_col_format;
2725 
2726    /* Compile PS monolithically if it eliminates code or improves performance. */
2727    if (sel->info.colors_written_4bit &
2728        /* Dual source blending never has color buffer 1 enabled, so ignore it. */
2729        (blend->dual_src_blend ? 0xffffff0f : 0xffffffff) &
2730        ~(sctx->framebuffer.colorbuf_enabled_4bit & blend->cb_target_enabled_4bit)) {
2731       /* Eliminate shader code computing the color outputs that have missing color buffer
2732        * attachments or are disabled by colormask.
2733        */
2734       key->ps.opt.prefer_mono = 1;
2735    } else if (sctx->gfx_level >= GFX11 && sel->info.base.writes_memory) {
2736       /* On gfx11, pixel shaders that write memory should be compiled with an inlined epilog,
2737        * so that the compiler can see s_endpgm and deallocates VGPRs before memory stores return.
2738        */
2739       key->ps.opt.prefer_mono = 1;
2740    } else if (key->ps.part.epilog.kill_z || key->ps.part.epilog.kill_stencil ||
2741               key->ps.part.epilog.kill_samplemask) {
2742       /* Eliminate shader code computing the Z/S/samplemask outputs. */
2743       key->ps.opt.prefer_mono = 1;
2744    } else {
2745       key->ps.opt.prefer_mono = 0;
2746    }
2747 
2748    /* Update shaders only if the key changed. */
2749    if (memcmp(&key->ps.part.epilog, &old_epilog, sizeof(old_epilog)) ||
2750        key->ps.opt.prefer_mono != old_prefer_mono) {
2751       sctx->do_update_shaders = true;
2752    } else {
2753       assert(memcmp(&key->ps, &old_key, sizeof(old_key)) == 0);
2754    }
2755 }
2756 
si_ps_key_update_rasterizer(struct si_context * sctx)2757 void si_ps_key_update_rasterizer(struct si_context *sctx)
2758 {
2759    struct si_shader_selector *sel = sctx->shader.ps.cso;
2760    union si_shader_key *key = &sctx->shader.ps.key;
2761    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2762 
2763    if (!sel)
2764       return;
2765 
2766    bool old_flatshade_colors = key->ps.part.prolog.flatshade_colors;
2767    bool old_clamp_color = key->ps.part.epilog.clamp_color;
2768 
2769    key->ps.part.prolog.flatshade_colors = rs->flatshade && sel->info.uses_interp_color;
2770    key->ps.part.epilog.clamp_color = rs->clamp_fragment_color;
2771 
2772    if (key->ps.part.prolog.flatshade_colors != old_flatshade_colors ||
2773        key->ps.part.epilog.clamp_color != old_clamp_color)
2774       sctx->do_update_shaders = true;
2775 }
2776 
si_ps_key_update_dsa(struct si_context * sctx)2777 void si_ps_key_update_dsa(struct si_context *sctx)
2778 {
2779    union si_shader_key *key = &sctx->shader.ps.key;
2780 
2781    key->ps.part.epilog.alpha_func = sctx->queued.named.dsa->alpha_func;
2782 }
2783 
si_ps_key_update_sample_shading(struct si_context * sctx)2784 void si_ps_key_update_sample_shading(struct si_context *sctx)
2785 {
2786    struct si_shader_selector *sel = sctx->shader.ps.cso;
2787    if (!sel)
2788       return;
2789 
2790    union si_shader_key *key = &sctx->shader.ps.key;
2791    unsigned ps_iter_samples = si_get_ps_iter_samples(sctx);
2792    assert(ps_iter_samples <= MAX2(1, sctx->framebuffer.nr_color_samples));
2793 
2794    if (ps_iter_samples > 1 && sel->info.reads_samplemask) {
2795       /* Set samplemask_log_ps_iter=3 if full sample shading is enabled even for 2x and 4x MSAA
2796        * to get the fast path that fully replaces sample_mask_in with sample_id.
2797        */
2798       if (ps_iter_samples == sctx->framebuffer.nr_color_samples)
2799          key->ps.part.prolog.samplemask_log_ps_iter = 3;
2800       else
2801          key->ps.part.prolog.samplemask_log_ps_iter = util_logbase2(ps_iter_samples);
2802    } else {
2803       key->ps.part.prolog.samplemask_log_ps_iter = 0;
2804    }
2805 }
2806 
si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context * sctx)2807 void si_ps_key_update_framebuffer_rasterizer_sample_shading(struct si_context *sctx)
2808 {
2809    struct si_shader_selector *sel = sctx->shader.ps.cso;
2810    union si_shader_key *key = &sctx->shader.ps.key;
2811    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
2812 
2813    if (!sel)
2814       return;
2815 
2816    /* Old key data for comparison. */
2817    struct si_ps_prolog_bits old_prolog;
2818    memcpy(&old_prolog, &key->ps.part.prolog, sizeof(old_prolog));
2819    bool old_interpolate_at_sample_force_center = key->ps.mono.interpolate_at_sample_force_center;
2820 
2821    bool uses_persp_center = sel->info.uses_persp_center ||
2822                             (!rs->flatshade && sel->info.uses_persp_center_color);
2823    bool uses_persp_centroid = sel->info.uses_persp_centroid ||
2824                               (!rs->flatshade && sel->info.uses_persp_centroid_color);
2825    bool uses_persp_sample = sel->info.uses_persp_sample ||
2826                             (!rs->flatshade && sel->info.uses_persp_sample_color);
2827 
2828    if (!sel->info.base.fs.uses_sample_shading && rs->multisample_enable &&
2829        sctx->framebuffer.nr_samples > 1 && sctx->ps_iter_samples > 1) {
2830       key->ps.part.prolog.force_persp_sample_interp =
2831          uses_persp_center || uses_persp_centroid;
2832 
2833       key->ps.part.prolog.force_linear_sample_interp =
2834          sel->info.uses_linear_center || sel->info.uses_linear_centroid;
2835 
2836       key->ps.part.prolog.force_persp_center_interp = 0;
2837       key->ps.part.prolog.force_linear_center_interp = 0;
2838       key->ps.part.prolog.bc_optimize_for_persp = 0;
2839       key->ps.part.prolog.bc_optimize_for_linear = 0;
2840       key->ps.part.prolog.force_samplemask_to_helper_invocation = 0;
2841       /* Note that interpolateAt* requires center barycentrics while the PS prolog forces
2842        * per-sample barycentrics in center VGPRs, so it breaks it. The workaround is to
2843        * force monolithic compilation, which does the right thing.
2844        */
2845       key->ps.mono.force_mono = sel->info.uses_interp_at_offset || sel->info.uses_interp_at_sample;
2846       key->ps.mono.interpolate_at_sample_force_center = 0;
2847    } else if (rs->multisample_enable && sctx->framebuffer.nr_samples > 1) {
2848       /* Note that sample shading is possible here. If it's enabled, all barycentrics are
2849        * already set to "sample" except at_offset/at_sample.
2850        */
2851       key->ps.part.prolog.force_persp_sample_interp = 0;
2852       key->ps.part.prolog.force_linear_sample_interp = 0;
2853       key->ps.part.prolog.force_persp_center_interp = 0;
2854       key->ps.part.prolog.force_linear_center_interp = 0;
2855       key->ps.part.prolog.bc_optimize_for_persp =
2856          uses_persp_center && uses_persp_centroid;
2857       key->ps.part.prolog.bc_optimize_for_linear =
2858          sel->info.uses_linear_center && sel->info.uses_linear_centroid;
2859       key->ps.part.prolog.get_frag_coord_from_pixel_coord =
2860          !sel->info.base.fs.uses_sample_shading && sel->info.reads_frag_coord_mask & 0x3;
2861       key->ps.part.prolog.force_samplemask_to_helper_invocation = 0;
2862       key->ps.mono.force_mono = 0;
2863       key->ps.mono.interpolate_at_sample_force_center = 0;
2864    } else {
2865       key->ps.part.prolog.force_persp_sample_interp = 0;
2866       key->ps.part.prolog.force_linear_sample_interp = 0;
2867 
2868       /* Make sure SPI doesn't compute more than 1 pair
2869        * of (i,j), which is the optimization here. */
2870       key->ps.part.prolog.force_persp_center_interp = uses_persp_center +
2871                                                       uses_persp_centroid +
2872                                                       uses_persp_sample > 1;
2873 
2874       key->ps.part.prolog.force_linear_center_interp = sel->info.uses_linear_center +
2875                                                        sel->info.uses_linear_centroid +
2876                                                        sel->info.uses_linear_sample > 1;
2877       key->ps.part.prolog.bc_optimize_for_persp = 0;
2878       key->ps.part.prolog.bc_optimize_for_linear = 0;
2879       key->ps.part.prolog.get_frag_coord_from_pixel_coord =
2880          !!(sel->info.reads_frag_coord_mask & 0x3);
2881       key->ps.part.prolog.force_samplemask_to_helper_invocation = sel->info.reads_samplemask;
2882       key->ps.mono.force_mono = 0;
2883       key->ps.mono.interpolate_at_sample_force_center = sel->info.uses_interp_at_sample;
2884    }
2885 
2886    /* Update shaders only if the key changed. */
2887    if (memcmp(&key->ps.part.prolog, &old_prolog, sizeof(old_prolog)) ||
2888        key->ps.mono.interpolate_at_sample_force_center != old_interpolate_at_sample_force_center)
2889       sctx->do_update_shaders = true;
2890 }
2891 
2892 /* Compute the key for the hw shader variant */
si_shader_selector_key(struct pipe_context * ctx,struct si_shader_selector * sel,union si_shader_key * key)2893 static inline void si_shader_selector_key(struct pipe_context *ctx, struct si_shader_selector *sel,
2894                                           union si_shader_key *key)
2895 {
2896    struct si_context *sctx = (struct si_context *)ctx;
2897 
2898    switch (sel->stage) {
2899    case MESA_SHADER_VERTEX:
2900       if (!sctx->shader.tes.cso && !sctx->shader.gs.cso)
2901          si_get_vs_key_outputs(sctx, sel, key);
2902       else
2903          si_clear_vs_key_outputs(sctx, sel, key);
2904       break;
2905    case MESA_SHADER_TESS_CTRL:
2906       if (sctx->gfx_level >= GFX9) {
2907          si_get_vs_key_inputs(sctx, key);
2908          key->ge.part.tcs.ls = sctx->shader.vs.cso;
2909       }
2910       break;
2911    case MESA_SHADER_TESS_EVAL:
2912       if (!sctx->shader.gs.cso)
2913          si_get_vs_key_outputs(sctx, sel, key);
2914       else
2915          si_clear_vs_key_outputs(sctx, sel, key);
2916       break;
2917    case MESA_SHADER_GEOMETRY:
2918       if (sctx->gfx_level >= GFX9) {
2919          if (sctx->shader.tes.cso) {
2920             si_clear_vs_key_inputs(key);
2921             key->ge.part.gs.es = sctx->shader.tes.cso;
2922          } else {
2923             si_get_vs_key_inputs(sctx, key);
2924             key->ge.part.gs.es = sctx->shader.vs.cso;
2925          }
2926 
2927          /* Only NGG can eliminate GS outputs, because the code is shared with VS. */
2928          if (sctx->ngg)
2929             si_get_vs_key_outputs(sctx, sel, key);
2930          else
2931             si_clear_vs_key_outputs(sctx, sel, key);
2932       }
2933       break;
2934    case MESA_SHADER_FRAGMENT:
2935       break;
2936    default:
2937       assert(0);
2938    }
2939 }
2940 
si_build_shader_variant(struct si_shader * shader,int thread_index,bool low_priority)2941 static void si_build_shader_variant(struct si_shader *shader, int thread_index, bool low_priority)
2942 {
2943    struct si_shader_selector *sel = shader->selector;
2944    struct si_screen *sscreen = sel->screen;
2945    struct ac_llvm_compiler **compiler;
2946    struct util_debug_callback *debug = &shader->compiler_ctx_state.debug;
2947 
2948    if (thread_index >= 0) {
2949       if (low_priority) {
2950          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler_lowp));
2951          compiler = &sscreen->compiler_lowp[thread_index];
2952       } else {
2953          assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
2954          compiler = &sscreen->compiler[thread_index];
2955       }
2956       if (!debug->async)
2957          debug = NULL;
2958    } else {
2959       assert(!low_priority);
2960       compiler = &shader->compiler_ctx_state.compiler;
2961    }
2962 
2963    if (!sel->info.base.use_aco_amd && !*compiler)
2964       *compiler = si_create_llvm_compiler(sscreen);
2965 
2966    if (unlikely(!si_create_shader_variant(sscreen, *compiler, shader, debug))) {
2967       PRINT_ERR("Failed to build shader variant (type=%u)\n", sel->stage);
2968       shader->compilation_failed = true;
2969       return;
2970    }
2971 
2972    if (shader->compiler_ctx_state.is_debug_context) {
2973       FILE *f = open_memstream(&shader->shader_log, &shader->shader_log_size);
2974       if (f) {
2975          si_shader_dump(sscreen, shader, NULL, f, false);
2976          fclose(f);
2977       }
2978    }
2979 
2980    si_shader_init_pm4_state(sscreen, shader);
2981 }
2982 
si_build_shader_variant_low_priority(void * job,void * gdata,int thread_index)2983 static void si_build_shader_variant_low_priority(void *job, void *gdata, int thread_index)
2984 {
2985    struct si_shader *shader = (struct si_shader *)job;
2986 
2987    assert(thread_index >= 0);
2988 
2989    si_build_shader_variant(shader, thread_index, true);
2990 }
2991 
2992 /* This should be const, but C++ doesn't allow implicit zero-initialization with const. */
2993 static union si_shader_key zeroed;
2994 
si_check_missing_main_part(struct si_screen * sscreen,struct si_shader_selector * sel,struct si_compiler_ctx_state * compiler_state,const union si_shader_key * key,unsigned wave_size)2995 static bool si_check_missing_main_part(struct si_screen *sscreen, struct si_shader_selector *sel,
2996                                        struct si_compiler_ctx_state *compiler_state,
2997                                        const union si_shader_key *key, unsigned wave_size)
2998 {
2999    struct si_shader **mainp = si_get_main_shader_part(sel, key, wave_size);
3000 
3001    if (!*mainp) {
3002       struct si_shader *main_part = CALLOC_STRUCT(si_shader);
3003 
3004       if (!main_part)
3005          return false;
3006 
3007       /* We can leave the fence as permanently signaled because the
3008        * main part becomes visible globally only after it has been
3009        * compiled. */
3010       util_queue_fence_init(&main_part->ready);
3011 
3012       main_part->selector = sel;
3013       if (sel->stage <= MESA_SHADER_GEOMETRY) {
3014          main_part->key.ge.as_es = key->ge.as_es;
3015          main_part->key.ge.as_ls = key->ge.as_ls;
3016          main_part->key.ge.as_ngg = key->ge.as_ngg;
3017       }
3018       main_part->is_monolithic = false;
3019       main_part->wave_size = wave_size;
3020 
3021       if (!si_compile_shader(sscreen, compiler_state->compiler, main_part,
3022                              &compiler_state->debug)) {
3023          FREE(main_part);
3024          return false;
3025       }
3026       *mainp = main_part;
3027    }
3028    return true;
3029 }
3030 
3031 /* A helper to copy *key to *local_key and return local_key. */
3032 template<typename SHADER_KEY_TYPE>
3033 static ALWAYS_INLINE const SHADER_KEY_TYPE *
use_local_key_copy(const SHADER_KEY_TYPE * key,SHADER_KEY_TYPE * local_key,unsigned key_size)3034 use_local_key_copy(const SHADER_KEY_TYPE *key, SHADER_KEY_TYPE *local_key, unsigned key_size)
3035 {
3036    if (key != local_key)
3037       memcpy(local_key, key, key_size);
3038 
3039    return local_key;
3040 }
3041 
3042 #define NO_INLINE_UNIFORMS false
3043 
3044 /**
3045  * Select a shader variant according to the shader key.
3046  *
3047  * This uses a C++ template to compute the optimal memcmp size at compile time, which is important
3048  * for getting inlined memcmp. The memcmp size depends on the shader key type and whether inlined
3049  * uniforms are enabled.
3050  */
3051 template<bool INLINE_UNIFORMS = true, typename SHADER_KEY_TYPE>
si_shader_select_with_key(struct si_context * sctx,struct si_shader_ctx_state * state,const SHADER_KEY_TYPE * key)3052 static int si_shader_select_with_key(struct si_context *sctx, struct si_shader_ctx_state *state,
3053                                      const SHADER_KEY_TYPE *key)
3054 {
3055    struct si_screen *sscreen = sctx->screen;
3056    struct si_shader_selector *sel = state->cso;
3057    struct si_shader_selector *previous_stage_sel = NULL;
3058    struct si_shader *current = state->current;
3059    struct si_shader *shader = NULL;
3060    const SHADER_KEY_TYPE *zeroed_key = (SHADER_KEY_TYPE*)&zeroed;
3061 
3062    /* "opt" must be the last field and "inlined_uniform_values" must be the last field inside opt.
3063     * If there is padding, insert the padding manually before opt or inside opt.
3064     */
3065    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt) + sizeof(key->opt) == sizeof(*key));
3066    STATIC_ASSERT(offsetof(SHADER_KEY_TYPE, opt.inlined_uniform_values) +
3067                  sizeof(key->opt.inlined_uniform_values) == sizeof(*key));
3068 
3069    const unsigned key_size_no_uniforms = sizeof(*key) - sizeof(key->opt.inlined_uniform_values);
3070    /* Don't compare inlined_uniform_values if uniform inlining is disabled. */
3071    const unsigned key_size = INLINE_UNIFORMS ? sizeof(*key) : key_size_no_uniforms;
3072    const unsigned key_opt_size =
3073       INLINE_UNIFORMS ? sizeof(key->opt) :
3074                         sizeof(key->opt) - sizeof(key->opt.inlined_uniform_values);
3075 
3076    /* si_shader_select_with_key must not modify 'key' because it would affect future shaders.
3077     * If we need to modify it for this specific shader (eg: to disable optimizations), we
3078     * use a copy.
3079     */
3080    SHADER_KEY_TYPE local_key;
3081 
3082    if (unlikely(sscreen->debug_flags & DBG(NO_OPT_VARIANT))) {
3083       /* Disable shader variant optimizations. */
3084       key = use_local_key_copy<SHADER_KEY_TYPE>(key, &local_key, key_size);
3085       memset(&local_key.opt, 0, key_opt_size);
3086    }
3087 
3088 again:
3089    /* Check if we don't need to change anything.
3090     * This path is also used for most shaders that don't need multiple
3091     * variants, it will cost just a computation of the key and this
3092     * test. */
3093    if (likely(current && memcmp(&current->key, key, key_size) == 0)) {
3094       if (unlikely(!util_queue_fence_is_signalled(&current->ready))) {
3095          if (current->is_optimized) {
3096             key = use_local_key_copy(key, &local_key, key_size);
3097             memset(&local_key.opt, 0, key_opt_size);
3098             goto current_not_ready;
3099          }
3100 
3101          util_queue_fence_wait(&current->ready);
3102       }
3103 
3104       return current->compilation_failed ? -1 : 0;
3105    }
3106 current_not_ready:
3107 
3108    /* This must be done before the mutex is locked, because async GS
3109     * compilation calls this function too, and therefore must enter
3110     * the mutex first.
3111     */
3112    util_queue_fence_wait(&sel->ready);
3113 
3114    simple_mtx_lock(&sel->mutex);
3115 
3116    int variant_count = 0;
3117    const int max_inline_uniforms_variants = 5;
3118 
3119    /* Find the shader variant. */
3120    const unsigned cnt = sel->variants_count;
3121    for (unsigned i = 0; i < cnt; i++) {
3122       const SHADER_KEY_TYPE *iter_key = (const SHADER_KEY_TYPE *)&sel->keys[i];
3123 
3124       if (memcmp(iter_key, key, key_size_no_uniforms) == 0) {
3125          struct si_shader *iter = sel->variants[i];
3126 
3127          /* Check the inlined uniform values separately, and count
3128           * the number of variants based on them.
3129           */
3130          if (key->opt.inline_uniforms &&
3131              memcmp(iter_key->opt.inlined_uniform_values,
3132                     key->opt.inlined_uniform_values,
3133                     MAX_INLINABLE_UNIFORMS * 4) != 0) {
3134             if (variant_count++ > max_inline_uniforms_variants) {
3135                key = use_local_key_copy(key, &local_key, key_size);
3136                /* Too many variants. Disable inlining for this shader. */
3137                local_key.opt.inline_uniforms = 0;
3138                memset(local_key.opt.inlined_uniform_values, 0, MAX_INLINABLE_UNIFORMS * 4);
3139                simple_mtx_unlock(&sel->mutex);
3140                goto again;
3141             }
3142             continue;
3143          }
3144 
3145          simple_mtx_unlock(&sel->mutex);
3146 
3147          if (unlikely(!util_queue_fence_is_signalled(&iter->ready))) {
3148             /* If it's an optimized shader and its compilation has
3149              * been started but isn't done, use the unoptimized
3150              * shader so as not to cause a stall due to compilation.
3151              */
3152             if (iter->is_optimized) {
3153                key = use_local_key_copy(key, &local_key, key_size);
3154                memset(&local_key.opt, 0, key_opt_size);
3155                goto again;
3156             }
3157 
3158             util_queue_fence_wait(&iter->ready);
3159          }
3160 
3161          if (iter->compilation_failed) {
3162             return -1; /* skip the draw call */
3163          }
3164 
3165          state->current = sel->variants[i];
3166          return 0;
3167       }
3168    }
3169 
3170    /* Build a new shader. */
3171    shader = CALLOC_STRUCT(si_shader);
3172    if (!shader) {
3173       simple_mtx_unlock(&sel->mutex);
3174       return -ENOMEM;
3175    }
3176 
3177    util_queue_fence_init(&shader->ready);
3178 
3179    if (!sel->info.base.use_aco_amd && !sctx->compiler)
3180       sctx->compiler = si_create_llvm_compiler(sctx->screen);
3181 
3182    shader->selector = sel;
3183    *((SHADER_KEY_TYPE*)&shader->key) = *key;
3184    shader->wave_size = si_determine_wave_size(sscreen, shader);
3185    shader->compiler_ctx_state.compiler = sctx->compiler;
3186    shader->compiler_ctx_state.debug = sctx->debug;
3187    shader->compiler_ctx_state.is_debug_context = sctx->is_debug;
3188 
3189    /* If this is a merged shader, get the first shader's selector. */
3190    if (sscreen->info.gfx_level >= GFX9) {
3191       if (sel->stage == MESA_SHADER_TESS_CTRL)
3192          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.tcs.ls;
3193       else if (sel->stage == MESA_SHADER_GEOMETRY)
3194          previous_stage_sel = ((struct si_shader_key_ge*)key)->part.gs.es;
3195 
3196       /* We need to wait for the previous shader. */
3197       if (previous_stage_sel)
3198          util_queue_fence_wait(&previous_stage_sel->ready);
3199    }
3200 
3201    bool is_pure_monolithic =
3202       sscreen->use_monolithic_shaders || memcmp(&key->mono, &zeroed_key->mono, sizeof(key->mono)) != 0;
3203 
3204    /* Compile the main shader part if it doesn't exist. This can happen
3205     * if the initial guess was wrong.
3206     */
3207    if (!is_pure_monolithic) {
3208       bool ok = true;
3209 
3210       /* Make sure the main shader part is present. This is needed
3211        * for shaders that can be compiled as VS, LS, or ES, and only
3212        * one of them is compiled at creation.
3213        *
3214        * It is also needed for GS, which can be compiled as non-NGG
3215        * and NGG.
3216        *
3217        * For merged shaders, check that the starting shader's main
3218        * part is present.
3219        */
3220       if (previous_stage_sel) {
3221          union si_shader_key shader1_key = zeroed;
3222 
3223          if (sel->stage == MESA_SHADER_TESS_CTRL) {
3224             shader1_key.ge.as_ls = 1;
3225          } else if (sel->stage == MESA_SHADER_GEOMETRY) {
3226             shader1_key.ge.as_es = 1;
3227             shader1_key.ge.as_ngg = ((struct si_shader_key_ge*)key)->as_ngg; /* for Wave32 vs Wave64 */
3228          } else {
3229             assert(0);
3230          }
3231 
3232          simple_mtx_lock(&previous_stage_sel->mutex);
3233          ok = si_check_missing_main_part(sscreen, previous_stage_sel, &shader->compiler_ctx_state,
3234                                          &shader1_key, shader->wave_size);
3235          simple_mtx_unlock(&previous_stage_sel->mutex);
3236       }
3237 
3238       if (ok) {
3239          ok = si_check_missing_main_part(sscreen, sel, &shader->compiler_ctx_state,
3240                                          (union si_shader_key*)key, shader->wave_size);
3241       }
3242 
3243       if (!ok) {
3244          FREE(shader);
3245          simple_mtx_unlock(&sel->mutex);
3246          return -ENOMEM; /* skip the draw call */
3247       }
3248    }
3249 
3250    if (sel->variants_count == sel->variants_max_count) {
3251       sel->variants_max_count += 2;
3252       sel->variants = (struct si_shader**)
3253          realloc(sel->variants, sel->variants_max_count * sizeof(struct si_shader*));
3254       sel->keys = (union si_shader_key*)
3255          realloc(sel->keys, sel->variants_max_count * sizeof(union si_shader_key));
3256    }
3257 
3258    /* Keep the reference to the 1st shader of merged shaders, so that
3259     * Gallium can't destroy it before we destroy the 2nd shader.
3260     *
3261     * Set sctx = NULL, because it's unused if we're not releasing
3262     * the shader, and we don't have any sctx here.
3263     */
3264    si_shader_selector_reference(NULL, &shader->previous_stage_sel, previous_stage_sel);
3265 
3266    /* Monolithic-only shaders don't make a distinction between optimized
3267     * and unoptimized. */
3268    shader->is_monolithic =
3269       is_pure_monolithic || memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
3270 
3271    shader->is_optimized = !is_pure_monolithic &&
3272                           memcmp(&key->opt, &zeroed_key->opt, key_opt_size) != 0;
3273 
3274    /* If it's an optimized shader, compile it asynchronously. */
3275    if (shader->is_optimized) {
3276       /* Compile it asynchronously. */
3277       util_queue_add_job(&sscreen->shader_compiler_queue_opt_variants, shader, &shader->ready,
3278                          si_build_shader_variant_low_priority, NULL, 0);
3279 
3280       /* Add only after the ready fence was reset, to guard against a
3281        * race with si_bind_XX_shader. */
3282       sel->variants[sel->variants_count] = shader;
3283       sel->keys[sel->variants_count] = shader->key;
3284       sel->variants_count++;
3285 
3286       /* Use the default (unoptimized) shader for now. */
3287       key = use_local_key_copy(key, &local_key, key_size);
3288       memset(&local_key.opt, 0, key_opt_size);
3289       simple_mtx_unlock(&sel->mutex);
3290 
3291       if (sscreen->options.sync_compile)
3292          util_queue_fence_wait(&shader->ready);
3293 
3294       goto again;
3295    }
3296 
3297    /* Reset the fence before adding to the variant list. */
3298    util_queue_fence_reset(&shader->ready);
3299 
3300    sel->variants[sel->variants_count] = shader;
3301    sel->keys[sel->variants_count] = shader->key;
3302    sel->variants_count++;
3303 
3304    simple_mtx_unlock(&sel->mutex);
3305 
3306    assert(!shader->is_optimized);
3307    si_build_shader_variant(shader, -1, false);
3308 
3309    util_queue_fence_signal(&shader->ready);
3310 
3311    if (!shader->compilation_failed)
3312       state->current = shader;
3313 
3314    return shader->compilation_failed ? -1 : 0;
3315 }
3316 
si_shader_select(struct pipe_context * ctx,struct si_shader_ctx_state * state)3317 int si_shader_select(struct pipe_context *ctx, struct si_shader_ctx_state *state)
3318 {
3319    struct si_context *sctx = (struct si_context *)ctx;
3320 
3321    si_shader_selector_key(ctx, state->cso, &state->key);
3322 
3323    if (state->cso->stage == MESA_SHADER_FRAGMENT) {
3324       if (state->key.ps.opt.inline_uniforms)
3325          return si_shader_select_with_key(sctx, state, &state->key.ps);
3326       else
3327          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ps);
3328    } else {
3329       if (state->key.ge.opt.inline_uniforms) {
3330          return si_shader_select_with_key(sctx, state, &state->key.ge);
3331       } else {
3332          return si_shader_select_with_key<NO_INLINE_UNIFORMS>(sctx, state, &state->key.ge);
3333       }
3334    }
3335 }
3336 
si_parse_next_shader_property(const struct si_shader_info * info,union si_shader_key * key)3337 static void si_parse_next_shader_property(const struct si_shader_info *info,
3338                                           union si_shader_key *key)
3339 {
3340    gl_shader_stage next_shader = info->base.next_stage;
3341 
3342    switch (info->base.stage) {
3343    case MESA_SHADER_VERTEX:
3344       switch (next_shader) {
3345       case MESA_SHADER_GEOMETRY:
3346          key->ge.as_es = 1;
3347          break;
3348       case MESA_SHADER_TESS_CTRL:
3349       case MESA_SHADER_TESS_EVAL:
3350          key->ge.as_ls = 1;
3351          break;
3352       default:
3353          /* If POSITION isn't written, it can only be a HW VS
3354           * if streamout is used. If streamout isn't used,
3355           * assume that it's a HW LS. (the next shader is TCS)
3356           * This heuristic is needed for separate shader objects.
3357           */
3358          if (!info->writes_position && !info->enabled_streamout_buffer_mask)
3359             key->ge.as_ls = 1;
3360       }
3361       break;
3362 
3363    case MESA_SHADER_TESS_EVAL:
3364       if (next_shader == MESA_SHADER_GEOMETRY || !info->writes_position)
3365          key->ge.as_es = 1;
3366       break;
3367 
3368    default:;
3369    }
3370 }
3371 
3372 /**
3373  * Compile the main shader part or the monolithic shader as part of
3374  * si_shader_selector initialization. Since it can be done asynchronously,
3375  * there is no way to report compile failures to applications.
3376  */
si_init_shader_selector_async(void * job,void * gdata,int thread_index)3377 static void si_init_shader_selector_async(void *job, void *gdata, int thread_index)
3378 {
3379    struct si_shader_selector *sel = (struct si_shader_selector *)job;
3380    struct si_screen *sscreen = sel->screen;
3381    struct ac_llvm_compiler **compiler;
3382    struct util_debug_callback *debug = &sel->compiler_ctx_state.debug;
3383 
3384    assert(!debug->debug_message || debug->async);
3385    assert(thread_index >= 0);
3386    assert(thread_index < (int)ARRAY_SIZE(sscreen->compiler));
3387    compiler = &sscreen->compiler[thread_index];
3388 
3389    if (!sel->info.base.use_aco_amd && !*compiler)
3390       *compiler = si_create_llvm_compiler(sscreen);
3391 
3392    /* Serialize NIR to save memory. Monolithic shader variants
3393     * have to deserialize NIR before compilation.
3394     */
3395    if (sel->nir) {
3396       struct blob blob;
3397       size_t size;
3398 
3399       blob_init(&blob);
3400       /* true = remove optional debugging data to increase
3401        * the likehood of getting more shader cache hits.
3402        * It also drops variable names, so we'll save more memory.
3403        * If NIR debug prints are used we don't strip to get more
3404        * useful logs.
3405        */
3406       nir_serialize(&blob, sel->nir, NIR_DEBUG(PRINT) == 0);
3407       blob_finish_get_buffer(&blob, &sel->nir_binary, &size);
3408       sel->nir_size = size;
3409    }
3410 
3411    /* Compile the main shader part for use with a prolog and/or epilog.
3412     * If this fails, the driver will try to compile a monolithic shader
3413     * on demand.
3414     */
3415    if (!sscreen->use_monolithic_shaders) {
3416       struct si_shader *shader = CALLOC_STRUCT(si_shader);
3417       unsigned char ir_sha1_cache_key[20];
3418 
3419       if (!shader) {
3420          fprintf(stderr, "radeonsi: can't allocate a main shader part\n");
3421          return;
3422       }
3423 
3424       /* We can leave the fence signaled because use of the default
3425        * main part is guarded by the selector's ready fence. */
3426       util_queue_fence_init(&shader->ready);
3427 
3428       shader->selector = sel;
3429       shader->is_monolithic = false;
3430       si_parse_next_shader_property(&sel->info, &shader->key);
3431 
3432       if (sel->stage <= MESA_SHADER_GEOMETRY &&
3433           sscreen->use_ngg && (!sel->info.enabled_streamout_buffer_mask ||
3434                                sscreen->info.gfx_level >= GFX11) &&
3435           ((sel->stage == MESA_SHADER_VERTEX && !shader->key.ge.as_ls) ||
3436            sel->stage == MESA_SHADER_TESS_EVAL || sel->stage == MESA_SHADER_GEOMETRY))
3437          shader->key.ge.as_ngg = 1;
3438 
3439       shader->wave_size = si_determine_wave_size(sscreen, shader);
3440 
3441       if (sel->nir) {
3442          if (sel->stage <= MESA_SHADER_GEOMETRY) {
3443             si_get_ir_cache_key(sel, shader->key.ge.as_ngg, shader->key.ge.as_es,
3444                                 shader->wave_size, ir_sha1_cache_key);
3445          } else {
3446             si_get_ir_cache_key(sel, false, false, shader->wave_size, ir_sha1_cache_key);
3447          }
3448       }
3449 
3450       /* Try to load the shader from the shader cache. */
3451       simple_mtx_lock(&sscreen->shader_cache_mutex);
3452 
3453       if (si_shader_cache_load_shader(sscreen, ir_sha1_cache_key, shader)) {
3454          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3455          si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
3456       } else {
3457          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3458 
3459          /* Compile the shader if it hasn't been loaded from the cache. */
3460          if (!si_compile_shader(sscreen, *compiler, shader, debug)) {
3461             fprintf(stderr,
3462                "radeonsi: can't compile a main shader part (type: %s, name: %s).\n"
3463                "This is probably a driver bug, please report "
3464                "it to https://gitlab.freedesktop.org/mesa/mesa/-/issues.\n",
3465                gl_shader_stage_name(shader->selector->stage),
3466                shader->selector->info.base.name);
3467             FREE(shader);
3468             return;
3469          }
3470 
3471          simple_mtx_lock(&sscreen->shader_cache_mutex);
3472          si_shader_cache_insert_shader(sscreen, ir_sha1_cache_key, shader, true);
3473          simple_mtx_unlock(&sscreen->shader_cache_mutex);
3474       }
3475 
3476       *si_get_main_shader_part(sel, &shader->key, shader->wave_size) = shader;
3477 
3478       /* Unset "outputs_written" flags for outputs converted to
3479        * DEFAULT_VAL, so that later inter-shader optimizations don't
3480        * try to eliminate outputs that don't exist in the final
3481        * shader.
3482        *
3483        * This is only done if non-monolithic shaders are enabled.
3484        */
3485       if ((sel->stage == MESA_SHADER_VERTEX ||
3486            sel->stage == MESA_SHADER_TESS_EVAL ||
3487            sel->stage == MESA_SHADER_GEOMETRY) &&
3488           !shader->key.ge.as_ls && !shader->key.ge.as_es) {
3489          unsigned i;
3490 
3491          for (i = 0; i < sel->info.num_outputs; i++) {
3492             unsigned semantic = sel->info.output_semantic[i];
3493             unsigned ps_input_cntl = shader->info.vs_output_ps_input_cntl[semantic];
3494 
3495             /* OFFSET=0x20 means DEFAULT_VAL, which means VS doesn't export it. */
3496             if (G_028644_OFFSET(ps_input_cntl) != 0x20)
3497                continue;
3498 
3499             unsigned id;
3500 
3501             /* Remove the output from the mask. */
3502             if ((semantic <= VARYING_SLOT_VAR31 || semantic >= VARYING_SLOT_VAR0_16BIT) &&
3503                 semantic != VARYING_SLOT_POS &&
3504                 semantic != VARYING_SLOT_PSIZ &&
3505                 semantic != VARYING_SLOT_CLIP_VERTEX &&
3506                 semantic != VARYING_SLOT_EDGE &&
3507                 semantic != VARYING_SLOT_LAYER) {
3508                id = si_shader_io_get_unique_index(semantic);
3509                sel->info.outputs_written_before_ps &= ~(1ull << id);
3510             }
3511          }
3512       }
3513    }
3514 
3515    /* Free NIR. We only keep serialized NIR after this point. */
3516    if (sel->nir) {
3517       ralloc_free(sel->nir);
3518       sel->nir = NULL;
3519    }
3520 }
3521 
si_schedule_initial_compile(struct si_context * sctx,gl_shader_stage stage,struct util_queue_fence * ready_fence,struct si_compiler_ctx_state * compiler_ctx_state,void * job,util_queue_execute_func execute)3522 void si_schedule_initial_compile(struct si_context *sctx, gl_shader_stage stage,
3523                                  struct util_queue_fence *ready_fence,
3524                                  struct si_compiler_ctx_state *compiler_ctx_state, void *job,
3525                                  util_queue_execute_func execute)
3526 {
3527    util_queue_fence_init(ready_fence);
3528 
3529    struct util_async_debug_callback async_debug;
3530    bool debug = (sctx->debug.debug_message && !sctx->debug.async) || sctx->is_debug ||
3531                 si_can_dump_shader(sctx->screen, stage, SI_DUMP_ALWAYS);
3532 
3533    if (debug) {
3534       u_async_debug_init(&async_debug);
3535       compiler_ctx_state->debug = async_debug.base;
3536    }
3537 
3538    util_queue_add_job(&sctx->screen->shader_compiler_queue, job, ready_fence, execute, NULL, 0);
3539 
3540    if (debug) {
3541       util_queue_fence_wait(ready_fence);
3542       u_async_debug_drain(&async_debug, &sctx->debug);
3543       u_async_debug_cleanup(&async_debug);
3544    }
3545 
3546    if (sctx->screen->options.sync_compile)
3547       util_queue_fence_wait(ready_fence);
3548 }
3549 
3550 /* Return descriptor slot usage masks from the given shader info. */
si_get_active_slot_masks(struct si_screen * sscreen,const struct si_shader_info * info,uint64_t * const_and_shader_buffers,uint64_t * samplers_and_images)3551 void si_get_active_slot_masks(struct si_screen *sscreen, const struct si_shader_info *info,
3552                               uint64_t *const_and_shader_buffers, uint64_t *samplers_and_images)
3553 {
3554    unsigned start, num_shaderbufs, num_constbufs, num_images, num_msaa_images, num_samplers;
3555 
3556    num_shaderbufs = info->base.num_ssbos;
3557    num_constbufs = info->base.num_ubos;
3558    /* two 8-byte images share one 16-byte slot */
3559    num_images = align(info->base.num_images, 2);
3560    num_msaa_images = align(BITSET_LAST_BIT(info->base.msaa_images), 2);
3561    num_samplers = BITSET_LAST_BIT(info->base.textures_used);
3562 
3563    /* The layout is: sb[last] ... sb[0], cb[0] ... cb[last] */
3564    start = si_get_shaderbuf_slot(num_shaderbufs - 1);
3565    *const_and_shader_buffers = u_bit_consecutive64(start, num_shaderbufs + num_constbufs);
3566 
3567    /* The layout is:
3568     *   - fmask[last] ... fmask[0]     go to [15-last .. 15]
3569     *   - image[last] ... image[0]     go to [31-last .. 31]
3570     *   - sampler[0] ... sampler[last] go to [32 .. 32+last*2]
3571     *
3572     * FMASKs for images are placed separately, because MSAA images are rare,
3573     * and so we can benefit from a better cache hit rate if we keep image
3574     * descriptors together.
3575     */
3576    if (sscreen->info.gfx_level < GFX11 && num_msaa_images)
3577       num_images = SI_NUM_IMAGES + num_msaa_images; /* add FMASK descriptors */
3578 
3579    start = si_get_image_slot(num_images - 1) / 2;
3580    *samplers_and_images = u_bit_consecutive64(start, num_images / 2 + num_samplers);
3581 }
3582 
si_create_shader_selector(struct pipe_context * ctx,const struct pipe_shader_state * state)3583 static void *si_create_shader_selector(struct pipe_context *ctx,
3584                                        const struct pipe_shader_state *state)
3585 {
3586    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3587    struct si_context *sctx = (struct si_context *)ctx;
3588    struct si_shader_selector *sel = CALLOC_STRUCT(si_shader_selector);
3589 
3590    if (!sel)
3591       return NULL;
3592 
3593    sel->screen = sscreen;
3594    sel->compiler_ctx_state.debug = sctx->debug;
3595    sel->compiler_ctx_state.is_debug_context = sctx->is_debug;
3596    sel->variants_max_count = 2;
3597    sel->keys = (union si_shader_key *)
3598       realloc(NULL, sel->variants_max_count * sizeof(union si_shader_key));
3599    sel->variants = (struct si_shader **)
3600       realloc(NULL, sel->variants_max_count * sizeof(struct si_shader *));
3601 
3602    if (state->type == PIPE_SHADER_IR_TGSI) {
3603       sel->nir = tgsi_to_nir(state->tokens, ctx->screen, true);
3604    } else {
3605       assert(state->type == PIPE_SHADER_IR_NIR);
3606       sel->nir = (nir_shader*)state->ir.nir;
3607    }
3608 
3609    si_nir_scan_shader(sscreen, sel->nir, &sel->info, false);
3610 
3611    sel->stage = sel->nir->info.stage;
3612    sel->const_and_shader_buf_descriptors_index =
3613       si_const_and_shader_buffer_descriptors_idx(sel->stage);
3614    sel->sampler_and_images_descriptors_index =
3615       si_sampler_and_image_descriptors_idx(sel->stage);
3616 
3617    if (si_can_dump_shader(sscreen, sel->stage, SI_DUMP_INIT_NIR))
3618       nir_print_shader(sel->nir, stderr);
3619 
3620    p_atomic_inc(&sscreen->num_shaders_created);
3621    si_get_active_slot_masks(sscreen, &sel->info, &sel->active_const_and_shader_buffers,
3622                             &sel->active_samplers_and_images);
3623 
3624    switch (sel->stage) {
3625    case MESA_SHADER_GEOMETRY:
3626       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3627       sel->rast_prim = (enum mesa_prim)sel->nir->info.gs.output_primitive;
3628       if (util_rast_prim_is_triangles(sel->rast_prim))
3629          sel->rast_prim = MESA_PRIM_TRIANGLES;
3630 
3631       /* EN_MAX_VERT_OUT_PER_GS_INSTANCE does not work with tessellation so
3632        * we can't split workgroups. Disable ngg if any of the following conditions is true:
3633        * - num_invocations * gs.vertices_out > 256
3634        * - LDS usage is too high
3635        */
3636       sel->tess_turns_off_ngg = sscreen->info.gfx_level >= GFX10 &&
3637                                 sscreen->info.gfx_level <= GFX10_3 &&
3638                                 (sel->nir->info.gs.invocations * sel->nir->info.gs.vertices_out > 256 ||
3639                                  sel->nir->info.gs.invocations * sel->nir->info.gs.vertices_out *
3640                                  (sel->info.num_outputs * 4 + 1) > 6500 /* max dw per GS primitive */);
3641       break;
3642 
3643    case MESA_SHADER_VERTEX:
3644    case MESA_SHADER_TESS_EVAL:
3645       if (sel->stage == MESA_SHADER_TESS_EVAL) {
3646          if (sel->nir->info.tess.point_mode)
3647             sel->rast_prim = MESA_PRIM_POINTS;
3648          else if (sel->nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
3649             sel->rast_prim = MESA_PRIM_LINE_STRIP;
3650          else
3651             sel->rast_prim = MESA_PRIM_TRIANGLES;
3652       } else {
3653          sel->rast_prim = MESA_PRIM_TRIANGLES;
3654       }
3655       break;
3656    default:;
3657    }
3658 
3659    bool ngg_culling_allowed =
3660       sscreen->info.gfx_level >= GFX10 &&
3661       sscreen->use_ngg_culling &&
3662       sel->info.writes_position &&
3663       !sel->info.writes_viewport_index && /* cull only against viewport 0 */
3664       !sel->nir->info.writes_memory &&
3665       /* NGG GS supports culling with streamout because it culls after streamout. */
3666       (sel->stage == MESA_SHADER_GEOMETRY || !sel->info.enabled_streamout_buffer_mask) &&
3667       (sel->stage != MESA_SHADER_GEOMETRY || sel->info.num_stream_output_components[0]) &&
3668       (sel->stage != MESA_SHADER_VERTEX ||
3669        (!sel->nir->info.vs.blit_sgprs_amd &&
3670         !sel->nir->info.vs.window_space_position));
3671 
3672    sel->ngg_cull_vert_threshold = UINT_MAX; /* disabled (changed below) */
3673 
3674    if (ngg_culling_allowed) {
3675       if (sel->stage == MESA_SHADER_VERTEX) {
3676          if (sscreen->debug_flags & DBG(ALWAYS_NGG_CULLING_ALL))
3677             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3678          else
3679             sel->ngg_cull_vert_threshold = 128;
3680       } else if (sel->stage == MESA_SHADER_TESS_EVAL ||
3681                  sel->stage == MESA_SHADER_GEOMETRY) {
3682          if (sel->rast_prim != MESA_PRIM_POINTS)
3683             sel->ngg_cull_vert_threshold = 0; /* always enabled */
3684       }
3685    }
3686 
3687    (void)simple_mtx_init(&sel->mutex, mtx_plain);
3688 
3689    si_schedule_initial_compile(sctx, sel->stage, &sel->ready, &sel->compiler_ctx_state,
3690                                sel, si_init_shader_selector_async);
3691    return sel;
3692 }
3693 
si_create_shader(struct pipe_context * ctx,const struct pipe_shader_state * state)3694 static void *si_create_shader(struct pipe_context *ctx, const struct pipe_shader_state *state)
3695 {
3696    struct si_context *sctx = (struct si_context *)ctx;
3697    struct si_screen *sscreen = (struct si_screen *)ctx->screen;
3698    bool cache_hit;
3699    struct si_shader_selector *sel = (struct si_shader_selector *)util_live_shader_cache_get(
3700       ctx, &sscreen->live_shader_cache, state, &cache_hit);
3701 
3702    if (sel && cache_hit && sctx->debug.debug_message) {
3703       for (unsigned i = 0; i < 2; i++) {
3704          if (sel->main_shader_part[i])
3705             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part[i], &sctx->debug);
3706          if (sel->main_shader_part_ls[i])
3707             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ls[i], &sctx->debug);
3708          if (sel->main_shader_part_ngg[i])
3709             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg[i], &sctx->debug);
3710          if (sel->main_shader_part_ngg_es[i])
3711             si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_ngg_es[i], &sctx->debug);
3712       }
3713 
3714       if (sel->main_shader_part_es)
3715          si_shader_dump_stats_for_shader_db(sscreen, sel->main_shader_part_es, &sctx->debug);
3716    }
3717    return sel;
3718 }
3719 
si_update_streamout_state(struct si_context * sctx)3720 static void si_update_streamout_state(struct si_context *sctx)
3721 {
3722    struct si_shader_selector *shader_with_so = si_get_vs(sctx)->cso;
3723 
3724    if (!shader_with_so)
3725       return;
3726 
3727    sctx->streamout.enabled_stream_buffers_mask = shader_with_so->info.enabled_streamout_buffer_mask;
3728    sctx->streamout.stride_in_dw = shader_with_so->info.base.xfb_stride;
3729 
3730    /* GDS must be allocated when any GDS instructions are used, otherwise it hangs. */
3731    if (sctx->gfx_level >= GFX11 && sctx->gfx_level < GFX12 &&
3732        shader_with_so->info.enabled_streamout_buffer_mask && !sctx->screen->gds_oa) {
3733       /* Gfx11 only uses GDS OA, not GDS memory. */
3734       simple_mtx_lock(&sctx->screen->gds_mutex);
3735       if (!sctx->screen->gds_oa) {
3736          sctx->screen->gds_oa = sctx->ws->buffer_create(sctx->ws, 1, 1, RADEON_DOMAIN_OA,
3737                                                         RADEON_FLAG_DRIVER_INTERNAL);
3738          assert(sctx->screen->gds_oa);
3739       }
3740       simple_mtx_unlock(&sctx->screen->gds_mutex);
3741 
3742       if (sctx->screen->gds_oa)
3743          sctx->ws->cs_add_buffer(&sctx->gfx_cs, sctx->screen->gds_oa, RADEON_USAGE_READWRITE,
3744                                  (enum radeon_bo_domain)0);
3745    }
3746 }
3747 
si_update_clip_regs(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant,struct si_shader_selector * next_hw_vs,struct si_shader * next_hw_vs_variant)3748 static void si_update_clip_regs(struct si_context *sctx, struct si_shader_selector *old_hw_vs,
3749                                 struct si_shader *old_hw_vs_variant,
3750                                 struct si_shader_selector *next_hw_vs,
3751                                 struct si_shader *next_hw_vs_variant)
3752 {
3753    if (next_hw_vs &&
3754        (!old_hw_vs ||
3755         (old_hw_vs->stage == MESA_SHADER_VERTEX && old_hw_vs->info.base.vs.window_space_position) !=
3756         (next_hw_vs->stage == MESA_SHADER_VERTEX && next_hw_vs->info.base.vs.window_space_position) ||
3757         old_hw_vs->info.clipdist_mask != next_hw_vs->info.clipdist_mask ||
3758         old_hw_vs->info.culldist_mask != next_hw_vs->info.culldist_mask || !old_hw_vs_variant ||
3759         !next_hw_vs_variant ||
3760         old_hw_vs_variant->pa_cl_vs_out_cntl != next_hw_vs_variant->pa_cl_vs_out_cntl))
3761       si_mark_atom_dirty(sctx, &sctx->atoms.s.clip_regs);
3762 }
3763 
si_update_rasterized_prim(struct si_context * sctx)3764 static void si_update_rasterized_prim(struct si_context *sctx)
3765 {
3766    struct si_shader *hw_vs = si_get_vs(sctx)->current;
3767 
3768    if (sctx->shader.gs.cso) {
3769       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3770       si_set_rasterized_prim(sctx, sctx->shader.gs.cso->rast_prim, hw_vs, sctx->ngg);
3771    } else if (sctx->shader.tes.cso) {
3772       /* Only possibilities: POINTS, LINE_STRIP, TRIANGLES */
3773       si_set_rasterized_prim(sctx, sctx->shader.tes.cso->rast_prim, hw_vs, sctx->ngg);
3774    } else {
3775       /* The rasterized prim is determined by draw calls. */
3776    }
3777 
3778    /* This must be done unconditionally because it also depends on si_shader fields. */
3779    si_update_ngg_sgpr_state_out_prim(sctx, hw_vs, sctx->ngg);
3780 }
3781 
si_update_common_shader_state(struct si_context * sctx,struct si_shader_selector * sel,enum pipe_shader_type type)3782 static void si_update_common_shader_state(struct si_context *sctx, struct si_shader_selector *sel,
3783                                           enum pipe_shader_type type)
3784 {
3785    si_set_active_descriptors_for_shader(sctx, sel);
3786 
3787    sctx->uses_bindless_samplers = si_shader_uses_bindless_samplers(sctx->shader.vs.cso) ||
3788                                   si_shader_uses_bindless_samplers(sctx->shader.gs.cso) ||
3789                                   si_shader_uses_bindless_samplers(sctx->shader.ps.cso) ||
3790                                   si_shader_uses_bindless_samplers(sctx->shader.tcs.cso) ||
3791                                   si_shader_uses_bindless_samplers(sctx->shader.tes.cso);
3792    sctx->uses_bindless_images = si_shader_uses_bindless_images(sctx->shader.vs.cso) ||
3793                                 si_shader_uses_bindless_images(sctx->shader.gs.cso) ||
3794                                 si_shader_uses_bindless_images(sctx->shader.ps.cso) ||
3795                                 si_shader_uses_bindless_images(sctx->shader.tcs.cso) ||
3796                                 si_shader_uses_bindless_images(sctx->shader.tes.cso);
3797 
3798    if (type == PIPE_SHADER_VERTEX || type == PIPE_SHADER_TESS_EVAL || type == PIPE_SHADER_GEOMETRY)
3799       sctx->ngg_culling = 0; /* this will be enabled on the first draw if needed */
3800 
3801    si_invalidate_inlinable_uniforms(sctx, type);
3802    sctx->do_update_shaders = true;
3803 }
3804 
si_update_last_vgt_stage_state(struct si_context * sctx,struct si_shader_selector * old_hw_vs,struct si_shader * old_hw_vs_variant)3805 static void si_update_last_vgt_stage_state(struct si_context *sctx,
3806                                            /* hw_vs refers to the last VGT stage */
3807                                            struct si_shader_selector *old_hw_vs,
3808                                            struct si_shader *old_hw_vs_variant)
3809 {
3810    struct si_shader_ctx_state *hw_vs = si_get_vs(sctx);
3811 
3812    si_update_vs_viewport_state(sctx);
3813    si_update_streamout_state(sctx);
3814    si_update_clip_regs(sctx, old_hw_vs, old_hw_vs_variant, hw_vs->cso, hw_vs->current);
3815    si_update_rasterized_prim(sctx);
3816 
3817    /* Clear kill_pointsize because we only want it to be set in the last shader before PS. */
3818    sctx->shader.vs.key.ge.opt.kill_pointsize = 0;
3819    sctx->shader.tes.key.ge.opt.kill_pointsize = 0;
3820    sctx->shader.gs.key.ge.opt.kill_pointsize = 0;
3821    si_vs_ps_key_update_rast_prim_smooth_stipple(sctx);
3822 }
3823 
si_bind_vs_shader(struct pipe_context * ctx,void * state)3824 static void si_bind_vs_shader(struct pipe_context *ctx, void *state)
3825 {
3826    struct si_context *sctx = (struct si_context *)ctx;
3827    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3828    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3829    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3830 
3831    if (sctx->shader.vs.cso == sel)
3832       return;
3833 
3834    sctx->shader.vs.cso = sel;
3835    sctx->shader.vs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3836    sctx->num_vs_blit_sgprs = sel ? sel->info.base.vs.blit_sgprs_amd : 0;
3837    sctx->vs_uses_draw_id = sel ? sel->info.uses_drawid : false;
3838 
3839    if (si_update_ngg(sctx))
3840       si_shader_change_notify(sctx);
3841 
3842    si_update_common_shader_state(sctx, sel, PIPE_SHADER_VERTEX);
3843    si_select_draw_vbo(sctx);
3844    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3845    si_vs_key_update_inputs(sctx);
3846 
3847    if (sctx->screen->dpbb_allowed) {
3848       bool force_off = sel && sel->info.options & SI_PROFILE_VS_NO_BINNING;
3849 
3850       if (force_off != sctx->dpbb_force_off_profile_vs) {
3851          sctx->dpbb_force_off_profile_vs = force_off;
3852          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
3853       }
3854    }
3855 }
3856 
si_update_tess_uses_prim_id(struct si_context * sctx)3857 static void si_update_tess_uses_prim_id(struct si_context *sctx)
3858 {
3859    sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id =
3860       sctx->shader.tes.cso &&
3861       ((sctx->shader.tcs.cso && sctx->shader.tcs.cso->info.uses_primid) ||
3862        sctx->shader.tes.cso->info.uses_primid ||
3863        (sctx->shader.gs.cso && sctx->shader.gs.cso->info.uses_primid) ||
3864        (!sctx->shader.gs.cso && sctx->shader.ps.cso && sctx->shader.ps.cso->info.uses_primid));
3865 }
3866 
si_update_ngg(struct si_context * sctx)3867 bool si_update_ngg(struct si_context *sctx)
3868 {
3869    if (!sctx->screen->use_ngg) {
3870       assert(!sctx->ngg);
3871       return false;
3872    }
3873 
3874    bool new_ngg = true;
3875 
3876    if (sctx->shader.gs.cso && sctx->shader.tes.cso && sctx->shader.gs.cso->tess_turns_off_ngg) {
3877       new_ngg = false;
3878    } else if (sctx->gfx_level < GFX11) {
3879       struct si_shader_selector *last = si_get_vs(sctx)->cso;
3880 
3881       if ((last && last->info.enabled_streamout_buffer_mask) ||
3882           sctx->streamout.prims_gen_query_enabled)
3883          new_ngg = false;
3884    }
3885 
3886    if (new_ngg != sctx->ngg) {
3887       /* Transitioning from NGG to legacy GS requires VGT_FLUSH on Navi10-14.
3888        * VGT_FLUSH is also emitted at the beginning of IBs when legacy GS ring
3889        * pointers are set.
3890        */
3891       if (sctx->screen->info.has_vgt_flush_ngg_legacy_bug && !new_ngg) {
3892          sctx->barrier_flags |= SI_BARRIER_EVENT_VGT_FLUSH;
3893          si_mark_atom_dirty(sctx, &sctx->atoms.s.barrier);
3894 
3895          if (sctx->gfx_level == GFX10) {
3896             /* Workaround for https://gitlab.freedesktop.org/mesa/mesa/-/issues/2941 */
3897             si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
3898          }
3899       }
3900 
3901       sctx->ngg = new_ngg;
3902       si_select_draw_vbo(sctx);
3903       return true;
3904    }
3905    return false;
3906 }
3907 
si_bind_gs_shader(struct pipe_context * ctx,void * state)3908 static void si_bind_gs_shader(struct pipe_context *ctx, void *state)
3909 {
3910    struct si_context *sctx = (struct si_context *)ctx;
3911    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3912    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3913    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3914    bool enable_changed = !!sctx->shader.gs.cso != !!sel;
3915    bool ngg_changed;
3916 
3917    if (sctx->shader.gs.cso == sel)
3918       return;
3919 
3920    sctx->shader.gs.cso = sel;
3921    sctx->shader.gs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3922    sctx->ia_multi_vgt_param_key.u.uses_gs = sel != NULL;
3923 
3924    si_update_common_shader_state(sctx, sel, PIPE_SHADER_GEOMETRY);
3925    si_select_draw_vbo(sctx);
3926 
3927    ngg_changed = si_update_ngg(sctx);
3928    if (ngg_changed || enable_changed)
3929       si_shader_change_notify(sctx);
3930    if (enable_changed) {
3931       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
3932          si_update_tess_uses_prim_id(sctx);
3933    }
3934    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
3935 }
3936 
si_bind_tcs_shader(struct pipe_context * ctx,void * state)3937 static void si_bind_tcs_shader(struct pipe_context *ctx, void *state)
3938 {
3939    struct si_context *sctx = (struct si_context *)ctx;
3940    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3941    bool enable_changed = !!sctx->shader.tcs.cso != !!sel;
3942 
3943    /* Note it could happen that user shader sel is same as fixed function shader,
3944     * so we should update this field even sctx->shader.tcs.cso == sel.
3945     */
3946    sctx->is_user_tcs = !!sel;
3947 
3948    if (sctx->shader.tcs.cso == sel)
3949       return;
3950 
3951    sctx->shader.tcs.cso = sel;
3952    sctx->shader.tcs.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3953    si_update_tess_uses_prim_id(sctx);
3954    si_update_tess_in_out_patch_vertices(sctx);
3955 
3956    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_CTRL);
3957 
3958    if (enable_changed)
3959       sctx->last_tcs = NULL; /* invalidate derived tess state */
3960 }
3961 
si_bind_tes_shader(struct pipe_context * ctx,void * state)3962 static void si_bind_tes_shader(struct pipe_context *ctx, void *state)
3963 {
3964    struct si_context *sctx = (struct si_context *)ctx;
3965    struct si_shader_selector *old_hw_vs = si_get_vs(sctx)->cso;
3966    struct si_shader *old_hw_vs_variant = si_get_vs(sctx)->current;
3967    struct si_shader_selector *sel = (struct si_shader_selector*)state;
3968    bool enable_changed = !!sctx->shader.tes.cso != !!sel;
3969 
3970    if (sctx->shader.tes.cso == sel)
3971       return;
3972 
3973    sctx->shader.tes.cso = sel;
3974    sctx->shader.tes.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
3975    sctx->ia_multi_vgt_param_key.u.uses_tess = sel != NULL;
3976    si_update_tess_uses_prim_id(sctx);
3977 
3978    sctx->shader.tcs.key.ge.opt.tes_prim_mode =
3979       sel ? sel->info.base.tess._primitive_mode : 0;
3980 
3981    sctx->shader.tcs.key.ge.opt.tes_reads_tess_factors =
3982       sel ? sel->info.reads_tess_factors : 0;
3983 
3984    if (sel) {
3985       sctx->tcs_offchip_layout &= 0x1fffffff;
3986       sctx->tcs_offchip_layout |=
3987          (sel->info.base.tess._primitive_mode << 29) |
3988          (sel->info.reads_tess_factors << 31);
3989 
3990       si_mark_atom_dirty(sctx, &sctx->atoms.s.tess_io_layout);
3991    }
3992 
3993    si_update_common_shader_state(sctx, sel, PIPE_SHADER_TESS_EVAL);
3994    si_select_draw_vbo(sctx);
3995 
3996    bool ngg_changed = si_update_ngg(sctx);
3997    if (ngg_changed || enable_changed)
3998       si_shader_change_notify(sctx);
3999    if (enable_changed)
4000       sctx->last_tes_sh_base = -1; /* invalidate derived tess state */
4001    si_update_last_vgt_stage_state(sctx, old_hw_vs, old_hw_vs_variant);
4002 }
4003 
si_update_vrs_flat_shading(struct si_context * sctx)4004 void si_update_vrs_flat_shading(struct si_context *sctx)
4005 {
4006    if (sctx->gfx_level >= GFX10_3 && sctx->shader.ps.cso) {
4007       struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
4008       struct si_shader_info *info = &sctx->shader.ps.cso->info;
4009       bool allow_flat_shading =
4010          info->allow_flat_shading && !sctx->framebuffer.disable_vrs_flat_shading &&
4011          !rs->line_smooth && !rs->poly_smooth && !rs->poly_stipple_enable &&
4012          !rs->point_smooth && (rs->flatshade || !info->uses_interp_color);
4013 
4014       if (sctx->allow_flat_shading != allow_flat_shading) {
4015          sctx->allow_flat_shading = allow_flat_shading;
4016          si_mark_atom_dirty(sctx, &sctx->atoms.s.db_render_state);
4017       }
4018    }
4019 }
4020 
si_bind_ps_shader(struct pipe_context * ctx,void * state)4021 static void si_bind_ps_shader(struct pipe_context *ctx, void *state)
4022 {
4023    struct si_context *sctx = (struct si_context *)ctx;
4024    struct si_shader_selector *old_sel = sctx->shader.ps.cso;
4025    struct si_shader_selector *sel = (struct si_shader_selector*)state;
4026 
4027    /* skip if supplied shader is one already in use */
4028    if (old_sel == sel)
4029       return;
4030 
4031    sctx->shader.ps.cso = sel;
4032    sctx->shader.ps.current = (sel && sel->variants_count) ? sel->variants[0] : NULL;
4033 
4034    si_update_common_shader_state(sctx, sel, PIPE_SHADER_FRAGMENT);
4035    if (sel) {
4036       if (sctx->ia_multi_vgt_param_key.u.uses_tess)
4037          si_update_tess_uses_prim_id(sctx);
4038 
4039       if (!old_sel || old_sel->info.colors_written != sel->info.colors_written)
4040          si_mark_atom_dirty(sctx, &sctx->atoms.s.cb_render_state);
4041 
4042       if (sctx->screen->info.has_out_of_order_rast &&
4043           (!old_sel || old_sel->info.base.writes_memory != sel->info.base.writes_memory ||
4044            old_sel->info.base.fs.early_fragment_tests !=
4045               sel->info.base.fs.early_fragment_tests))
4046          si_mark_atom_dirty(sctx, &sctx->atoms.s.msaa_config);
4047    }
4048    si_update_ps_colorbuf0_slot(sctx);
4049 
4050    si_ps_key_update_framebuffer(sctx);
4051    si_ps_key_update_framebuffer_blend_dsa_rasterizer(sctx);
4052    si_ps_key_update_rasterizer(sctx);
4053    si_ps_key_update_dsa(sctx);
4054    si_ps_key_update_sample_shading(sctx);
4055    si_ps_key_update_framebuffer_rasterizer_sample_shading(sctx);
4056    si_update_ps_inputs_read_or_disabled(sctx);
4057    si_update_vrs_flat_shading(sctx);
4058 
4059    if (sctx->screen->dpbb_allowed) {
4060       bool force_off = sel && sel->info.options & SI_PROFILE_GFX9_GFX10_PS_NO_BINNING &&
4061                        (sctx->gfx_level >= GFX9 && sctx->gfx_level <= GFX10_3);
4062 
4063       if (force_off != sctx->dpbb_force_off_profile_ps) {
4064          sctx->dpbb_force_off_profile_ps = force_off;
4065          si_mark_atom_dirty(sctx, &sctx->atoms.s.dpbb_state);
4066       }
4067    }
4068 }
4069 
si_delete_shader(struct si_context * sctx,struct si_shader * shader)4070 static void si_delete_shader(struct si_context *sctx, struct si_shader *shader)
4071 {
4072    if (shader->is_optimized) {
4073       util_queue_drop_job(&sctx->screen->shader_compiler_queue_opt_variants, &shader->ready);
4074    }
4075 
4076    util_queue_fence_destroy(&shader->ready);
4077 
4078    /* If destroyed shaders were not unbound, the next compiled
4079     * shader variant could get the same pointer address and so
4080     * binding it to the same shader stage would be considered
4081     * a no-op, causing random behavior.
4082     */
4083    int state_index = -1;
4084 
4085    switch (shader->selector->stage) {
4086    case MESA_SHADER_VERTEX:
4087       if (shader->key.ge.as_ls) {
4088          if (sctx->gfx_level <= GFX8)
4089             state_index = SI_STATE_IDX(ls);
4090       } else if (shader->key.ge.as_es) {
4091          if (sctx->gfx_level <= GFX8)
4092             state_index = SI_STATE_IDX(es);
4093       } else if (shader->key.ge.as_ngg) {
4094          state_index = SI_STATE_IDX(gs);
4095       } else {
4096          state_index = SI_STATE_IDX(vs);
4097       }
4098       break;
4099    case MESA_SHADER_TESS_CTRL:
4100       state_index = SI_STATE_IDX(hs);
4101       break;
4102    case MESA_SHADER_TESS_EVAL:
4103       if (shader->key.ge.as_es) {
4104          if (sctx->gfx_level <= GFX8)
4105             state_index = SI_STATE_IDX(es);
4106       } else if (shader->key.ge.as_ngg) {
4107          state_index = SI_STATE_IDX(gs);
4108       } else {
4109          state_index = SI_STATE_IDX(vs);
4110       }
4111       break;
4112    case MESA_SHADER_GEOMETRY:
4113       if (shader->is_gs_copy_shader)
4114          state_index = SI_STATE_IDX(vs);
4115       else
4116          state_index = SI_STATE_IDX(gs);
4117       break;
4118    case MESA_SHADER_FRAGMENT:
4119       state_index = SI_STATE_IDX(ps);
4120       break;
4121    default:;
4122    }
4123 
4124    if (shader->gs_copy_shader)
4125       si_delete_shader(sctx, shader->gs_copy_shader);
4126 
4127    si_shader_selector_reference(sctx, &shader->previous_stage_sel, NULL);
4128    si_shader_destroy(shader);
4129    si_pm4_free_state(sctx, &shader->pm4, state_index);
4130 }
4131 
si_destroy_shader_selector(struct pipe_context * ctx,void * cso)4132 static void si_destroy_shader_selector(struct pipe_context *ctx, void *cso)
4133 {
4134    struct si_context *sctx = (struct si_context *)ctx;
4135    struct si_shader_selector *sel = (struct si_shader_selector *)cso;
4136 
4137    util_queue_drop_job(&sctx->screen->shader_compiler_queue, &sel->ready);
4138 
4139    if (sctx->shaders[sel->stage].cso == sel) {
4140       sctx->shaders[sel->stage].cso = NULL;
4141       sctx->shaders[sel->stage].current = NULL;
4142    }
4143 
4144    for (unsigned i = 0; i < sel->variants_count; i++) {
4145       si_delete_shader(sctx, sel->variants[i]);
4146    }
4147 
4148    for (unsigned i = 0; i < 2; i++) {
4149       if (sel->main_shader_part[i])
4150          si_delete_shader(sctx, sel->main_shader_part[i]);
4151       if (sel->main_shader_part_ls[i])
4152          si_delete_shader(sctx, sel->main_shader_part_ls[i]);
4153       if (sel->main_shader_part_ngg[i])
4154          si_delete_shader(sctx, sel->main_shader_part_ngg[i]);
4155       if (sel->main_shader_part_ngg_es[i])
4156          si_delete_shader(sctx, sel->main_shader_part_ngg_es[i]);
4157    }
4158 
4159    if (sel->main_shader_part_es)
4160       si_delete_shader(sctx, sel->main_shader_part_es);
4161 
4162    free(sel->keys);
4163    free(sel->variants);
4164 
4165    util_queue_fence_destroy(&sel->ready);
4166    simple_mtx_destroy(&sel->mutex);
4167    ralloc_free(sel->nir);
4168    free(sel->nir_binary);
4169    free(sel);
4170 }
4171 
si_delete_shader_selector(struct pipe_context * ctx,void * state)4172 static void si_delete_shader_selector(struct pipe_context *ctx, void *state)
4173 {
4174    struct si_context *sctx = (struct si_context *)ctx;
4175    struct si_shader_selector *sel = (struct si_shader_selector *)state;
4176 
4177    si_shader_selector_reference(sctx, &sel, NULL);
4178 }
4179 
4180 /**
4181  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
4182  */
si_cs_preamble_add_vgt_flush(struct si_context * sctx,bool tmz)4183 static void si_cs_preamble_add_vgt_flush(struct si_context *sctx, bool tmz)
4184 {
4185    struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4186    bool *has_vgt_flush = tmz ? &sctx->cs_preamble_has_vgt_flush_tmz :
4187                                &sctx->cs_preamble_has_vgt_flush;
4188 
4189    /* We shouldn't get here if registers are shadowed. */
4190    assert(!sctx->shadowing.registers);
4191 
4192    if (*has_vgt_flush)
4193       return;
4194 
4195    /* Done by Vulkan before VGT_FLUSH. */
4196    ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
4197    ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
4198 
4199    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
4200    ac_pm4_cmd_add(&pm4->base, PKT3(PKT3_EVENT_WRITE, 0, 0));
4201    ac_pm4_cmd_add(&pm4->base, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
4202    ac_pm4_finalize(&pm4->base);
4203 
4204    *has_vgt_flush = true;
4205 }
4206 
4207 /**
4208  * Writing CONFIG or UCONFIG VGT registers requires VGT_FLUSH before that.
4209  */
si_emit_vgt_flush(struct radeon_cmdbuf * cs)4210 static void si_emit_vgt_flush(struct radeon_cmdbuf *cs)
4211 {
4212    radeon_begin(cs);
4213 
4214    /* This is required before VGT_FLUSH. */
4215    radeon_event_write(V_028A90_VS_PARTIAL_FLUSH);
4216 
4217    /* VGT_FLUSH is required even if VGT is idle. It resets VGT pointers. */
4218    radeon_event_write(V_028A90_VGT_FLUSH);
4219    radeon_end();
4220 }
4221 
4222 /* Initialize state related to ESGS / GSVS ring buffers */
si_update_gs_ring_buffers(struct si_context * sctx)4223 bool si_update_gs_ring_buffers(struct si_context *sctx)
4224 {
4225    assert(sctx->gfx_level < GFX11);
4226 
4227    struct si_shader_selector *es =
4228       sctx->shader.tes.cso ? sctx->shader.tes.cso : sctx->shader.vs.cso;
4229    struct si_shader_selector *gs = sctx->shader.gs.cso;
4230 
4231    /* Chip constants. */
4232    unsigned num_se = sctx->screen->info.max_se;
4233    unsigned wave_size = 64;
4234    unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */
4235    /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16.
4236     * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2).
4237     */
4238    unsigned gs_vertex_reuse = (sctx->gfx_level >= GFX8 ? 32 : 16) * num_se;
4239    unsigned alignment = 256 * num_se;
4240    /* The maximum size is 63.999 MB per SE. */
4241    unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se;
4242 
4243    /* Calculate the minimum size. */
4244    unsigned min_esgs_ring_size = align(es->info.esgs_vertex_stride * gs_vertex_reuse * wave_size, alignment);
4245 
4246    /* These are recommended sizes, not minimum sizes. */
4247    unsigned esgs_ring_size =
4248       max_gs_waves * 2 * wave_size * es->info.esgs_vertex_stride * gs->info.gs_input_verts_per_prim;
4249    unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs->info.max_gsvs_emit_size;
4250 
4251    min_esgs_ring_size = align(min_esgs_ring_size, alignment);
4252    esgs_ring_size = align(esgs_ring_size, alignment);
4253    gsvs_ring_size = align(gsvs_ring_size, alignment);
4254 
4255    esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size);
4256    gsvs_ring_size = MIN2(gsvs_ring_size, max_size);
4257 
4258    /* Some rings don't have to be allocated if shaders don't use them.
4259     * (e.g. no varyings between ES and GS or GS and VS)
4260     *
4261     * GFX9 doesn't have the ESGS ring.
4262     */
4263    bool update_esgs = sctx->gfx_level <= GFX8 && esgs_ring_size &&
4264                       (!sctx->esgs_ring || sctx->esgs_ring->width0 < esgs_ring_size);
4265    bool update_gsvs =
4266       gsvs_ring_size && (!sctx->gsvs_ring || sctx->gsvs_ring->width0 < gsvs_ring_size);
4267 
4268    if (!update_esgs && !update_gsvs)
4269       return true;
4270 
4271    if (update_esgs) {
4272       pipe_resource_reference(&sctx->esgs_ring, NULL);
4273       sctx->esgs_ring =
4274          pipe_aligned_buffer_create(sctx->b.screen,
4275                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4276                                     SI_RESOURCE_FLAG_DISCARDABLE,
4277                                     PIPE_USAGE_DEFAULT,
4278                                     esgs_ring_size, sctx->screen->info.pte_fragment_size);
4279       if (!sctx->esgs_ring)
4280          return false;
4281    }
4282 
4283    if (update_gsvs) {
4284       pipe_resource_reference(&sctx->gsvs_ring, NULL);
4285       sctx->gsvs_ring =
4286          pipe_aligned_buffer_create(sctx->b.screen,
4287                                     PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4288                                     SI_RESOURCE_FLAG_DISCARDABLE,
4289                                     PIPE_USAGE_DEFAULT,
4290                                     gsvs_ring_size, sctx->screen->info.pte_fragment_size);
4291       if (!sctx->gsvs_ring)
4292          return false;
4293    }
4294 
4295    /* Set ring bindings. */
4296    if (sctx->esgs_ring) {
4297       assert(sctx->gfx_level <= GFX8);
4298       si_set_ring_buffer(sctx, SI_RING_ESGS, sctx->esgs_ring, 0, sctx->esgs_ring->width0, false,
4299                          false, 0, 0, 0);
4300    }
4301    if (sctx->gsvs_ring) {
4302       si_set_ring_buffer(sctx, SI_RING_GSVS, sctx->gsvs_ring, 0, sctx->gsvs_ring->width0, false,
4303                          false, 0, 0, 0);
4304    }
4305 
4306    if (sctx->shadowing.registers) {
4307       /* These registers will be shadowed, so set them only once. */
4308       struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4309 
4310       assert(sctx->gfx_level >= GFX7);
4311 
4312       si_emit_vgt_flush(cs);
4313 
4314       radeon_begin(cs);
4315 
4316       /* Set the GS registers. */
4317       if (sctx->esgs_ring) {
4318          assert(sctx->gfx_level <= GFX8);
4319          radeon_set_uconfig_reg(R_030900_VGT_ESGS_RING_SIZE,
4320                                 sctx->esgs_ring->width0 / 256);
4321       }
4322       if (sctx->gsvs_ring) {
4323          radeon_set_uconfig_reg(R_030904_VGT_GSVS_RING_SIZE,
4324                                 sctx->gsvs_ring->width0 / 256);
4325       }
4326       radeon_end();
4327       return true;
4328    }
4329 
4330    /* The codepath without register shadowing. */
4331    for (unsigned tmz = 0; tmz <= 1; tmz++) {
4332       struct si_pm4_state *pm4 = tmz ? sctx->cs_preamble_state_tmz : sctx->cs_preamble_state;
4333       uint16_t *gs_ring_state_dw_offset = tmz ? &sctx->gs_ring_state_dw_offset_tmz :
4334                                                 &sctx->gs_ring_state_dw_offset;
4335       unsigned old_ndw = 0;
4336 
4337       si_cs_preamble_add_vgt_flush(sctx, tmz);
4338 
4339       if (!*gs_ring_state_dw_offset) {
4340          /* We are here for the first time. The packets will be added. */
4341          *gs_ring_state_dw_offset = pm4->base.ndw;
4342       } else {
4343          /* We have been here before. Overwrite the previous packets. */
4344          old_ndw = pm4->base.ndw;
4345          pm4->base.ndw = *gs_ring_state_dw_offset;
4346       }
4347 
4348       /* Unallocated rings are written to reserve the space in the pm4
4349        * (to be able to overwrite them later). */
4350       if (sctx->gfx_level >= GFX7) {
4351          if (sctx->gfx_level <= GFX8)
4352             ac_pm4_set_reg(&pm4->base, R_030900_VGT_ESGS_RING_SIZE,
4353                            sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4354          ac_pm4_set_reg(&pm4->base, R_030904_VGT_GSVS_RING_SIZE,
4355                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4356       } else {
4357          ac_pm4_set_reg(&pm4->base, R_0088C8_VGT_ESGS_RING_SIZE,
4358                         sctx->esgs_ring ? sctx->esgs_ring->width0 / 256 : 0);
4359          ac_pm4_set_reg(&pm4->base, R_0088CC_VGT_GSVS_RING_SIZE,
4360                         sctx->gsvs_ring ? sctx->gsvs_ring->width0 / 256 : 0);
4361       }
4362       ac_pm4_finalize(&pm4->base);
4363 
4364       if (old_ndw) {
4365          pm4->base.ndw = old_ndw;
4366          pm4->base.last_opcode = 255; /* invalid opcode (we don't save the last opcode) */
4367       }
4368    }
4369 
4370    /* Flush the context to re-emit both cs_preamble states. */
4371    sctx->initial_gfx_cs_size = 0; /* force flush */
4372    si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
4373 
4374    return true;
4375 }
4376 
si_shader_lock(struct si_shader * shader)4377 static void si_shader_lock(struct si_shader *shader)
4378 {
4379    simple_mtx_lock(&shader->selector->mutex);
4380    if (shader->previous_stage_sel) {
4381       assert(shader->previous_stage_sel != shader->selector);
4382       simple_mtx_lock(&shader->previous_stage_sel->mutex);
4383    }
4384 }
4385 
si_shader_unlock(struct si_shader * shader)4386 static void si_shader_unlock(struct si_shader *shader)
4387 {
4388    if (shader->previous_stage_sel)
4389       simple_mtx_unlock(&shader->previous_stage_sel->mutex);
4390    simple_mtx_unlock(&shader->selector->mutex);
4391 }
4392 
4393 /**
4394  * @returns 1 if \p sel has been updated to use a new scratch buffer
4395  *          0 if not
4396  *          < 0 if there was a failure
4397  */
si_update_scratch_buffer(struct si_context * sctx,struct si_shader * shader)4398 static int si_update_scratch_buffer(struct si_context *sctx, struct si_shader *shader)
4399 {
4400    uint64_t scratch_va = sctx->scratch_buffer->gpu_address;
4401 
4402    if (!shader)
4403       return 0;
4404 
4405    /* This shader doesn't need a scratch buffer */
4406    if (shader->config.scratch_bytes_per_wave == 0)
4407       return 0;
4408 
4409    /* Prevent race conditions when updating:
4410     * - si_shader::scratch_va
4411     * - si_shader::binary::code
4412     * - si_shader::previous_stage::binary::code.
4413     */
4414    si_shader_lock(shader);
4415 
4416    /* This shader is already configured to use the current
4417     * scratch buffer. */
4418    if (shader->scratch_va == scratch_va) {
4419       si_shader_unlock(shader);
4420       return 0;
4421    }
4422 
4423    assert(sctx->scratch_buffer);
4424 
4425    /* Replace the shader bo with a new bo that has the relocs applied. */
4426    if (!si_shader_binary_upload(sctx->screen, shader, scratch_va)) {
4427       si_shader_unlock(shader);
4428       return -1;
4429    }
4430 
4431    /* Update the shader state to use the new shader bo. */
4432    si_shader_init_pm4_state(sctx->screen, shader);
4433    shader->scratch_va = scratch_va;
4434 
4435    si_shader_unlock(shader);
4436    return 1;
4437 }
4438 
si_update_scratch_relocs(struct si_context * sctx)4439 static bool si_update_scratch_relocs(struct si_context *sctx)
4440 {
4441    int r;
4442 
4443    /* Update the shaders, so that they are using the latest scratch.
4444     * The scratch buffer may have been changed since these shaders were
4445     * last used, so we still need to try to update them, even if they
4446     * require scratch buffers smaller than the current size.
4447     */
4448    r = si_update_scratch_buffer(sctx, sctx->shader.ps.current);
4449    if (r < 0)
4450       return false;
4451    if (r == 1)
4452       si_pm4_bind_state(sctx, ps, sctx->shader.ps.current);
4453 
4454    r = si_update_scratch_buffer(sctx, sctx->shader.gs.current);
4455    if (r < 0)
4456       return false;
4457    if (r == 1)
4458       si_pm4_bind_state(sctx, gs, sctx->shader.gs.current);
4459 
4460    r = si_update_scratch_buffer(sctx, sctx->shader.tcs.current);
4461    if (r < 0)
4462       return false;
4463    if (r == 1)
4464       si_pm4_bind_state(sctx, hs, sctx->shader.tcs.current);
4465 
4466    /* VS can be bound as LS, ES, or VS. */
4467    r = si_update_scratch_buffer(sctx, sctx->shader.vs.current);
4468    if (r < 0)
4469       return false;
4470    if (r == 1) {
4471       if (sctx->shader.vs.current->key.ge.as_ls)
4472          si_pm4_bind_state(sctx, ls, sctx->shader.vs.current);
4473       else if (sctx->shader.vs.current->key.ge.as_es)
4474          si_pm4_bind_state(sctx, es, sctx->shader.vs.current);
4475       else if (sctx->shader.vs.current->key.ge.as_ngg)
4476          si_pm4_bind_state(sctx, gs, sctx->shader.vs.current);
4477       else
4478          si_pm4_bind_state(sctx, vs, sctx->shader.vs.current);
4479    }
4480 
4481    /* TES can be bound as ES or VS. */
4482    r = si_update_scratch_buffer(sctx, sctx->shader.tes.current);
4483    if (r < 0)
4484       return false;
4485    if (r == 1) {
4486       if (sctx->shader.tes.current->key.ge.as_es)
4487          si_pm4_bind_state(sctx, es, sctx->shader.tes.current);
4488       else if (sctx->shader.tes.current->key.ge.as_ngg)
4489          si_pm4_bind_state(sctx, gs, sctx->shader.tes.current);
4490       else
4491          si_pm4_bind_state(sctx, vs, sctx->shader.tes.current);
4492    }
4493 
4494    return true;
4495 }
4496 
si_update_spi_tmpring_size(struct si_context * sctx,unsigned bytes)4497 bool si_update_spi_tmpring_size(struct si_context *sctx, unsigned bytes)
4498 {
4499    unsigned spi_tmpring_size;
4500    ac_get_scratch_tmpring_size(&sctx->screen->info, bytes,
4501                                &sctx->max_seen_scratch_bytes_per_wave, &spi_tmpring_size);
4502 
4503    unsigned scratch_needed_size = sctx->max_seen_scratch_bytes_per_wave *
4504                                   sctx->screen->info.max_scratch_waves;
4505 
4506    if (scratch_needed_size > 0) {
4507       if (!sctx->scratch_buffer || scratch_needed_size > sctx->scratch_buffer->b.b.width0) {
4508          /* Create a bigger scratch buffer */
4509          si_resource_reference(&sctx->scratch_buffer, NULL);
4510 
4511          sctx->scratch_buffer = si_aligned_buffer_create(
4512             &sctx->screen->b,
4513             PIPE_RESOURCE_FLAG_UNMAPPABLE | SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4514             SI_RESOURCE_FLAG_DISCARDABLE,
4515             PIPE_USAGE_DEFAULT, scratch_needed_size,
4516             sctx->screen->info.pte_fragment_size);
4517          if (!sctx->scratch_buffer)
4518             return false;
4519       }
4520 
4521       if (!sctx->screen->info.has_scratch_base_registers && !si_update_scratch_relocs(sctx))
4522          return false;
4523    }
4524 
4525    if (spi_tmpring_size != sctx->spi_tmpring_size) {
4526       sctx->spi_tmpring_size = spi_tmpring_size;
4527       si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state);
4528    }
4529    return true;
4530 }
4531 
si_init_tess_factor_ring(struct si_context * sctx)4532 void si_init_tess_factor_ring(struct si_context *sctx)
4533 {
4534    struct si_screen *sscreen = sctx->screen;
4535    assert(!sctx->has_tessellation);
4536 
4537    if (sctx->has_tessellation)
4538       return;
4539 
4540    simple_mtx_lock(&sscreen->tess_ring_lock);
4541 
4542    if (!sscreen->tess_rings) {
4543       /* The address must be aligned to 2^19, because the shader only
4544        * receives the high 13 bits. Align it to 2MB to match the GPU page size.
4545        */
4546       sscreen->tess_rings = pipe_aligned_buffer_create(sctx->b.screen,
4547                                                        PIPE_RESOURCE_FLAG_UNMAPPABLE |
4548                                                        SI_RESOURCE_FLAG_32BIT |
4549                                                        SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4550                                                        SI_RESOURCE_FLAG_DISCARDABLE,
4551                                                        PIPE_USAGE_DEFAULT,
4552                                                        sscreen->hs.tess_offchip_ring_size +
4553                                                        sscreen->hs.tess_factor_ring_size,
4554                                                        2 * 1024 * 1024);
4555       if (!sscreen->tess_rings) {
4556          simple_mtx_unlock(&sscreen->tess_ring_lock);
4557          return;
4558       }
4559 
4560       if (sscreen->info.has_tmz_support) {
4561          sscreen->tess_rings_tmz = pipe_aligned_buffer_create(sctx->b.screen,
4562                                                               PIPE_RESOURCE_FLAG_UNMAPPABLE |
4563                                                               PIPE_RESOURCE_FLAG_ENCRYPTED |
4564                                                               SI_RESOURCE_FLAG_32BIT |
4565                                                               SI_RESOURCE_FLAG_DRIVER_INTERNAL |
4566                                                               SI_RESOURCE_FLAG_DISCARDABLE,
4567                                                               PIPE_USAGE_DEFAULT,
4568                                                               sscreen->hs.tess_offchip_ring_size +
4569                                                               sscreen->hs.tess_factor_ring_size,
4570                                                               2 * 1024 * 1024);
4571       }
4572    }
4573 
4574    simple_mtx_unlock(&sscreen->tess_ring_lock);
4575    sctx->has_tessellation = true;
4576 
4577    si_mark_atom_dirty(sctx, &sctx->atoms.s.spi_ge_ring_state);
4578 }
4579 
si_emit_vgt_pipeline_state(struct si_context * sctx,unsigned index)4580 static void si_emit_vgt_pipeline_state(struct si_context *sctx, unsigned index)
4581 {
4582    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4583 
4584    radeon_begin(cs);
4585    radeon_opt_set_context_reg(sctx->gfx_level >= GFX12 ?
4586                                  R_028A98_VGT_SHADER_STAGES_EN :
4587                                  R_028B54_VGT_SHADER_STAGES_EN,
4588                               SI_TRACKED_VGT_SHADER_STAGES_EN, sctx->vgt_shader_stages_en);
4589    if (sctx->gfx_level == GFX10_3) {
4590       /* Legacy Tess+GS should disable reuse to prevent hangs on GFX10.3. */
4591       bool has_legacy_tess_gs = G_028B54_HS_EN(sctx->vgt_shader_stages_en) &&
4592                                 G_028B54_GS_EN(sctx->vgt_shader_stages_en) &&
4593                                 !G_028B54_PRIMGEN_EN(sctx->vgt_shader_stages_en); /* !NGG */
4594 
4595       radeon_opt_set_context_reg(R_028AB4_VGT_REUSE_OFF, SI_TRACKED_VGT_REUSE_OFF,
4596                                  S_028AB4_REUSE_OFF(has_legacy_tess_gs));
4597    }
4598    radeon_end_update_context_roll();
4599 
4600    if (sctx->gfx_level >= GFX10) {
4601       uint32_t ge_cntl = sctx->ge_cntl;
4602 
4603       if (sctx->gfx_level < GFX11 && sctx->shader.tes.cso) {
4604          /* This must be a multiple of VGT_LS_HS_CONFIG.NUM_PATCHES. */
4605          ge_cntl |= S_03096C_PRIM_GRP_SIZE_GFX10(sctx->num_patches_per_workgroup);
4606       }
4607 
4608       radeon_begin_again(cs);
4609       radeon_opt_set_uconfig_reg(R_03096C_GE_CNTL, SI_TRACKED_GE_CNTL, ge_cntl);
4610       radeon_end();
4611    }
4612 }
4613 
si_emit_scratch_state(struct si_context * sctx,unsigned index)4614 static void si_emit_scratch_state(struct si_context *sctx, unsigned index)
4615 {
4616    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4617 
4618    radeon_begin(cs);
4619    if (sctx->gfx_level >= GFX11) {
4620       radeon_set_context_reg_seq(R_0286E8_SPI_TMPRING_SIZE, 3);
4621       radeon_emit(sctx->spi_tmpring_size);                  /* SPI_TMPRING_SIZE */
4622       radeon_emit(sctx->scratch_buffer->gpu_address >> 8);  /* SPI_GFX_SCRATCH_BASE_LO */
4623       radeon_emit(sctx->scratch_buffer->gpu_address >> 40); /* SPI_GFX_SCRATCH_BASE_HI */
4624    } else {
4625       radeon_set_context_reg(R_0286E8_SPI_TMPRING_SIZE, sctx->spi_tmpring_size);
4626    }
4627    radeon_end();
4628 
4629    if (sctx->scratch_buffer) {
4630       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, sctx->scratch_buffer,
4631                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SCRATCH_BUFFER);
4632    }
4633 }
4634 
4635 struct si_fixed_func_tcs_shader_key {
4636    uint64_t outputs_written;
4637    uint8_t vertices_out;
4638 };
4639 
4640 DERIVE_HASH_TABLE(si_fixed_func_tcs_shader_key);
4641 
si_set_tcs_to_fixed_func_shader(struct si_context * sctx)4642 bool si_set_tcs_to_fixed_func_shader(struct si_context *sctx)
4643 {
4644    if (!sctx->fixed_func_tcs_shader_cache) {
4645       sctx->fixed_func_tcs_shader_cache = si_fixed_func_tcs_shader_key_table_create(NULL);
4646    }
4647 
4648    struct si_fixed_func_tcs_shader_key key;
4649    key.outputs_written = sctx->shader.vs.cso->info.ls_es_outputs_written;
4650    key.vertices_out = sctx->patch_vertices;
4651 
4652    struct hash_entry *entry = _mesa_hash_table_search(
4653       sctx->fixed_func_tcs_shader_cache, &key);
4654 
4655    struct si_shader_selector *tcs;
4656    if (entry)
4657       tcs = (struct si_shader_selector *)entry->data;
4658    else {
4659       tcs = (struct si_shader_selector *)si_create_passthrough_tcs(sctx);
4660       if (!tcs)
4661          return false;
4662       _mesa_hash_table_insert(sctx->fixed_func_tcs_shader_cache, &key, (void *)tcs);
4663    }
4664 
4665    sctx->shader.tcs.cso = tcs;
4666    return true;
4667 }
4668 
si_update_tess_in_out_patch_vertices(struct si_context * sctx)4669 static void si_update_tess_in_out_patch_vertices(struct si_context *sctx)
4670 {
4671    if (sctx->is_user_tcs) {
4672       struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4673 
4674       bool same_patch_vertices =
4675          sctx->gfx_level >= GFX9 &&
4676          sctx->patch_vertices == tcs->info.base.tess.tcs_vertices_out;
4677 
4678       if (sctx->shader.tcs.key.ge.opt.same_patch_vertices != same_patch_vertices) {
4679          sctx->shader.tcs.key.ge.opt.same_patch_vertices = same_patch_vertices;
4680          sctx->do_update_shaders = true;
4681       }
4682    } else {
4683       /* These fields are static for fixed function TCS. So no need to set
4684        * do_update_shaders between fixed-TCS draws. As fixed-TCS to user-TCS
4685        * or opposite, do_update_shaders should already be set by bind state.
4686        */
4687       sctx->shader.tcs.key.ge.opt.same_patch_vertices = sctx->gfx_level >= GFX9;
4688 
4689       /* User may only change patch vertices, needs to update fixed func TCS. */
4690       if (sctx->shader.tcs.cso &&
4691           sctx->shader.tcs.cso->info.base.tess.tcs_vertices_out != sctx->patch_vertices)
4692          sctx->do_update_shaders = true;
4693    }
4694 }
4695 
si_set_patch_vertices(struct pipe_context * ctx,uint8_t patch_vertices)4696 static void si_set_patch_vertices(struct pipe_context *ctx, uint8_t patch_vertices)
4697 {
4698    struct si_context *sctx = (struct si_context *)ctx;
4699 
4700    if (sctx->patch_vertices != patch_vertices) {
4701       sctx->patch_vertices = patch_vertices;
4702       si_update_tess_in_out_patch_vertices(sctx);
4703       if (sctx->shader.tcs.current) {
4704          /* Update the io layout now if possible,
4705           * otherwise make sure it's done by si_update_shaders.
4706           */
4707          if (sctx->has_tessellation)
4708             si_update_tess_io_layout_state(sctx);
4709          else
4710             sctx->do_update_shaders = true;
4711       }
4712 
4713       /* Gfx12 programs patch_vertices in VGT_PRIMITIVE_TYPE.NUM_INPUT_CP. Make sure
4714        * the register is updated.
4715        */
4716       if (sctx->gfx_level >= GFX12 && sctx->last_prim == MESA_PRIM_PATCHES)
4717          sctx->last_prim = -1;
4718    }
4719 }
4720 
si_shader_lshs_vertex_stride(struct si_shader * ls)4721 unsigned si_shader_lshs_vertex_stride(struct si_shader *ls)
4722 {
4723    unsigned num_slots;
4724 
4725    if (ls->selector->stage == MESA_SHADER_VERTEX && !ls->next_shader) {
4726       assert(ls->key.ge.as_ls);
4727       assert(ls->selector->screen->info.gfx_level <= GFX8 || !ls->is_monolithic);
4728       num_slots = util_last_bit64(ls->selector->info.ls_es_outputs_written);
4729    } else {
4730       struct si_shader *tcs = ls->next_shader ? ls->next_shader : ls;
4731 
4732       assert(tcs->selector->stage == MESA_SHADER_TESS_CTRL);
4733       assert(tcs->selector->screen->info.gfx_level >= GFX9);
4734 
4735       if (tcs->is_monolithic) {
4736          uint64_t lds_inputs_read = tcs->selector->info.tcs_inputs_via_lds;
4737 
4738          /* If the TCS in/out number of vertices is different, all inputs are passed via LDS. */
4739          if (!tcs->key.ge.opt.same_patch_vertices)
4740             lds_inputs_read |= tcs->selector->info.tcs_inputs_via_temp;
4741 
4742          /* NIR lowering passes pack LS outputs/HS inputs if the usage masks of both are known. */
4743          num_slots = util_bitcount64(lds_inputs_read);
4744       } else {
4745          num_slots = util_last_bit64(tcs->previous_stage_sel->info.ls_es_outputs_written);
4746       }
4747    }
4748 
4749    /* Add 1 dword to reduce LDS bank conflicts, so that each vertex starts on a different LDS
4750     * bank.
4751     */
4752    return num_slots ? num_slots * 16 + 4 : 0;
4753 }
4754 
4755 /**
4756  * This calculates the LDS size for tessellation shaders (VS, TCS, TES).
4757  * LS.LDS_SIZE is shared by all 3 shader stages.
4758  *
4759  * The information about LDS and other non-compile-time parameters is then
4760  * written to userdata SGPRs.
4761  *
4762  * This depends on:
4763  * - patch_vertices
4764  * - VS and the currently selected shader variant (called by si_update_shaders)
4765  * - TCS and the currently selected shader variant (called by si_update_shaders)
4766  * - tess_uses_prim_id (called by si_update_shaders)
4767  * - sh_base[TESS_EVAL] depending on GS on/off (called by si_update_shaders)
4768  */
si_update_tess_io_layout_state(struct si_context * sctx)4769 void si_update_tess_io_layout_state(struct si_context *sctx)
4770 {
4771    struct si_shader *ls_current;
4772    struct si_shader_selector *tcs = sctx->shader.tcs.cso;
4773    bool tess_uses_primid = sctx->ia_multi_vgt_param_key.u.tess_uses_prim_id;
4774    bool has_primid_instancing_bug = sctx->gfx_level == GFX6 && sctx->screen->info.max_se == 1;
4775    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4776    uint8_t num_tcs_input_cp = sctx->patch_vertices;
4777 
4778    assert(sctx->shader.tcs.current);
4779 
4780    /* Since GFX9 has merged LS-HS in the TCS state, set LS = TCS. */
4781    if (sctx->gfx_level >= GFX9) {
4782       ls_current = sctx->shader.tcs.current;
4783    } else {
4784       ls_current = sctx->shader.vs.current;
4785 
4786       if (!ls_current) {
4787          sctx->do_update_shaders = true;
4788          return;
4789       }
4790    }
4791 
4792    if (sctx->last_ls == ls_current && sctx->last_tcs == tcs &&
4793        sctx->last_tes_sh_base == tes_sh_base && sctx->last_num_tcs_input_cp == num_tcs_input_cp &&
4794        (!has_primid_instancing_bug || (sctx->last_tess_uses_primid == tess_uses_primid)))
4795       return;
4796 
4797    sctx->last_ls = ls_current;
4798    sctx->last_tcs = tcs;
4799    sctx->last_tes_sh_base = tes_sh_base;
4800    sctx->last_num_tcs_input_cp = num_tcs_input_cp;
4801    sctx->last_tess_uses_primid = tess_uses_primid;
4802 
4803    /* This calculates how shader inputs and outputs among VS, TCS, and TES
4804     * are laid out in LDS and memory.
4805     */
4806    unsigned num_tcs_output_cp = tcs->info.base.tess.tcs_vertices_out;
4807    unsigned lds_input_vertex_size = si_shader_lshs_vertex_stride(ls_current);
4808    unsigned num_mem_tcs_outputs = util_last_bit64(tcs->info.tcs_outputs_written_for_tes);
4809    unsigned num_mem_tcs_patch_outputs =
4810       util_last_bit(tcs->info.patch_outputs_written_for_tes |
4811                     (!ls_current->is_monolithic || ls_current->key.ge.opt.tes_reads_tess_factors ?
4812                         tcs->info.tess_levels_written_for_tes : 0));
4813    unsigned num_patches, lds_size;
4814 
4815    /* Compute NUM_PATCHES and LDS_SIZE. */
4816    ac_nir_compute_tess_wg_info(&sctx->screen->info, &tcs->info.base, ls_current->wave_size,
4817                                tess_uses_primid, tcs->info.tessfactors_are_def_in_all_invocs,
4818                                num_tcs_input_cp, lds_input_vertex_size,
4819                                num_mem_tcs_outputs, num_mem_tcs_patch_outputs,
4820                                &num_patches, &lds_size);
4821 
4822    if (sctx->num_patches_per_workgroup != num_patches) {
4823       sctx->num_patches_per_workgroup = num_patches;
4824       si_mark_atom_dirty(sctx, &sctx->atoms.s.vgt_pipeline_state);
4825    }
4826 
4827    /* Compute userdata SGPRs. */
4828    unsigned num_lds_vs_outputs = lds_input_vertex_size / 16;
4829    assert(ls_current->config.lds_size == 0);
4830    assert(num_tcs_input_cp <= 32);
4831    assert(num_tcs_output_cp <= 32);
4832    assert(num_patches <= 128);
4833    assert(num_lds_vs_outputs <= 63);
4834    assert(num_mem_tcs_outputs <= 63);
4835 
4836    uint64_t ring_va =
4837       sctx->ws->cs_is_secure(&sctx->gfx_cs) ?
4838           si_resource(sctx->screen->tess_rings_tmz)->gpu_address :
4839           si_resource(sctx->screen->tess_rings)->gpu_address;
4840    assert((ring_va & u_bit_consecutive(0, 19)) == 0);
4841 
4842    sctx->tes_offchip_ring_va_sgpr = ring_va;
4843    sctx->tcs_offchip_layout &= 0xe0000000;
4844    sctx->tcs_offchip_layout |=
4845       (num_patches - 1) | ((num_tcs_output_cp - 1) << 7) | ((num_tcs_input_cp - 1) << 12) |
4846       (num_lds_vs_outputs << 17) | (num_mem_tcs_outputs << 23);
4847 
4848    unsigned ls_hs_rsrc2;
4849 
4850    if (sctx->gfx_level >= GFX9) {
4851       ls_hs_rsrc2 = sctx->shader.tcs.current->config.rsrc2;
4852 
4853       if (sctx->gfx_level >= GFX10)
4854          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX10(lds_size);
4855       else
4856          ls_hs_rsrc2 |= S_00B42C_LDS_SIZE_GFX9(lds_size);
4857    } else {
4858       ls_hs_rsrc2 = sctx->shader.vs.current->config.rsrc2;
4859 
4860       si_multiwave_lds_size_workaround(sctx->screen, &lds_size);
4861       ls_hs_rsrc2 |= S_00B52C_LDS_SIZE(lds_size);
4862    }
4863 
4864    sctx->ls_hs_rsrc2 = ls_hs_rsrc2;
4865    sctx->ls_hs_config =
4866          S_028B58_NUM_PATCHES(sctx->num_patches_per_workgroup) |
4867          S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp);
4868 
4869    if (sctx->gfx_level < GFX12)
4870       sctx->ls_hs_config |= S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp);
4871 
4872    si_mark_atom_dirty(sctx, &sctx->atoms.s.tess_io_layout);
4873 }
4874 
gfx6_emit_tess_io_layout_state(struct si_context * sctx,unsigned index)4875 static void gfx6_emit_tess_io_layout_state(struct si_context *sctx, unsigned index)
4876 {
4877    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4878 
4879    if (!sctx->shader.tes.cso || !sctx->shader.tcs.current)
4880       return;
4881 
4882    radeon_begin(cs);
4883    if (sctx->gfx_level >= GFX12) {
4884       gfx12_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4885                                 SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4886 
4887       /* Set userdata SGPRs for merged LS-HS. */
4888       gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4889                                 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4890                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4891                                 sctx->tcs_offchip_layout);
4892       gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4893                                 GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4894                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4895                                 sctx->tes_offchip_ring_va_sgpr);
4896    } else if (sctx->screen->info.has_set_sh_pairs_packed) {
4897       gfx11_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4898                                 SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4899 
4900       /* Set userdata SGPRs for merged LS-HS. */
4901       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4902                                 GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4903                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4904                                 sctx->tcs_offchip_layout);
4905       gfx11_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4906                                 GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4907                                 SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4908                                 sctx->tes_offchip_ring_va_sgpr);
4909    } else if (sctx->gfx_level >= GFX9) {
4910       radeon_opt_set_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4911                             SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4912 
4913       /* Set userdata SGPRs for merged LS-HS. */
4914       radeon_opt_set_sh_reg2(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4915                              GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4916                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4917                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4918    } else {
4919       /* Due to a hw bug, RSRC2_LS must be written twice with another
4920        * LS register written in between. */
4921       if (sctx->gfx_level == GFX7 && sctx->family != CHIP_HAWAII)
4922          radeon_set_sh_reg(R_00B52C_SPI_SHADER_PGM_RSRC2_LS, sctx->ls_hs_rsrc2);
4923       radeon_set_sh_reg_seq(R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2);
4924       radeon_emit(sctx->shader.vs.current->config.rsrc1);
4925       radeon_emit(sctx->ls_hs_rsrc2);
4926 
4927       /* Set userdata SGPRs for TCS. */
4928       radeon_opt_set_sh_reg3(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4929                              GFX6_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4930                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4931                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr,
4932                              sctx->current_vs_state);
4933    }
4934 
4935    /* Set userdata SGPRs for TES. */
4936    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4937    assert(tes_sh_base);
4938 
4939    /* TES (as ES or VS) reuses the BaseVertex and DrawID user SGPRs that are used when
4940     * tessellation is disabled. We can do that because those user SGPRs are only set in LS
4941     * for tessellation and are unused in TES.
4942     */
4943    if (sctx->screen->info.has_set_sh_pairs_packed) {
4944       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4945                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
4946                                 sctx->tcs_offchip_layout);
4947       gfx11_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_ADDR * 4,
4948                                 SI_TRACKED_SPI_SHADER_USER_DATA_ES__DRAWID,
4949                                 sctx->tes_offchip_ring_va_sgpr);
4950    } else if (sctx->ngg || sctx->shader.gs.cso) {
4951       radeon_opt_set_sh_reg2(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4952                              SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
4953                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4954    } else {
4955       radeon_opt_set_sh_reg2(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
4956                              SI_TRACKED_SPI_SHADER_USER_DATA_VS__BASE_VERTEX,
4957                              sctx->tcs_offchip_layout, sctx->tes_offchip_ring_va_sgpr);
4958    }
4959    radeon_end();
4960 
4961    radeon_begin_again(cs);
4962    if (sctx->gfx_level >= GFX7) {
4963       radeon_opt_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG,
4964                                      SI_TRACKED_VGT_LS_HS_CONFIG, 2, sctx->ls_hs_config);
4965    } else {
4966       radeon_opt_set_context_reg(R_028B58_VGT_LS_HS_CONFIG,
4967                                  SI_TRACKED_VGT_LS_HS_CONFIG, sctx->ls_hs_config);
4968    }
4969    radeon_end_update_context_roll();
4970 }
4971 
gfx12_emit_tess_io_layout_state(struct si_context * sctx,unsigned index)4972 static void gfx12_emit_tess_io_layout_state(struct si_context *sctx, unsigned index)
4973 {
4974    struct radeon_cmdbuf *cs = &sctx->gfx_cs;
4975 
4976    if (!sctx->shader.tes.cso || !sctx->shader.tcs.current)
4977       return;
4978 
4979    gfx12_opt_push_gfx_sh_reg(R_00B42C_SPI_SHADER_PGM_RSRC2_HS,
4980                              SI_TRACKED_SPI_SHADER_PGM_RSRC2_HS, sctx->ls_hs_rsrc2);
4981    /* Set userdata SGPRs for merged LS-HS. */
4982    gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4983                              GFX9_SGPR_TCS_OFFCHIP_LAYOUT * 4,
4984                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_LAYOUT,
4985                              sctx->tcs_offchip_layout);
4986    gfx12_opt_push_gfx_sh_reg(R_00B430_SPI_SHADER_USER_DATA_HS_0 +
4987                              GFX9_SGPR_TCS_OFFCHIP_ADDR * 4,
4988                              SI_TRACKED_SPI_SHADER_USER_DATA_HS__TCS_OFFCHIP_ADDR,
4989                              sctx->tes_offchip_ring_va_sgpr);
4990 
4991    /* Set userdata SGPRs for TES. */
4992    unsigned tes_sh_base = sctx->shader_pointers.sh_base[PIPE_SHADER_TESS_EVAL];
4993    assert(tes_sh_base);
4994 
4995    /* TES (as ES or VS) reuses the BaseVertex and DrawID user SGPRs that are used when
4996     * tessellation is disabled. We can do that because those user SGPRs are only set in LS
4997     * for tessellation and are unused in TES.
4998     */
4999    gfx12_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_LAYOUT * 4,
5000                              SI_TRACKED_SPI_SHADER_USER_DATA_ES__BASE_VERTEX,
5001                              sctx->tcs_offchip_layout);
5002    gfx12_opt_push_gfx_sh_reg(tes_sh_base + SI_SGPR_TES_OFFCHIP_ADDR * 4,
5003                              SI_TRACKED_SPI_SHADER_USER_DATA_ES__DRAWID,
5004                              sctx->tes_offchip_ring_va_sgpr);
5005 
5006    radeon_begin(cs);
5007    radeon_opt_set_context_reg_idx(R_028B58_VGT_LS_HS_CONFIG,
5008                                   SI_TRACKED_VGT_LS_HS_CONFIG, 2, sctx->ls_hs_config);
5009    radeon_end(); /* don't track context rolls on GFX12 */
5010 }
5011 
si_init_screen_live_shader_cache(struct si_screen * sscreen)5012 void si_init_screen_live_shader_cache(struct si_screen *sscreen)
5013 {
5014    util_live_shader_cache_init(&sscreen->live_shader_cache, si_create_shader_selector,
5015                                si_destroy_shader_selector);
5016 }
5017 
5018 template<int NUM_INTERP>
si_emit_spi_map(struct si_context * sctx,unsigned index)5019 static void si_emit_spi_map(struct si_context *sctx, unsigned index)
5020 {
5021    struct si_shader *ps = sctx->shader.ps.current;
5022    struct si_shader *vs = si_get_vs(sctx)->current;
5023    unsigned spi_ps_input_cntl[NUM_INTERP];
5024 
5025    STATIC_ASSERT(NUM_INTERP >= 0 && NUM_INTERP <= 32);
5026 
5027    if (sctx->gfx_level >= GFX12) {
5028       gfx12_opt_push_gfx_sh_reg(R_00B0C4_SPI_SHADER_GS_OUT_CONFIG_PS,
5029                                 SI_TRACKED_SPI_SHADER_GS_OUT_CONFIG_PS,
5030                                 vs->ngg.spi_vs_out_config | ps->ps.spi_gs_out_config_ps);
5031    }
5032 
5033    if (!NUM_INTERP)
5034       return;
5035 
5036    struct si_state_rasterizer *rs = sctx->queued.named.rasterizer;
5037 
5038    for (unsigned i = 0; i < NUM_INTERP; i++) {
5039       union si_ps_input_info input = ps->info.ps_inputs[i];
5040       unsigned ps_input_cntl = vs->info.vs_output_ps_input_cntl[input.semantic];
5041       bool non_default_val = G_028644_OFFSET(ps_input_cntl) != 0x20;
5042 
5043       if (non_default_val) {
5044          if (input.interpolate == INTERP_MODE_FLAT ||
5045              (input.interpolate == INTERP_MODE_COLOR && rs->flatshade))
5046             ps_input_cntl |= S_028644_FLAT_SHADE(1);
5047 
5048          if (input.fp16_lo_hi_valid) {
5049             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
5050                              S_028644_ATTR0_VALID(1) | /* this must be set if FP16_INTERP_MODE is set */
5051                              S_028644_ATTR1_VALID(!!(input.fp16_lo_hi_valid & 0x2));
5052          }
5053       }
5054 
5055       if (input.semantic == VARYING_SLOT_PNTC ||
5056           (input.semantic >= VARYING_SLOT_TEX0 && input.semantic <= VARYING_SLOT_TEX7 &&
5057            rs->sprite_coord_enable & (1 << (input.semantic - VARYING_SLOT_TEX0)))) {
5058          /* Overwrite the whole value (except OFFSET) for sprite coordinates. */
5059          ps_input_cntl &= ~C_028644_OFFSET;
5060          ps_input_cntl |= S_028644_PT_SPRITE_TEX(1);
5061          if (input.fp16_lo_hi_valid & 0x1) {
5062             ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) |
5063                              S_028644_ATTR0_VALID(1);
5064          }
5065       }
5066 
5067       spi_ps_input_cntl[i] = ps_input_cntl;
5068    }
5069 
5070    /* Performance notes:
5071     *    Dota 2: Only ~16% of SPI map updates set different values.
5072     *    Talos: Only ~9% of SPI map updates set different values.
5073     */
5074    if (sctx->gfx_level >= GFX12) {
5075       radeon_begin(&sctx->gfx_cs);
5076       radeon_opt_set_context_regn(R_028664_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
5077                                   sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
5078       radeon_end(); /* don't track context rolls on GFX12 */
5079    } else {
5080       radeon_begin(&sctx->gfx_cs);
5081       radeon_opt_set_context_regn(R_028644_SPI_PS_INPUT_CNTL_0, spi_ps_input_cntl,
5082                                   sctx->tracked_regs.spi_ps_input_cntl, NUM_INTERP);
5083       radeon_end_update_context_roll();
5084    }
5085 }
5086 
si_emit_spi_ge_ring_state(struct si_context * sctx,unsigned index)5087 static void si_emit_spi_ge_ring_state(struct si_context *sctx, unsigned index)
5088 {
5089    struct si_screen *sscreen = sctx->screen;
5090 
5091    if (sctx->has_tessellation) {
5092       struct pipe_resource *tf_ring =
5093          sctx->ws->cs_is_secure(&sctx->gfx_cs) ? sscreen->tess_rings_tmz : sscreen->tess_rings;
5094       uint64_t factor_va = si_resource(tf_ring)->gpu_address +
5095                            sscreen->hs.tess_offchip_ring_size;
5096 
5097       unsigned tf_ring_size_field = sscreen->hs.tess_factor_ring_size / 4;
5098       if (sctx->gfx_level >= GFX11)
5099          tf_ring_size_field /= sscreen->info.max_se;
5100 
5101       assert((tf_ring_size_field & C_030938_SIZE) == 0);
5102 
5103       radeon_add_to_buffer_list(sctx, &sctx->gfx_cs, si_resource(tf_ring),
5104                                 RADEON_USAGE_READWRITE | RADEON_PRIO_SHADER_RINGS);
5105 
5106       radeon_begin(&sctx->gfx_cs);
5107       /* Required before writing tessellation config registers. */
5108       radeon_event_write(V_028A90_VS_PARTIAL_FLUSH);
5109       radeon_event_write(V_028A90_VGT_FLUSH);
5110 
5111       if (sctx->gfx_level >= GFX7) {
5112          radeon_set_uconfig_reg_seq(R_030938_VGT_TF_RING_SIZE, 3);
5113          radeon_emit(S_030938_SIZE(tf_ring_size_field)); /* R_030938_VGT_TF_RING_SIZE */
5114          radeon_emit(sscreen->hs.hs_offchip_param);      /* R_03093C_VGT_HS_OFFCHIP_PARAM */
5115          radeon_emit(factor_va >> 8);                    /* R_030940_VGT_TF_MEMORY_BASE */
5116 
5117          if (sctx->gfx_level >= GFX12)
5118             radeon_set_uconfig_reg(R_03099C_VGT_TF_MEMORY_BASE_HI, S_03099C_BASE_HI(factor_va >> 40));
5119          else if (sctx->gfx_level >= GFX10)
5120             radeon_set_uconfig_reg(R_030984_VGT_TF_MEMORY_BASE_HI, S_030984_BASE_HI(factor_va >> 40));
5121          else if (sctx->gfx_level == GFX9)
5122             radeon_set_uconfig_reg(R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(factor_va >> 40));
5123       } else {
5124          radeon_set_config_reg(R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size_field));
5125          radeon_set_config_reg(R_0089B8_VGT_TF_MEMORY_BASE, factor_va >> 8);
5126          radeon_set_config_reg(R_0089B0_VGT_HS_OFFCHIP_PARAM, sscreen->hs.hs_offchip_param);
5127       }
5128       radeon_end();
5129    }
5130 
5131    if (sctx->gfx_level >= GFX11) {
5132       /* We must wait for idle using an EOP event before changing the attribute ring registers.
5133        * Use the bottom-of-pipe EOP event, but use the PWS TS counter instead of the counter
5134        * in memory.
5135        */
5136       si_cp_release_acquire_mem_pws(sctx, &sctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0,
5137                                     V_580_CP_ME, 0);
5138 
5139       uint64_t attr_address = sscreen->attribute_pos_prim_ring->gpu_address;
5140       assert((attr_address >> 32) == sscreen->info.address32_hi);
5141 
5142       radeon_begin(&sctx->gfx_cs);
5143       radeon_set_uconfig_reg_seq(R_031110_SPI_GS_THROTTLE_CNTL1, 4);
5144       radeon_emit(0x12355123);      /* SPI_GS_THROTTLE_CNTL1 */
5145       radeon_emit(0x1544D);         /* SPI_GS_THROTTLE_CNTL2 */
5146       radeon_emit(attr_address >> 16); /* SPI_ATTRIBUTE_RING_BASE */
5147       radeon_emit(S_03111C_MEM_SIZE((sscreen->info.attribute_ring_size_per_se >> 16) - 1) |
5148                   S_03111C_BIG_PAGE(sscreen->info.discardable_allows_big_page) |
5149                   S_03111C_L1_POLICY(1)); /* SPI_ATTRIBUTE_RING_SIZE */
5150 
5151       if (sctx->gfx_level >= GFX12) {
5152          uint64_t pos_address = attr_address + sscreen->info.pos_ring_offset;
5153          uint64_t prim_address = attr_address + sscreen->info.prim_ring_offset;
5154 
5155          /* When one of these 4 registers is updated, all 4 must be updated. */
5156          radeon_set_uconfig_reg_seq(R_0309A0_GE_POS_RING_BASE, 4);
5157          radeon_emit(pos_address >> 16);              /* R_0309A0_GE_POS_RING_BASE */
5158          radeon_emit(S_0309A4_MEM_SIZE(sscreen->info.pos_ring_size_per_se >> 5)); /* R_0309A4_GE_POS_RING_SIZE */
5159          radeon_emit(prim_address >> 16);             /* R_0309A8_GE_PRIM_RING_BASE */
5160          radeon_emit(S_0309AC_MEM_SIZE(sscreen->info.prim_ring_size_per_se >> 5) |
5161                      S_0309AC_SCOPE(gfx12_scope_device) |
5162                      S_0309AC_PAF_TEMPORAL(gfx12_store_high_temporal_stay_dirty) |
5163                      S_0309AC_PAB_TEMPORAL(gfx12_load_last_use_discard) |
5164                      S_0309AC_SPEC_DATA_READ(gfx12_spec_read_auto) |
5165                      S_0309AC_FORCE_SE_SCOPE(1) |
5166                      S_0309AC_PAB_NOFILL(1));         /* R_0309AC_GE_PRIM_RING_SIZE */
5167       }
5168       radeon_end();
5169    }
5170 }
5171 
si_init_shader_functions(struct si_context * sctx)5172 void si_init_shader_functions(struct si_context *sctx)
5173 {
5174    sctx->atoms.s.vgt_pipeline_state.emit = si_emit_vgt_pipeline_state;
5175    sctx->atoms.s.scratch_state.emit = si_emit_scratch_state;
5176    sctx->atoms.s.spi_ge_ring_state.emit = si_emit_spi_ge_ring_state;
5177 
5178    if (sctx->gfx_level >= GFX12)
5179       sctx->atoms.s.tess_io_layout.emit = gfx12_emit_tess_io_layout_state;
5180    else
5181       sctx->atoms.s.tess_io_layout.emit = gfx6_emit_tess_io_layout_state;
5182 
5183    sctx->b.create_vs_state = si_create_shader;
5184    sctx->b.create_tcs_state = si_create_shader;
5185    sctx->b.create_tes_state = si_create_shader;
5186    sctx->b.create_gs_state = si_create_shader;
5187    sctx->b.create_fs_state = si_create_shader;
5188 
5189    sctx->b.bind_vs_state = si_bind_vs_shader;
5190    sctx->b.bind_tcs_state = si_bind_tcs_shader;
5191    sctx->b.bind_tes_state = si_bind_tes_shader;
5192    sctx->b.bind_gs_state = si_bind_gs_shader;
5193    sctx->b.bind_fs_state = si_bind_ps_shader;
5194 
5195    sctx->b.delete_vs_state = si_delete_shader_selector;
5196    sctx->b.delete_tcs_state = si_delete_shader_selector;
5197    sctx->b.delete_tes_state = si_delete_shader_selector;
5198    sctx->b.delete_gs_state = si_delete_shader_selector;
5199    sctx->b.delete_fs_state = si_delete_shader_selector;
5200 
5201    sctx->b.set_patch_vertices = si_set_patch_vertices;
5202 
5203    /* This unrolls the loops in si_emit_spi_map and inlines memcmp and memcpys.
5204     * It improves performance for viewperf/snx.
5205     */
5206    sctx->emit_spi_map[0] = si_emit_spi_map<0>;
5207    sctx->emit_spi_map[1] = si_emit_spi_map<1>;
5208    sctx->emit_spi_map[2] = si_emit_spi_map<2>;
5209    sctx->emit_spi_map[3] = si_emit_spi_map<3>;
5210    sctx->emit_spi_map[4] = si_emit_spi_map<4>;
5211    sctx->emit_spi_map[5] = si_emit_spi_map<5>;
5212    sctx->emit_spi_map[6] = si_emit_spi_map<6>;
5213    sctx->emit_spi_map[7] = si_emit_spi_map<7>;
5214    sctx->emit_spi_map[8] = si_emit_spi_map<8>;
5215    sctx->emit_spi_map[9] = si_emit_spi_map<9>;
5216    sctx->emit_spi_map[10] = si_emit_spi_map<10>;
5217    sctx->emit_spi_map[11] = si_emit_spi_map<11>;
5218    sctx->emit_spi_map[12] = si_emit_spi_map<12>;
5219    sctx->emit_spi_map[13] = si_emit_spi_map<13>;
5220    sctx->emit_spi_map[14] = si_emit_spi_map<14>;
5221    sctx->emit_spi_map[15] = si_emit_spi_map<15>;
5222    sctx->emit_spi_map[16] = si_emit_spi_map<16>;
5223    sctx->emit_spi_map[17] = si_emit_spi_map<17>;
5224    sctx->emit_spi_map[18] = si_emit_spi_map<18>;
5225    sctx->emit_spi_map[19] = si_emit_spi_map<19>;
5226    sctx->emit_spi_map[20] = si_emit_spi_map<20>;
5227    sctx->emit_spi_map[21] = si_emit_spi_map<21>;
5228    sctx->emit_spi_map[22] = si_emit_spi_map<22>;
5229    sctx->emit_spi_map[23] = si_emit_spi_map<23>;
5230    sctx->emit_spi_map[24] = si_emit_spi_map<24>;
5231    sctx->emit_spi_map[25] = si_emit_spi_map<25>;
5232    sctx->emit_spi_map[26] = si_emit_spi_map<26>;
5233    sctx->emit_spi_map[27] = si_emit_spi_map<27>;
5234    sctx->emit_spi_map[28] = si_emit_spi_map<28>;
5235    sctx->emit_spi_map[29] = si_emit_spi_map<29>;
5236    sctx->emit_spi_map[30] = si_emit_spi_map<30>;
5237    sctx->emit_spi_map[31] = si_emit_spi_map<31>;
5238    sctx->emit_spi_map[32] = si_emit_spi_map<32>;
5239 }
5240