• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keithw@vmware.com>
30   */
31 
32 #pragma once
33 
34 #include <stdint.h>
35 #include <stdlib.h>
36 #include "util/macros.h"
37 #include "dev/intel_device_info.h"
38 
39 /* The following hunk, up-to "Execution Unit" is used by both the
40  * intel/compiler and i965 codebase. */
41 
42 #define INTEL_MASK(high, low) (((1u<<((high)-(low)+1))-1)<<(low))
43 /* Using the GNU statement expression extension */
44 #define SET_FIELD(value, field)                                         \
45    ({                                                                   \
46       uint32_t fieldval = (uint32_t)(value) << field ## _SHIFT;         \
47       assert((fieldval & ~ field ## _MASK) == 0);                       \
48       fieldval & field ## _MASK;                                        \
49    })
50 
51 #define SET_BITS(value, high, low)                                      \
52    ({                                                                   \
53       const uint32_t fieldval = (uint32_t)(value) << (low);             \
54       assert((fieldval & ~INTEL_MASK(high, low)) == 0);                 \
55       fieldval & INTEL_MASK(high, low);                                 \
56    })
57 
58 #define GET_BITS(data, high, low) ((data & INTEL_MASK((high), (low))) >> (low))
59 #define GET_FIELD(word, field) (((word)  & field ## _MASK) >> field ## _SHIFT)
60 
61 # define GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT		0
62 # define GFX7_GS_CONTROL_DATA_FORMAT_GSCTL_SID		1
63 
64 /* Execution Unit (EU) defines
65  */
66 
67 #define BRW_ALIGN_1   0
68 #define BRW_ALIGN_16  1
69 
70 #define BRW_ADDRESS_DIRECT                        0
71 #define BRW_ADDRESS_REGISTER_INDIRECT_REGISTER    1
72 
73 #define BRW_CHANNEL_X     0
74 #define BRW_CHANNEL_Y     1
75 #define BRW_CHANNEL_Z     2
76 #define BRW_CHANNEL_W     3
77 
78 enum brw_compression {
79    BRW_COMPRESSION_NONE       = 0,
80    BRW_COMPRESSION_2NDHALF    = 1,
81    BRW_COMPRESSION_COMPRESSED = 2,
82 };
83 
84 #define GFX6_COMPRESSION_1Q		0
85 #define GFX6_COMPRESSION_2Q		1
86 #define GFX6_COMPRESSION_3Q		2
87 #define GFX6_COMPRESSION_4Q		3
88 #define GFX6_COMPRESSION_1H		0
89 #define GFX6_COMPRESSION_2H		2
90 
91 enum ENUM_PACKED brw_conditional_mod {
92    BRW_CONDITIONAL_NONE = 0,
93    BRW_CONDITIONAL_Z    = 1,
94    BRW_CONDITIONAL_NZ   = 2,
95    BRW_CONDITIONAL_EQ   = 1,	/* Z */
96    BRW_CONDITIONAL_NEQ  = 2,	/* NZ */
97    BRW_CONDITIONAL_G    = 3,
98    BRW_CONDITIONAL_GE   = 4,
99    BRW_CONDITIONAL_L    = 5,
100    BRW_CONDITIONAL_LE   = 6,
101    BRW_CONDITIONAL_R    = 7,    /* Gen <= 5 */
102    BRW_CONDITIONAL_O    = 8,
103    BRW_CONDITIONAL_U    = 9,
104 };
105 
106 #define BRW_DEBUG_NONE        0
107 #define BRW_DEBUG_BREAKPOINT  1
108 
109 enum ENUM_PACKED brw_execution_size {
110    BRW_EXECUTE_1  = 0,
111    BRW_EXECUTE_2  = 1,
112    BRW_EXECUTE_4  = 2,
113    BRW_EXECUTE_8  = 3,
114    BRW_EXECUTE_16 = 4,
115    BRW_EXECUTE_32 = 5,
116 };
117 
118 enum ENUM_PACKED brw_horizontal_stride {
119    BRW_HORIZONTAL_STRIDE_0 = 0,
120    BRW_HORIZONTAL_STRIDE_1 = 1,
121    BRW_HORIZONTAL_STRIDE_2 = 2,
122    BRW_HORIZONTAL_STRIDE_4 = 3,
123 };
124 
125 enum ENUM_PACKED gfx10_align1_3src_src_horizontal_stride {
126    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_0 = 0,
127    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_1 = 1,
128    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_2 = 2,
129    BRW_ALIGN1_3SRC_SRC_HORIZONTAL_STRIDE_4 = 3,
130 };
131 
132 enum ENUM_PACKED gfx10_align1_3src_dst_horizontal_stride {
133    BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_1 = 0,
134    BRW_ALIGN1_3SRC_DST_HORIZONTAL_STRIDE_2 = 1,
135 };
136 
137 #define BRW_INSTRUCTION_NORMAL    0
138 #define BRW_INSTRUCTION_SATURATE  1
139 
140 #define BRW_MASK_ENABLE   0
141 #define BRW_MASK_DISABLE  1
142 
143 /** @{
144  *
145  * Gfx6 has replaced "mask enable/disable" with WECtrl, which is
146  * effectively the same but much simpler to think about.  Now, there
147  * are two contributors ANDed together to whether channels are
148  * executed: The predication on the instruction, and the channel write
149  * enable.
150  */
151 /**
152  * This is the default value.  It means that a channel's write enable is set
153  * if the per-channel IP is pointing at this instruction.
154  */
155 #define BRW_WE_NORMAL		0
156 /**
157  * This is used like BRW_MASK_DISABLE, and causes all channels to have
158  * their write enable set.  Note that predication still contributes to
159  * whether the channel actually gets written.
160  */
161 #define BRW_WE_ALL		1
162 /** @} */
163 
164 enum opcode {
165    /* These are the actual hardware instructions. */
166    BRW_OPCODE_ILLEGAL,
167    BRW_OPCODE_SYNC,
168    BRW_OPCODE_MOV,
169    BRW_OPCODE_SEL,
170    BRW_OPCODE_MOVI,
171    BRW_OPCODE_NOT,
172    BRW_OPCODE_AND,
173    BRW_OPCODE_OR,
174    BRW_OPCODE_XOR,
175    BRW_OPCODE_SHR,
176    BRW_OPCODE_SHL,
177    BRW_OPCODE_SMOV,
178    BRW_OPCODE_ASR,
179    BRW_OPCODE_ROR,  /**< Gfx11+ */
180    BRW_OPCODE_ROL,  /**< Gfx11+ */
181    BRW_OPCODE_CMP,
182    BRW_OPCODE_CMPN,
183    BRW_OPCODE_CSEL,
184    BRW_OPCODE_BFREV,
185    BRW_OPCODE_BFE,
186    BRW_OPCODE_BFI1,
187    BRW_OPCODE_BFI2,
188    BRW_OPCODE_JMPI,
189    BRW_OPCODE_BRD,
190    BRW_OPCODE_IF,
191    BRW_OPCODE_BRC,
192    BRW_OPCODE_ELSE,
193    BRW_OPCODE_ENDIF,
194    BRW_OPCODE_DO, /**< Used as pseudo opcode, will be moved later. */
195    BRW_OPCODE_WHILE,
196    BRW_OPCODE_BREAK,
197    BRW_OPCODE_CONTINUE,
198    BRW_OPCODE_HALT,
199    BRW_OPCODE_CALLA,
200    BRW_OPCODE_CALL,
201    BRW_OPCODE_RET,
202    BRW_OPCODE_GOTO,
203    BRW_OPCODE_WAIT,
204    BRW_OPCODE_SEND,
205    BRW_OPCODE_SENDC,
206    BRW_OPCODE_SENDS,
207    BRW_OPCODE_SENDSC,
208    BRW_OPCODE_MATH,
209    BRW_OPCODE_ADD,
210    BRW_OPCODE_MUL,
211    BRW_OPCODE_AVG,
212    BRW_OPCODE_FRC,
213    BRW_OPCODE_RNDU,
214    BRW_OPCODE_RNDD,
215    BRW_OPCODE_RNDE,
216    BRW_OPCODE_RNDZ,
217    BRW_OPCODE_MAC,
218    BRW_OPCODE_MACH,
219    BRW_OPCODE_LZD,
220    BRW_OPCODE_FBH,
221    BRW_OPCODE_FBL,
222    BRW_OPCODE_CBIT,
223    BRW_OPCODE_ADDC,
224    BRW_OPCODE_SUBB,
225    BRW_OPCODE_ADD3, /* Gen12+ only */
226    BRW_OPCODE_DP4,
227    BRW_OPCODE_DPH,
228    BRW_OPCODE_DP3,
229    BRW_OPCODE_DP2,
230    BRW_OPCODE_DP4A, /**< Gfx12+ */
231    BRW_OPCODE_LINE,
232    BRW_OPCODE_DPAS,  /**< Gfx12.5+ */
233    BRW_OPCODE_PLN, /**< Up until Gfx9 */
234    BRW_OPCODE_MAD,
235    BRW_OPCODE_LRP,
236    BRW_OPCODE_MADM,
237    BRW_OPCODE_NOP,
238 
239    NUM_BRW_OPCODES,
240 
241    /**
242     * The position/ordering of the arguments are defined
243     * by the enum fb_write_logical_srcs.
244     */
245    FS_OPCODE_FB_WRITE_LOGICAL = NUM_BRW_OPCODES,
246 
247    FS_OPCODE_FB_READ_LOGICAL,
248 
249    SHADER_OPCODE_RCP,
250    SHADER_OPCODE_RSQ,
251    SHADER_OPCODE_SQRT,
252    SHADER_OPCODE_EXP2,
253    SHADER_OPCODE_LOG2,
254    SHADER_OPCODE_POW,
255    SHADER_OPCODE_INT_QUOTIENT,
256    SHADER_OPCODE_INT_REMAINDER,
257    SHADER_OPCODE_SIN,
258    SHADER_OPCODE_COS,
259 
260    /**
261     * A generic "send" opcode.  The first two sources are the message
262     * descriptor and extended message descriptor respectively.  The third
263     * and optional fourth sources are the message payload
264     */
265    SHADER_OPCODE_SEND,
266 
267    /**
268     * A variant of SEND that collects its sources to form an input.
269     *
270     * Source 0:    Message descriptor ("desc").
271     * Source 1:    Message extended descriptor ("ex_desc").
272     * Source 2:    Before register allocation must be BAD_FILE,
273     *              after that, the ARF scalar register containing
274     *              the (physical) numbers of the payload sources.
275     * Source 3..n: Payload sources.  For this opcode, they must each
276     *              have the size of a physical GRF.
277     */
278    SHADER_OPCODE_SEND_GATHER,
279 
280    /**
281     * An "undefined" write which does nothing but indicates to liveness that
282     * we don't care about any values in the register which predate this
283     * instruction.  Used to prevent partial writes from causing issues with
284     * live ranges.
285     */
286    SHADER_OPCODE_UNDEF,
287 
288    /**
289     * Texture sampling opcodes.
290     *
291     * LOGICAL opcodes are eventually translated to SHADER_OPCODE_SEND but
292     * take parameters as individual sources.  See enum tex_logical_srcs.
293     */
294    SHADER_OPCODE_TEX_LOGICAL,
295    SHADER_OPCODE_TXD_LOGICAL,
296    SHADER_OPCODE_TXF_LOGICAL,
297    SHADER_OPCODE_TXL_LOGICAL,
298    SHADER_OPCODE_TXS_LOGICAL,
299    FS_OPCODE_TXB_LOGICAL,
300    SHADER_OPCODE_TXF_CMS_W_LOGICAL,
301    SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL,
302    SHADER_OPCODE_TXF_MCS_LOGICAL,
303    SHADER_OPCODE_LOD_LOGICAL,
304    SHADER_OPCODE_TG4_LOGICAL,
305    SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL,
306    SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL,
307    SHADER_OPCODE_TG4_BIAS_LOGICAL,
308    SHADER_OPCODE_TG4_OFFSET_LOGICAL,
309    SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL,
310    SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL,
311    SHADER_OPCODE_SAMPLEINFO_LOGICAL,
312 
313    SHADER_OPCODE_IMAGE_SIZE_LOGICAL,
314 
315    /**
316     * Combines multiple sources of size 1 into a larger virtual GRF.
317     * For example, parameters for a send-from-GRF message.  Or, updating
318     * channels of a size 4 VGRF used to store vec4s such as texturing results.
319     *
320     * This will be lowered into MOVs from each source to consecutive offsets
321     * of the destination VGRF.
322     *
323     * src[0] may be BAD_FILE.  If so, the lowering pass skips emitting the MOV,
324     * but still reserves the first channel of the destination VGRF.  This can be
325     * used to reserve space for, say, a message header set up by the generators.
326     */
327    SHADER_OPCODE_LOAD_PAYLOAD,
328 
329    /**
330     * Packs a number of sources into a single value. Unlike LOAD_PAYLOAD, this
331     * acts intra-channel, obtaining the final value for each channel by
332     * combining the sources values for the same channel, the first source
333     * occupying the lowest bits and the last source occupying the highest
334     * bits.
335     */
336    FS_OPCODE_PACK,
337 
338    SHADER_OPCODE_RND_MODE,
339    SHADER_OPCODE_FLOAT_CONTROL_MODE,
340 
341    /**
342     * Memory fence messages.
343     *
344     * Source 0: Must be register g0, used as header.
345     * Source 1: Immediate bool to indicate whether control is returned to the
346     *           thread only after the fence has been honored.
347     * Source 2: Immediate byte indicating which memory to fence.  Zero means
348     *           global memory; GFX7_BTI_SLM means SLM (for Gfx11+ only).
349     *
350     * Vec4 backend only uses Source 0.
351     */
352    SHADER_OPCODE_MEMORY_FENCE,
353 
354    /**
355     * Scheduling-only fence.
356     *
357     * Sources can be used to force a stall until the registers in those are
358     * available.  This might generate MOVs or SYNC_NOPs (Gfx12+).
359     */
360    FS_OPCODE_SCHEDULING_FENCE,
361 
362    SHADER_OPCODE_SCRATCH_HEADER,
363 
364    /**
365     * Gfx8+ SIMD8 URB messages.
366     */
367    SHADER_OPCODE_URB_READ_LOGICAL,
368    SHADER_OPCODE_URB_WRITE_LOGICAL,
369 
370    /**
371     * Return the index of the first enabled live channel and assign it to
372     * to the first component of the destination.  Frequently used as input
373     * for the BROADCAST pseudo-opcode.
374     */
375    SHADER_OPCODE_FIND_LIVE_CHANNEL,
376 
377    /**
378     * Return the index of the last enabled live channel and assign it to
379     * the first component of the destination.
380     */
381    SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL,
382 
383    /**
384     * Return the current execution mask and assign it to the first component
385     * of the destination.
386     *
387     * \sa opcode::FS_OPCODE_LOAD_LIVE_CHANNELS
388     */
389    SHADER_OPCODE_LOAD_LIVE_CHANNELS,
390 
391    /**
392     * Return the current execution mask in the specified flag subregister.
393     * Can be CSE'ed more easily than a plain MOV from the ce0 ARF register.
394     */
395    FS_OPCODE_LOAD_LIVE_CHANNELS,
396 
397    /**
398     * Pick the channel from its first source register given by the index
399     * specified as second source.  Useful for variable indexing of surfaces.
400     *
401     * Note that because the result of this instruction is by definition
402     * uniform and it can always be splatted to multiple channels using a
403     * scalar regioning mode, only the first channel of the destination region
404     * is guaranteed to be updated, which implies that BROADCAST instructions
405     * should usually be marked force_writemask_all.
406     */
407    SHADER_OPCODE_BROADCAST,
408 
409    /* Pick the channel from its first source register given by the index
410     * specified as second source.
411     *
412     * This is similar to the BROADCAST instruction except that it takes a
413     * dynamic index and potentially puts a different value in each output
414     * channel.
415     */
416    SHADER_OPCODE_SHUFFLE,
417 
418    /* Combine all values in each subset (cluster) of channels using an operation,
419     * and broadcast the result to all channels in the subset.
420     *
421     * Source 0: Value.
422     * Source 1: Immediate with brw_reduce_op.
423     * Source 2: Immediate with cluster size.
424     */
425    SHADER_OPCODE_REDUCE,
426 
427    /* Combine values of previous channels using an operation.  Inclusive scan
428     * will include the value of the channel itself in the channel result.
429     *
430     * Source 0: Value.
431     * Source 1: Immediate with brw_reduce_op.
432     */
433    SHADER_OPCODE_INCLUSIVE_SCAN,
434    SHADER_OPCODE_EXCLUSIVE_SCAN,
435 
436    /* Check if any or all values in each subset (cluster) of channels are set,
437     * and broadcast the result to all channels in the subset.
438     *
439     * Source 0: Boolean value.
440     * Source 1: Immediate with cluster size.
441     */
442    SHADER_OPCODE_VOTE_ANY,
443    SHADER_OPCODE_VOTE_ALL,
444 
445    /* Check if the values of all channels are equal, and broadcast the result
446     * to all channels.
447     *
448     * Source 0: Value.
449     */
450    SHADER_OPCODE_VOTE_EQUAL,
451 
452    /* Produces a mask from the boolean value from all channels, and broadcast
453     * the result to all channels.
454     *
455     * Source 0: Boolean value.
456     */
457    SHADER_OPCODE_BALLOT,
458 
459    /* Select between src0 and src1 based on channel enables.
460     *
461     * This instruction copies src0 into the enabled channels of the
462     * destination and copies src1 into the disabled channels.
463     */
464    SHADER_OPCODE_SEL_EXEC,
465 
466    /* Swap values inside a quad based on the direction.
467     *
468     * Source 0: Value.
469     * Source 1: Immediate with brw_swap_direction.
470     */
471    SHADER_OPCODE_QUAD_SWAP,
472 
473    /* Read value from the first live channel and broadcast the result
474     * to all channels.
475     *
476     * Source 0: Value.
477     */
478    SHADER_OPCODE_READ_FROM_LIVE_CHANNEL,
479 
480    /* Read value from a specified channel and broadcast the result
481     * to all channels.
482     *
483     * Source 0: Value.
484     * Source 1: Index of the channel to pick value from.
485     */
486    SHADER_OPCODE_READ_FROM_CHANNEL,
487 
488    /* This turns into an align16 mov from src0 to dst with a swizzle
489     * provided as an immediate in src1.
490     */
491    SHADER_OPCODE_QUAD_SWIZZLE,
492 
493    /* Take every Nth element in src0 and broadcast it to the group of N
494     * channels in which it lives in the destination.  The offset within the
495     * cluster is given by src1 and the cluster size is given by src2.
496     */
497    SHADER_OPCODE_CLUSTER_BROADCAST,
498 
499    SHADER_OPCODE_GET_BUFFER_SIZE,
500 
501    SHADER_OPCODE_INTERLOCK,
502 
503    /** Target for a HALT
504     *
505     * All HALT instructions in a shader must target the same jump point and
506     * that point is denoted by a HALT_TARGET instruction.
507     */
508    SHADER_OPCODE_HALT_TARGET,
509 
510    FS_OPCODE_DDX_COARSE,
511    FS_OPCODE_DDX_FINE,
512    /**
513     * Compute dFdy(), dFdyCoarse(), or dFdyFine().
514     */
515    FS_OPCODE_DDY_COARSE,
516    FS_OPCODE_DDY_FINE,
517    FS_OPCODE_PIXEL_X,
518    FS_OPCODE_PIXEL_Y,
519    FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
520    FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
521    FS_OPCODE_PACK_HALF_2x16_SPLIT,
522    FS_OPCODE_INTERPOLATE_AT_SAMPLE,
523    FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
524    FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET,
525 
526    /**
527     * GLSL barrier()
528     */
529    SHADER_OPCODE_BARRIER,
530 
531    /**
532     * Calculate the high 32-bits of a 32x32 multiply.
533     */
534    SHADER_OPCODE_MULH,
535 
536    /** Signed subtraction with saturation. */
537    SHADER_OPCODE_ISUB_SAT,
538 
539    /** Unsigned subtraction with saturation. */
540    SHADER_OPCODE_USUB_SAT,
541 
542    /**
543     * A MOV that uses VxH indirect addressing.
544     *
545     * Source 0: A register to start from (HW_REG).
546     * Source 1: An indirect offset (in bytes, UD GRF).
547     * Source 2: The length of the region that could be accessed (in bytes,
548     *           UD immediate).
549     */
550    SHADER_OPCODE_MOV_INDIRECT,
551 
552    /** Fills out a relocatable immediate */
553    SHADER_OPCODE_MOV_RELOC_IMM,
554 
555    SHADER_OPCODE_BTD_SPAWN_LOGICAL,
556    SHADER_OPCODE_BTD_RETIRE_LOGICAL,
557 
558    SHADER_OPCODE_READ_ARCH_REG,
559 
560    SHADER_OPCODE_LOAD_SUBGROUP_INVOCATION,
561 
562    RT_OPCODE_TRACE_RAY_LOGICAL,
563 
564    SHADER_OPCODE_MEMORY_LOAD_LOGICAL,
565    SHADER_OPCODE_MEMORY_STORE_LOGICAL,
566    SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL,
567 };
568 
569 enum fb_write_logical_srcs {
570    FB_WRITE_LOGICAL_SRC_COLOR0,      /* REQUIRED */
571    FB_WRITE_LOGICAL_SRC_COLOR1,      /* for dual source blend messages */
572    FB_WRITE_LOGICAL_SRC_SRC0_ALPHA,
573    FB_WRITE_LOGICAL_SRC_SRC_DEPTH,   /* gl_FragDepth */
574    FB_WRITE_LOGICAL_SRC_DST_DEPTH,   /* GFX4-5: passthrough from thread */
575    FB_WRITE_LOGICAL_SRC_SRC_STENCIL, /* gl_FragStencilRefARB */
576    FB_WRITE_LOGICAL_SRC_OMASK,       /* Sample Mask (gl_SampleMask) */
577    FB_WRITE_LOGICAL_SRC_COMPONENTS,  /* REQUIRED */
578    FB_WRITE_LOGICAL_SRC_NULL_RT,     /* Null RT write */
579    FB_WRITE_LOGICAL_NUM_SRCS
580 };
581 
582 enum tex_logical_srcs {
583    /** Texture coordinates */
584    TEX_LOGICAL_SRC_COORDINATE,
585    /** Shadow comparator */
586    TEX_LOGICAL_SRC_SHADOW_C,
587    /** dPdx if the operation takes explicit derivatives, otherwise LOD value */
588    TEX_LOGICAL_SRC_LOD,
589    /** dPdy if the operation takes explicit derivatives */
590    TEX_LOGICAL_SRC_LOD2,
591    /** Min LOD */
592    TEX_LOGICAL_SRC_MIN_LOD,
593    /** Sample index */
594    TEX_LOGICAL_SRC_SAMPLE_INDEX,
595    /** MCS data */
596    TEX_LOGICAL_SRC_MCS,
597    /** REQUIRED: Texture surface index */
598    TEX_LOGICAL_SRC_SURFACE,
599    /** Texture sampler index */
600    TEX_LOGICAL_SRC_SAMPLER,
601    /** Texture surface bindless handle */
602    TEX_LOGICAL_SRC_SURFACE_HANDLE,
603    /** Texture sampler bindless handle */
604    TEX_LOGICAL_SRC_SAMPLER_HANDLE,
605    /** Texel offset for gathers */
606    TEX_LOGICAL_SRC_TG4_OFFSET,
607    /** REQUIRED: Number of coordinate components (as UD immediate) */
608    TEX_LOGICAL_SRC_COORD_COMPONENTS,
609    /** REQUIRED: Number of derivative components (as UD immediate) */
610    TEX_LOGICAL_SRC_GRAD_COMPONENTS,
611    /** REQUIRED: request residency (as UD immediate) */
612    TEX_LOGICAL_SRC_RESIDENCY,
613 
614    TEX_LOGICAL_NUM_SRCS,
615 };
616 
617 enum pull_uniform_constant_srcs {
618    /** Surface binding table index */
619    PULL_UNIFORM_CONSTANT_SRC_SURFACE,
620    /** Surface bindless handle */
621    PULL_UNIFORM_CONSTANT_SRC_SURFACE_HANDLE,
622    /** Surface offset */
623    PULL_UNIFORM_CONSTANT_SRC_OFFSET,
624    /** Pull size */
625    PULL_UNIFORM_CONSTANT_SRC_SIZE,
626 
627    PULL_UNIFORM_CONSTANT_SRCS,
628 };
629 
630 enum pull_varying_constant_srcs {
631    /** Surface binding table index */
632    PULL_VARYING_CONSTANT_SRC_SURFACE,
633    /** Surface bindless handle */
634    PULL_VARYING_CONSTANT_SRC_SURFACE_HANDLE,
635    /** Surface offset */
636    PULL_VARYING_CONSTANT_SRC_OFFSET,
637    /** Pull alignment */
638    PULL_VARYING_CONSTANT_SRC_ALIGNMENT,
639 
640    PULL_VARYING_CONSTANT_SRCS,
641 };
642 
643 enum get_buffer_size_srcs {
644    /** Surface binding table index */
645    GET_BUFFER_SIZE_SRC_SURFACE,
646    /** Surface bindless handle */
647    GET_BUFFER_SIZE_SRC_SURFACE_HANDLE,
648    /** LOD */
649    GET_BUFFER_SIZE_SRC_LOD,
650 
651    GET_BUFFER_SIZE_SRCS
652 };
653 
654 enum memory_logical_mode {
655    MEMORY_MODE_TYPED,
656    MEMORY_MODE_UNTYPED,
657    MEMORY_MODE_SHARED_LOCAL,
658    MEMORY_MODE_SCRATCH,
659    MEMORY_MODE_CONSTANT,
660 };
661 
662 enum memory_logical_srcs {
663    /** enum lsc_opcode (as UD immediate) */
664    MEMORY_LOGICAL_OPCODE,
665 
666    /** enum memory_logical_mode (as UD immediate) */
667    MEMORY_LOGICAL_MODE,
668 
669    /** enum lsc_addr_surface_type (as UD immediate) */
670    MEMORY_LOGICAL_BINDING_TYPE,
671 
672    /**
673     * Where to find the surface state.  Depends on BINDING_TYPE above:
674     *
675     * - SS: pointer to surface state (relative to surface base address)
676     * - BSS: pointer to surface state (relative to bindless surface base)
677     * - BTI: binding table index
678     * - FLAT: This should should be BAD_FILE
679     */
680    MEMORY_LOGICAL_BINDING,
681 
682    /** Coordinate/address/offset for where to access memory */
683    MEMORY_LOGICAL_ADDRESS,
684 
685    /** Dimensionality of the "address" source (as UD immediate) */
686    MEMORY_LOGICAL_COORD_COMPONENTS,
687 
688    /** Required alignment of address in bytes; 0 for natural alignment */
689    MEMORY_LOGICAL_ALIGNMENT,
690 
691    /** Bit-size in the form of enum lsc_data_size (as UD immediate) */
692    MEMORY_LOGICAL_DATA_SIZE,
693 
694    /** Number of vector components (as UD immediate) */
695    MEMORY_LOGICAL_COMPONENTS,
696 
697    /** memory_flags bitfield (as UD immediate) */
698    MEMORY_LOGICAL_FLAGS,
699 
700    /** Data to write for stores or the first operand for atomics */
701    MEMORY_LOGICAL_DATA0,
702 
703    /** Second operand for two-source atomics */
704    MEMORY_LOGICAL_DATA1,
705 
706    MEMORY_LOGICAL_NUM_SRCS
707 };
708 
709 enum memory_flags {
710    /** Whether this is a transposed (i.e. block) memory access */
711    MEMORY_FLAG_TRANSPOSE = 1 << 0,
712    /** Whether this operation should fire for helper invocations */
713    MEMORY_FLAG_INCLUDE_HELPERS = 1 << 1,
714 };
715 
716 enum rt_logical_srcs {
717    /** Address of the globals */
718    RT_LOGICAL_SRC_GLOBALS,
719    /** Level at which the tracing should start */
720    RT_LOGICAL_SRC_BVH_LEVEL,
721    /** Type of tracing operation */
722    RT_LOGICAL_SRC_TRACE_RAY_CONTROL,
723    /** Synchronous tracing (ray query) */
724    RT_LOGICAL_SRC_SYNCHRONOUS,
725 
726    RT_LOGICAL_NUM_SRCS
727 };
728 
729 enum urb_logical_srcs {
730    URB_LOGICAL_SRC_HANDLE,
731    /** Offset in bytes on Xe2+ or OWords on older platforms */
732    URB_LOGICAL_SRC_PER_SLOT_OFFSETS,
733    URB_LOGICAL_SRC_CHANNEL_MASK,
734    /** Data to be written.  BAD_FILE for reads. */
735    URB_LOGICAL_SRC_DATA,
736    URB_LOGICAL_SRC_COMPONENTS,
737    URB_LOGICAL_NUM_SRCS
738 };
739 
740 enum interpolator_logical_srcs {
741    /** Interpolation offset */
742    INTERP_SRC_OFFSET,
743    /** Message data  */
744    INTERP_SRC_MSG_DESC,
745    /** Flag register for dynamic mode */
746    INTERP_SRC_DYNAMIC_MODE,
747 
748    INTERP_NUM_SRCS
749 };
750 
751 enum brw_reduce_op {
752    BRW_REDUCE_OP_ADD,
753    BRW_REDUCE_OP_MUL,
754    BRW_REDUCE_OP_MIN,
755    BRW_REDUCE_OP_MAX,
756    BRW_REDUCE_OP_AND,
757    BRW_REDUCE_OP_OR,
758    BRW_REDUCE_OP_XOR,
759 };
760 
761 enum brw_swap_direction {
762    BRW_SWAP_HORIZONTAL,
763    BRW_SWAP_VERTICAL,
764    BRW_SWAP_DIAGONAL,
765 };
766 
767 enum ENUM_PACKED brw_predicate {
768    BRW_PREDICATE_NONE                =  0,
769    BRW_PREDICATE_NORMAL              =  1,
770    BRW_PREDICATE_ALIGN1_ANYV         =  2,
771    BRW_PREDICATE_ALIGN1_ALLV         =  3,
772    BRW_PREDICATE_ALIGN1_ANY2H        =  4,
773    BRW_PREDICATE_ALIGN1_ALL2H        =  5,
774    BRW_PREDICATE_ALIGN1_ANY4H        =  6,
775    BRW_PREDICATE_ALIGN1_ALL4H        =  7,
776    BRW_PREDICATE_ALIGN1_ANY8H        =  8,
777    BRW_PREDICATE_ALIGN1_ALL8H        =  9,
778    BRW_PREDICATE_ALIGN1_ANY16H       = 10,
779    BRW_PREDICATE_ALIGN1_ALL16H       = 11,
780    BRW_PREDICATE_ALIGN1_ANY32H       = 12,
781    BRW_PREDICATE_ALIGN1_ALL32H       = 13,
782    BRW_PREDICATE_ALIGN16_REPLICATE_X =  2,
783    BRW_PREDICATE_ALIGN16_REPLICATE_Y =  3,
784    BRW_PREDICATE_ALIGN16_REPLICATE_Z =  4,
785    BRW_PREDICATE_ALIGN16_REPLICATE_W =  5,
786    BRW_PREDICATE_ALIGN16_ANY4H       =  6,
787    BRW_PREDICATE_ALIGN16_ALL4H       =  7,
788    XE2_PREDICATE_ANY = 2,
789    XE2_PREDICATE_ALL = 3
790 };
791 
792 enum ENUM_PACKED brw_reg_file {
793    BAD_FILE = 0,
794 
795    ARF,
796    FIXED_GRF,
797    IMM,
798 
799    ADDRESS,
800    VGRF,
801    ATTR,
802    UNIFORM, /* prog_data->params[reg] */
803 };
804 
805 /* CNL adds Align1 support for 3-src instructions. Bit 35 of the instruction
806  * word is "Execution Datatype" which controls whether the instruction operates
807  * on float or integer types. The register arguments have fields that offer
808  * more fine control their respective types.
809  */
810 enum ENUM_PACKED gfx10_align1_3src_exec_type {
811    BRW_ALIGN1_3SRC_EXEC_TYPE_INT   = 0,
812    BRW_ALIGN1_3SRC_EXEC_TYPE_FLOAT = 1,
813 };
814 
815 #define BRW_ARF_NULL                  0x00
816 #define BRW_ARF_ADDRESS               0x10
817 #define BRW_ARF_ACCUMULATOR           0x20
818 #define BRW_ARF_FLAG                  0x30
819 #define BRW_ARF_MASK                  0x40
820 #define BRW_ARF_SCALAR                0x60
821 #define BRW_ARF_STATE                 0x70
822 #define BRW_ARF_CONTROL               0x80
823 #define BRW_ARF_NOTIFICATION_COUNT    0x90
824 #define BRW_ARF_IP                    0xA0
825 #define BRW_ARF_TDR                   0xB0
826 #define BRW_ARF_TIMESTAMP             0xC0
827 
828 #define BRW_THREAD_NORMAL     0
829 #define BRW_THREAD_ATOMIC     1
830 #define BRW_THREAD_SWITCH     2
831 
832 /* Subregister of the address register used for particular purposes */
833 enum brw_address_subreg {
834    BRW_ADDRESS_SUBREG_INDIRECT_DESC = 0,
835    BRW_ADDRESS_SUBREG_INDIRECT_EX_DESC = 2,
836    BRW_ADDRESS_SUBREG_INDIRECT_SPILL_DESC = 4,
837 };
838 
839 enum ENUM_PACKED brw_vertical_stride {
840    BRW_VERTICAL_STRIDE_0               = 0,
841    BRW_VERTICAL_STRIDE_1               = 1,
842    BRW_VERTICAL_STRIDE_2               = 2,
843    BRW_VERTICAL_STRIDE_4               = 3,
844    BRW_VERTICAL_STRIDE_8               = 4,
845    BRW_VERTICAL_STRIDE_16              = 5,
846    BRW_VERTICAL_STRIDE_32              = 6,
847    BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL = 0xF,
848 };
849 
850 enum ENUM_PACKED gfx10_align1_3src_vertical_stride {
851    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_0 = 0,
852    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_1 = 1,
853    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_2 = 1,
854    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_4 = 2,
855    BRW_ALIGN1_3SRC_VERTICAL_STRIDE_8 = 3,
856 };
857 
858 enum ENUM_PACKED brw_width {
859    BRW_WIDTH_1  = 0,
860    BRW_WIDTH_2  = 1,
861    BRW_WIDTH_4  = 2,
862    BRW_WIDTH_8  = 3,
863    BRW_WIDTH_16 = 4,
864 };
865 
866 /**
867  * Gfx12+ SWSB SBID synchronization mode.
868  *
869  * This is represented as a bitmask including any required SBID token
870  * synchronization modes, used to synchronize out-of-order instructions.  Only
871  * the strongest mode of the mask will be provided to the hardware in the SWSB
872  * field of an actual hardware instruction, but virtual instructions may be
873  * able to take into account multiple of them.
874  */
875 enum tgl_sbid_mode {
876    TGL_SBID_NULL = 0,
877    TGL_SBID_SRC = 1,
878    TGL_SBID_DST = 2,
879    TGL_SBID_SET = 4
880 };
881 
882 
883 enum gfx12_sub_byte_precision {
884    BRW_SUB_BYTE_PRECISION_NONE = 0,
885 
886    /** 4 bits. Signedness determined by base type */
887    BRW_SUB_BYTE_PRECISION_4BIT = 1,
888 
889    /** 2 bits. Signedness determined by base type */
890    BRW_SUB_BYTE_PRECISION_2BIT = 2,
891 };
892 
893 enum gfx12_systolic_depth {
894    BRW_SYSTOLIC_DEPTH_16 = 0,
895    BRW_SYSTOLIC_DEPTH_2 = 1,
896    BRW_SYSTOLIC_DEPTH_4 = 2,
897    BRW_SYSTOLIC_DEPTH_8 = 3,
898 };
899 
900 #ifdef __cplusplus
901 /**
902  * Allow bitwise arithmetic of tgl_sbid_mode enums.
903  */
904 inline tgl_sbid_mode
905 operator|(tgl_sbid_mode x, tgl_sbid_mode y)
906 {
907    return tgl_sbid_mode(unsigned(x) | unsigned(y));
908 }
909 
910 inline tgl_sbid_mode
911 operator&(tgl_sbid_mode x, tgl_sbid_mode y)
912 {
913    return tgl_sbid_mode(unsigned(x) & unsigned(y));
914 }
915 
916 inline tgl_sbid_mode &
917 operator|=(tgl_sbid_mode &x, tgl_sbid_mode y)
918 {
919    return x = x | y;
920 }
921 
922 #endif
923 
924 /**
925  * TGL+ SWSB RegDist synchronization pipeline.
926  *
927  * On TGL all instructions that use the RegDist synchronization mechanism are
928  * considered to be executed as a single in-order pipeline, therefore only the
929  * TGL_PIPE_FLOAT pipeline is applicable.  On XeHP+ platforms there are two
930  * additional asynchronous ALU pipelines (which still execute instructions
931  * in-order and use the RegDist synchronization mechanism).  TGL_PIPE_NONE
932  * doesn't provide any RegDist pipeline synchronization information and allows
933  * the hardware to infer the pipeline based on the source types of the
934  * instruction.  TGL_PIPE_ALL can be used when synchronization with all ALU
935  * pipelines is intended.
936  *
937  * Xe3 adds TGL_PIPE_SCALAR for a very specific use case (writing immediates
938  * to scalar register).
939  */
940 enum tgl_pipe {
941    TGL_PIPE_NONE = 0,
942    TGL_PIPE_FLOAT,
943    TGL_PIPE_INT,
944    TGL_PIPE_LONG,
945    TGL_PIPE_MATH,
946    TGL_PIPE_SCALAR,
947    TGL_PIPE_ALL
948 };
949 
950 /**
951  * Logical representation of the SWSB scheduling information of a hardware
952  * instruction.  The binary representation is slightly more compact.
953  */
954 struct tgl_swsb {
955    unsigned regdist : 3;
956    enum tgl_pipe pipe : 3;
957    unsigned sbid : 5;
958    enum tgl_sbid_mode mode : 3;
959 };
960 
961 /**
962  * Construct a scheduling annotation with a single RegDist dependency.  This
963  * synchronizes with the completion of the d-th previous in-order instruction.
964  * The index is one-based, zero causes a no-op tgl_swsb to be constructed.
965  */
966 static inline struct tgl_swsb
tgl_swsb_regdist(unsigned d)967 tgl_swsb_regdist(unsigned d)
968 {
969    const struct tgl_swsb swsb = { d, d ? TGL_PIPE_ALL : TGL_PIPE_NONE };
970    assert(swsb.regdist == d);
971    return swsb;
972 }
973 
974 /**
975  * Construct a scheduling annotation that synchronizes with the specified SBID
976  * token.
977  */
978 static inline struct tgl_swsb
tgl_swsb_sbid(enum tgl_sbid_mode mode,unsigned sbid)979 tgl_swsb_sbid(enum tgl_sbid_mode mode, unsigned sbid)
980 {
981    const struct tgl_swsb swsb = { 0, TGL_PIPE_NONE, sbid, mode };
982    assert(swsb.sbid == sbid);
983    return swsb;
984 }
985 
986 /**
987  * Construct a no-op scheduling annotation.
988  */
989 static inline struct tgl_swsb
tgl_swsb_null(void)990 tgl_swsb_null(void)
991 {
992    return tgl_swsb_regdist(0);
993 }
994 
995 /**
996  * Return a scheduling annotation that allocates the same SBID synchronization
997  * token as \p swsb.  In addition it will synchronize against a previous
998  * in-order instruction if \p regdist is non-zero.
999  */
1000 static inline struct tgl_swsb
tgl_swsb_dst_dep(struct tgl_swsb swsb,unsigned regdist)1001 tgl_swsb_dst_dep(struct tgl_swsb swsb, unsigned regdist)
1002 {
1003    swsb.regdist = regdist;
1004    swsb.mode = swsb.mode & TGL_SBID_SET;
1005    swsb.pipe = (regdist ? TGL_PIPE_ALL : TGL_PIPE_NONE);
1006    return swsb;
1007 }
1008 
1009 /**
1010  * Return a scheduling annotation that synchronizes against the same SBID and
1011  * RegDist dependencies as \p swsb, but doesn't allocate any SBID token.
1012  */
1013 static inline struct tgl_swsb
tgl_swsb_src_dep(struct tgl_swsb swsb)1014 tgl_swsb_src_dep(struct tgl_swsb swsb)
1015 {
1016    swsb.mode = swsb.mode & (TGL_SBID_SRC | TGL_SBID_DST);
1017    return swsb;
1018 }
1019 
1020 /**
1021  * Convert the provided tgl_swsb to the hardware's binary representation of an
1022  * SWSB annotation.
1023  */
1024 static inline uint32_t
tgl_swsb_encode(const struct intel_device_info * devinfo,struct tgl_swsb swsb,enum opcode opcode)1025 tgl_swsb_encode(const struct intel_device_info *devinfo,
1026                 struct tgl_swsb swsb, enum opcode opcode)
1027 {
1028    if (!swsb.mode) {
1029       const unsigned pipe = devinfo->verx10 < 125 ? 0 :
1030          swsb.pipe == TGL_PIPE_FLOAT ? 0x10 :
1031          swsb.pipe == TGL_PIPE_INT ? 0x18 :
1032          swsb.pipe == TGL_PIPE_LONG ? 0x20 :
1033          swsb.pipe == TGL_PIPE_MATH ? 0x28 :
1034          swsb.pipe == TGL_PIPE_SCALAR ? 0x30 :
1035          swsb.pipe == TGL_PIPE_ALL ? 0x8 : 0;
1036       return pipe | swsb.regdist;
1037 
1038    } else if (swsb.regdist) {
1039       if (devinfo->ver >= 20) {
1040          unsigned mode = 0;
1041          if (opcode == BRW_OPCODE_DPAS) {
1042             mode = (swsb.mode & TGL_SBID_SET) ? 0b01 :
1043                    (swsb.mode & TGL_SBID_SRC) ? 0b10 :
1044                  /* swsb.mode & TGL_SBID_DST */ 0b11;
1045          } else if (swsb.mode & TGL_SBID_SET) {
1046             assert(opcode == BRW_OPCODE_SEND || opcode == BRW_OPCODE_SENDC);
1047             assert(swsb.pipe == TGL_PIPE_ALL ||
1048                    swsb.pipe == TGL_PIPE_INT ||
1049                    swsb.pipe == TGL_PIPE_FLOAT);
1050 
1051             mode = swsb.pipe == TGL_PIPE_INT   ? 0b11 :
1052                    swsb.pipe == TGL_PIPE_FLOAT ? 0b10 :
1053                 /* swsb.pipe == TGL_PIPE_ALL  */ 0b01;
1054          } else {
1055             assert(!(swsb.mode & ~(TGL_SBID_DST | TGL_SBID_SRC)));
1056             mode = swsb.pipe == TGL_PIPE_ALL  ? 0b11 :
1057                    swsb.mode == TGL_SBID_SRC  ? 0b10 :
1058                 /* swsb.mode == TGL_SBID_DST */ 0b01;
1059          }
1060          return mode << 8 | swsb.regdist << 5 | swsb.sbid;
1061       } else {
1062          assert(!(swsb.sbid & ~0xfu));
1063          return 0x80 | swsb.regdist << 4 | swsb.sbid;
1064       }
1065 
1066    } else {
1067       if (devinfo->ver >= 20) {
1068          return swsb.sbid | (swsb.mode & TGL_SBID_SET ? 0xc0 :
1069                              swsb.mode & TGL_SBID_DST ? 0x80 : 0xa0);
1070       } else {
1071          assert(!(swsb.sbid & ~0xfu));
1072          return swsb.sbid | (swsb.mode & TGL_SBID_SET ? 0x40 :
1073                              swsb.mode & TGL_SBID_DST ? 0x20 : 0x30);
1074       }
1075    }
1076 }
1077 
1078 /**
1079  * Convert the provided binary representation of an SWSB annotation to a
1080  * tgl_swsb.
1081  */
1082 static inline struct tgl_swsb
tgl_swsb_decode(const struct intel_device_info * devinfo,const bool is_unordered,const uint32_t x,enum opcode opcode)1083 tgl_swsb_decode(const struct intel_device_info *devinfo,
1084                 const bool is_unordered, const uint32_t x, enum opcode opcode)
1085 {
1086    if (devinfo->ver >= 20) {
1087       if (x & 0x300) {
1088          /* Mode isn't SingleInfo, there's a tuple */
1089          if (opcode == BRW_OPCODE_SEND || opcode == BRW_OPCODE_SENDC) {
1090             const struct tgl_swsb swsb = {
1091                (x & 0xe0u) >> 5,
1092                ((x & 0x300) == 0x300 ? TGL_PIPE_INT :
1093                 (x & 0x300) == 0x200 ? TGL_PIPE_FLOAT :
1094                 TGL_PIPE_ALL),
1095                x & 0x1fu,
1096                TGL_SBID_SET
1097             };
1098             return swsb;
1099          } else if (opcode == BRW_OPCODE_DPAS) {
1100             const struct tgl_swsb swsb = {
1101                .regdist = (x & 0xe0u) >> 5,
1102                .pipe = TGL_PIPE_NONE,
1103                .sbid = x & 0x1fu,
1104                .mode = (x & 0x300) == 0x300 ? TGL_SBID_DST :
1105                        (x & 0x300) == 0x200 ? TGL_SBID_SRC :
1106                                               TGL_SBID_SET,
1107             };
1108             return swsb;
1109          } else {
1110             const struct tgl_swsb swsb = {
1111                (x & 0xe0u) >> 5,
1112                ((x & 0x300) == 0x300 ? TGL_PIPE_ALL : TGL_PIPE_NONE),
1113                x & 0x1fu,
1114                ((x & 0x300) == 0x200 ? TGL_SBID_SRC : TGL_SBID_DST)
1115             };
1116             return swsb;
1117          }
1118 
1119       } else if ((x & 0xe0) == 0x80) {
1120          return tgl_swsb_sbid(TGL_SBID_DST, x & 0x1f);
1121       } else if ((x & 0xe0) == 0xa0) {
1122          return tgl_swsb_sbid(TGL_SBID_SRC, x & 0x1fu);
1123       } else if ((x & 0xe0) == 0xc0) {
1124          return tgl_swsb_sbid(TGL_SBID_SET, x & 0x1fu);
1125       } else {
1126             const struct tgl_swsb swsb = { x & 0x7u,
1127                                            ((x & 0x38) == 0x10 ? TGL_PIPE_FLOAT :
1128                                             (x & 0x38) == 0x18 ? TGL_PIPE_INT :
1129                                             (x & 0x38) == 0x20 ? TGL_PIPE_LONG :
1130                                             (x & 0x38) == 0x28 ? TGL_PIPE_MATH :
1131                                             (x & 0x38) == 0x8 ? TGL_PIPE_ALL :
1132                                             TGL_PIPE_NONE) };
1133             return swsb;
1134       }
1135 
1136    } else {
1137       if (x & 0x80) {
1138          const struct tgl_swsb swsb = { (x & 0x70u) >> 4, TGL_PIPE_NONE,
1139                                         x & 0xfu,
1140                                         is_unordered ?
1141                                         TGL_SBID_SET : TGL_SBID_DST };
1142          return swsb;
1143       } else if ((x & 0x70) == 0x20) {
1144          return tgl_swsb_sbid(TGL_SBID_DST, x & 0xfu);
1145       } else if ((x & 0x70) == 0x30) {
1146          return tgl_swsb_sbid(TGL_SBID_SRC, x & 0xfu);
1147       } else if ((x & 0x70) == 0x40) {
1148          return tgl_swsb_sbid(TGL_SBID_SET, x & 0xfu);
1149       } else {
1150          const struct tgl_swsb swsb = { x & 0x7u,
1151                                         ((x & 0x78) == 0x10 ? TGL_PIPE_FLOAT :
1152                                          (x & 0x78) == 0x18 ? TGL_PIPE_INT :
1153                                          (x & 0x78) == 0x50 ? TGL_PIPE_LONG :
1154                                          (x & 0x78) == 0x8 ? TGL_PIPE_ALL :
1155                                          TGL_PIPE_NONE) };
1156          assert(devinfo->verx10 >= 125 || swsb.pipe == TGL_PIPE_NONE);
1157          return swsb;
1158       }
1159    }
1160 }
1161 
1162 enum tgl_sync_function {
1163    TGL_SYNC_NOP = 0x0,
1164    TGL_SYNC_ALLRD = 0x2,
1165    TGL_SYNC_ALLWR = 0x3,
1166    TGL_SYNC_FENCE = 0xd,
1167    TGL_SYNC_BAR = 0xe,
1168    TGL_SYNC_HOST = 0xf
1169 };
1170 
1171 /**
1172  * Message target: Shared Function ID for where to SEND a message.
1173  *
1174  * These are enumerated in the ISA reference under "send - Send Message".
1175  * In particular, see the following tables:
1176  * - G45 PRM, Volume 4, Table 14-15 "Message Descriptor Definition"
1177  * - Sandybridge PRM, Volume 4 Part 2, Table 8-16 "Extended Message Descriptor"
1178  * - Ivybridge PRM, Volume 1 Part 1, section 3.2.7 "GPE Function IDs"
1179  */
1180 enum brw_message_target {
1181    BRW_SFID_NULL                     = 0,
1182    BRW_SFID_SAMPLER                  = 2,
1183    BRW_SFID_MESSAGE_GATEWAY          = 3,
1184    BRW_SFID_URB                      = 6,
1185    BRW_SFID_THREAD_SPAWNER           = 7,
1186    BRW_SFID_VME                      = 8,
1187 
1188    GFX6_SFID_DATAPORT_SAMPLER_CACHE  = 4,
1189    GFX6_SFID_DATAPORT_RENDER_CACHE   = 5,
1190    GFX6_SFID_DATAPORT_CONSTANT_CACHE = 9,
1191 
1192    GFX7_SFID_DATAPORT_DATA_CACHE     = 10,
1193    GFX7_SFID_PIXEL_INTERPOLATOR      = 11,
1194    HSW_SFID_DATAPORT_DATA_CACHE_1    = 12,
1195    HSW_SFID_CRE                      = 13,
1196 
1197    GFX12_SFID_TGM                      = 13, /* Typed Global Memory */
1198    GFX12_SFID_SLM                      = 14, /* Shared Local Memory */
1199    GFX12_SFID_UGM                      = 15, /* Untyped Global Memory */
1200 
1201    GEN_RT_SFID_BINDLESS_THREAD_DISPATCH = 7,
1202    GEN_RT_SFID_RAY_TRACE_ACCELERATOR = 8,
1203 };
1204 
1205 #define GFX7_MESSAGE_TARGET_DP_DATA_CACHE     10
1206 
1207 #define BRW_SAMPLER_RETURN_FORMAT_FLOAT32     0
1208 #define BRW_SAMPLER_RETURN_FORMAT_UINT32      2
1209 #define BRW_SAMPLER_RETURN_FORMAT_SINT32      3
1210 
1211 #define GFX8_SAMPLER_RETURN_FORMAT_32BITS    0
1212 #define GFX8_SAMPLER_RETURN_FORMAT_16BITS    1
1213 
1214 #define GFX5_SAMPLER_MESSAGE_SAMPLE              0
1215 #define GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS         1
1216 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LOD          2
1217 #define GFX5_SAMPLER_MESSAGE_SAMPLE_COMPARE      3
1218 #define GFX5_SAMPLER_MESSAGE_SAMPLE_DERIVS       4
1219 #define GFX5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE 5
1220 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE  6
1221 #define GFX5_SAMPLER_MESSAGE_SAMPLE_LD           7
1222 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4      8
1223 #define GFX5_SAMPLER_MESSAGE_LOD                 9
1224 #define GFX5_SAMPLER_MESSAGE_SAMPLE_RESINFO      10
1225 #define GFX6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO   11
1226 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_L     13
1227 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_B     14
1228 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_I     15
1229 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C    16
1230 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO   17
1231 #define GFX7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C 18
1232 #define XE2_SAMPLER_MESSAGE_SAMPLE_MLOD          18
1233 #define XE2_SAMPLER_MESSAGE_SAMPLE_COMPARE_MLOD  19
1234 #define HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE 20
1235 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_I_C   21
1236 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_L_C   23
1237 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LZ           24
1238 #define GFX9_SAMPLER_MESSAGE_SAMPLE_C_LZ         25
1239 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LD_LZ        26
1240 #define GFX9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W     28
1241 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD_MCS       29
1242 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DMS       30
1243 #define GFX7_SAMPLER_MESSAGE_SAMPLE_LD2DSS       31
1244 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_L           45
1245 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_B           46
1246 #define XE2_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_L_C         55
1247 
1248 /* for GFX5 only */
1249 #define BRW_SAMPLER_SIMD_MODE_SIMD4X2                   0
1250 #define BRW_SAMPLER_SIMD_MODE_SIMD8                     1
1251 #define BRW_SAMPLER_SIMD_MODE_SIMD16                    2
1252 #define BRW_SAMPLER_SIMD_MODE_SIMD32_64                 3
1253 
1254 #define GFX10_SAMPLER_SIMD_MODE_SIMD8H                  5
1255 #define GFX10_SAMPLER_SIMD_MODE_SIMD16H                 6
1256 
1257 #define XE2_SAMPLER_SIMD_MODE_SIMD16                  1
1258 #define XE2_SAMPLER_SIMD_MODE_SIMD32                  2
1259 #define XE2_SAMPLER_SIMD_MODE_SIMD16H                 5
1260 #define XE2_SAMPLER_SIMD_MODE_SIMD32H                 6
1261 
1262 /* GFX9 changes SIMD mode 0 to mean SIMD8D, but lets us get the SIMD4x2
1263  * behavior by setting bit 22 of dword 2 in the message header. */
1264 #define GFX9_SAMPLER_SIMD_MODE_SIMD8D                   0
1265 #define GFX9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2        (1 << 22)
1266 
1267 #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW   0
1268 #define BRW_DATAPORT_OWORD_BLOCK_1_OWORDHIGH  1
1269 #define BRW_DATAPORT_OWORD_BLOCK_2_OWORDS     2
1270 #define BRW_DATAPORT_OWORD_BLOCK_4_OWORDS     3
1271 #define BRW_DATAPORT_OWORD_BLOCK_8_OWORDS     4
1272 #define GFX12_DATAPORT_OWORD_BLOCK_16_OWORDS  5
1273 #define BRW_DATAPORT_OWORD_BLOCK_OWORDS(n)              \
1274    ((n) == 1 ? BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW :    \
1275     (n) == 2 ? BRW_DATAPORT_OWORD_BLOCK_2_OWORDS :      \
1276     (n) == 4 ? BRW_DATAPORT_OWORD_BLOCK_4_OWORDS :      \
1277     (n) == 8 ? BRW_DATAPORT_OWORD_BLOCK_8_OWORDS :      \
1278     (n) == 16 ? GFX12_DATAPORT_OWORD_BLOCK_16_OWORDS :  \
1279     (abort(), ~0))
1280 #define BRW_DATAPORT_OWORD_BLOCK_DWORDS(n)              \
1281    ((n) == 4 ? BRW_DATAPORT_OWORD_BLOCK_1_OWORDLOW :    \
1282     (n) == 8 ? BRW_DATAPORT_OWORD_BLOCK_2_OWORDS :      \
1283     (n) == 16 ? BRW_DATAPORT_OWORD_BLOCK_4_OWORDS :     \
1284     (n) == 32 ? BRW_DATAPORT_OWORD_BLOCK_8_OWORDS :     \
1285     (abort(), ~0))
1286 
1287 #define BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD     0
1288 #define BRW_DATAPORT_OWORD_DUAL_BLOCK_4OWORDS    2
1289 
1290 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_8DWORDS   2
1291 #define BRW_DATAPORT_DWORD_SCATTERED_BLOCK_16DWORDS  3
1292 
1293 /* This one stays the same across generations. */
1294 #define BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ          0
1295 /* GFX6 */
1296 #define GFX6_DATAPORT_READ_MESSAGE_RENDER_UNORM_READ	    1
1297 #define GFX6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ     2
1298 #define GFX6_DATAPORT_READ_MESSAGE_MEDIA_BLOCK_READ          4
1299 #define GFX6_DATAPORT_READ_MESSAGE_OWORD_UNALIGN_BLOCK_READ  5
1300 #define GFX6_DATAPORT_READ_MESSAGE_DWORD_SCATTERED_READ      6
1301 
1302 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE                0
1303 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED     1
1304 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01         2
1305 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23         3
1306 #define BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01       4
1307 
1308 #define XE2_DATAPORT_RENDER_TARGET_WRITE_SIMD32_SINGLE_SOURCE                1
1309 #define XE2_DATAPORT_RENDER_TARGET_WRITE_SIMD16_DUAL_SOURCE                  2
1310 
1311 /* GFX6 */
1312 #define GFX6_DATAPORT_WRITE_MESSAGE_DWORD_ATOMIC_WRITE              7
1313 #define GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE               8
1314 #define GFX6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE          9
1315 #define GFX6_DATAPORT_WRITE_MESSAGE_MEDIA_BLOCK_WRITE               10
1316 #define GFX6_DATAPORT_WRITE_MESSAGE_DWORD_SCATTERED_WRITE           11
1317 #define GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE             12
1318 #define GFX6_DATAPORT_WRITE_MESSAGE_STREAMED_VB_WRITE               13
1319 #define GFX6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_UNORM_WRITE       14
1320 
1321 /* GFX7 */
1322 #define GFX7_DATAPORT_RC_MEDIA_BLOCK_READ                           4
1323 #define GFX7_DATAPORT_RC_TYPED_SURFACE_READ                         5
1324 #define GFX7_DATAPORT_RC_TYPED_ATOMIC_OP                            6
1325 #define GFX7_DATAPORT_RC_MEMORY_FENCE                               7
1326 #define GFX7_DATAPORT_RC_MEDIA_BLOCK_WRITE                          10
1327 #define GFX7_DATAPORT_RC_RENDER_TARGET_WRITE                        12
1328 #define GFX7_DATAPORT_RC_TYPED_SURFACE_WRITE                        13
1329 #define GFX7_DATAPORT_DC_OWORD_BLOCK_READ                           0
1330 #define GFX7_DATAPORT_DC_UNALIGNED_OWORD_BLOCK_READ                 1
1331 #define GFX7_DATAPORT_DC_OWORD_DUAL_BLOCK_READ                      2
1332 #define GFX7_DATAPORT_DC_DWORD_SCATTERED_READ                       3
1333 #define GFX7_DATAPORT_DC_BYTE_SCATTERED_READ                        4
1334 #define GFX7_DATAPORT_DC_UNTYPED_SURFACE_READ                       5
1335 #define GFX7_DATAPORT_DC_UNTYPED_ATOMIC_OP                          6
1336 #define GFX7_DATAPORT_DC_MEMORY_FENCE                               7
1337 #define GFX7_DATAPORT_DC_OWORD_BLOCK_WRITE                          8
1338 #define GFX7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE                     10
1339 #define GFX7_DATAPORT_DC_DWORD_SCATTERED_WRITE                      11
1340 #define GFX7_DATAPORT_DC_BYTE_SCATTERED_WRITE                       12
1341 #define GFX7_DATAPORT_DC_UNTYPED_SURFACE_WRITE                      13
1342 
1343 #define GFX7_DATAPORT_SCRATCH_READ                            ((1 << 18) | \
1344                                                                (0 << 17))
1345 #define GFX7_DATAPORT_SCRATCH_WRITE                           ((1 << 18) | \
1346                                                                (1 << 17))
1347 #define GFX7_DATAPORT_SCRATCH_NUM_REGS_SHIFT                        12
1348 
1349 #define GFX7_PIXEL_INTERPOLATOR_LOC_SHARED_OFFSET     0
1350 #define GFX7_PIXEL_INTERPOLATOR_LOC_SAMPLE            1
1351 #define GFX7_PIXEL_INTERPOLATOR_LOC_CENTROID          2
1352 #define GFX7_PIXEL_INTERPOLATOR_LOC_PER_SLOT_OFFSET   3
1353 
1354 /* HSW */
1355 #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_READ                      0
1356 #define HSW_DATAPORT_DC_PORT0_UNALIGNED_OWORD_BLOCK_READ            1
1357 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_READ                 2
1358 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_READ                  3
1359 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_READ                   4
1360 #define HSW_DATAPORT_DC_PORT0_MEMORY_FENCE                          7
1361 #define HSW_DATAPORT_DC_PORT0_OWORD_BLOCK_WRITE                     8
1362 #define HSW_DATAPORT_DC_PORT0_OWORD_DUAL_BLOCK_WRITE                10
1363 #define HSW_DATAPORT_DC_PORT0_DWORD_SCATTERED_WRITE                 11
1364 #define HSW_DATAPORT_DC_PORT0_BYTE_SCATTERED_WRITE                  12
1365 
1366 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_READ                  1
1367 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP                     2
1368 #define HSW_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_OP_SIMD4X2             3
1369 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_READ                      4
1370 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_READ                    5
1371 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP                       6
1372 #define HSW_DATAPORT_DC_PORT1_TYPED_ATOMIC_OP_SIMD4X2               7
1373 #define HSW_DATAPORT_DC_PORT1_UNTYPED_SURFACE_WRITE                 9
1374 #define HSW_DATAPORT_DC_PORT1_MEDIA_BLOCK_WRITE                     10
1375 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP                     11
1376 #define HSW_DATAPORT_DC_PORT1_ATOMIC_COUNTER_OP_SIMD4X2             12
1377 #define HSW_DATAPORT_DC_PORT1_TYPED_SURFACE_WRITE                   13
1378 #define GFX9_DATAPORT_DC_PORT1_A64_SCATTERED_READ                   0x10
1379 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_READ             0x11
1380 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_OP                0x12
1381 #define GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_INT_OP      0x13
1382 #define GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_READ                 0x14
1383 #define GFX9_DATAPORT_DC_PORT1_A64_OWORD_BLOCK_WRITE                0x15
1384 #define GFX8_DATAPORT_DC_PORT1_A64_UNTYPED_SURFACE_WRITE            0x19
1385 #define GFX8_DATAPORT_DC_PORT1_A64_SCATTERED_WRITE                  0x1a
1386 #define GFX9_DATAPORT_DC_PORT1_UNTYPED_ATOMIC_FLOAT_OP              0x1b
1387 #define GFX9_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_FLOAT_OP          0x1d
1388 #define GFX12_DATAPORT_DC_PORT1_A64_UNTYPED_ATOMIC_HALF_FLOAT_OP    0x1e
1389 
1390 /* GFX9 */
1391 #define GFX9_DATAPORT_RC_RENDER_TARGET_WRITE                        12
1392 #define GFX9_DATAPORT_RC_RENDER_TARGET_READ                         13
1393 
1394 /* A64 scattered message subtype */
1395 #define GFX8_A64_SCATTERED_SUBTYPE_BYTE                             0
1396 #define GFX8_A64_SCATTERED_SUBTYPE_DWORD                            1
1397 #define GFX8_A64_SCATTERED_SUBTYPE_QWORD                            2
1398 #define GFX8_A64_SCATTERED_SUBTYPE_HWORD                            3
1399 
1400 /* Dataport special binding table indices: */
1401 #define BRW_BTI_STATELESS                255
1402 #define GFX7_BTI_SLM                     254
1403 
1404 /* The hardware docs are a bit contradictory here.  On Haswell, where they
1405  * first added cache ability control, there were 5 different cache modes (see
1406  * HSW_BTI_STATELESS_* above).  On Broadwell, they reduced to two:
1407  *
1408  *  - IA-Coherent (BTI=255): Coherent within Gen and coherent within the
1409  *    entire IA cache memory hierarchy.
1410  *
1411  *  - Non-Coherent (BTI=253): Coherent within Gen, same cache type.
1412  *
1413  * Information about stateless cache coherency can be found in the "A32
1414  * Stateless" section of the "3D Media GPGPU" volume of the PRM for each
1415  * hardware generation.
1416  *
1417  * Unfortunately, the docs for MDC_STATELESS appear to have been copied and
1418  * pasted from Haswell and give the Haswell definitions for the BTI values of
1419  * 255 and 253 including a warning about accessing 253 surfaces from multiple
1420  * threads.  This seems to be a copy+paste error and the definitions from the
1421  * "A32 Stateless" section should be trusted instead.
1422  *
1423  * Note that because the DRM sets bit 4 of HDC_CHICKEN0 on BDW, CHV and at
1424  * least some pre-production steppings of SKL due to WaForceEnableNonCoherent,
1425  * HDC memory access may have been overridden by the kernel to be non-coherent
1426  * (matching the behavior of the same BTI on pre-Gfx8 hardware) and BTI 255
1427  * may actually be an alias for BTI 253.
1428  */
1429 #define GFX8_BTI_STATELESS_IA_COHERENT   255
1430 #define GFX8_BTI_STATELESS_NON_COHERENT  253
1431 #define GFX9_BTI_BINDLESS                252
1432 
1433 /* Dataport atomic operations for Untyped Atomic Integer Operation message
1434  * (and others).
1435  */
1436 #define BRW_AOP_AND                   1
1437 #define BRW_AOP_OR                    2
1438 #define BRW_AOP_XOR                   3
1439 #define BRW_AOP_MOV                   4
1440 #define BRW_AOP_INC                   5
1441 #define BRW_AOP_DEC                   6
1442 #define BRW_AOP_ADD                   7
1443 #define BRW_AOP_SUB                   8
1444 #define BRW_AOP_REVSUB                9
1445 #define BRW_AOP_IMAX                  10
1446 #define BRW_AOP_IMIN                  11
1447 #define BRW_AOP_UMAX                  12
1448 #define BRW_AOP_UMIN                  13
1449 #define BRW_AOP_CMPWR                 14
1450 #define BRW_AOP_PREDEC                15
1451 
1452 /* Dataport atomic operations for Untyped Atomic Float Operation message. */
1453 #define BRW_AOP_FMAX                  1
1454 #define BRW_AOP_FMIN                  2
1455 #define BRW_AOP_FCMPWR                3
1456 #define BRW_AOP_FADD                  4
1457 
1458 #define BRW_MATH_FUNCTION_INV                              1
1459 #define BRW_MATH_FUNCTION_LOG                              2
1460 #define BRW_MATH_FUNCTION_EXP                              3
1461 #define BRW_MATH_FUNCTION_SQRT                             4
1462 #define BRW_MATH_FUNCTION_RSQ                              5
1463 #define BRW_MATH_FUNCTION_SIN                              6
1464 #define BRW_MATH_FUNCTION_COS                              7
1465 #define BRW_MATH_FUNCTION_FDIV                             9 /* gfx6+ */
1466 #define BRW_MATH_FUNCTION_POW                              10
1467 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER   11
1468 #define BRW_MATH_FUNCTION_INT_DIV_QUOTIENT                 12
1469 #define BRW_MATH_FUNCTION_INT_DIV_REMAINDER                13
1470 #define GFX8_MATH_FUNCTION_INVM                            14
1471 #define GFX8_MATH_FUNCTION_RSQRTM                          15
1472 
1473 #define GFX7_URB_OPCODE_ATOMIC_MOV  4
1474 #define GFX7_URB_OPCODE_ATOMIC_INC  5
1475 #define GFX8_URB_OPCODE_ATOMIC_ADD  6
1476 #define GFX8_URB_OPCODE_SIMD8_WRITE 7
1477 #define GFX8_URB_OPCODE_SIMD8_READ  8
1478 #define GFX125_URB_OPCODE_FENCE     9
1479 
1480 #define BRW_URB_SWIZZLE_NONE          0
1481 #define BRW_URB_SWIZZLE_INTERLEAVE    1
1482 #define BRW_URB_SWIZZLE_TRANSPOSE     2
1483 
1484 #define BRW_MESSAGE_GATEWAY_SFID_OPEN_GATEWAY         0
1485 #define BRW_MESSAGE_GATEWAY_SFID_CLOSE_GATEWAY        1
1486 #define BRW_MESSAGE_GATEWAY_SFID_FORWARD_MSG          2
1487 #define BRW_MESSAGE_GATEWAY_SFID_GET_TIMESTAMP        3
1488 #define BRW_MESSAGE_GATEWAY_SFID_BARRIER_MSG          4
1489 #define BRW_MESSAGE_GATEWAY_SFID_UPDATE_GATEWAY_STATE 5
1490 #define BRW_MESSAGE_GATEWAY_SFID_MMIO_READ_WRITE      6
1491 
1492 
1493 /* Gfx7 "GS URB Entry Allocation Size" is a U9-1 field, so the maximum gs_size
1494  * is 2^9, or 512.  It's counted in multiples of 64 bytes.
1495  *
1496  * Identical for VS, DS, and HS.
1497  */
1498 #define GFX7_MAX_GS_URB_ENTRY_SIZE_BYTES                (512*64)
1499 #define GFX7_MAX_DS_URB_ENTRY_SIZE_BYTES                (512*64)
1500 #define GFX7_MAX_HS_URB_ENTRY_SIZE_BYTES                (512*64)
1501 #define GFX7_MAX_VS_URB_ENTRY_SIZE_BYTES                (512*64)
1502 
1503 /* GS Thread Payload
1504  */
1505 
1506 /* 3DSTATE_GS "Output Vertex Size" has an effective maximum of 62. It's
1507  * counted in multiples of 16 bytes.
1508  */
1509 #define GFX7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES            (62*16)
1510 
1511 
1512 /* CR0.0[5:4] Floating-Point Rounding Modes
1513  *  Skylake PRM, Volume 7 Part 1, "Control Register", page 756
1514  */
1515 
1516 #define BRW_CR0_RND_MODE_MASK     0x30
1517 #define BRW_CR0_RND_MODE_SHIFT    4
1518 
1519 enum ENUM_PACKED brw_rnd_mode {
1520    BRW_RND_MODE_RTNE = 0,  /* Round to Nearest or Even */
1521    BRW_RND_MODE_RU = 1,    /* Round Up, toward +inf */
1522    BRW_RND_MODE_RD = 2,    /* Round Down, toward -inf */
1523    BRW_RND_MODE_RTZ = 3,   /* Round Toward Zero */
1524    BRW_RND_MODE_UNSPECIFIED,  /* Unspecified rounding mode */
1525 };
1526 
1527 #define BRW_CR0_FP64_DENORM_PRESERVE (1 << 6)
1528 #define BRW_CR0_FP32_DENORM_PRESERVE (1 << 7)
1529 #define BRW_CR0_FP16_DENORM_PRESERVE (1 << 10)
1530 
1531 #define BRW_CR0_FP_MODE_MASK (BRW_CR0_FP64_DENORM_PRESERVE | \
1532                               BRW_CR0_FP32_DENORM_PRESERVE | \
1533                               BRW_CR0_FP16_DENORM_PRESERVE | \
1534                               BRW_CR0_RND_MODE_MASK)
1535 
1536 /* MDC_DS - Data Size Message Descriptor Control Field
1537  * Skylake PRM, Volume 2d, page 129
1538  *
1539  * Specifies the number of Bytes to be read or written per Dword used at
1540  * byte_scattered read/write and byte_scaled read/write messages.
1541  */
1542 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_BYTE     0
1543 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_WORD     1
1544 #define GFX7_BYTE_SCATTERED_DATA_ELEMENT_DWORD    2
1545 
1546 #define GEN_RT_BTD_MESSAGE_SPAWN 1
1547 
1548 #define GEN_RT_TRACE_RAY_INITAL       0
1549 #define GEN_RT_TRACE_RAY_INSTANCE     1
1550 #define GEN_RT_TRACE_RAY_COMMIT       2
1551 #define GEN_RT_TRACE_RAY_CONTINUE     3
1552 
1553 #define GEN_RT_BTD_SHADER_TYPE_ANY_HIT        0
1554 #define GEN_RT_BTD_SHADER_TYPE_CLOSEST_HIT    1
1555 #define GEN_RT_BTD_SHADER_TYPE_MISS           2
1556 #define GEN_RT_BTD_SHADER_TYPE_INTERSECTION   3
1557 
1558 /* Starting with Xe-HPG, the old dataport was massively reworked dataport.
1559  * The new thing, called Load/Store Cache or LSC, has a significantly improved
1560  * interface.  Instead of bespoke messages for every case, there's basically
1561  * one or two messages with different bits to control things like address
1562  * size, how much data is read/written, etc.  It's way nicer but also means we
1563  * get to rewrite all our dataport encoding/decoding code.  This patch kicks
1564  * off the party with all of the new enums.
1565  */
1566 enum lsc_opcode {
1567    LSC_OP_LOAD            = 0,
1568    LSC_OP_LOAD_CMASK      = 2,
1569    LSC_OP_STORE           = 4,
1570    LSC_OP_STORE_CMASK     = 6,
1571    LSC_OP_ATOMIC_INC      = 8,
1572    LSC_OP_ATOMIC_DEC      = 9,
1573    LSC_OP_ATOMIC_LOAD     = 10,
1574    LSC_OP_ATOMIC_STORE    = 11,
1575    LSC_OP_ATOMIC_ADD      = 12,
1576    LSC_OP_ATOMIC_SUB      = 13,
1577    LSC_OP_ATOMIC_MIN      = 14,
1578    LSC_OP_ATOMIC_MAX      = 15,
1579    LSC_OP_ATOMIC_UMIN     = 16,
1580    LSC_OP_ATOMIC_UMAX     = 17,
1581    LSC_OP_ATOMIC_CMPXCHG  = 18,
1582    LSC_OP_ATOMIC_FADD     = 19,
1583    LSC_OP_ATOMIC_FSUB     = 20,
1584    LSC_OP_ATOMIC_FMIN     = 21,
1585    LSC_OP_ATOMIC_FMAX     = 22,
1586    LSC_OP_ATOMIC_FCMPXCHG = 23,
1587    LSC_OP_ATOMIC_AND      = 24,
1588    LSC_OP_ATOMIC_OR       = 25,
1589    LSC_OP_ATOMIC_XOR      = 26,
1590    LSC_OP_FENCE           = 31
1591 };
1592 
1593 /*
1594  * Specifies the size of the dataport address payload in registers.
1595  */
1596 enum ENUM_PACKED lsc_addr_reg_size {
1597    LSC_ADDR_REG_SIZE_1  = 1,
1598    LSC_ADDR_REG_SIZE_2  = 2,
1599    LSC_ADDR_REG_SIZE_3  = 3,
1600    LSC_ADDR_REG_SIZE_4  = 4,
1601    LSC_ADDR_REG_SIZE_6  = 6,
1602    LSC_ADDR_REG_SIZE_8  = 8,
1603 };
1604 
1605 /*
1606  * Specifies the size of the address payload item in a dataport message.
1607  */
1608 enum ENUM_PACKED lsc_addr_size {
1609   LSC_ADDR_SIZE_A16 = 1,    /* 16-bit address offset */
1610   LSC_ADDR_SIZE_A32 = 2,    /* 32-bit address offset */
1611   LSC_ADDR_SIZE_A64 = 3,    /* 64-bit address offset */
1612 };
1613 
1614 /*
1615  * Specifies the type of the address payload item in a dataport message. The
1616  * address type specifies how the dataport message decodes the Extended
1617  * Descriptor for the surface attributes and address calculation.
1618  */
1619 enum ENUM_PACKED lsc_addr_surface_type {
1620    LSC_ADDR_SURFTYPE_FLAT = 0, /* Flat */
1621    LSC_ADDR_SURFTYPE_BSS = 1,  /* Bindless surface state */
1622    LSC_ADDR_SURFTYPE_SS = 2,   /* Surface state */
1623    LSC_ADDR_SURFTYPE_BTI = 3,  /* Binding table index */
1624 };
1625 
1626 /*
1627  * Specifies the dataport message override to the default L1 and L3 memory
1628  * cache policies. Dataport L1 cache policies are uncached (UC), cached (C),
1629  * cache streaming (S) and invalidate-after-read (IAR). Dataport L3 cache
1630  * policies are uncached (UC) and cached (C).
1631  */
1632 enum lsc_cache_load {
1633    /* No override. Use the non-pipelined state or surface state cache settings
1634     * for L1 and L3.
1635     */
1636    LSC_CACHE_LOAD_L1STATE_L3MOCS = 0,
1637    /* Override to L1 uncached and L3 uncached */
1638    LSC_CACHE_LOAD_L1UC_L3UC      = 1,
1639    /* Override to L1 uncached and L3 cached */
1640    LSC_CACHE_LOAD_L1UC_L3C       = 2,
1641    /* Override to L1 cached and L3 uncached */
1642    LSC_CACHE_LOAD_L1C_L3UC       = 3,
1643    /* Override to cache at both L1 and L3 */
1644    LSC_CACHE_LOAD_L1C_L3C        = 4,
1645    /* Override to L1 streaming load and L3 uncached */
1646    LSC_CACHE_LOAD_L1S_L3UC       = 5,
1647    /* Override to L1 streaming load and L3 cached */
1648    LSC_CACHE_LOAD_L1S_L3C        = 6,
1649    /* For load messages, override to L1 invalidate-after-read, and L3 cached. */
1650    LSC_CACHE_LOAD_L1IAR_L3C      = 7,
1651 };
1652 
1653 /*
1654  * Specifies the dataport message override to the default L1 and L3 memory
1655  * cache policies. Dataport L1 cache policies are uncached (UC), cached (C),
1656  * streaming (S) and invalidate-after-read (IAR). Dataport L3 cache policies
1657  * are uncached (UC), cached (C), cached-as-a-constand (CC) and
1658  * invalidate-after-read (IAR).
1659  */
1660 enum PACKED xe2_lsc_cache_load {
1661    /* No override. Use the non-pipelined or surface state cache settings for L1
1662     * and L3.
1663     */
1664    XE2_LSC_CACHE_LOAD_L1STATE_L3MOCS = 0,
1665    /* Override to L1 uncached and L3 uncached */
1666    XE2_LSC_CACHE_LOAD_L1UC_L3UC = 2,
1667    /* Override to L1 uncached and L3 cached */
1668    XE2_LSC_CACHE_LOAD_L1UC_L3C = 4,
1669    /* Override to L1 uncached and L3 cached as a constant */
1670    XE2_LSC_CACHE_LOAD_L1UC_L3CC = 5,
1671    /* Override to L1 cached and L3 uncached */
1672    XE2_LSC_CACHE_LOAD_L1C_L3UC = 6,
1673    /* Override to L1 cached and L3 cached */
1674    XE2_LSC_CACHE_LOAD_L1C_L3C = 8,
1675    /* Override to L1 cached and L3 cached as a constant */
1676    XE2_LSC_CACHE_LOAD_L1C_L3CC = 9,
1677    /* Override to L1 cached as streaming load and L3 uncached */
1678    XE2_LSC_CACHE_LOAD_L1S_L3UC = 10,
1679    /* Override to L1 cached as streaming load and L3 cached */
1680    XE2_LSC_CACHE_LOAD_L1S_L3C = 12,
1681    /* Override to L1 and L3 invalidate after read */
1682    XE2_LSC_CACHE_LOAD_L1IAR_L3IAR = 14,
1683 
1684 };
1685 
1686 /*
1687  * Specifies the dataport message override to the default L1 and L3 memory
1688  * cache policies. Dataport L1 cache policies are uncached (UC), write-through
1689  * (WT), write-back (WB) and streaming (S). Dataport L3 cache policies are
1690  * uncached (UC) and cached (WB).
1691  */
1692 enum ENUM_PACKED lsc_cache_store {
1693    /* No override. Use the non-pipelined or surface state cache settings for L1
1694     * and L3.
1695     */
1696    LSC_CACHE_STORE_L1STATE_L3MOCS = 0,
1697    /* Override to L1 uncached and L3 uncached */
1698    LSC_CACHE_STORE_L1UC_L3UC = 1,
1699    /* Override to L1 uncached and L3 cached */
1700    LSC_CACHE_STORE_L1UC_L3WB = 2,
1701    /* Override to L1 write-through and L3 uncached */
1702    LSC_CACHE_STORE_L1WT_L3UC = 3,
1703    /* Override to L1 write-through and L3 cached */
1704    LSC_CACHE_STORE_L1WT_L3WB = 4,
1705    /* Override to L1 streaming and L3 uncached */
1706    LSC_CACHE_STORE_L1S_L3UC = 5,
1707    /* Override to L1 streaming and L3 cached */
1708    LSC_CACHE_STORE_L1S_L3WB = 6,
1709    /* Override to L1 write-back, and L3 cached */
1710    LSC_CACHE_STORE_L1WB_L3WB = 7,
1711 
1712 };
1713 
1714 /*
1715  * Specifies the dataport message override to the default L1 and L3 memory
1716  * cache policies. Dataport L1 cache policies are uncached (UC), write-through
1717  * (WT), write-back (WB) and streaming (S). Dataport L3 cache policies are
1718  * uncached (UC) and cached (WB).
1719  */
1720 enum PACKED xe2_lsc_cache_store {
1721    /* No override. Use the non-pipelined or surface state cache settings for L1
1722     * and L3.
1723     */
1724    XE2_LSC_CACHE_STORE_L1STATE_L3MOCS = 0,
1725    /* Override to L1 uncached and L3 uncached */
1726    XE2_LSC_CACHE_STORE_L1UC_L3UC = 2,
1727    /* Override to L1 uncached and L3 cached */
1728    XE2_LSC_CACHE_STORE_L1UC_L3WB = 4,
1729    /* Override to L1 write-through and L3 uncached */
1730    XE2_LSC_CACHE_STORE_L1WT_L3UC = 6,
1731    /* Override to L1 write-through and L3 cached */
1732    XE2_LSC_CACHE_STORE_L1WT_L3WB = 8,
1733    /* Override to L1 streaming and L3 uncached */
1734    XE2_LSC_CACHE_STORE_L1S_L3UC = 10,
1735    /* Override to L1 streaming and L3 cached */
1736    XE2_LSC_CACHE_STORE_L1S_L3WB = 12,
1737    /* Override to L1 write-back and L3 cached */
1738    XE2_LSC_CACHE_STORE_L1WB_L3WB = 14,
1739 
1740 };
1741 
1742 #define LSC_CACHE(devinfo, l_or_s, cc)                                  \
1743    ((devinfo)->ver < 20 ? (unsigned)LSC_CACHE_ ## l_or_s ## _ ## cc :   \
1744                           (unsigned)XE2_LSC_CACHE_ ## l_or_s ## _ ## cc)
1745 
1746 /*
1747  * Specifies which components of the data payload 4-element vector (X,Y,Z,W) is
1748  * packed into the register payload.
1749  */
1750 enum ENUM_PACKED lsc_cmask {
1751    LSC_CMASK_X = 0x1,
1752    LSC_CMASK_Y = 0x2,
1753    LSC_CMASK_XY = 0x3,
1754    LSC_CMASK_Z = 0x4,
1755    LSC_CMASK_XZ = 0x5,
1756    LSC_CMASK_YZ = 0x6,
1757    LSC_CMASK_XYZ = 0x7,
1758    LSC_CMASK_W = 0x8,
1759    LSC_CMASK_XW = 0x9,
1760    LSC_CMASK_YW = 0xa,
1761    LSC_CMASK_XYW = 0xb,
1762    LSC_CMASK_ZW = 0xc,
1763    LSC_CMASK_XZW = 0xd,
1764    LSC_CMASK_YZW = 0xe,
1765    LSC_CMASK_XYZW = 0xf,
1766 };
1767 
1768 /*
1769  * Specifies the size of the data payload item in a dataport message.
1770  */
1771 enum ENUM_PACKED lsc_data_size {
1772    /* 8-bit scalar data value in memory, packed into a 8-bit data value in
1773     * register.
1774     */
1775    LSC_DATA_SIZE_D8 = 0,
1776    /* 16-bit scalar data value in memory, packed into a 16-bit data value in
1777     * register.
1778     */
1779    LSC_DATA_SIZE_D16 = 1,
1780    /* 32-bit scalar data value in memory, packed into 32-bit data value in
1781     * register.
1782     */
1783    LSC_DATA_SIZE_D32 = 2,
1784    /* 64-bit scalar data value in memory, packed into 64-bit data value in
1785     * register.
1786     */
1787    LSC_DATA_SIZE_D64 = 3,
1788    /* 8-bit scalar data value in memory, packed into 32-bit unsigned data value
1789     * in register.
1790     */
1791    LSC_DATA_SIZE_D8U32 = 4,
1792    /* 16-bit scalar data value in memory, packed into 32-bit unsigned data
1793     * value in register.
1794     */
1795    LSC_DATA_SIZE_D16U32 = 5,
1796    /* 16-bit scalar BigFloat data value in memory, packed into 32-bit float
1797     * value in register.
1798     */
1799    LSC_DATA_SIZE_D16BF32 = 6,
1800 };
1801 
1802 /*
1803  *  Enum specifies the scope of the fence.
1804  */
1805 enum ENUM_PACKED lsc_fence_scope {
1806    /* Wait until all previous memory transactions from this thread are observed
1807     * within the local thread-group.
1808     */
1809    LSC_FENCE_THREADGROUP = 0,
1810    /* Wait until all previous memory transactions from this thread are observed
1811     * within the local sub-slice.
1812     */
1813    LSC_FENCE_LOCAL = 1,
1814    /* Wait until all previous memory transactions from this thread are observed
1815     * in the local tile.
1816     */
1817    LSC_FENCE_TILE = 2,
1818    /* Wait until all previous memory transactions from this thread are observed
1819     * in the local GPU.
1820     */
1821    LSC_FENCE_GPU = 3,
1822    /* Wait until all previous memory transactions from this thread are observed
1823     * across all GPUs in the system.
1824     */
1825    LSC_FENCE_ALL_GPU = 4,
1826    /* Wait until all previous memory transactions from this thread are observed
1827     * at the "system" level.
1828     */
1829    LSC_FENCE_SYSTEM_RELEASE = 5,
1830    /* For GPUs that do not follow PCIe Write ordering for downstream writes
1831     * targeting device memory, a fence message with scope=System_Acquire will
1832     * commit to device memory all downstream and peer writes that have reached
1833     * the device.
1834     */
1835    LSC_FENCE_SYSTEM_ACQUIRE = 6,
1836 };
1837 
1838 /*
1839  * Specifies the type of cache flush operation to perform after a fence is
1840  * complete.
1841  */
1842 enum ENUM_PACKED lsc_flush_type {
1843    LSC_FLUSH_TYPE_NONE = 0,
1844    /*
1845     * For a R/W cache, evict dirty lines (M to I state) and invalidate clean
1846     * lines. For a RO cache, invalidate clean lines.
1847     */
1848    LSC_FLUSH_TYPE_EVICT = 1,
1849    /*
1850     * For both R/W and RO cache, invalidate clean lines in the cache.
1851     */
1852    LSC_FLUSH_TYPE_INVALIDATE = 2,
1853    /*
1854     * For a R/W cache, invalidate dirty lines (M to I state), without
1855     * write-back to next level. This opcode does nothing for a RO cache.
1856     */
1857    LSC_FLUSH_TYPE_DISCARD = 3,
1858    /*
1859     * For a R/W cache, write-back dirty lines to the next level, but kept in
1860     * the cache as "clean" (M to V state). This opcode does nothing for a RO
1861     * cache.
1862     */
1863    LSC_FLUSH_TYPE_CLEAN = 4,
1864    /*
1865     * Flush "RW" section of the L3 cache, but leave L1 and L2 caches untouched.
1866     */
1867    LSC_FLUSH_TYPE_L3ONLY = 5,
1868    /*
1869     * HW maps this flush type internally to NONE.
1870     */
1871    LSC_FLUSH_TYPE_NONE_6 = 6,
1872 
1873 };
1874 
1875 enum ENUM_PACKED lsc_backup_fence_routing {
1876    /* Normal routing: UGM fence is routed to UGM pipeline. */
1877    LSC_NORMAL_ROUTING,
1878    /* Route UGM fence to LSC unit. */
1879    LSC_ROUTE_TO_LSC,
1880 };
1881 
1882 /*
1883  * Specifies the size of the vector in a dataport message.
1884  */
1885 enum ENUM_PACKED lsc_vect_size {
1886    LSC_VECT_SIZE_V1 = 0,    /* vector length 1 */
1887    LSC_VECT_SIZE_V2 = 1,    /* vector length 2 */
1888    LSC_VECT_SIZE_V3 = 2,    /* Vector length 3 */
1889    LSC_VECT_SIZE_V4 = 3,    /* Vector length 4 */
1890    LSC_VECT_SIZE_V8 = 4,    /* Vector length 8 */
1891    LSC_VECT_SIZE_V16 = 5,   /* Vector length 16 */
1892    LSC_VECT_SIZE_V32 = 6,   /* Vector length 32 */
1893    LSC_VECT_SIZE_V64 = 7,   /* Vector length 64 */
1894 };
1895 
1896 #define LSC_ONE_ADDR_REG   1
1897