1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/drm_fourcc.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #else
40 #define VG(x) ((void)0)
41 #endif
42
43 #include "common/intel_aux_map.h"
44 #include "common/intel_bind_timeline.h"
45 #include "common/intel_engine.h"
46 #include "common/intel_gem.h"
47 #include "common/intel_l3_config.h"
48 #include "common/intel_measure.h"
49 #include "common/intel_mem.h"
50 #include "common/intel_sample_positions.h"
51 #include "decoder/intel_decoder.h"
52 #include "dev/intel_device_info.h"
53 #include "blorp/blorp.h"
54 #include "compiler/brw_compiler.h"
55 #include "compiler/brw_kernel.h"
56 #include "compiler/brw_rt.h"
57 #include "ds/intel_driver_ds.h"
58 #include "util/bitset.h"
59 #include "util/bitscan.h"
60 #include "util/detect_os.h"
61 #include "util/macros.h"
62 #include "util/hash_table.h"
63 #include "util/list.h"
64 #include "util/perf/u_trace.h"
65 #include "util/set.h"
66 #include "util/sparse_array.h"
67 #include "util/u_atomic.h"
68 #if DETECT_OS_ANDROID
69 #include "util/u_gralloc/u_gralloc.h"
70 #endif
71 #include "util/u_vector.h"
72 #include "util/u_math.h"
73 #include "util/vma.h"
74 #include "util/xmlconfig.h"
75 #include "vk_acceleration_structure.h"
76 #include "vk_alloc.h"
77 #include "vk_buffer.h"
78 #include "vk_buffer_view.h"
79 #include "vk_command_buffer.h"
80 #include "vk_command_pool.h"
81 #include "vk_debug_report.h"
82 #include "vk_descriptor_update_template.h"
83 #include "vk_device.h"
84 #include "vk_device_memory.h"
85 #include "vk_drm_syncobj.h"
86 #include "vk_enum_defines.h"
87 #include "vk_format.h"
88 #include "vk_framebuffer.h"
89 #include "vk_graphics_state.h"
90 #include "vk_image.h"
91 #include "vk_instance.h"
92 #include "vk_pipeline_cache.h"
93 #include "vk_physical_device.h"
94 #include "vk_sampler.h"
95 #include "vk_shader_module.h"
96 #include "vk_sync.h"
97 #include "vk_sync_timeline.h"
98 #include "vk_texcompress_astc.h"
99 #include "vk_util.h"
100 #include "vk_query_pool.h"
101 #include "vk_queue.h"
102 #include "vk_log.h"
103 #include "vk_ycbcr_conversion.h"
104 #include "vk_video.h"
105 #include "vk_meta.h"
106
107 #ifdef __cplusplus
108 extern "C" {
109 #endif
110
111 /* Pre-declarations needed for WSI entrypoints */
112 struct wl_surface;
113 struct wl_display;
114 typedef struct xcb_connection_t xcb_connection_t;
115 typedef uint32_t xcb_visualid_t;
116 typedef uint32_t xcb_window_t;
117
118 struct anv_batch;
119 struct anv_buffer;
120 struct anv_buffer_view;
121 struct anv_image_view;
122 struct anv_instance;
123
124 struct intel_aux_map_context;
125 struct intel_perf_config;
126 struct intel_perf_counter_pass;
127 struct intel_perf_query_result;
128
129 #include <vulkan/vulkan.h>
130 #include <vulkan/vk_icd.h>
131
132 #include "anv_android.h"
133 #include "anv_entrypoints.h"
134 #include "anv_kmd_backend.h"
135 #include "anv_rmv.h"
136 #include "isl/isl.h"
137
138 #include "dev/intel_debug.h"
139 #undef MESA_LOG_TAG
140 #define MESA_LOG_TAG "MESA-INTEL"
141 #include "util/log.h"
142 #include "wsi_common.h"
143
144 /* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
145 #if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
146 #define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
147 #endif
148
149 #define NSEC_PER_SEC 1000000000ull
150
151 #define BINDING_TABLE_POOL_BLOCK_SIZE (65536)
152
153 /* 3DSTATE_VERTEX_BUFFER supports 33 VBs, we use 2 for base & drawid SGVs */
154 #define MAX_VBS (33 - 2)
155
156 /* 3DSTATE_VERTEX_ELEMENTS supports up to 34 VEs, but our backend compiler
157 * only supports the push model of VS inputs, and we only have 128 GRFs,
158 * minus the g0 and g1 payload, which gives us a maximum of 31 VEs. Plus,
159 * we use two of them for SGVs.
160 */
161 #define MAX_VES (31 - 2)
162
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 256 /* Minimum requirement as of Vulkan 1.4 */
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
172 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
173 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
174 #define MAX_EMBEDDED_SAMPLERS 2048
175 #define MAX_CUSTOM_BORDER_COLORS 4096
176 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
177 * use 64 here to avoid cache issues. This could most likely bring it back to
178 * 32 if we had different virtual addresses for the different views on a given
179 * GEM object.
180 */
181 #define ANV_UBO_ALIGNMENT 64
182 #define ANV_SSBO_ALIGNMENT 4
183 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
184 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
185 #define MAX_SAMPLE_LOCATIONS 16
186
187 /* RENDER_SURFACE_STATE is a bit smaller (48b) but since it is aligned to 64
188 * and we can't put anything else there we use 64b.
189 */
190 #define ANV_SURFACE_STATE_SIZE (64)
191
192 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
193 *
194 * "The surface state model is used when a Binding Table Index (specified
195 * in the message descriptor) of less than 240 is specified. In this model,
196 * the Binding Table Index is used to index into the binding table, and the
197 * binding table entry contains a pointer to the SURFACE_STATE."
198 *
199 * Binding table values above 240 are used for various things in the hardware
200 * such as stateless, stateless with incoherent cache, SLM, and bindless.
201 */
202 #define MAX_BINDING_TABLE_SIZE 240
203
204 #define ANV_SVGS_VB_INDEX MAX_VBS
205 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
206
207 /* We reserve this MI ALU register for the purpose of handling predication.
208 * Other code which uses the MI ALU should leave it alone.
209 */
210 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
211
212 /* We reserve this MI ALU register to pass around an offset computed from
213 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
214 * Other code which uses the MI ALU should leave it alone.
215 */
216 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
217
218 /* We reserve this MI ALU register to hold the last programmed bindless
219 * surface state base address so that we can predicate STATE_BASE_ADDRESS
220 * emissions if the address doesn't change.
221 */
222 #define ANV_BINDLESS_SURFACE_BASE_ADDR_REG 0x2668 /* MI_ALU_REG13 */
223
224 #define ANV_GRAPHICS_SHADER_STAGE_COUNT (MESA_SHADER_MESH + 1)
225
226 #define ANV_INLINE_PARAM_NUM_WORKGROUPS_OFFSET (8)
227
228 /* RENDER_SURFACE_STATE is a bit smaller (48b) but since it is aligned to 64
229 * and we can't put anything else there we use 64b.
230 */
231 #define ANV_SURFACE_STATE_SIZE (64)
232 #define ANV_SAMPLER_STATE_SIZE (32)
233
234 /* For gfx12 we set the streamout buffers using 4 separate commands
235 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
236 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
237 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
238 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
239 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
240 * 3DSTATE_SO_BUFFER_INDEX_0.
241 */
242 #define SO_BUFFER_INDEX_0_CMD 0x60
243 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
244
245 /* The TR-TT L1 page table entries may contain these values instead of actual
246 * pointers to indicate the regions are either NULL or invalid. We program
247 * these values to TR-TT registers, so we could change them, but it's super
248 * convenient to have the NULL value be 0 because everything is
249 * zero-initialized when allocated.
250 *
251 * Since we reserve these values for NULL/INVALID, then we can't use them as
252 * destinations for TR-TT address translation. Both values are shifted by 16
253 * bits, wich results in graphic addresses 0 and 64k. On Anv the first vma
254 * starts at 2MB, so we already don't use 0 and 64k for anything, so there's
255 * nothing really to reserve. We could instead just reserve random 64kb
256 * ranges from any of the non-TR-TT vmas and use their addresses.
257 */
258 #define ANV_TRTT_L1_NULL_TILE_VAL 0
259 #define ANV_TRTT_L1_INVALID_TILE_VAL 1
260
261 #define ANV_COLOR_OUTPUT_DISABLED (0xff)
262 #define ANV_COLOR_OUTPUT_UNUSED (0xfe)
263
264 static inline uint32_t
align_down_npot_u32(uint32_t v,uint32_t a)265 align_down_npot_u32(uint32_t v, uint32_t a)
266 {
267 return v - (v % a);
268 }
269
270 /** Alignment must be a power of 2. */
271 static inline bool
anv_is_aligned(uintmax_t n,uintmax_t a)272 anv_is_aligned(uintmax_t n, uintmax_t a)
273 {
274 assert(a == (a & -a));
275 return (n & (a - 1)) == 0;
276 }
277
278 static inline union isl_color_value
vk_to_isl_color(VkClearColorValue color)279 vk_to_isl_color(VkClearColorValue color)
280 {
281 return (union isl_color_value) {
282 .u32 = {
283 color.uint32[0],
284 color.uint32[1],
285 color.uint32[2],
286 color.uint32[3],
287 },
288 };
289 }
290
291 static inline union isl_color_value
vk_to_isl_color_with_format(VkClearColorValue color,enum isl_format format)292 vk_to_isl_color_with_format(VkClearColorValue color, enum isl_format format)
293 {
294 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
295 union isl_color_value isl_color = { .u32 = {0, } };
296
297 #define COPY_COLOR_CHANNEL(c, i) \
298 if (fmtl->channels.c.bits) \
299 isl_color.u32[i] = color.uint32[i]
300
301 COPY_COLOR_CHANNEL(r, 0);
302 COPY_COLOR_CHANNEL(g, 1);
303 COPY_COLOR_CHANNEL(b, 2);
304 COPY_COLOR_CHANNEL(a, 3);
305
306 #undef COPY_COLOR_CHANNEL
307
308 return isl_color;
309 }
310
311 void __anv_perf_warn(struct anv_device *device,
312 const struct vk_object_base *object,
313 const char *file, int line, const char *format, ...)
314 anv_printflike(5, 6);
315
316 /**
317 * Print a FINISHME message, including its source location.
318 */
319 #define anv_finishme(format, ...) \
320 do { \
321 static bool reported = false; \
322 if (!reported) { \
323 mesa_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
324 ##__VA_ARGS__); \
325 reported = true; \
326 } \
327 } while (0)
328
329 /**
330 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
331 */
332 #define anv_perf_warn(objects_macro, format, ...) \
333 do { \
334 static bool reported = false; \
335 if (!reported && INTEL_DEBUG(DEBUG_PERF)) { \
336 __vk_log(VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT, \
337 VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT, \
338 objects_macro, __FILE__, __LINE__, \
339 format, ## __VA_ARGS__); \
340 reported = true; \
341 } \
342 } while (0)
343
344 /* A non-fatal assert. Useful for debugging. */
345 #if MESA_DEBUG
346 #define anv_assert(x) ({ \
347 if (unlikely(!(x))) \
348 mesa_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
349 })
350 #else
351 #define anv_assert(x)
352 #endif
353
354 enum anv_bo_alloc_flags {
355 /** Specifies that the BO must have a 32-bit address
356 *
357 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
358 */
359 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
360
361 /** Specifies that the BO may be shared externally */
362 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
363
364 /** Specifies that the BO should be mapped */
365 ANV_BO_ALLOC_MAPPED = (1 << 2),
366
367 /** Specifies that the BO should be coherent.
368 *
369 * Note: In platforms with LLC where HOST_CACHED + HOST_COHERENT is free,
370 * bo can get upgraded to HOST_CACHED_COHERENT
371 */
372 ANV_BO_ALLOC_HOST_COHERENT = (1 << 3),
373
374 /** Specifies that the BO should be captured in error states */
375 ANV_BO_ALLOC_CAPTURE = (1 << 4),
376
377 /** Specifies that the BO will have an address assigned by the caller
378 *
379 * Such BOs do not exist in any VMA heap.
380 */
381 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
382
383 /** Enables implicit synchronization on the BO
384 *
385 * This is the opposite of EXEC_OBJECT_ASYNC.
386 */
387 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
388
389 /** Enables implicit synchronization on the BO
390 *
391 * This is equivalent to EXEC_OBJECT_WRITE.
392 */
393 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
394
395 /** Has an address which is visible to the client */
396 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
397
398 /** Align the BO's virtual address to match AUX-TT requirements */
399 ANV_BO_ALLOC_AUX_TT_ALIGNED = (1 << 9),
400
401 /** This buffer is allocated from local memory and should be cpu visible */
402 ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE = (1 << 10),
403
404 /** For non device local allocations */
405 ANV_BO_ALLOC_NO_LOCAL_MEM = (1 << 11),
406
407 /** This buffer will be scanout to display */
408 ANV_BO_ALLOC_SCANOUT = (1 << 12),
409
410 /** For descriptor pools */
411 ANV_BO_ALLOC_DESCRIPTOR_POOL = (1 << 13),
412
413 /** For buffers that will be bound using TR-TT.
414 *
415 * Not for buffers used as the TR-TT page tables.
416 */
417 ANV_BO_ALLOC_TRTT = (1 << 14),
418
419 /** Protected buffer */
420 ANV_BO_ALLOC_PROTECTED = (1 << 15),
421
422 /** Specifies that the BO should be cached and incoherent. */
423 ANV_BO_ALLOC_HOST_CACHED = (1 << 16),
424
425 /** For buffer addressable from the dynamic state heap */
426 ANV_BO_ALLOC_DYNAMIC_VISIBLE_POOL = (1 << 17),
427
428 /** Specifies that the BO is imported.
429 *
430 * Imported BOs must also be marked as ANV_BO_ALLOC_EXTERNAL
431 */
432 ANV_BO_ALLOC_IMPORTED = (1 << 18),
433
434 /** Specify whether this BO is internal to the driver */
435 ANV_BO_ALLOC_INTERNAL = (1 << 19),
436
437 /** Allocate with CCS AUX requirements
438 *
439 * This pads the BO include CCS data mapppable through the AUX-TT and
440 * aligned to the AUX-TT requirements.
441 */
442 ANV_BO_ALLOC_AUX_CCS = (1 << 20),
443
444 /** Compressed buffer, only supported in Xe2+ */
445 ANV_BO_ALLOC_COMPRESSED = (1 << 21),
446 };
447
448 /** Specifies that the BO should be cached and coherent. */
449 #define ANV_BO_ALLOC_HOST_CACHED_COHERENT (ANV_BO_ALLOC_HOST_COHERENT | \
450 ANV_BO_ALLOC_HOST_CACHED)
451
452
453 struct anv_bo {
454 const char *name;
455
456 /* The VMA heap in anv_device from which this BO takes its offset.
457 *
458 * This can only be NULL when has_fixed_address is true.
459 */
460 struct util_vma_heap *vma_heap;
461
462 /* All userptr bos in Xe KMD has gem_handle set to workaround_bo->gem_handle */
463 uint32_t gem_handle;
464
465 uint32_t refcount;
466
467 /* Index into the current validation list. This is used by the
468 * validation list building algorithm to track which buffers are already
469 * in the validation list so that we can ensure uniqueness.
470 */
471 uint32_t exec_obj_index;
472
473 /* Index for use with util_sparse_array_free_list */
474 uint32_t free_index;
475
476 /* Last known offset. This value is provided by the kernel when we
477 * execbuf and is used as the presumed offset for the next bunch of
478 * relocations, in canonical address format.
479 */
480 uint64_t offset;
481
482 /** Size of the buffer */
483 uint64_t size;
484
485 /** Offset at which the CCS data is stored */
486 uint64_t ccs_offset;
487
488 /* Map for internally mapped BOs.
489 *
490 * If ANV_BO_ALLOC_MAPPED is set in flags, this is the map for the whole
491 * BO.
492 */
493 void *map;
494
495 /* The actual size of bo allocated by kmd, basically:
496 * align(size, mem_alignment)
497 */
498 uint64_t actual_size;
499
500 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
501 uint32_t flags;
502
503 enum anv_bo_alloc_flags alloc_flags;
504
505 /** True if this BO wraps a host pointer */
506 bool from_host_ptr:1;
507
508 /** True if this BO is mapped in the GTT (only used for RMV) */
509 bool gtt_mapped:1;
510 };
511
512 static inline bool
anv_bo_is_external(const struct anv_bo * bo)513 anv_bo_is_external(const struct anv_bo *bo)
514 {
515 return bo->alloc_flags & ANV_BO_ALLOC_EXTERNAL;
516 }
517
518 static inline bool
anv_bo_is_vram_only(const struct anv_bo * bo)519 anv_bo_is_vram_only(const struct anv_bo *bo)
520 {
521 return !(bo->alloc_flags & (ANV_BO_ALLOC_NO_LOCAL_MEM |
522 ANV_BO_ALLOC_MAPPED |
523 ANV_BO_ALLOC_LOCAL_MEM_CPU_VISIBLE |
524 ANV_BO_ALLOC_IMPORTED));
525 }
526
527 static inline struct anv_bo *
anv_bo_ref(struct anv_bo * bo)528 anv_bo_ref(struct anv_bo *bo)
529 {
530 p_atomic_inc(&bo->refcount);
531 return bo;
532 }
533
534 enum intel_device_info_mmap_mode
535 anv_bo_get_mmap_mode(struct anv_device *device, struct anv_bo *bo);
536
537 static inline bool
anv_bo_needs_host_cache_flush(enum anv_bo_alloc_flags alloc_flags)538 anv_bo_needs_host_cache_flush(enum anv_bo_alloc_flags alloc_flags)
539 {
540 return (alloc_flags & (ANV_BO_ALLOC_HOST_CACHED | ANV_BO_ALLOC_HOST_COHERENT)) ==
541 ANV_BO_ALLOC_HOST_CACHED;
542 }
543
544 struct anv_address {
545 struct anv_bo *bo;
546 int64_t offset;
547 };
548
549 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
550
551 static inline struct anv_address
anv_address_from_u64(uint64_t addr_u64)552 anv_address_from_u64(uint64_t addr_u64)
553 {
554 assert(addr_u64 == intel_canonical_address(addr_u64));
555 return (struct anv_address) {
556 .bo = NULL,
557 .offset = addr_u64,
558 };
559 }
560
561 static inline bool
anv_address_is_null(struct anv_address addr)562 anv_address_is_null(struct anv_address addr)
563 {
564 return addr.bo == NULL && addr.offset == 0;
565 }
566
567 static inline uint64_t
anv_address_physical(struct anv_address addr)568 anv_address_physical(struct anv_address addr)
569 {
570 uint64_t address = (addr.bo ? addr.bo->offset : 0ull) + addr.offset;
571 return intel_canonical_address(address);
572 }
573
574 static inline struct u_trace_address
anv_address_utrace(struct anv_address addr)575 anv_address_utrace(struct anv_address addr)
576 {
577 return (struct u_trace_address) {
578 .bo = addr.bo,
579 .offset = addr.offset,
580 };
581 }
582
583 static inline struct anv_address
anv_address_add(struct anv_address addr,uint64_t offset)584 anv_address_add(struct anv_address addr, uint64_t offset)
585 {
586 addr.offset += offset;
587 return addr;
588 }
589
590 static inline struct anv_address
anv_address_add_aligned(struct anv_address addr,uint64_t offset,uint32_t alignment)591 anv_address_add_aligned(struct anv_address addr, uint64_t offset, uint32_t alignment)
592 {
593 addr.offset = align(addr.offset + offset, alignment);
594 return addr;
595 }
596
597 static inline void *
anv_address_map(struct anv_address addr)598 anv_address_map(struct anv_address addr)
599 {
600 if (addr.bo == NULL)
601 return NULL;
602
603 if (addr.bo->map == NULL)
604 return NULL;
605
606 return addr.bo->map + addr.offset;
607 }
608
609 /* Represent a virtual address range */
610 struct anv_va_range {
611 uint64_t addr;
612 uint64_t size;
613 };
614
615 /* Represents a lock-free linked list of "free" things. This is used by
616 * both the block pool and the state pools. Unfortunately, in order to
617 * solve the ABA problem, we can't use a single uint32_t head.
618 */
619 union anv_free_list {
620 struct {
621 uint32_t offset;
622
623 /* A simple count that is incremented every time the head changes. */
624 uint32_t count;
625 };
626 /* Make sure it's aligned to 64 bits. This will make atomic operations
627 * faster on 32 bit platforms.
628 */
629 alignas(8) uint64_t u64;
630 };
631
632 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
633
634 struct anv_block_state {
635 union {
636 struct {
637 uint32_t next;
638 uint32_t end;
639 };
640 /* Make sure it's aligned to 64 bits. This will make atomic operations
641 * faster on 32 bit platforms.
642 */
643 alignas(8) uint64_t u64;
644 };
645 };
646
647 #define anv_block_pool_foreach_bo(bo, pool) \
648 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
649 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
650 _pp_bo++)
651
652 #define ANV_MAX_BLOCK_POOL_BOS 20
653
654 struct anv_block_pool {
655 const char *name;
656
657 struct anv_device *device;
658
659 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
660 struct anv_bo *bo;
661 uint32_t nbos;
662
663 /* Maximum size of the pool */
664 uint64_t max_size;
665
666 /* Current size of the pool */
667 uint64_t size;
668
669 /* The canonical address where the start of the pool is pinned. The various bos that
670 * are created as the pool grows will have addresses in the range
671 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
672 */
673 uint64_t start_address;
674
675 /* The offset from the start of the bo to the "center" of the block
676 * pool. Pointers to allocated blocks are given by
677 * bo.map + center_bo_offset + offsets.
678 */
679 uint32_t center_bo_offset;
680
681 struct anv_block_state state;
682
683 enum anv_bo_alloc_flags bo_alloc_flags;
684 };
685
686 /* Block pools are backed by a fixed-size 1GB memfd */
687 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
688
689 /* The center of the block pool is also the middle of the memfd. This may
690 * change in the future if we decide differently for some reason.
691 */
692 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
693
694 static inline uint32_t
anv_block_pool_size(struct anv_block_pool * pool)695 anv_block_pool_size(struct anv_block_pool *pool)
696 {
697 return pool->state.end;
698 }
699
700 struct anv_state {
701 int64_t offset;
702 uint32_t alloc_size;
703 uint32_t idx;
704 void *map;
705 };
706
707 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
708
709 struct anv_fixed_size_state_pool {
710 union anv_free_list free_list;
711 struct anv_block_state block;
712 };
713
714 #define ANV_MIN_STATE_SIZE_LOG2 6
715 #define ANV_MAX_STATE_SIZE_LOG2 24
716
717 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
718
719 struct anv_free_entry {
720 uint32_t next;
721 struct anv_state state;
722 };
723
724 struct anv_state_table {
725 struct anv_device *device;
726 int fd;
727 struct anv_free_entry *map;
728 uint32_t size;
729 uint64_t max_size;
730 struct anv_block_state state;
731 struct u_vector cleanups;
732 };
733
734 struct anv_state_pool {
735 struct anv_block_pool block_pool;
736
737 /* Offset into the relevant state base address where the state pool starts
738 * allocating memory.
739 */
740 int64_t start_offset;
741
742 struct anv_state_table table;
743
744 /* The size of blocks which will be allocated from the block pool */
745 uint32_t block_size;
746
747 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
748 };
749
750 struct anv_state_reserved_pool {
751 struct anv_state_pool *pool;
752 union anv_free_list reserved_blocks;
753 uint32_t count;
754 };
755
756 struct anv_state_reserved_array_pool {
757 struct anv_state_pool *pool;
758 simple_mtx_t mutex;
759 /* Bitfield of usable elements */
760 BITSET_WORD *states;
761 /* Backing store */
762 struct anv_state state;
763 /* Number of elements */
764 uint32_t count;
765 /* Stride between each element */
766 uint32_t stride;
767 /* Size of each element */
768 uint32_t size;
769 };
770
771 struct anv_state_stream {
772 struct anv_state_pool *state_pool;
773
774 /* The size of blocks to allocate from the state pool */
775 uint32_t block_size;
776
777 /* Current block we're allocating from */
778 struct anv_state block;
779
780 /* Offset into the current block at which to allocate the next state */
781 uint32_t next;
782
783 /* Sum of all the blocks in all_blocks */
784 uint32_t total_size;
785
786 /* List of all blocks allocated from this pool */
787 struct util_dynarray all_blocks;
788 };
789
790 /* The block_pool functions exported for testing only. The block pool should
791 * only be used via a state pool (see below).
792 */
793 VkResult anv_block_pool_init(struct anv_block_pool *pool,
794 struct anv_device *device,
795 const char *name,
796 uint64_t start_address,
797 uint32_t initial_size,
798 uint32_t max_size);
799 void anv_block_pool_finish(struct anv_block_pool *pool);
800 VkResult anv_block_pool_alloc(struct anv_block_pool *pool,
801 uint32_t block_size,
802 int64_t *offset,
803 uint32_t *padding);
804 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
805 size);
806
807 struct anv_state_pool_params {
808 const char *name;
809 uint64_t base_address;
810 int64_t start_offset;
811 uint32_t block_size;
812 uint32_t max_size;
813 };
814
815 VkResult anv_state_pool_init(struct anv_state_pool *pool,
816 struct anv_device *device,
817 const struct anv_state_pool_params *params);
818 void anv_state_pool_finish(struct anv_state_pool *pool);
819 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
820 uint32_t state_size, uint32_t alignment);
821 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
822
823 static inline struct anv_address
anv_state_pool_state_address(struct anv_state_pool * pool,struct anv_state state)824 anv_state_pool_state_address(struct anv_state_pool *pool, struct anv_state state)
825 {
826 return (struct anv_address) {
827 .bo = pool->block_pool.bo,
828 .offset = state.offset - pool->start_offset,
829 };
830 }
831
832 static inline struct anv_state
anv_state_pool_emit_data(struct anv_state_pool * pool,size_t size,size_t align,const void * p)833 anv_state_pool_emit_data(struct anv_state_pool *pool,
834 size_t size, size_t align,
835 const void *p)
836 {
837 struct anv_state state;
838
839 state = anv_state_pool_alloc(pool, size, align);
840 memcpy(state.map, p, size);
841
842 return state;
843 }
844
845 void anv_state_stream_init(struct anv_state_stream *stream,
846 struct anv_state_pool *state_pool,
847 uint32_t block_size);
848 void anv_state_stream_finish(struct anv_state_stream *stream);
849 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
850 uint32_t size, uint32_t alignment);
851
852 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
853 struct anv_state_pool *parent,
854 uint32_t count, uint32_t size,
855 uint32_t alignment);
856 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
857 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
858 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
859 struct anv_state state);
860
861 VkResult anv_state_reserved_array_pool_init(struct anv_state_reserved_array_pool *pool,
862 struct anv_state_pool *parent,
863 uint32_t count, uint32_t size,
864 uint32_t alignment);
865 void anv_state_reserved_array_pool_finish(struct anv_state_reserved_array_pool *pool);
866 struct anv_state anv_state_reserved_array_pool_alloc(struct anv_state_reserved_array_pool *pool,
867 bool alloc_back);
868 struct anv_state anv_state_reserved_array_pool_alloc_index(struct anv_state_reserved_array_pool *pool,
869 unsigned idx);
870 uint32_t anv_state_reserved_array_pool_state_index(struct anv_state_reserved_array_pool *pool,
871 struct anv_state state);
872 void anv_state_reserved_array_pool_free(struct anv_state_reserved_array_pool *pool,
873 struct anv_state state);
874
875 VkResult anv_state_table_init(struct anv_state_table *table,
876 struct anv_device *device,
877 uint32_t initial_entries);
878 void anv_state_table_finish(struct anv_state_table *table);
879 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
880 uint32_t count);
881 void anv_free_list_push(union anv_free_list *list,
882 struct anv_state_table *table,
883 uint32_t idx, uint32_t count);
884 struct anv_state* anv_free_list_pop(union anv_free_list *list,
885 struct anv_state_table *table);
886
887
888 static inline struct anv_state *
anv_state_table_get(struct anv_state_table * table,uint32_t idx)889 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
890 {
891 return &table->map[idx].state;
892 }
893 /**
894 * Implements a pool of re-usable BOs. The interface is identical to that
895 * of block_pool except that each block is its own BO.
896 */
897 struct anv_bo_pool {
898 const char *name;
899
900 struct anv_device *device;
901
902 enum anv_bo_alloc_flags bo_alloc_flags;
903
904 struct util_sparse_array_free_list free_list[16];
905 };
906
907 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
908 const char *name, enum anv_bo_alloc_flags alloc_flags);
909 void anv_bo_pool_finish(struct anv_bo_pool *pool);
910 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
911 struct anv_bo **bo_out);
912 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
913
914 struct anv_scratch_pool {
915 enum anv_bo_alloc_flags alloc_flags;
916 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
917 struct anv_bo *bos[16][MESA_SHADER_STAGES];
918 uint32_t surfs[16];
919 struct anv_state surf_states[16];
920 };
921
922 void anv_scratch_pool_init(struct anv_device *device,
923 struct anv_scratch_pool *pool,
924 bool protected);
925 void anv_scratch_pool_finish(struct anv_device *device,
926 struct anv_scratch_pool *pool);
927 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
928 struct anv_scratch_pool *pool,
929 gl_shader_stage stage,
930 unsigned per_thread_scratch);
931 uint32_t anv_scratch_pool_get_surf(struct anv_device *device,
932 struct anv_scratch_pool *pool,
933 unsigned per_thread_scratch);
934
935 /* Note that on Gfx12HP we pass a scratch space surface state offset
936 * shifted by 2 relative to the value specified on the BSpec, since
937 * that allows the compiler to save a shift instruction while
938 * constructing the extended descriptor for SS addressing. That
939 * worked because we limit the scratch surface state pool to 8 MB and
940 * because we relied on the legacy (ExBSO=0) encoding of the extended
941 * descriptor in order to save the shift, which is no longer supported
942 * for the UGM shared function on Xe2 platforms, so we no longer
943 * attempt to do that trick.
944 */
945 #define ANV_SCRATCH_SPACE_SHIFT(ver) ((ver) >= 20 ? 6 : 4)
946
947 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
948 struct anv_bo_cache {
949 struct util_sparse_array bo_map;
950 pthread_mutex_t mutex;
951 };
952
953 VkResult anv_bo_cache_init(struct anv_bo_cache *cache,
954 struct anv_device *device);
955 void anv_bo_cache_finish(struct anv_bo_cache *cache);
956
957 struct anv_queue_family {
958 /* Standard bits passed on to the client */
959 VkQueueFlags queueFlags;
960 uint32_t queueCount;
961
962 enum intel_engine_class engine_class;
963 bool supports_perf;
964 };
965
966 #define ANV_MAX_QUEUE_FAMILIES 5
967
968 struct anv_memory_type {
969 /* Standard bits passed on to the client */
970 VkMemoryPropertyFlags propertyFlags;
971 uint32_t heapIndex;
972 /* Whether this is the dynamic visible memory type */
973 bool dynamic_visible;
974 bool compressed;
975 };
976
977 struct anv_memory_heap {
978 /* Standard bits passed on to the client */
979 VkDeviceSize size;
980 VkMemoryHeapFlags flags;
981
982 /** Driver-internal book-keeping.
983 *
984 * Align it to 64 bits to make atomic operations faster on 32 bit platforms.
985 */
986 alignas(8) VkDeviceSize used;
987
988 bool is_local_mem;
989 };
990
991 struct anv_memregion {
992 const struct intel_memory_class_instance *region;
993 uint64_t size;
994 uint64_t available;
995 };
996
997 enum anv_timestamp_capture_type {
998 ANV_TIMESTAMP_CAPTURE_TOP_OF_PIPE,
999 ANV_TIMESTAMP_CAPTURE_END_OF_PIPE,
1000 ANV_TIMESTAMP_CAPTURE_AT_CS_STALL,
1001 ANV_TIMESTAMP_REWRITE_COMPUTE_WALKER,
1002 ANV_TIMESTAMP_REWRITE_INDIRECT_DISPATCH,
1003 };
1004
1005 struct anv_physical_device {
1006 struct vk_physical_device vk;
1007
1008 /* Link in anv_instance::physical_devices */
1009 struct list_head link;
1010
1011 struct anv_instance * instance;
1012 char path[20];
1013 struct intel_device_info info;
1014
1015 bool video_decode_enabled;
1016 bool video_encode_enabled;
1017
1018 struct brw_compiler * compiler;
1019 struct isl_device isl_dev;
1020 struct intel_perf_config * perf;
1021 /*
1022 * Number of commands required to implement a performance query begin +
1023 * end.
1024 */
1025 uint32_t n_perf_query_commands;
1026 bool has_exec_async;
1027 bool has_exec_capture;
1028 VkQueueGlobalPriorityKHR max_context_priority;
1029 uint64_t gtt_size;
1030
1031 bool always_use_bindless;
1032 bool use_call_secondary;
1033
1034 /** True if we can use timeline semaphores through execbuf */
1035 bool has_exec_timeline;
1036
1037 /** True if we can read the GPU timestamp register
1038 *
1039 * When running in a virtual context, the timestamp register is unreadable
1040 * on Gfx12+.
1041 */
1042 bool has_reg_timestamp;
1043
1044 /** True if we can create protected contexts. */
1045 bool has_protected_contexts;
1046
1047 /** Whether KMD has the ability to create VM objects */
1048 bool has_vm_control;
1049
1050 /** Whether the device is not able map all the device local memory on the
1051 * host
1052 */
1053 bool has_small_bar;
1054
1055 /** True if we have the means to do sparse binding (e.g., a Kernel driver
1056 * a vm_bind ioctl).
1057 */
1058 enum anv_sparse_type {
1059 ANV_SPARSE_TYPE_NOT_SUPPORTED = 0,
1060 ANV_SPARSE_TYPE_VM_BIND,
1061 ANV_SPARSE_TYPE_TRTT,
1062 ANV_SPARSE_TYPE_FAKE,
1063 } sparse_type;
1064
1065 /** True if HW supports ASTC LDR */
1066 bool has_astc_ldr;
1067 /** True if denorms in void extents should be flushed to zero */
1068 bool flush_astc_ldr_void_extent_denorms;
1069 /** True if ASTC LDR is supported via emulation */
1070 bool emu_astc_ldr;
1071 /* true if FCV optimization should be disabled. */
1072 bool disable_fcv;
1073 /**/
1074 bool uses_ex_bso;
1075
1076 bool always_flush_cache;
1077
1078 /** True if application memory is allocated with extra AUX memory
1079 *
1080 * Applications quite often pool image allocations together in a single
1081 * VkDeviceMemory object. On platforms like MTL, the alignment of images
1082 * with compression mapped through the AUX translation tables is large :
1083 * 1MB. This can create a lot of wasted space in the application memory
1084 * objects.
1085 *
1086 * To workaround this problem, we allocate CCS data at the end of
1087 * VkDeviceMemory objects. This would not work well for TGL-like platforms
1088 * because the AUX translation tables also contain the format of the
1089 * images, but on MTL the HW ignore those values. So we can share the AUX
1090 * TT entries between different images without problem.
1091 *
1092 * This should be only true for platforms with AUX TT.
1093 */
1094 bool alloc_aux_tt_mem;
1095
1096 /**
1097 * True if the descriptors buffers are holding one of the following :
1098 * - anv_sampled_image_descriptor
1099 * - anv_storage_image_descriptor
1100 * - anv_address_range_descriptor
1101 *
1102 * Accessing the descriptors in a bindless fashion from the shader
1103 * requires an indirection in the shader, first fetch one of the structure
1104 * listed above from the descriptor buffer, then emit the send message to
1105 * the fixed function (sampler, dataport, etc...) with the handle fetched
1106 * above.
1107 *
1108 * We need to do things this way prior to DG2 because the bindless surface
1109 * state space is limited to 64Mb and some application will allocate more
1110 * than what HW can support. On DG2+ we get 4Gb of bindless surface state
1111 * and so we can reference directly RENDER_SURFACE_STATE/SAMPLER_STATE
1112 * structures instead.
1113 */
1114 bool indirect_descriptors;
1115
1116 bool uses_relocs;
1117
1118 /** Can the platform support cooperative matrices and is it enabled? */
1119 bool has_cooperative_matrix;
1120
1121 struct {
1122 uint32_t family_count;
1123 struct anv_queue_family families[ANV_MAX_QUEUE_FAMILIES];
1124 } queue;
1125
1126 struct {
1127 uint32_t type_count;
1128 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1129 uint32_t heap_count;
1130 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1131 #ifdef SUPPORT_INTEL_INTEGRATED_GPUS
1132 bool need_flush;
1133 #endif
1134 /** Mask of memory types of normal allocations */
1135 uint32_t default_buffer_mem_types;
1136 /** Mask of memory types of data indexable from the dynamic heap */
1137 uint32_t dynamic_visible_mem_types;
1138 /** Mask of memory types of protected buffers/images */
1139 uint32_t protected_mem_types;
1140 /**
1141 * Mask of memory types of compressed buffers/images. This is generally
1142 * a win for images, but a loss for buffers.
1143 */
1144 uint32_t compressed_mem_types;
1145 } memory;
1146
1147 struct {
1148 /**
1149 * General state pool
1150 */
1151 struct anv_va_range general_state_pool;
1152 /**
1153 * Low 32bit heap
1154 */
1155 struct anv_va_range low_heap;
1156 /**
1157 * Binding table pool
1158 */
1159 struct anv_va_range binding_table_pool;
1160 /**
1161 * Internal surface states for blorp & push descriptors.
1162 */
1163 struct anv_va_range internal_surface_state_pool;
1164 /**
1165 * Scratch surfaces (overlaps with internal_surface_state_pool).
1166 */
1167 struct anv_va_range scratch_surface_state_pool;
1168 /**
1169 * Bindless surface states (indirectly referred to by indirect
1170 * descriptors or for direct descriptors)
1171 */
1172 struct anv_va_range bindless_surface_state_pool;
1173 /**
1174 * Dynamic state pool
1175 */
1176 struct anv_va_range dynamic_state_pool;
1177 /**
1178 * Buffer pool that can be index from the dynamic state heap
1179 */
1180 struct anv_va_range dynamic_visible_pool;
1181 /**
1182 * Indirect descriptor pool
1183 */
1184 struct anv_va_range indirect_descriptor_pool;
1185 /**
1186 * Indirect push descriptor pool
1187 */
1188 struct anv_va_range indirect_push_descriptor_pool;
1189 /**
1190 * Instruction state pool
1191 */
1192 struct anv_va_range instruction_state_pool;
1193 /**
1194 * Push descriptor with descriptor buffers
1195 */
1196 struct anv_va_range push_descriptor_buffer_pool;
1197 /**
1198 * AUX-TT
1199 */
1200 struct anv_va_range aux_tt_pool;
1201 /**
1202 * Client heap
1203 */
1204 struct anv_va_range high_heap;
1205 struct anv_va_range trtt;
1206 } va;
1207
1208 /* Either we have a single vram region and it's all mappable, or we have
1209 * both mappable & non-mappable parts. System memory is always available.
1210 */
1211 struct anv_memregion vram_mappable;
1212 struct anv_memregion vram_non_mappable;
1213 struct anv_memregion sys;
1214 uint8_t driver_build_sha1[20];
1215 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1216 uint8_t driver_uuid[VK_UUID_SIZE];
1217 uint8_t device_uuid[VK_UUID_SIZE];
1218 uint8_t rt_uuid[VK_UUID_SIZE];
1219
1220 /* Maximum amount of scratch space used by all the GRL kernels */
1221 uint32_t max_grl_scratch_size;
1222
1223 struct vk_sync_type sync_syncobj_type;
1224 struct vk_sync_timeline_type sync_timeline_type;
1225 const struct vk_sync_type * sync_types[4];
1226
1227 struct wsi_device wsi_device;
1228 int local_fd;
1229 bool has_local;
1230 int64_t local_major;
1231 int64_t local_minor;
1232 int master_fd;
1233 bool has_master;
1234 int64_t master_major;
1235 int64_t master_minor;
1236 struct intel_query_engine_info * engine_info;
1237
1238 void (*cmd_emit_timestamp)(struct anv_batch *, struct anv_device *, struct anv_address,
1239 enum anv_timestamp_capture_type, void *);
1240 void (*cmd_capture_data)(struct anv_batch *, struct anv_device *,
1241 struct anv_address, struct anv_address,
1242 uint32_t);
1243 struct intel_measure_device measure_device;
1244
1245 /* Value of PIPELINE_SELECT::PipelineSelection == GPGPU */
1246 uint32_t gpgpu_pipeline_value;
1247
1248 /** A pre packed VERTEX_ELEMENT_STATE feeding 0s to the VS stage
1249 *
1250 * For use when a pipeline has no VS input
1251 */
1252 uint32_t empty_vs_input[2];
1253 };
1254
1255 VkResult anv_physical_device_try_create(struct vk_instance *vk_instance,
1256 struct _drmDevice *drm_device,
1257 struct vk_physical_device **out);
1258
1259 void anv_physical_device_destroy(struct vk_physical_device *vk_device);
1260
1261 static inline uint32_t
anv_physical_device_bindless_heap_size(const struct anv_physical_device * device,bool descriptor_buffer)1262 anv_physical_device_bindless_heap_size(const struct anv_physical_device *device,
1263 bool descriptor_buffer)
1264 {
1265 /* Pre-Gfx12.5, the HW bindless surface heap is only 64MB. After it's 4GB,
1266 * but we have some workarounds that require 2 heaps to overlap, so the
1267 * size is dictated by our VA allocation.
1268 */
1269 return device->uses_ex_bso ?
1270 (descriptor_buffer ?
1271 device->va.dynamic_visible_pool.size :
1272 device->va.bindless_surface_state_pool.size) :
1273 64 * 1024 * 1024 /* 64 MiB */;
1274 }
1275
1276 static inline bool
anv_physical_device_has_vram(const struct anv_physical_device * device)1277 anv_physical_device_has_vram(const struct anv_physical_device *device)
1278 {
1279 return device->vram_mappable.size > 0;
1280 }
1281
1282 struct anv_instance {
1283 struct vk_instance vk;
1284
1285 struct driOptionCache dri_options;
1286 struct driOptionCache available_dri_options;
1287
1288 int mesh_conv_prim_attrs_to_vert_attrs;
1289 bool enable_tbimr;
1290 bool external_memory_implicit_sync;
1291 bool force_guc_low_latency;
1292
1293 /**
1294 * Workarounds for game bugs.
1295 */
1296 uint8_t assume_full_subgroups;
1297 bool assume_full_subgroups_with_barrier;
1298 bool limit_trig_input_range;
1299 bool sample_mask_out_opengl_behaviour;
1300 bool force_filter_addr_rounding;
1301 bool fp64_workaround_enabled;
1302 float lower_depth_range_rate;
1303 unsigned generated_indirect_threshold;
1304 unsigned generated_indirect_ring_threshold;
1305 unsigned query_clear_with_blorp_threshold;
1306 unsigned query_copy_with_shader_threshold;
1307 unsigned force_vk_vendor;
1308 bool has_fake_sparse;
1309 bool disable_fcv;
1310 bool enable_buffer_comp;
1311 bool compression_control_enabled;
1312 bool anv_fake_nonlocal_memory;
1313 bool anv_upper_bound_descriptor_pool_sampler;
1314 bool custom_border_colors_without_format;
1315
1316 /* HW workarounds */
1317 bool no_16bit;
1318 bool intel_enable_wa_14018912822;
1319
1320 /**
1321 * Ray tracing configuration.
1322 */
1323 unsigned stack_ids;
1324 };
1325
1326 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1327 void anv_finish_wsi(struct anv_physical_device *physical_device);
1328
1329 struct anv_queue {
1330 struct vk_queue vk;
1331
1332 struct anv_device * device;
1333
1334 const struct anv_queue_family * family;
1335
1336 struct intel_batch_decode_ctx * decoder;
1337
1338 union {
1339 uint32_t exec_flags; /* i915 */
1340 uint32_t context_id; /* i915 */
1341 uint32_t exec_queue_id; /* Xe */
1342 };
1343
1344 uint32_t bind_queue_id; /* Xe */
1345
1346 /** Context/Engine id which executes companion RCS command buffer */
1347 uint32_t companion_rcs_id;
1348
1349 /** Synchronization object for debug purposes (DEBUG_SYNC) */
1350 struct vk_sync *sync;
1351
1352 /** Companion synchronization object
1353 *
1354 * Vulkan command buffers can be destroyed as soon as their lifecycle moved
1355 * from the Pending state to the Invalid/Executable state. This transition
1356 * happens when the VkFence/VkSemaphore associated with the completion of
1357 * the command buffer work is signaled.
1358 *
1359 * When we're using a companion command buffer to execute part of another
1360 * command buffer, we need to tie the 2 work submissions together to ensure
1361 * when the associated VkFence/VkSemaphore is signaled, both command
1362 * buffers are actually unused by the HW. To do this, we run an empty batch
1363 * buffer that we use to signal after both submissions :
1364 *
1365 * CCS --> main ---> empty_batch (with wait on companion) --> signal
1366 * RCS --> companion -|
1367 *
1368 * When companion batch completes, it signals companion_sync and allow
1369 * empty_batch to execute. Since empty_batch is running on the main engine,
1370 * we're guaranteed that upon completion both main & companion command
1371 * buffers are not used by HW anymore.
1372 */
1373 struct vk_sync *companion_sync;
1374
1375 struct intel_ds_queue ds;
1376
1377 struct anv_async_submit *init_submit;
1378 struct anv_async_submit *init_companion_submit;
1379 };
1380
1381 struct nir_xfb_info;
1382 struct anv_pipeline_bind_map;
1383 struct anv_pipeline_sets_layout;
1384 struct anv_push_descriptor_info;
1385 enum anv_dynamic_push_bits;
1386
1387 void anv_device_init_embedded_samplers(struct anv_device *device);
1388 void anv_device_finish_embedded_samplers(struct anv_device *device);
1389
1390 extern const struct vk_pipeline_cache_object_ops *const anv_cache_import_ops[2];
1391
1392 struct anv_shader_bin *
1393 anv_device_search_for_kernel(struct anv_device *device,
1394 struct vk_pipeline_cache *cache,
1395 const void *key_data, uint32_t key_size,
1396 bool *user_cache_bit);
1397
1398 struct anv_shader_upload_params;
1399
1400 struct anv_shader_bin *
1401 anv_device_upload_kernel(struct anv_device *device,
1402 struct vk_pipeline_cache *cache,
1403 const struct anv_shader_upload_params *params);
1404
1405 struct nir_shader;
1406 struct nir_shader_compiler_options;
1407
1408 struct nir_shader *
1409 anv_device_search_for_nir(struct anv_device *device,
1410 struct vk_pipeline_cache *cache,
1411 const struct nir_shader_compiler_options *nir_options,
1412 unsigned char sha1_key[20],
1413 void *mem_ctx);
1414
1415 void
1416 anv_device_upload_nir(struct anv_device *device,
1417 struct vk_pipeline_cache *cache,
1418 const struct nir_shader *nir,
1419 unsigned char sha1_key[20]);
1420
1421 void
1422 anv_load_fp64_shader(struct anv_device *device);
1423
1424 /**
1425 * This enum tracks the various HW instructions that hold graphics state
1426 * needing to be reprogrammed. Some instructions are grouped together as they
1427 * pretty much need to be emitted together (like 3DSTATE_URB_*).
1428 *
1429 * Not all bits apply to all platforms. We build a dirty state based on
1430 * enabled extensions & generation on anv_device.
1431 */
1432 enum anv_gfx_state_bits {
1433 /* Pipeline states */
1434 ANV_GFX_STATE_URB, /* All legacy stages, including mesh */
1435 ANV_GFX_STATE_VF_STATISTICS,
1436 ANV_GFX_STATE_VF_SGVS,
1437 ANV_GFX_STATE_VF_SGVS_2,
1438 ANV_GFX_STATE_VF_SGVS_VI, /* 3DSTATE_VERTEX_ELEMENTS for sgvs elements */
1439 ANV_GFX_STATE_VF_SGVS_INSTANCING, /* 3DSTATE_VF_INSTANCING for sgvs elements */
1440 ANV_GFX_STATE_PRIMITIVE_REPLICATION,
1441 ANV_GFX_STATE_SBE,
1442 ANV_GFX_STATE_SBE_SWIZ,
1443 ANV_GFX_STATE_SO_DECL_LIST,
1444 ANV_GFX_STATE_VS,
1445 ANV_GFX_STATE_HS,
1446 ANV_GFX_STATE_DS,
1447 ANV_GFX_STATE_GS,
1448 ANV_GFX_STATE_PS,
1449 ANV_GFX_STATE_SBE_MESH,
1450 ANV_GFX_STATE_CLIP_MESH,
1451 ANV_GFX_STATE_MESH_CONTROL,
1452 ANV_GFX_STATE_MESH_SHADER,
1453 ANV_GFX_STATE_MESH_DISTRIB,
1454 ANV_GFX_STATE_TASK_CONTROL,
1455 ANV_GFX_STATE_TASK_SHADER,
1456 ANV_GFX_STATE_TASK_REDISTRIB,
1457 /* Dynamic states */
1458 ANV_GFX_STATE_BLEND_STATE, /* Just the dynamic state structure */
1459 ANV_GFX_STATE_BLEND_STATE_PTR, /* The pointer to the dynamic state */
1460 ANV_GFX_STATE_CLIP,
1461 ANV_GFX_STATE_CC_STATE,
1462 ANV_GFX_STATE_CC_STATE_PTR,
1463 ANV_GFX_STATE_COARSE_PIXEL,
1464 ANV_GFX_STATE_CPS,
1465 ANV_GFX_STATE_DEPTH_BOUNDS,
1466 ANV_GFX_STATE_INDEX_BUFFER,
1467 ANV_GFX_STATE_LINE_STIPPLE,
1468 ANV_GFX_STATE_MULTISAMPLE,
1469 ANV_GFX_STATE_PS_BLEND,
1470 ANV_GFX_STATE_RASTER,
1471 ANV_GFX_STATE_SAMPLE_MASK,
1472 ANV_GFX_STATE_SAMPLE_PATTERN,
1473 ANV_GFX_STATE_SCISSOR,
1474 ANV_GFX_STATE_SF,
1475 ANV_GFX_STATE_STREAMOUT,
1476 ANV_GFX_STATE_TE,
1477 ANV_GFX_STATE_VERTEX_INPUT,
1478 ANV_GFX_STATE_VF,
1479 ANV_GFX_STATE_VF_TOPOLOGY,
1480 ANV_GFX_STATE_VFG,
1481 ANV_GFX_STATE_VIEWPORT_CC,
1482 ANV_GFX_STATE_VIEWPORT_CC_PTR,
1483 ANV_GFX_STATE_VIEWPORT_SF_CLIP,
1484 ANV_GFX_STATE_WM,
1485 ANV_GFX_STATE_WM_DEPTH_STENCIL,
1486 ANV_GFX_STATE_PS_EXTRA,
1487 ANV_GFX_STATE_PMA_FIX, /* Fake state to implement workaround */
1488 ANV_GFX_STATE_WA_18019816803, /* Fake state to implement workaround */
1489 ANV_GFX_STATE_WA_14018283232, /* Fake state to implement workaround */
1490 ANV_GFX_STATE_TBIMR_TILE_PASS_INFO,
1491 ANV_GFX_STATE_FS_MSAA_FLAGS,
1492 ANV_GFX_STATE_TCS_INPUT_VERTICES,
1493 ANV_GFX_STATE_COARSE_STATE,
1494
1495 ANV_GFX_STATE_MAX,
1496 };
1497
1498 const char *anv_gfx_state_bit_to_str(enum anv_gfx_state_bits state);
1499
1500 enum anv_coarse_pixel_state {
1501 ANV_COARSE_PIXEL_STATE_UNKNOWN,
1502 ANV_COARSE_PIXEL_STATE_DISABLED,
1503 ANV_COARSE_PIXEL_STATE_ENABLED,
1504 };
1505
1506 /* This structure tracks the values to program in HW instructions for
1507 * corresponding to dynamic states of the Vulkan API. Only fields that need to
1508 * be reemitted outside of the VkPipeline object are tracked here.
1509 */
1510 struct anv_gfx_dynamic_state {
1511 /* 3DSTATE_BLEND_STATE_POINTERS */
1512 struct {
1513 bool AlphaToCoverageEnable;
1514 bool AlphaToOneEnable;
1515 bool IndependentAlphaBlendEnable;
1516 bool ColorDitherEnable;
1517 struct {
1518 bool WriteDisableAlpha;
1519 bool WriteDisableRed;
1520 bool WriteDisableGreen;
1521 bool WriteDisableBlue;
1522
1523 uint32_t LogicOpFunction;
1524 bool LogicOpEnable;
1525
1526 bool ColorBufferBlendEnable;
1527 uint32_t ColorClampRange;
1528 bool PreBlendColorClampEnable;
1529 bool PostBlendColorClampEnable;
1530 uint32_t SourceBlendFactor;
1531 uint32_t DestinationBlendFactor;
1532 uint32_t ColorBlendFunction;
1533 uint32_t SourceAlphaBlendFactor;
1534 uint32_t DestinationAlphaBlendFactor;
1535 uint32_t AlphaBlendFunction;
1536 } rts[MAX_RTS];
1537
1538 struct anv_state state;
1539 } blend;
1540
1541 /* 3DSTATE_CC_STATE_POINTERS */
1542 struct {
1543 float BlendConstantColorRed;
1544 float BlendConstantColorGreen;
1545 float BlendConstantColorBlue;
1546 float BlendConstantColorAlpha;
1547
1548 struct anv_state state;
1549 } cc;
1550
1551 /* 3DSTATE_CLIP */
1552 struct {
1553 uint32_t APIMode;
1554 uint32_t ViewportXYClipTestEnable;
1555 uint32_t MaximumVPIndex;
1556 uint32_t TriangleStripListProvokingVertexSelect;
1557 uint32_t LineStripListProvokingVertexSelect;
1558 uint32_t TriangleFanProvokingVertexSelect;
1559 } clip;
1560
1561 /* 3DSTATE_COARSE_PIXEL */
1562 struct {
1563 uint32_t CPSizeX;
1564 uint32_t CPSizeY;
1565 uint32_t CPSizeCombiner0Opcode;
1566 uint32_t CPSizeCombiner1Opcode;
1567 bool DisableCPSPointers;
1568 } coarse_pixel;
1569
1570 /* 3DSTATE_CPS/3DSTATE_CPS_POINTERS */
1571 struct {
1572 /* Gfx11 */
1573 uint32_t CoarsePixelShadingMode;
1574 float MinCPSizeX;
1575 float MinCPSizeY;
1576 /* Gfx12+ */
1577 uint32_t CoarsePixelShadingStateArrayPointer;
1578 } cps;
1579
1580 /* 3DSTATE_DEPTH_BOUNDS */
1581 struct {
1582 bool DepthBoundsTestEnable;
1583 float DepthBoundsTestMinValue;
1584 float DepthBoundsTestMaxValue;
1585 } db;
1586
1587 /* 3DSTATE_GS */
1588 struct {
1589 uint32_t ReorderMode;
1590 } gs;
1591
1592 /* 3DSTATE_LINE_STIPPLE */
1593 struct {
1594 uint32_t LineStipplePattern;
1595 float LineStippleInverseRepeatCount;
1596 uint32_t LineStippleRepeatCount;
1597 } ls;
1598
1599 /* 3DSTATE_MULTISAMPLE */
1600 struct {
1601 uint32_t NumberofMultisamples;
1602 } ms;
1603
1604 /* 3DSTATE_PS */
1605 struct {
1606 uint32_t PositionXYOffsetSelect;
1607
1608 uint32_t KernelStartPointer0;
1609 uint32_t KernelStartPointer1;
1610 uint32_t KernelStartPointer2;
1611
1612 uint32_t DispatchGRFStartRegisterForConstantSetupData0;
1613 uint32_t DispatchGRFStartRegisterForConstantSetupData1;
1614 uint32_t DispatchGRFStartRegisterForConstantSetupData2;
1615
1616 /* Pre-Gfx20 only */
1617 bool _8PixelDispatchEnable;
1618 bool _16PixelDispatchEnable;
1619 bool _32PixelDispatchEnable;
1620
1621 /* Gfx20+ only */
1622 bool Kernel0Enable;
1623 bool Kernel1Enable;
1624 uint32_t Kernel0SIMDWidth;
1625 uint32_t Kernel1SIMDWidth;
1626 uint32_t Kernel0PolyPackingPolicy;
1627 uint32_t Kernel0MaximumPolysperThread;
1628 } ps;
1629
1630 /* 3DSTATE_PS_EXTRA */
1631 struct {
1632 bool PixelShaderHasUAV;
1633 bool PixelShaderIsPerSample;
1634 bool PixelShaderKillsPixel;
1635 bool PixelShaderIsPerCoarsePixel;
1636 bool EnablePSDependencyOnCPsizeChange;
1637 } ps_extra;
1638
1639 /* 3DSTATE_PS_BLEND */
1640 struct {
1641 bool HasWriteableRT;
1642 bool ColorBufferBlendEnable;
1643 uint32_t SourceAlphaBlendFactor;
1644 uint32_t DestinationAlphaBlendFactor;
1645 uint32_t SourceBlendFactor;
1646 uint32_t DestinationBlendFactor;
1647 bool AlphaTestEnable;
1648 bool IndependentAlphaBlendEnable;
1649 bool AlphaToCoverageEnable;
1650 } ps_blend;
1651
1652 /* 3DSTATE_RASTER */
1653 struct {
1654 uint32_t APIMode;
1655 bool DXMultisampleRasterizationEnable;
1656 bool AntialiasingEnable;
1657 uint32_t CullMode;
1658 uint32_t FrontWinding;
1659 bool GlobalDepthOffsetEnableSolid;
1660 bool GlobalDepthOffsetEnableWireframe;
1661 bool GlobalDepthOffsetEnablePoint;
1662 float GlobalDepthOffsetConstant;
1663 float GlobalDepthOffsetScale;
1664 float GlobalDepthOffsetClamp;
1665 uint32_t FrontFaceFillMode;
1666 uint32_t BackFaceFillMode;
1667 bool ViewportZFarClipTestEnable;
1668 bool ViewportZNearClipTestEnable;
1669 bool ConservativeRasterizationEnable;
1670 } raster;
1671
1672 /* 3DSTATE_SCISSOR_STATE_POINTERS */
1673 struct {
1674 uint32_t count;
1675 struct {
1676 uint32_t ScissorRectangleYMin;
1677 uint32_t ScissorRectangleXMin;
1678 uint32_t ScissorRectangleYMax;
1679 uint32_t ScissorRectangleXMax;
1680 } elem[MAX_SCISSORS];
1681 } scissor;
1682
1683 /* 3DSTATE_SF */
1684 struct {
1685 float LineWidth;
1686 uint32_t TriangleStripListProvokingVertexSelect;
1687 uint32_t LineStripListProvokingVertexSelect;
1688 uint32_t TriangleFanProvokingVertexSelect;
1689 bool LegacyGlobalDepthBiasEnable;
1690 } sf;
1691
1692 /* 3DSTATE_STREAMOUT */
1693 struct {
1694 bool RenderingDisable;
1695 uint32_t RenderStreamSelect;
1696 uint32_t ReorderMode;
1697 uint32_t ForceRendering;
1698 } so;
1699
1700 /* 3DSTATE_SAMPLE_MASK */
1701 struct {
1702 uint32_t SampleMask;
1703 } sm;
1704
1705 /* 3DSTATE_TE */
1706 struct {
1707 uint32_t OutputTopology;
1708 } te;
1709
1710 /* 3DSTATE_VF */
1711 struct {
1712 bool IndexedDrawCutIndexEnable;
1713 uint32_t CutIndex;
1714 } vf;
1715
1716 /* 3DSTATE_VFG */
1717 struct {
1718 uint32_t DistributionMode;
1719 bool ListCutIndexEnable;
1720 } vfg;
1721
1722 /* 3DSTATE_VF_TOPOLOGY */
1723 struct {
1724 uint32_t PrimitiveTopologyType;
1725 } vft;
1726
1727 /* 3DSTATE_VIEWPORT_STATE_POINTERS_CC */
1728 struct {
1729 uint32_t count;
1730 struct {
1731 float MinimumDepth;
1732 float MaximumDepth;
1733 } elem[MAX_VIEWPORTS];
1734
1735 struct anv_state state;
1736 } vp_cc;
1737
1738 /* 3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP */
1739 struct {
1740 uint32_t count;
1741 struct {
1742 float ViewportMatrixElementm00;
1743 float ViewportMatrixElementm11;
1744 float ViewportMatrixElementm22;
1745 float ViewportMatrixElementm30;
1746 float ViewportMatrixElementm31;
1747 float ViewportMatrixElementm32;
1748 float XMinClipGuardband;
1749 float XMaxClipGuardband;
1750 float YMinClipGuardband;
1751 float YMaxClipGuardband;
1752 float XMinViewPort;
1753 float XMaxViewPort;
1754 float YMinViewPort;
1755 float YMaxViewPort;
1756 } elem[MAX_VIEWPORTS];
1757 } vp_sf_clip;
1758
1759 /* 3DSTATE_WM */
1760 struct {
1761 bool LineStippleEnable;
1762 uint32_t BarycentricInterpolationMode;
1763 } wm;
1764
1765 /* 3DSTATE_WM_DEPTH_STENCIL */
1766 struct {
1767 bool DoubleSidedStencilEnable;
1768 uint32_t StencilTestMask;
1769 uint32_t StencilWriteMask;
1770 uint32_t BackfaceStencilTestMask;
1771 uint32_t BackfaceStencilWriteMask;
1772 uint32_t StencilReferenceValue;
1773 uint32_t BackfaceStencilReferenceValue;
1774 bool DepthTestEnable;
1775 bool DepthBufferWriteEnable;
1776 uint32_t DepthTestFunction;
1777 bool StencilTestEnable;
1778 bool StencilBufferWriteEnable;
1779 uint32_t StencilFailOp;
1780 uint32_t StencilPassDepthPassOp;
1781 uint32_t StencilPassDepthFailOp;
1782 uint32_t StencilTestFunction;
1783 uint32_t BackfaceStencilFailOp;
1784 uint32_t BackfaceStencilPassDepthPassOp;
1785 uint32_t BackfaceStencilPassDepthFailOp;
1786 uint32_t BackfaceStencilTestFunction;
1787 } ds;
1788
1789 /* 3DSTATE_TBIMR_TILE_PASS_INFO */
1790 struct {
1791 unsigned TileRectangleHeight;
1792 unsigned TileRectangleWidth;
1793 unsigned VerticalTileCount;
1794 unsigned HorizontalTileCount;
1795 unsigned TBIMRBatchSize;
1796 unsigned TileBoxCheck;
1797 } tbimr;
1798 bool use_tbimr;
1799
1800 /**
1801 * Dynamic msaa flags, this value can be different from
1802 * anv_push_constants::gfx::fs_msaa_flags, as the push constant value only
1803 * needs to be updated for fragment shaders dynamically checking the value.
1804 */
1805 enum intel_msaa_flags fs_msaa_flags;
1806
1807 /**
1808 * Dynamic TCS input vertices, this value can be different from
1809 * anv_driver_constants::gfx::tcs_input_vertices, as the push constant
1810 * value only needs to be updated for tesselation control shaders
1811 * dynamically checking the value.
1812 */
1813 uint32_t tcs_input_vertices;
1814
1815 bool pma_fix;
1816
1817 /**
1818 * DEPTH and STENCIL attachment write state for Wa_18019816803.
1819 */
1820 bool ds_write_state;
1821
1822 /**
1823 * Toggle tracking for Wa_14018283232.
1824 */
1825 bool wa_14018283232_toggle;
1826
1827 /**
1828 * Coarse state tracking for Wa_18038825448.
1829 */
1830 enum anv_coarse_pixel_state coarse_state;
1831
1832 BITSET_DECLARE(dirty, ANV_GFX_STATE_MAX);
1833 };
1834
1835 enum anv_internal_kernel_name {
1836 ANV_INTERNAL_KERNEL_GENERATED_DRAWS,
1837 ANV_INTERNAL_KERNEL_COPY_QUERY_RESULTS_COMPUTE,
1838 ANV_INTERNAL_KERNEL_COPY_QUERY_RESULTS_FRAGMENT,
1839 ANV_INTERNAL_KERNEL_MEMCPY_COMPUTE,
1840
1841 ANV_INTERNAL_KERNEL_COUNT,
1842 };
1843
1844 enum anv_rt_bvh_build_method {
1845 ANV_BVH_BUILD_METHOD_TRIVIAL,
1846 ANV_BVH_BUILD_METHOD_NEW_SAH,
1847 };
1848
1849 /* If serialization-breaking or algorithm-breaking changes are made,
1850 * increment the digits at the end
1851 */
1852 #define ANV_RT_UUID_MACRO "ANV_RT_BVH_0001"
1853
1854 enum bvh_dump_type {
1855 BVH_ANV,
1856 BVH_IR_HDR,
1857 BVH_IR_AS
1858 };
1859
1860 struct anv_bvh_dump {
1861 struct anv_bo *bo;
1862 uint32_t bvh_id;
1863 uint64_t dump_size;
1864 VkGeometryTypeKHR geometry_type;
1865 enum bvh_dump_type dump_type;
1866
1867 /* Link in the anv_device.bvh_dumps list */
1868 struct list_head link;
1869 };
1870
1871 struct anv_device_astc_emu {
1872 struct vk_texcompress_astc_state *texcompress;
1873
1874 /* for flush_astc_ldr_void_extent_denorms */
1875 simple_mtx_t mutex;
1876 VkDescriptorSetLayout ds_layout;
1877 VkPipelineLayout pipeline_layout;
1878 VkPipeline pipeline;
1879 };
1880
1881 struct anv_device {
1882 struct vk_device vk;
1883
1884 struct anv_physical_device * physical;
1885 const struct intel_device_info * info;
1886 const struct anv_kmd_backend * kmd_backend;
1887 struct isl_device isl_dev;
1888 union {
1889 uint32_t context_id; /* i915 */
1890 uint32_t vm_id; /* Xe */
1891 };
1892 int fd;
1893
1894 pthread_mutex_t vma_mutex;
1895 struct util_vma_heap vma_lo;
1896 struct util_vma_heap vma_hi;
1897 struct util_vma_heap vma_desc;
1898 struct util_vma_heap vma_dynamic_visible;
1899 struct util_vma_heap vma_trtt;
1900
1901 /** List of all anv_device_memory objects */
1902 struct list_head memory_objects;
1903
1904 /** List of anv_image objects with a private binding for implicit CCS */
1905 struct list_head image_private_objects;
1906
1907 /** List of anv_bvh_dump objects that get dumped on cmd buf completion */
1908 struct list_head bvh_dumps;
1909
1910 /** Memory pool for batch buffers */
1911 struct anv_bo_pool batch_bo_pool;
1912 /** Memory pool for utrace timestamp buffers */
1913 struct anv_bo_pool utrace_bo_pool;
1914 /**
1915 * Size of the timestamp captured for utrace.
1916 */
1917 uint32_t utrace_timestamp_size;
1918 /** Memory pool for BVH build buffers */
1919 struct anv_bo_pool bvh_bo_pool;
1920
1921 struct anv_bo_cache bo_cache;
1922
1923 struct anv_state_pool general_state_pool;
1924 struct anv_state_pool aux_tt_pool;
1925 struct anv_state_pool dynamic_state_pool;
1926 struct anv_state_pool instruction_state_pool;
1927 struct anv_state_pool binding_table_pool;
1928 struct anv_state_pool scratch_surface_state_pool;
1929 struct anv_state_pool internal_surface_state_pool;
1930 struct anv_state_pool bindless_surface_state_pool;
1931 struct anv_state_pool indirect_push_descriptor_pool;
1932 struct anv_state_pool push_descriptor_buffer_pool;
1933
1934 struct anv_state_reserved_array_pool custom_border_colors;
1935
1936 /** BO used for various workarounds
1937 *
1938 * There are a number of workarounds on our hardware which require writing
1939 * data somewhere and it doesn't really matter where. For that, we use
1940 * this BO and just write to the first dword or so.
1941 *
1942 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1943 * For that, we use the high bytes (>= 1024) of the workaround BO.
1944 */
1945 struct anv_bo * workaround_bo;
1946 struct anv_address workaround_address;
1947
1948 struct anv_bo * dummy_aux_bo;
1949 struct anv_bo * mem_fence_bo;
1950
1951 /**
1952 * Workarounds for game bugs.
1953 */
1954 struct {
1955 struct set * doom64_images;
1956 } workarounds;
1957
1958 struct anv_bo * trivial_batch_bo;
1959 struct anv_state null_surface_state;
1960
1961 /**
1962 * NULL surface state copy stored in host memory for use as a fast
1963 * memcpy() source.
1964 */
1965 char host_null_surface_state[ANV_SURFACE_STATE_SIZE];
1966
1967 struct vk_pipeline_cache * internal_cache;
1968
1969 struct {
1970 struct blorp_context context;
1971 struct anv_state dynamic_states[BLORP_DYNAMIC_STATE_COUNT];
1972 } blorp;
1973
1974 struct anv_state border_colors;
1975
1976 struct anv_state slice_hash;
1977
1978 /** An array of CPS_STATE structures grouped by MAX_VIEWPORTS elements
1979 *
1980 * We need to emit CPS_STATE structures for each viewport accessible by a
1981 * pipeline. So rather than write many identical CPS_STATE structures
1982 * dynamically, we can enumerate all possible combinaisons and then just
1983 * emit a 3DSTATE_CPS_POINTERS instruction with the right offset into this
1984 * array.
1985 */
1986 struct anv_state cps_states;
1987
1988 uint32_t queue_count;
1989 struct anv_queue * queues;
1990
1991 struct anv_scratch_pool scratch_pool;
1992 struct anv_scratch_pool protected_scratch_pool;
1993 struct anv_bo *rt_scratch_bos[16];
1994 struct anv_bo *btd_fifo_bo;
1995 struct anv_address rt_uuid_addr;
1996
1997 bool robust_buffer_access;
1998
1999 uint32_t protected_session_id;
2000
2001 /** Shadow ray query BO
2002 *
2003 * The ray_query_bo only holds the current ray being traced. When using
2004 * more than 1 ray query per thread, we cannot fit all the queries in
2005 * there, so we need a another buffer to hold query data that is not
2006 * currently being used by the HW for tracing, similar to a scratch space.
2007 *
2008 * The size of the shadow buffer depends on the number of queries per
2009 * shader.
2010 *
2011 * We might need a buffer per queue family due to Wa_14022863161.
2012 */
2013 struct anv_bo *ray_query_shadow_bos[2][16];
2014 /** Ray query buffer used to communicated with HW unit.
2015 */
2016 struct anv_bo *ray_query_bo[2];
2017
2018 struct anv_shader_bin *rt_trampoline;
2019 struct anv_shader_bin *rt_trivial_return;
2020
2021 enum anv_rt_bvh_build_method bvh_build_method;
2022
2023 /** Draw generation shader
2024 *
2025 * Generates direct draw calls out of indirect parameters. Used to
2026 * workaround slowness with indirect draw calls.
2027 */
2028 struct anv_shader_bin *internal_kernels[ANV_INTERNAL_KERNEL_COUNT];
2029 const struct intel_l3_config *internal_kernels_l3_config;
2030
2031 pthread_mutex_t mutex;
2032 pthread_cond_t queue_submit;
2033
2034 struct intel_batch_decode_ctx decoder[ANV_MAX_QUEUE_FAMILIES];
2035 /*
2036 * When decoding a anv_cmd_buffer, we might need to search for BOs through
2037 * the cmd_buffer's list.
2038 */
2039 struct anv_cmd_buffer *cmd_buffer_being_decoded;
2040
2041 int perf_fd; /* -1 if no opened */
2042 struct anv_queue *perf_queue;
2043 struct intel_bind_timeline perf_timeline;
2044
2045 struct intel_aux_map_context *aux_map_ctx;
2046
2047 const struct intel_l3_config *l3_config;
2048
2049 struct intel_debug_block_frame *debug_frame_desc;
2050
2051 struct intel_ds_device ds;
2052
2053 nir_shader *fp64_nir;
2054
2055 uint32_t draw_call_count;
2056 struct anv_state breakpoint;
2057 #if DETECT_OS_ANDROID
2058 struct u_gralloc *u_gralloc;
2059 #endif
2060
2061 /** Precompute all dirty graphics bits
2062 *
2063 * Depending on platforms, some of the dirty bits don't apply (for example
2064 * 3DSTATE_PRIMITIVE_REPLICATION is only Gfx12.0+). Disabling some
2065 * extensions like Mesh shaders also allow us to avoid emitting any
2066 * mesh/task related instructions (we only initialize them once at device
2067 * initialization).
2068 */
2069 BITSET_DECLARE(gfx_dirty_state, ANV_GFX_STATE_MAX);
2070
2071 /*
2072 * Command pool for companion RCS command buffer.
2073 */
2074 VkCommandPool companion_rcs_cmd_pool;
2075
2076 struct anv_trtt {
2077 simple_mtx_t mutex;
2078
2079 /* Sometimes we need to run batches from places where we don't have a
2080 * queue coming from the API, so we use this.
2081 */
2082 struct anv_queue *queue;
2083
2084 /* There's only one L3 table, so if l3_addr is zero that means we
2085 * didn't initialize the TR-TT context yet (i.e., we're not using TR-TT
2086 * yet in this context).
2087 */
2088 uint64_t l3_addr;
2089
2090 /* We don't want to access the page tables from the CPU, so just
2091 * maintain a mirror that we can use.
2092 */
2093 uint64_t *l3_mirror;
2094 uint64_t *l2_mirror;
2095
2096 /* We keep a dynamic list of page table bos, and each bo can store
2097 * multiple page tables.
2098 */
2099 struct anv_bo **page_table_bos;
2100 int num_page_table_bos;
2101 int page_table_bos_capacity;
2102
2103 /* These are used to keep track of space available for more page tables
2104 * within a bo.
2105 */
2106 struct anv_bo *cur_page_table_bo;
2107 uint64_t next_page_table_bo_offset;
2108
2109 struct vk_sync *timeline;
2110 uint64_t timeline_val;
2111
2112 /* List of struct anv_trtt_submission that are in flight and can be
2113 * freed once their vk_sync gets signaled.
2114 */
2115 struct list_head in_flight_batches;
2116 } trtt;
2117
2118 /* Number of sparse resources that currently exist. This is used for a
2119 * workaround that makes every memoryBarrier flush more things than it
2120 * should. Some workloads create and then immediately destroy sparse
2121 * resources when they start, so just counting if a sparse resource was
2122 * ever created is not enough.
2123 */
2124 uint32_t num_sparse_resources;
2125
2126 struct anv_device_astc_emu astc_emu;
2127
2128 struct intel_bind_timeline bind_timeline; /* Xe only */
2129
2130 struct {
2131 simple_mtx_t mutex;
2132 struct hash_table *map;
2133 } embedded_samplers;
2134
2135 struct {
2136 /**
2137 * Mutex for the printfs array
2138 */
2139 simple_mtx_t mutex;
2140 /**
2141 * Buffer in which the shader printfs are stored
2142 */
2143 struct anv_bo *bo;
2144 /**
2145 * Array of pointers to u_printf_info
2146 */
2147 struct util_dynarray prints;
2148 } printf;
2149
2150 struct {
2151 simple_mtx_t mutex;
2152 struct radix_sort_vk *radix_sort;
2153 struct vk_acceleration_structure_build_args build_args;
2154 } accel_struct_build;
2155
2156 struct vk_meta_device meta_device;
2157 };
2158
2159 static inline uint32_t
anv_printf_buffer_size(void)2160 anv_printf_buffer_size(void)
2161 {
2162 return debug_get_num_option("ANV_PRINTF_BUFFER_SIZE", 1024 * 1024);
2163 }
2164
2165 static inline uint32_t
anv_get_first_render_queue_index(struct anv_physical_device * pdevice)2166 anv_get_first_render_queue_index(struct anv_physical_device *pdevice)
2167 {
2168 assert(pdevice != NULL);
2169
2170 for (uint32_t i = 0; i < pdevice->queue.family_count; i++) {
2171 if (pdevice->queue.families[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
2172 return i;
2173 }
2174 }
2175
2176 unreachable("Graphics capable queue family not found");
2177 }
2178
2179 static inline struct anv_state
anv_binding_table_pool_alloc(struct anv_device * device)2180 anv_binding_table_pool_alloc(struct anv_device *device)
2181 {
2182 return anv_state_pool_alloc(&device->binding_table_pool,
2183 device->binding_table_pool.block_size, 0);
2184 }
2185
2186 static inline void
anv_binding_table_pool_free(struct anv_device * device,struct anv_state state)2187 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state)
2188 {
2189 anv_state_pool_free(&device->binding_table_pool, state);
2190 }
2191
2192 static inline struct anv_state
anv_null_surface_state_for_binding_table(struct anv_device * device)2193 anv_null_surface_state_for_binding_table(struct anv_device *device)
2194 {
2195 struct anv_state state = device->null_surface_state;
2196 if (device->physical->indirect_descriptors) {
2197 state.offset += device->physical->va.bindless_surface_state_pool.addr -
2198 device->physical->va.internal_surface_state_pool.addr;
2199 }
2200 return state;
2201 }
2202
2203 static inline struct anv_state
anv_bindless_state_for_binding_table(struct anv_device * device,struct anv_state state)2204 anv_bindless_state_for_binding_table(struct anv_device *device,
2205 struct anv_state state)
2206 {
2207 state.offset += device->physical->va.bindless_surface_state_pool.addr -
2208 device->physical->va.internal_surface_state_pool.addr;
2209 return state;
2210 }
2211
2212 static inline struct anv_state
anv_device_maybe_alloc_surface_state(struct anv_device * device,struct anv_state_stream * surface_state_stream)2213 anv_device_maybe_alloc_surface_state(struct anv_device *device,
2214 struct anv_state_stream *surface_state_stream)
2215 {
2216 if (device->physical->indirect_descriptors) {
2217 if (surface_state_stream)
2218 return anv_state_stream_alloc(surface_state_stream, 64, 64);
2219 return anv_state_pool_alloc(&device->bindless_surface_state_pool, 64, 64);
2220 } else {
2221 return ANV_STATE_NULL;
2222 }
2223 }
2224
2225 static inline uint32_t
anv_mocs(const struct anv_device * device,const struct anv_bo * bo,isl_surf_usage_flags_t usage)2226 anv_mocs(const struct anv_device *device,
2227 const struct anv_bo *bo,
2228 isl_surf_usage_flags_t usage)
2229 {
2230 return isl_mocs(&device->isl_dev, usage, bo && anv_bo_is_external(bo));
2231 }
2232
2233 static inline uint32_t
anv_mocs_for_address(const struct anv_device * device,const struct anv_address * addr)2234 anv_mocs_for_address(const struct anv_device *device,
2235 const struct anv_address *addr)
2236 {
2237 return anv_mocs(device, addr->bo, 0);
2238 }
2239
2240 void anv_device_init_blorp(struct anv_device *device);
2241 void anv_device_finish_blorp(struct anv_device *device);
2242
2243 static inline void
anv_sanitize_map_params(struct anv_device * device,uint64_t in_offset,uint64_t in_size,uint64_t * out_offset,uint64_t * out_size)2244 anv_sanitize_map_params(struct anv_device *device,
2245 uint64_t in_offset,
2246 uint64_t in_size,
2247 uint64_t *out_offset,
2248 uint64_t *out_size)
2249 {
2250 /* GEM will fail to map if the offset isn't 4k-aligned. Round down. */
2251 if (!device->physical->info.has_mmap_offset)
2252 *out_offset = in_offset & ~4095ull;
2253 else
2254 *out_offset = 0;
2255 assert(in_offset >= *out_offset);
2256 *out_size = (in_offset + in_size) - *out_offset;
2257
2258 /* Let's map whole pages */
2259 *out_size = align64(*out_size, 4096);
2260 }
2261
2262
2263 VkResult anv_device_alloc_bo(struct anv_device *device,
2264 const char *name, uint64_t size,
2265 enum anv_bo_alloc_flags alloc_flags,
2266 uint64_t explicit_address,
2267 struct anv_bo **bo);
2268 VkResult anv_device_map_bo(struct anv_device *device,
2269 struct anv_bo *bo,
2270 uint64_t offset,
2271 size_t size,
2272 void *placed_addr,
2273 void **map_out);
2274 VkResult anv_device_unmap_bo(struct anv_device *device,
2275 struct anv_bo *bo,
2276 void *map, size_t map_size,
2277 bool replace);
2278 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
2279 void *host_ptr, uint32_t size,
2280 enum anv_bo_alloc_flags alloc_flags,
2281 uint64_t client_address,
2282 struct anv_bo **bo_out);
2283 VkResult anv_device_import_bo(struct anv_device *device, int fd,
2284 enum anv_bo_alloc_flags alloc_flags,
2285 uint64_t client_address,
2286 struct anv_bo **bo);
2287 VkResult anv_device_export_bo(struct anv_device *device,
2288 struct anv_bo *bo, int *fd_out);
2289 VkResult anv_device_get_bo_tiling(struct anv_device *device,
2290 struct anv_bo *bo,
2291 enum isl_tiling *tiling_out);
2292 VkResult anv_device_set_bo_tiling(struct anv_device *device,
2293 struct anv_bo *bo,
2294 uint32_t row_pitch_B,
2295 enum isl_tiling tiling);
2296 void anv_device_release_bo(struct anv_device *device,
2297 struct anv_bo *bo);
2298
anv_device_set_physical(struct anv_device * device,struct anv_physical_device * physical_device)2299 static inline void anv_device_set_physical(struct anv_device *device,
2300 struct anv_physical_device *physical_device)
2301 {
2302 device->physical = physical_device;
2303 device->info = &physical_device->info;
2304 device->isl_dev = physical_device->isl_dev;
2305 }
2306
2307 static inline struct anv_bo *
anv_device_lookup_bo(struct anv_device * device,uint32_t gem_handle)2308 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
2309 {
2310 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
2311 }
2312
2313 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
2314 int64_t timeout);
2315
2316 VkResult anv_device_print_init(struct anv_device *device);
2317 void anv_device_print_fini(struct anv_device *device);
2318 void anv_device_print_shader_prints(struct anv_device *device);
2319
2320 void anv_dump_bvh_to_files(struct anv_device *device);
2321
2322 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue,
2323 const VkDeviceQueueCreateInfo *pCreateInfo,
2324 uint32_t index_in_family);
2325 void anv_queue_finish(struct anv_queue *queue);
2326
2327 VkResult anv_queue_submit(struct vk_queue *queue,
2328 struct vk_queue_submit *submit);
2329
2330 void anv_queue_trace(struct anv_queue *queue, const char *label,
2331 bool frame, bool begin);
2332
2333 static inline VkResult
anv_queue_post_submit(struct anv_queue * queue,VkResult submit_result)2334 anv_queue_post_submit(struct anv_queue *queue, VkResult submit_result)
2335 {
2336 if (submit_result != VK_SUCCESS)
2337 return submit_result;
2338
2339 VkResult result = VK_SUCCESS;
2340 if (queue->sync) {
2341 result = vk_sync_wait(&queue->device->vk, queue->sync, 0,
2342 VK_SYNC_WAIT_COMPLETE, UINT64_MAX);
2343 if (result != VK_SUCCESS)
2344 result = vk_queue_set_lost(&queue->vk, "sync wait failed");
2345 }
2346
2347 if (INTEL_DEBUG(DEBUG_SHADER_PRINT))
2348 anv_device_print_shader_prints(queue->device);
2349
2350 #if ANV_SUPPORT_RT && !ANV_SUPPORT_RT_GRL
2351 /* The recorded bvh is dumped to files upon command buffer completion */
2352 if (INTEL_DEBUG(DEBUG_BVH_ANY))
2353 anv_dump_bvh_to_files(queue->device);
2354 #endif
2355
2356 return result;
2357 }
2358
2359 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
2360 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
2361 uint32_t stride, uint32_t tiling);
2362 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
2363 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
2364 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
2365 int anv_gem_set_context_param(int fd, uint32_t context, uint32_t param,
2366 uint64_t value);
2367 VkResult
2368 anv_gem_import_bo_alloc_flags_to_bo_flags(struct anv_device *device,
2369 struct anv_bo *bo,
2370 enum anv_bo_alloc_flags alloc_flags,
2371 uint32_t *bo_flags);
2372 const struct intel_device_info_pat_entry *
2373 anv_device_get_pat_entry(struct anv_device *device,
2374 enum anv_bo_alloc_flags alloc_flags);
2375
2376 uint64_t anv_vma_alloc(struct anv_device *device,
2377 uint64_t size, uint64_t align,
2378 enum anv_bo_alloc_flags alloc_flags,
2379 uint64_t client_address,
2380 struct util_vma_heap **out_vma_heap);
2381 void anv_vma_free(struct anv_device *device,
2382 struct util_vma_heap *vma_heap,
2383 uint64_t address, uint64_t size);
2384
2385 struct anv_reloc_list {
2386 bool uses_relocs;
2387 uint32_t dep_words;
2388 BITSET_WORD * deps;
2389 const VkAllocationCallbacks *alloc;
2390 };
2391
2392 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
2393 const VkAllocationCallbacks *alloc,
2394 bool uses_relocs);
2395 void anv_reloc_list_finish(struct anv_reloc_list *list);
2396
2397 VkResult
2398 anv_reloc_list_add_bo_impl(struct anv_reloc_list *list, struct anv_bo *target_bo);
2399
2400 static inline VkResult
anv_reloc_list_add_bo(struct anv_reloc_list * list,struct anv_bo * target_bo)2401 anv_reloc_list_add_bo(struct anv_reloc_list *list, struct anv_bo *target_bo)
2402 {
2403 return list->uses_relocs ? anv_reloc_list_add_bo_impl(list, target_bo) : VK_SUCCESS;
2404 }
2405
2406 VkResult anv_reloc_list_append(struct anv_reloc_list *list,
2407 struct anv_reloc_list *other);
2408
2409 struct anv_batch_bo {
2410 /* Link in the anv_cmd_buffer.owned_batch_bos list */
2411 struct list_head link;
2412
2413 struct anv_bo * bo;
2414
2415 /* Bytes actually consumed in this batch BO */
2416 uint32_t length;
2417
2418 /* When this batch BO is used as part of a primary batch buffer, this
2419 * tracked whether it is chained to another primary batch buffer.
2420 *
2421 * If this is the case, the relocation list's last entry points the
2422 * location of the MI_BATCH_BUFFER_START chaining to the next batch.
2423 */
2424 bool chained;
2425
2426 struct anv_reloc_list relocs;
2427 };
2428
2429 struct anv_batch {
2430 const VkAllocationCallbacks * alloc;
2431
2432 /**
2433 * Sum of all the anv_batch_bo sizes allocated for this command buffer.
2434 * Used to increase allocation size for long command buffers.
2435 */
2436 size_t allocated_batch_size;
2437
2438 struct anv_address start_addr;
2439
2440 void * start;
2441 void * end;
2442 void * next;
2443
2444 struct anv_reloc_list * relocs;
2445
2446 /* This callback is called (with the associated user data) in the event
2447 * that the batch runs out of space.
2448 */
2449 VkResult (*extend_cb)(struct anv_batch *, uint32_t, void *);
2450 void * user_data;
2451
2452 /**
2453 * Current error status of the command buffer. Used to track inconsistent
2454 * or incomplete command buffer states that are the consequence of run-time
2455 * errors such as out of memory scenarios. We want to track this in the
2456 * batch because the command buffer object is not visible to some parts
2457 * of the driver.
2458 */
2459 VkResult status;
2460
2461 enum intel_engine_class engine_class;
2462
2463 /**
2464 * Write fencing status for mi_builder.
2465 */
2466 bool write_fence_status;
2467
2468 /**
2469 * Number of 3DPRIMITIVE's emitted for WA 16014538804
2470 */
2471 uint8_t num_3d_primitives_emitted;
2472
2473 struct u_trace * trace;
2474 const char * pc_reasons[4];
2475 uint32_t pc_reasons_count;
2476
2477 };
2478
2479 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
2480 VkResult anv_batch_emit_ensure_space(struct anv_batch *batch, uint32_t size);
2481 void anv_batch_advance(struct anv_batch *batch, uint32_t size);
2482 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
2483 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
2484
2485 static inline struct anv_address
anv_batch_current_address(struct anv_batch * batch)2486 anv_batch_current_address(struct anv_batch *batch)
2487 {
2488 return anv_batch_address(batch, batch->next);
2489 }
2490
2491 static inline void
anv_batch_set_storage(struct anv_batch * batch,struct anv_address addr,void * map,size_t size)2492 anv_batch_set_storage(struct anv_batch *batch, struct anv_address addr,
2493 void *map, size_t size)
2494 {
2495 batch->start_addr = addr;
2496 batch->next = batch->start = map;
2497 batch->end = map + size;
2498 }
2499
2500 static inline VkResult
anv_batch_set_error(struct anv_batch * batch,VkResult error)2501 anv_batch_set_error(struct anv_batch *batch, VkResult error)
2502 {
2503 assert(error != VK_SUCCESS);
2504 if (batch->status == VK_SUCCESS)
2505 batch->status = error;
2506 return batch->status;
2507 }
2508
2509 static inline bool
anv_batch_has_error(struct anv_batch * batch)2510 anv_batch_has_error(struct anv_batch *batch)
2511 {
2512 return batch->status != VK_SUCCESS;
2513 }
2514
2515 static inline uint64_t
_anv_combine_address(struct anv_batch * batch,void * location,const struct anv_address address,uint32_t delta)2516 _anv_combine_address(struct anv_batch *batch, void *location,
2517 const struct anv_address address, uint32_t delta)
2518 {
2519 if (address.bo == NULL)
2520 return address.offset + delta;
2521
2522 if (batch)
2523 anv_reloc_list_add_bo(batch->relocs, address.bo);
2524
2525 return anv_address_physical(anv_address_add(address, delta));
2526 }
2527
2528 #define __gen_address_type struct anv_address
2529 #define __gen_user_data struct anv_batch
2530 #define __gen_combine_address _anv_combine_address
2531
2532 /* Wrapper macros needed to work around preprocessor argument issues. In
2533 * particular, arguments don't get pre-evaluated if they are concatenated.
2534 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
2535 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
2536 * We can work around this easily enough with these helpers.
2537 */
2538 #define __anv_cmd_length(cmd) cmd ## _length
2539 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
2540 #define __anv_cmd_header(cmd) cmd ## _header
2541 #define __anv_cmd_pack(cmd) cmd ## _pack
2542 #define __anv_reg_num(reg) reg ## _num
2543
2544 #define anv_pack_struct(dst, struc, ...) do { \
2545 struct struc __template = { \
2546 __VA_ARGS__ \
2547 }; \
2548 __anv_cmd_pack(struc)(NULL, dst, &__template); \
2549 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
2550 } while (0)
2551
2552 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
2553 void *__dst = anv_batch_emit_dwords(batch, n); \
2554 if (__dst) { \
2555 struct cmd __template = { \
2556 __anv_cmd_header(cmd), \
2557 .DWordLength = n - __anv_cmd_length_bias(cmd), \
2558 __VA_ARGS__ \
2559 }; \
2560 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
2561 } \
2562 __dst; \
2563 })
2564
2565 #define anv_batch_emit_merge(batch, cmd, pipeline, state, name) \
2566 for (struct cmd name = { 0 }, \
2567 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
2568 __builtin_expect(_dst != NULL, 1); \
2569 ({ uint32_t _partial[__anv_cmd_length(cmd)]; \
2570 assert((pipeline)->state.len == __anv_cmd_length(cmd)); \
2571 __anv_cmd_pack(cmd)(batch, _partial, &name); \
2572 for (uint32_t i = 0; i < __anv_cmd_length(cmd); i++) { \
2573 assert((_partial[i] & \
2574 (pipeline)->batch_data[ \
2575 (pipeline)->state.offset + i]) == 0); \
2576 ((uint32_t *)_dst)[i] = _partial[i] | \
2577 (pipeline)->batch_data[(pipeline)->state.offset + i]; \
2578 } \
2579 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
2580 _dst = NULL; \
2581 }))
2582
2583 #define anv_batch_emit_merge_protected(batch, cmd, pipeline, state, \
2584 name, protected) \
2585 for (struct cmd name = { 0 }, \
2586 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
2587 __builtin_expect(_dst != NULL, 1); \
2588 ({ struct anv_gfx_state_ptr *_cmd_state = protected ? \
2589 &(pipeline)->state##_protected : \
2590 &(pipeline)->state; \
2591 uint32_t _partial[__anv_cmd_length(cmd)]; \
2592 assert(_cmd_state->len == __anv_cmd_length(cmd)); \
2593 __anv_cmd_pack(cmd)(batch, _partial, &name); \
2594 for (uint32_t i = 0; i < __anv_cmd_length(cmd); i++) { \
2595 assert((_partial[i] & \
2596 (pipeline)->batch_data[ \
2597 (pipeline)->state.offset + i]) == 0); \
2598 ((uint32_t *)_dst)[i] = _partial[i] | \
2599 (pipeline)->batch_data[_cmd_state->offset + i]; \
2600 } \
2601 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
2602 _dst = NULL; \
2603 }))
2604
2605 #define anv_batch_emit(batch, cmd, name) \
2606 for (struct cmd name = { __anv_cmd_header(cmd) }, \
2607 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
2608 __builtin_expect(_dst != NULL, 1); \
2609 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
2610 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
2611 _dst = NULL; \
2612 }))
2613
2614 #define anv_batch_write_reg(batch, reg, name) \
2615 for (struct reg name = {}, *_cont = (struct reg *)1; _cont != NULL; \
2616 ({ \
2617 uint32_t _dw[__anv_cmd_length(reg)]; \
2618 __anv_cmd_pack(reg)(NULL, _dw, &name); \
2619 for (unsigned i = 0; i < __anv_cmd_length(reg); i++) { \
2620 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) { \
2621 lri.RegisterOffset = __anv_reg_num(reg); \
2622 lri.DataDWord = _dw[i]; \
2623 } \
2624 } \
2625 _cont = NULL; \
2626 }))
2627
2628 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
2629 /* #define __gen_get_batch_address anv_batch_address */
2630 /* #define __gen_address_value anv_address_physical */
2631 /* #define __gen_address_offset anv_address_add */
2632
2633 /* Base structure used to track a submission that needs some clean operations
2634 * upon completion. Should be embedded into a larger structure.
2635 */
2636 struct anv_async_submit {
2637 struct anv_queue *queue;
2638
2639 struct anv_bo_pool *bo_pool;
2640
2641 bool use_companion_rcs;
2642
2643 bool owns_sync;
2644 struct vk_sync_signal signal;
2645
2646 struct anv_reloc_list relocs;
2647 struct anv_batch batch;
2648 struct util_dynarray batch_bos;
2649 };
2650
2651 VkResult
2652 anv_async_submit_init(struct anv_async_submit *submit,
2653 struct anv_queue *queue,
2654 struct anv_bo_pool *bo_pool,
2655 bool use_companion_rcs,
2656 bool create_signal_sync);
2657
2658 void
2659 anv_async_submit_fini(struct anv_async_submit *submit);
2660
2661 VkResult
2662 anv_async_submit_create(struct anv_queue *queue,
2663 struct anv_bo_pool *bo_pool,
2664 bool use_companion_rcs,
2665 bool create_signal_sync,
2666 struct anv_async_submit **out_submit);
2667
2668 void
2669 anv_async_submit_destroy(struct anv_async_submit *submit);
2670
2671 bool
2672 anv_async_submit_done(struct anv_async_submit *submit);
2673
2674 bool
2675 anv_async_submit_wait(struct anv_async_submit *submit);
2676
2677 struct anv_sparse_submission {
2678 struct anv_queue *queue;
2679
2680 struct anv_vm_bind *binds;
2681 int binds_len;
2682 int binds_capacity;
2683
2684 uint32_t wait_count;
2685 uint32_t signal_count;
2686
2687 struct vk_sync_wait *waits;
2688 struct vk_sync_signal *signals;
2689 };
2690
2691 struct anv_trtt_bind {
2692 uint64_t pte_addr;
2693 uint64_t entry_addr;
2694 };
2695
2696 struct anv_trtt_submission {
2697 struct anv_async_submit base;
2698
2699 struct anv_sparse_submission *sparse;
2700
2701 struct list_head link;
2702 };
2703
2704 struct anv_device_memory {
2705 struct vk_device_memory vk;
2706
2707 struct list_head link;
2708
2709 struct anv_bo * bo;
2710 const struct anv_memory_type * type;
2711
2712 void * map;
2713 size_t map_size;
2714
2715 /* The map, from the user PoV is map + map_delta */
2716 uint64_t map_delta;
2717 };
2718
2719 /**
2720 * Header for Vertex URB Entry (VUE)
2721 */
2722 struct anv_vue_header {
2723 uint32_t Reserved;
2724 uint32_t RTAIndex; /* RenderTargetArrayIndex */
2725 uint32_t ViewportIndex;
2726 float PointWidth;
2727 };
2728
2729 /** Struct representing a sampled image descriptor
2730 *
2731 * This descriptor layout is used for sampled images, bare sampler, and
2732 * combined image/sampler descriptors.
2733 */
2734 struct anv_sampled_image_descriptor {
2735 /** Bindless image handle
2736 *
2737 * This is expected to already be shifted such that the 20-bit
2738 * SURFACE_STATE table index is in the top 20 bits.
2739 */
2740 uint32_t image;
2741
2742 /** Bindless sampler handle
2743 *
2744 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
2745 * to the dynamic state base address.
2746 */
2747 uint32_t sampler;
2748 };
2749
2750 /** Struct representing a storage image descriptor */
2751 struct anv_storage_image_descriptor {
2752 /** Bindless image handles
2753 *
2754 * These are expected to already be shifted such that the 20-bit
2755 * SURFACE_STATE table index is in the top 20 bits.
2756 */
2757 uint32_t vanilla;
2758
2759 /** Image depth
2760 *
2761 * By default the HW RESINFO message allows us to query the depth of an image :
2762 *
2763 * From the Kaby Lake docs for the RESINFO message:
2764 *
2765 * "Surface Type | ... | Blue
2766 * --------------+-----+----------------
2767 * SURFTYPE_3D | ... | (Depth+1)»LOD"
2768 *
2769 * With VK_EXT_sliced_view_of_3d, we have to support a slice of a 3D image,
2770 * meaning at a depth offset with a new depth value potentially reduced
2771 * from the original image. Unfortunately if we change the Depth value of
2772 * the image, we then run into issues with Yf/Ys tilings where the HW fetch
2773 * data at incorrect locations.
2774 *
2775 * To solve this, we put the slice depth in the descriptor and recompose
2776 * the vec3 (width, height, depth) using this field for z and xy using the
2777 * RESINFO result.
2778 */
2779 uint32_t image_depth;
2780 };
2781
2782 /** Struct representing a address/range descriptor
2783 *
2784 * The fields of this struct correspond directly to the data layout of
2785 * nir_address_format_64bit_bounded_global addresses. The last field is the
2786 * offset in the NIR address so it must be zero so that when you load the
2787 * descriptor you get a pointer to the start of the range.
2788 */
2789 struct anv_address_range_descriptor {
2790 uint64_t address;
2791 uint32_t range;
2792 uint32_t zero;
2793 };
2794
2795 enum anv_descriptor_data {
2796 /** The descriptor contains a BTI reference to a surface state */
2797 ANV_DESCRIPTOR_BTI_SURFACE_STATE = BITFIELD_BIT(0),
2798 /** The descriptor contains a BTI reference to a sampler state */
2799 ANV_DESCRIPTOR_BTI_SAMPLER_STATE = BITFIELD_BIT(1),
2800 /** The descriptor contains an actual buffer view */
2801 ANV_DESCRIPTOR_BUFFER_VIEW = BITFIELD_BIT(2),
2802 /** The descriptor contains inline uniform data */
2803 ANV_DESCRIPTOR_INLINE_UNIFORM = BITFIELD_BIT(3),
2804 /** anv_address_range_descriptor with a buffer address and range */
2805 ANV_DESCRIPTOR_INDIRECT_ADDRESS_RANGE = BITFIELD_BIT(4),
2806 /** Bindless surface handle (through anv_sampled_image_descriptor) */
2807 ANV_DESCRIPTOR_INDIRECT_SAMPLED_IMAGE = BITFIELD_BIT(5),
2808 /** Storage image handles (through anv_storage_image_descriptor) */
2809 ANV_DESCRIPTOR_INDIRECT_STORAGE_IMAGE = BITFIELD_BIT(6),
2810 /** The descriptor contains a single RENDER_SURFACE_STATE */
2811 ANV_DESCRIPTOR_SURFACE = BITFIELD_BIT(7),
2812 /** The descriptor contains a SAMPLER_STATE */
2813 ANV_DESCRIPTOR_SAMPLER = BITFIELD_BIT(8),
2814 /** A tuple of RENDER_SURFACE_STATE & SAMPLER_STATE */
2815 ANV_DESCRIPTOR_SURFACE_SAMPLER = BITFIELD_BIT(9),
2816 };
2817
2818 struct anv_descriptor_set_binding_layout {
2819 /* The type of the descriptors in this binding */
2820 VkDescriptorType type;
2821
2822 /* Flags provided when this binding was created */
2823 VkDescriptorBindingFlags flags;
2824
2825 /* Bitfield representing the type of data this descriptor contains */
2826 enum anv_descriptor_data data;
2827
2828 /* Maximum number of YCbCr texture/sampler planes */
2829 uint8_t max_plane_count;
2830
2831 /* Number of array elements in this binding (or size in bytes for inline
2832 * uniform data)
2833 */
2834 uint32_t array_size;
2835
2836 /* Index into the flattened descriptor set */
2837 uint32_t descriptor_index;
2838
2839 /* Index into the dynamic state array for a dynamic buffer, relative to the
2840 * set.
2841 */
2842 int16_t dynamic_offset_index;
2843
2844 /* Computed surface size from data (for one plane) */
2845 uint16_t descriptor_data_surface_size;
2846
2847 /* Computed sampler size from data (for one plane) */
2848 uint16_t descriptor_data_sampler_size;
2849
2850 /* Index into the descriptor set buffer views */
2851 int32_t buffer_view_index;
2852
2853 /* Offset into the descriptor buffer where the surface descriptor lives */
2854 uint32_t descriptor_surface_offset;
2855
2856 /* Offset into the descriptor buffer where the sampler descriptor lives */
2857 uint16_t descriptor_sampler_offset;
2858
2859 /* Pre computed surface stride (with multiplane descriptor, the descriptor
2860 * includes all the planes)
2861 */
2862 uint16_t descriptor_surface_stride;
2863
2864 /* Pre computed sampler stride (with multiplane descriptor, the descriptor
2865 * includes all the planes)
2866 */
2867 uint16_t descriptor_sampler_stride;
2868
2869 /* Immutable samplers (or NULL if no immutable samplers) */
2870 struct anv_sampler **immutable_samplers;
2871 };
2872
2873 enum anv_descriptor_set_layout_type {
2874 ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_UNKNOWN,
2875 ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_INDIRECT,
2876 ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_DIRECT,
2877 ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_BUFFER,
2878 };
2879
2880 struct anv_descriptor_set_layout {
2881 struct vk_object_base base;
2882
2883 VkDescriptorSetLayoutCreateFlags flags;
2884
2885 /* Type of descriptor set layout */
2886 enum anv_descriptor_set_layout_type type;
2887
2888 /* Descriptor set layouts can be destroyed at almost any time */
2889 uint32_t ref_cnt;
2890
2891 /* Number of bindings in this descriptor set */
2892 uint32_t binding_count;
2893
2894 /* Total number of descriptors */
2895 uint32_t descriptor_count;
2896
2897 /* Shader stages affected by this descriptor set */
2898 uint16_t shader_stages;
2899
2900 /* Number of buffer views in this descriptor set */
2901 uint32_t buffer_view_count;
2902
2903 /* Number of dynamic offsets used by this descriptor set */
2904 uint16_t dynamic_offset_count;
2905
2906 /* For each dynamic buffer, which VkShaderStageFlagBits stages are using
2907 * this buffer
2908 */
2909 VkShaderStageFlags dynamic_offset_stages[MAX_DYNAMIC_BUFFERS];
2910
2911 /* Size of the descriptor buffer dedicated to surface states for this
2912 * descriptor set
2913 */
2914 uint32_t descriptor_buffer_surface_size;
2915
2916 /* Size of the descriptor buffer dedicated to sampler states for this
2917 * descriptor set
2918 */
2919 uint32_t descriptor_buffer_sampler_size;
2920
2921 /* Number of embedded sampler count */
2922 uint32_t embedded_sampler_count;
2923
2924 /* Bindings in this descriptor set */
2925 struct anv_descriptor_set_binding_layout binding[0];
2926 };
2927
2928 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
2929 const struct anv_descriptor_set_layout *set,
2930 const struct anv_descriptor_set_binding_layout *binding);
2931
2932 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
2933 const struct anv_descriptor_set_layout *set,
2934 const struct anv_descriptor_set_binding_layout *binding);
2935
2936 void anv_descriptor_set_layout_destroy(struct anv_device *device,
2937 struct anv_descriptor_set_layout *layout);
2938
2939 void anv_descriptor_set_layout_print(const struct anv_descriptor_set_layout *layout);
2940
2941 static inline struct anv_descriptor_set_layout *
anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout * layout)2942 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
2943 {
2944 assert(layout && layout->ref_cnt >= 1);
2945 p_atomic_inc(&layout->ref_cnt);
2946
2947 return layout;
2948 }
2949
2950 static inline void
anv_descriptor_set_layout_unref(struct anv_device * device,struct anv_descriptor_set_layout * layout)2951 anv_descriptor_set_layout_unref(struct anv_device *device,
2952 struct anv_descriptor_set_layout *layout)
2953 {
2954 assert(layout && layout->ref_cnt >= 1);
2955 if (p_atomic_dec_zero(&layout->ref_cnt))
2956 anv_descriptor_set_layout_destroy(device, layout);
2957 }
2958
2959 struct anv_descriptor {
2960 VkDescriptorType type;
2961
2962 union {
2963 struct {
2964 VkImageLayout layout;
2965 struct anv_image_view *image_view;
2966 struct anv_sampler *sampler;
2967 };
2968
2969 struct {
2970 struct anv_buffer_view *set_buffer_view;
2971 struct anv_buffer *buffer;
2972 uint64_t offset;
2973 uint64_t range;
2974 uint64_t bind_range;
2975 };
2976
2977 struct anv_buffer_view *buffer_view;
2978
2979 struct vk_acceleration_structure *accel_struct;
2980 };
2981 };
2982
2983 struct anv_descriptor_set {
2984 struct vk_object_base base;
2985
2986 struct anv_descriptor_pool *pool;
2987 struct anv_descriptor_set_layout *layout;
2988
2989 /* Amount of space occupied in the the pool by this descriptor set. It can
2990 * be larger than the size of the descriptor set.
2991 */
2992 uint32_t size;
2993
2994 /* Is this descriptor set a push descriptor */
2995 bool is_push;
2996
2997 /* Bitfield of descriptors for which we need to generate surface states.
2998 * Only valid for push descriptors
2999 */
3000 uint32_t generate_surface_states;
3001
3002 /* State relative to anv_descriptor_pool::surface_bo */
3003 struct anv_state desc_surface_mem;
3004 /* State relative to anv_descriptor_pool::sampler_bo */
3005 struct anv_state desc_sampler_mem;
3006 /* Surface state for the descriptor buffer */
3007 struct anv_state desc_surface_state;
3008
3009 /* Descriptor set address pointing to desc_surface_mem (we don't need one
3010 * for sampler because they're never accessed other than by the HW through
3011 * the shader sampler handle).
3012 */
3013 struct anv_address desc_surface_addr;
3014
3015 struct anv_address desc_sampler_addr;
3016
3017 /* Descriptor offset from the
3018 * device->va.internal_surface_state_pool.addr
3019 *
3020 * It just needs to be added to the binding table offset to be put into the
3021 * HW BTI entry.
3022 */
3023 uint32_t desc_offset;
3024
3025 uint32_t buffer_view_count;
3026 struct anv_buffer_view *buffer_views;
3027
3028 /* Link to descriptor pool's desc_sets list . */
3029 struct list_head pool_link;
3030
3031 uint32_t descriptor_count;
3032 struct anv_descriptor descriptors[0];
3033 };
3034
3035 static inline bool
anv_descriptor_set_is_push(struct anv_descriptor_set * set)3036 anv_descriptor_set_is_push(struct anv_descriptor_set *set)
3037 {
3038 return set->pool == NULL;
3039 }
3040
3041 struct anv_surface_state_data {
3042 uint8_t data[ANV_SURFACE_STATE_SIZE];
3043 };
3044
3045 struct anv_buffer_state {
3046 /** Surface state allocated from the bindless heap
3047 *
3048 * Only valid if anv_physical_device::indirect_descriptors is true
3049 */
3050 struct anv_state state;
3051
3052 /** Surface state after genxml packing
3053 *
3054 * Only valid if anv_physical_device::indirect_descriptors is false
3055 */
3056 struct anv_surface_state_data state_data;
3057 };
3058
3059 struct anv_buffer_view {
3060 struct vk_buffer_view vk;
3061
3062 struct anv_address address;
3063
3064 struct anv_buffer_state general;
3065 struct anv_buffer_state storage;
3066 };
3067
3068 struct anv_push_descriptor_set {
3069 struct anv_descriptor_set set;
3070
3071 /* Put this field right behind anv_descriptor_set so it fills up the
3072 * descriptors[0] field. */
3073 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
3074
3075 /** True if the descriptor set buffer has been referenced by a draw or
3076 * dispatch command.
3077 */
3078 bool set_used_on_gpu;
3079
3080 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
3081 };
3082
3083 static inline struct anv_address
anv_descriptor_set_address(struct anv_descriptor_set * set)3084 anv_descriptor_set_address(struct anv_descriptor_set *set)
3085 {
3086 if (anv_descriptor_set_is_push(set)) {
3087 /* We have to flag push descriptor set as used on the GPU
3088 * so that the next time we push descriptors, we grab a new memory.
3089 */
3090 struct anv_push_descriptor_set *push_set =
3091 (struct anv_push_descriptor_set *)set;
3092 push_set->set_used_on_gpu = true;
3093 }
3094
3095 return set->desc_surface_addr;
3096 }
3097
3098 struct anv_descriptor_pool_heap {
3099 /* BO allocated to back the pool (unused for host pools) */
3100 struct anv_bo *bo;
3101
3102 /* Host memory allocated to back a host pool */
3103 void *host_mem;
3104
3105 /* Heap tracking allocations in bo/host_mem */
3106 struct util_vma_heap heap;
3107
3108 /* Size of the heap */
3109 uint32_t size;
3110
3111 /* Allocated size in the heap */
3112 uint32_t alloc_size;
3113 };
3114
3115 struct anv_descriptor_pool {
3116 struct vk_object_base base;
3117
3118 struct anv_descriptor_pool_heap surfaces;
3119 struct anv_descriptor_pool_heap samplers;
3120
3121 struct anv_state_stream surface_state_stream;
3122 void *surface_state_free_list;
3123
3124 /** List of anv_descriptor_set. */
3125 struct list_head desc_sets;
3126
3127 /** Heap over host_mem */
3128 struct util_vma_heap host_heap;
3129
3130 /** Allocated size of host_mem */
3131 uint32_t host_mem_size;
3132
3133 /**
3134 * VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_EXT. If set, then
3135 * surface_state_stream is unused.
3136 */
3137 bool host_only;
3138
3139 alignas(8) char host_mem[0];
3140 };
3141
3142 bool
3143 anv_push_descriptor_set_init(struct anv_cmd_buffer *cmd_buffer,
3144 struct anv_push_descriptor_set *push_set,
3145 struct anv_descriptor_set_layout *layout);
3146
3147 void
3148 anv_push_descriptor_set_finish(struct anv_push_descriptor_set *push_set);
3149
3150 void
3151 anv_descriptor_set_write_image_view(struct anv_device *device,
3152 struct anv_descriptor_set *set,
3153 const VkDescriptorImageInfo * const info,
3154 VkDescriptorType type,
3155 uint32_t binding,
3156 uint32_t element);
3157
3158 void
3159 anv_descriptor_set_write_buffer_view(struct anv_device *device,
3160 struct anv_descriptor_set *set,
3161 VkDescriptorType type,
3162 struct anv_buffer_view *buffer_view,
3163 uint32_t binding,
3164 uint32_t element);
3165
3166 void
3167 anv_descriptor_set_write_buffer(struct anv_device *device,
3168 struct anv_descriptor_set *set,
3169 VkDescriptorType type,
3170 struct anv_buffer *buffer,
3171 uint32_t binding,
3172 uint32_t element,
3173 VkDeviceSize offset,
3174 VkDeviceSize range);
3175
3176 void
3177 anv_descriptor_write_surface_state(struct anv_device *device,
3178 struct anv_descriptor *desc,
3179 struct anv_state surface_state);
3180
3181 void
3182 anv_descriptor_set_write_acceleration_structure(struct anv_device *device,
3183 struct anv_descriptor_set *set,
3184 struct vk_acceleration_structure *accel,
3185 uint32_t binding,
3186 uint32_t element);
3187
3188 void
3189 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
3190 struct anv_descriptor_set *set,
3191 uint32_t binding,
3192 const void *data,
3193 size_t offset,
3194 size_t size);
3195
3196 void
3197 anv_descriptor_set_write(struct anv_device *device,
3198 struct anv_descriptor_set *set_override,
3199 uint32_t write_count,
3200 const VkWriteDescriptorSet *writes);
3201
3202 void
3203 anv_descriptor_set_write_template(struct anv_device *device,
3204 struct anv_descriptor_set *set,
3205 const struct vk_descriptor_update_template *template,
3206 const void *data);
3207
3208 #define ANV_DESCRIPTOR_SET_DESCRIPTORS_BUFFER (UINT8_MAX - 4)
3209 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 3)
3210 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 2)
3211 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 1)
3212 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
3213
3214 struct anv_pipeline_binding {
3215 /** Index in the descriptor set
3216 *
3217 * This is a flattened index; the descriptor set layout is already taken
3218 * into account.
3219 */
3220 uint32_t index;
3221
3222 /** Binding in the descriptor set. Not valid for any of the
3223 * ANV_DESCRIPTOR_SET_*
3224 */
3225 uint32_t binding;
3226
3227 /** Offset in the descriptor buffer
3228 *
3229 * Relative to anv_descriptor_set::desc_addr. This is useful for
3230 * ANV_PIPELINE_DESCRIPTOR_SET_LAYOUT_TYPE_DIRECT, to generate the binding
3231 * table entry.
3232 */
3233 uint32_t set_offset;
3234
3235 /** The descriptor set this surface corresponds to.
3236 *
3237 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
3238 * binding is not a normal descriptor set but something else.
3239 */
3240 uint8_t set;
3241
3242 union {
3243 /** Plane in the binding index for images */
3244 uint8_t plane;
3245
3246 /** Input attachment index (relative to the subpass) */
3247 uint8_t input_attachment_index;
3248
3249 /** Dynamic offset index
3250 *
3251 * For dynamic UBOs and SSBOs, relative to set.
3252 */
3253 uint8_t dynamic_offset_index;
3254 };
3255 };
3256
3257 struct anv_embedded_sampler_key {
3258 /** No need to track binding elements for embedded samplers as :
3259 *
3260 * VUID-VkDescriptorSetLayoutBinding-flags-08006:
3261 *
3262 * "If VkDescriptorSetLayoutCreateInfo:flags contains
3263 * VK_DESCRIPTOR_SET_LAYOUT_CREATE_EMBEDDED_IMMUTABLE_SAMPLERS_BIT_EXT,
3264 * descriptorCount must: less than or equal to 1"
3265 *
3266 * The following struct can be safely hash as it doesn't include in
3267 * address/offset.
3268 */
3269 uint32_t sampler[4];
3270 uint32_t color[4];
3271 };
3272
3273 struct anv_pipeline_embedded_sampler_binding {
3274 /** The descriptor set this sampler belongs to */
3275 uint8_t set;
3276
3277 /** The binding in the set this sampler belongs to */
3278 uint32_t binding;
3279
3280 /** The data configuring the sampler */
3281 struct anv_embedded_sampler_key key;
3282 };
3283
3284 struct anv_push_range {
3285 /** Index in the descriptor set */
3286 uint32_t index;
3287
3288 /** Descriptor set index */
3289 uint8_t set;
3290
3291 /** Dynamic offset index (for dynamic UBOs), relative to set. */
3292 uint8_t dynamic_offset_index;
3293
3294 /** Start offset in units of 32B */
3295 uint8_t start;
3296
3297 /** Range in units of 32B */
3298 uint8_t length;
3299 };
3300
3301 struct anv_pipeline_sets_layout {
3302 struct anv_device *device;
3303
3304 struct {
3305 struct anv_descriptor_set_layout *layout;
3306 uint32_t dynamic_offset_start;
3307 } set[MAX_SETS];
3308
3309 enum anv_descriptor_set_layout_type type;
3310
3311 uint32_t num_sets;
3312 uint32_t num_dynamic_buffers;
3313 int push_descriptor_set_index;
3314
3315 bool independent_sets;
3316
3317 unsigned char sha1[20];
3318 };
3319
3320 void anv_pipeline_sets_layout_init(struct anv_pipeline_sets_layout *layout,
3321 struct anv_device *device,
3322 bool independent_sets);
3323
3324 void anv_pipeline_sets_layout_fini(struct anv_pipeline_sets_layout *layout);
3325
3326 void anv_pipeline_sets_layout_add(struct anv_pipeline_sets_layout *layout,
3327 uint32_t set_idx,
3328 struct anv_descriptor_set_layout *set_layout);
3329
3330 uint32_t
3331 anv_pipeline_sets_layout_embedded_sampler_count(const struct anv_pipeline_sets_layout *layout);
3332
3333 void anv_pipeline_sets_layout_hash(struct anv_pipeline_sets_layout *layout);
3334
3335 void anv_pipeline_sets_layout_print(const struct anv_pipeline_sets_layout *layout);
3336
3337 struct anv_pipeline_layout {
3338 struct vk_object_base base;
3339
3340 struct anv_pipeline_sets_layout sets_layout;
3341 };
3342
3343 const struct anv_descriptor_set_layout *
3344 anv_pipeline_layout_get_push_set(const struct anv_pipeline_sets_layout *layout,
3345 uint8_t *desc_idx);
3346
3347 struct anv_sparse_binding_data {
3348 uint64_t address;
3349 uint64_t size;
3350
3351 /* This is kept only because it's given to us by vma_alloc() and need to be
3352 * passed back to vma_free(), we have no other particular use for it
3353 */
3354 struct util_vma_heap *vma_heap;
3355 };
3356
3357 #define ANV_SPARSE_BLOCK_SIZE (64 * 1024)
3358
3359 static inline bool
anv_sparse_binding_is_enabled(struct anv_device * device)3360 anv_sparse_binding_is_enabled(struct anv_device *device)
3361 {
3362 return device->vk.enabled_features.sparseBinding;
3363 }
3364
3365 static inline bool
anv_sparse_residency_is_enabled(struct anv_device * device)3366 anv_sparse_residency_is_enabled(struct anv_device *device)
3367 {
3368 return device->vk.enabled_features.sparseResidencyBuffer ||
3369 device->vk.enabled_features.sparseResidencyImage2D ||
3370 device->vk.enabled_features.sparseResidencyImage3D ||
3371 device->vk.enabled_features.sparseResidency2Samples ||
3372 device->vk.enabled_features.sparseResidency4Samples ||
3373 device->vk.enabled_features.sparseResidency8Samples ||
3374 device->vk.enabled_features.sparseResidency16Samples ||
3375 device->vk.enabled_features.sparseResidencyAliased;
3376 }
3377
3378 VkResult anv_init_sparse_bindings(struct anv_device *device,
3379 uint64_t size,
3380 struct anv_sparse_binding_data *sparse,
3381 enum anv_bo_alloc_flags alloc_flags,
3382 uint64_t client_address,
3383 struct anv_address *out_address);
3384 void anv_free_sparse_bindings(struct anv_device *device,
3385 struct anv_sparse_binding_data *sparse);
3386 VkResult anv_sparse_bind_buffer(struct anv_device *device,
3387 struct anv_buffer *buffer,
3388 const VkSparseMemoryBind *vk_bind,
3389 struct anv_sparse_submission *submit);
3390 VkResult anv_sparse_bind_image_opaque(struct anv_device *device,
3391 struct anv_image *image,
3392 const VkSparseMemoryBind *vk_bind,
3393 struct anv_sparse_submission *submit);
3394 VkResult anv_sparse_bind_image_memory(struct anv_queue *queue,
3395 struct anv_image *image,
3396 const VkSparseImageMemoryBind *bind,
3397 struct anv_sparse_submission *submit);
3398 VkResult anv_sparse_bind(struct anv_device *device,
3399 struct anv_sparse_submission *sparse_submit);
3400
3401 VkResult anv_sparse_trtt_garbage_collect_batches(struct anv_device *device,
3402 bool wait_completion);
3403
3404 VkSparseImageFormatProperties
3405 anv_sparse_calc_image_format_properties(struct anv_physical_device *pdevice,
3406 VkImageAspectFlags aspect,
3407 VkImageType vk_image_type,
3408 VkSampleCountFlagBits vk_samples,
3409 struct isl_surf *surf);
3410 void anv_sparse_calc_miptail_properties(struct anv_device *device,
3411 struct anv_image *image,
3412 VkImageAspectFlags vk_aspect,
3413 uint32_t *imageMipTailFirstLod,
3414 VkDeviceSize *imageMipTailSize,
3415 VkDeviceSize *imageMipTailOffset,
3416 VkDeviceSize *imageMipTailStride);
3417 VkResult anv_sparse_image_check_support(struct anv_physical_device *pdevice,
3418 VkImageCreateFlags flags,
3419 VkImageTiling tiling,
3420 VkSampleCountFlagBits samples,
3421 VkImageType type,
3422 VkFormat format);
3423
3424 struct anv_buffer {
3425 struct vk_buffer vk;
3426
3427 /* Set when bound */
3428 struct anv_address address;
3429
3430 struct anv_sparse_binding_data sparse_data;
3431 };
3432
3433 static inline bool
anv_buffer_is_protected(const struct anv_buffer * buffer)3434 anv_buffer_is_protected(const struct anv_buffer *buffer)
3435 {
3436 return buffer->vk.create_flags & VK_BUFFER_CREATE_PROTECTED_BIT;
3437 }
3438
3439 static inline bool
anv_buffer_is_sparse(const struct anv_buffer * buffer)3440 anv_buffer_is_sparse(const struct anv_buffer *buffer)
3441 {
3442 return buffer->vk.create_flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT;
3443 }
3444
3445 enum anv_cmd_dirty_bits {
3446 ANV_CMD_DIRTY_PIPELINE = 1 << 0,
3447 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 1,
3448 ANV_CMD_DIRTY_RENDER_AREA = 1 << 2,
3449 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 3,
3450 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 4,
3451 ANV_CMD_DIRTY_RESTART_INDEX = 1 << 5,
3452 ANV_CMD_DIRTY_OCCLUSION_QUERY_ACTIVE = 1 << 6,
3453 ANV_CMD_DIRTY_INDIRECT_DATA_STRIDE = 1 << 7,
3454 };
3455 typedef enum anv_cmd_dirty_bits anv_cmd_dirty_mask_t;
3456
3457 enum anv_pipe_bits {
3458 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
3459 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
3460 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
3461 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
3462 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
3463 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
3464 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
3465 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
3466 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
3467 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
3468 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
3469
3470 /* ANV_PIPE_HDC_PIPELINE_FLUSH_BIT is a precise way to ensure prior data
3471 * cache work has completed. Available on Gfx12+. For earlier Gfx we
3472 * must reinterpret this flush as ANV_PIPE_DATA_CACHE_FLUSH_BIT.
3473 */
3474 ANV_PIPE_HDC_PIPELINE_FLUSH_BIT = (1 << 14),
3475 ANV_PIPE_PSS_STALL_SYNC_BIT = (1 << 15),
3476
3477 /*
3478 * This bit flush data-port's Untyped L1 data cache (LSC L1).
3479 */
3480 ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT = (1 << 16),
3481
3482 /* This bit controls the flushing of the engine (Render, Compute) specific
3483 * entries from the compression cache.
3484 */
3485 ANV_PIPE_CCS_CACHE_FLUSH_BIT = (1 << 17),
3486
3487 ANV_PIPE_TLB_INVALIDATE_BIT = (1 << 18),
3488
3489 /* L3 Fabric Flush */
3490 ANV_PIPE_L3_FABRIC_FLUSH_BIT = (1 << 19),
3491
3492 ANV_PIPE_CS_STALL_BIT = (1 << 20),
3493 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
3494
3495 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
3496 * a flush has happened but not a CS stall. The next time we do any sort
3497 * of invalidation we need to insert a CS stall at that time. Otherwise,
3498 * we would have to CS stall on every flush which could be bad.
3499 */
3500 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
3501
3502 /* This bit does not exist directly in PIPE_CONTROL. It means that Gfx12
3503 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
3504 * done by writing the AUX-TT register.
3505 */
3506 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 23),
3507
3508 /* This bit does not exist directly in PIPE_CONTROL. It means that a
3509 * PIPE_CONTROL with a post-sync operation will follow. This is used to
3510 * implement a workaround for Gfx9.
3511 */
3512 ANV_PIPE_POST_SYNC_BIT = (1 << 24),
3513
3514 };
3515
3516 /* These bits track the state of buffer writes for queries. They get cleared
3517 * based on PIPE_CONTROL emissions.
3518 */
3519 enum anv_query_bits {
3520 ANV_QUERY_WRITES_RT_FLUSH = (1 << 0),
3521
3522 ANV_QUERY_WRITES_TILE_FLUSH = (1 << 1),
3523
3524 ANV_QUERY_WRITES_CS_STALL = (1 << 2),
3525
3526 ANV_QUERY_WRITES_DATA_FLUSH = (1 << 3),
3527 };
3528
3529 /* It's not clear why DG2 doesn't have issues with L3/CS coherency. But it's
3530 * likely related to performance workaround 14015868140.
3531 *
3532 * For now we enable this only on DG2 and platform prior to Gfx12 where there
3533 * is no tile cache.
3534 */
3535 #define ANV_DEVINFO_HAS_COHERENT_L3_CS(devinfo) \
3536 (intel_device_info_is_dg2(devinfo))
3537
3538 /* Things we need to flush before accessing query data using the command
3539 * streamer.
3540 *
3541 * Prior to DG2 experiments show that the command streamer is not coherent
3542 * with the tile cache so we need to flush it to make any data visible to CS.
3543 *
3544 * Otherwise we want to flush the RT cache which is where blorp writes, either
3545 * for clearing the query buffer or for clearing the destination buffer in
3546 * vkCopyQueryPoolResults().
3547 */
3548 #define ANV_QUERY_RENDER_TARGET_WRITES_PENDING_BITS(devinfo) \
3549 (((!ANV_DEVINFO_HAS_COHERENT_L3_CS(devinfo) && \
3550 (devinfo)->ver >= 12) ? \
3551 ANV_QUERY_WRITES_TILE_FLUSH : 0) | \
3552 ANV_QUERY_WRITES_RT_FLUSH | \
3553 ANV_QUERY_WRITES_CS_STALL)
3554 #define ANV_QUERY_COMPUTE_WRITES_PENDING_BITS \
3555 (ANV_QUERY_WRITES_DATA_FLUSH | \
3556 ANV_QUERY_WRITES_CS_STALL)
3557
3558 #define ANV_PIPE_QUERY_BITS(pending_query_bits) ( \
3559 ((pending_query_bits & ANV_QUERY_WRITES_RT_FLUSH) ? \
3560 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT : 0) | \
3561 ((pending_query_bits & ANV_QUERY_WRITES_TILE_FLUSH) ? \
3562 ANV_PIPE_TILE_CACHE_FLUSH_BIT : 0) | \
3563 ((pending_query_bits & ANV_QUERY_WRITES_CS_STALL) ? \
3564 ANV_PIPE_CS_STALL_BIT : 0) | \
3565 ((pending_query_bits & ANV_QUERY_WRITES_DATA_FLUSH) ? \
3566 (ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
3567 ANV_PIPE_HDC_PIPELINE_FLUSH_BIT | \
3568 ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT) : 0))
3569
3570 #define ANV_PIPE_FLUSH_BITS ( \
3571 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
3572 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
3573 ANV_PIPE_HDC_PIPELINE_FLUSH_BIT | \
3574 ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT | \
3575 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
3576 ANV_PIPE_TILE_CACHE_FLUSH_BIT | \
3577 ANV_PIPE_L3_FABRIC_FLUSH_BIT)
3578
3579 #define ANV_PIPE_BARRIER_FLUSH_BITS ( \
3580 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
3581 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
3582 ANV_PIPE_HDC_PIPELINE_FLUSH_BIT | \
3583 ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT | \
3584 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
3585 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
3586
3587 #define ANV_PIPE_STALL_BITS ( \
3588 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
3589 ANV_PIPE_DEPTH_STALL_BIT | \
3590 ANV_PIPE_CS_STALL_BIT | \
3591 ANV_PIPE_PSS_STALL_SYNC_BIT)
3592
3593 #define ANV_PIPE_INVALIDATE_BITS ( \
3594 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
3595 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
3596 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
3597 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
3598 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
3599 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
3600
3601 /* PIPE_CONTROL bits that should be set only in 3D RCS mode.
3602 * For more details see genX(emit_apply_pipe_flushes).
3603 */
3604 #define ANV_PIPE_GFX_BITS ( \
3605 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
3606 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
3607 ANV_PIPE_TILE_CACHE_FLUSH_BIT | \
3608 ANV_PIPE_DEPTH_STALL_BIT | \
3609 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
3610 (GFX_VERx10 >= 125 ? ANV_PIPE_PSS_STALL_SYNC_BIT : 0) | \
3611 ANV_PIPE_VF_CACHE_INVALIDATE_BIT)
3612
3613 /* PIPE_CONTROL bits that should be set only in Media/GPGPU RCS mode.
3614 * For more details see genX(emit_apply_pipe_flushes).
3615 *
3616 * Documentation says that untyped L1 dataport cache flush is controlled by
3617 * HDC pipeline flush in 3D mode according to HDC_CHICKEN0 register:
3618 *
3619 * BSpec 47112: PIPE_CONTROL::HDC Pipeline Flush:
3620 *
3621 * "When the "Pipeline Select" mode in PIPELINE_SELECT command is set to
3622 * "3D", HDC Pipeline Flush can also flush/invalidate the LSC Untyped L1
3623 * cache based on the programming of HDC_Chicken0 register bits 13:11."
3624 *
3625 * "When the 'Pipeline Select' mode is set to 'GPGPU', the LSC Untyped L1
3626 * cache flush is controlled by 'Untyped Data-Port Cache Flush' bit in the
3627 * PIPE_CONTROL command."
3628 *
3629 * As part of Wa_22010960976 & Wa_14013347512, i915 is programming
3630 * HDC_CHICKEN0[11:13] = 0 ("Untyped L1 is flushed, for both 3D Pipecontrol
3631 * Dataport flush, and UAV coherency barrier event"). So there is no need
3632 * to set "Untyped Data-Port Cache" in 3D mode.
3633 *
3634 * On MTL the HDC_CHICKEN0 default values changed to match what was programmed
3635 * by Wa_22010960976 & Wa_14013347512 on DG2, but experiments show that the
3636 * change runs a bit deeper. Even manually writing to the HDC_CHICKEN0
3637 * register to force L1 untyped flush with HDC pipeline flush has no effect on
3638 * MTL.
3639 *
3640 * It seems like the HW change completely disconnected L1 untyped flush from
3641 * HDC pipeline flush with no way to bring that behavior back. So leave the L1
3642 * untyped flush active in 3D mode on all platforms since it doesn't seems to
3643 * cause issues there too.
3644 *
3645 * Maybe we'll have some GPGPU only bits here at some point.
3646 */
3647 #define ANV_PIPE_GPGPU_BITS (0)
3648
3649 enum intel_ds_stall_flag
3650 anv_pipe_flush_bit_to_ds_stall_flag(enum anv_pipe_bits bits);
3651
3652 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
3653 VK_IMAGE_ASPECT_PLANE_0_BIT | \
3654 VK_IMAGE_ASPECT_PLANE_1_BIT | \
3655 VK_IMAGE_ASPECT_PLANE_2_BIT)
3656
3657 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
3658 VK_IMAGE_ASPECT_COLOR_BIT | \
3659 VK_IMAGE_ASPECT_PLANES_BITS_ANV)
3660
3661 struct anv_vertex_binding {
3662 struct anv_buffer * buffer;
3663 VkDeviceSize offset;
3664 VkDeviceSize size;
3665 };
3666
3667 struct anv_xfb_binding {
3668 struct anv_buffer * buffer;
3669 VkDeviceSize offset;
3670 VkDeviceSize size;
3671 };
3672
3673 struct anv_push_constants {
3674 /** Push constant data provided by the client through vkPushConstants */
3675 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
3676
3677 #define ANV_DESCRIPTOR_SET_DYNAMIC_INDEX_MASK ((uint32_t)ANV_UBO_ALIGNMENT - 1)
3678 #define ANV_DESCRIPTOR_SET_OFFSET_MASK (~(uint32_t)(ANV_UBO_ALIGNMENT - 1))
3679
3680 /**
3681 * Base offsets for descriptor sets from
3682 *
3683 * The offset has different meaning depending on a number of factors :
3684 *
3685 * - with descriptor sets (direct or indirect), this relative
3686 * pdevice->va.descriptor_pool
3687 *
3688 * - with descriptor buffers on DG2+, relative
3689 * device->va.descriptor_buffer_pool
3690 *
3691 * - with descriptor buffers prior to DG2, relative the programmed value
3692 * in STATE_BASE_ADDRESS::BindlessSurfaceStateBaseAddress
3693 */
3694 uint32_t desc_surface_offsets[MAX_SETS];
3695
3696 /**
3697 * Base offsets for descriptor sets from
3698 */
3699 uint32_t desc_sampler_offsets[MAX_SETS];
3700
3701 /** Dynamic offsets for dynamic UBOs and SSBOs */
3702 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
3703
3704 /** Surface buffer base offset
3705 *
3706 * Only used prior to DG2 with descriptor buffers.
3707 *
3708 * (surfaces_base_offset + desc_offsets[set_index]) is relative to
3709 * device->va.descriptor_buffer_pool and can be used to compute a 64bit
3710 * address to the descriptor buffer (using load_desc_set_address_intel).
3711 */
3712 uint32_t surfaces_base_offset;
3713
3714 /* Robust access pushed registers. */
3715 uint64_t push_reg_mask[MESA_SHADER_STAGES];
3716
3717 /** Ray query globals (RT_DISPATCH_GLOBALS) */
3718 uint64_t ray_query_globals;
3719
3720 union {
3721 struct {
3722 /** Dynamic MSAA value */
3723 uint32_t fs_msaa_flags;
3724
3725 /** Dynamic TCS input vertices */
3726 uint32_t tcs_input_vertices;
3727 } gfx;
3728
3729 struct {
3730 /** Base workgroup ID
3731 *
3732 * Used for vkCmdDispatchBase.
3733 */
3734 uint32_t base_work_group_id[3];
3735
3736 /** gl_NumWorkgroups */
3737 uint32_t num_work_groups[3];
3738
3739 /** Subgroup ID
3740 *
3741 * This is never set by software but is implicitly filled out when
3742 * uploading the push constants for compute shaders.
3743 *
3744 * This *MUST* be the last field of the anv_push_constants structure.
3745 */
3746 uint32_t subgroup_id;
3747 } cs;
3748 };
3749 };
3750
3751 struct anv_surface_state {
3752 /** Surface state allocated from the bindless heap
3753 *
3754 * Can be NULL if unused.
3755 */
3756 struct anv_state state;
3757
3758 /** Surface state after genxml packing
3759 *
3760 * Same data as in state.
3761 */
3762 struct anv_surface_state_data state_data;
3763
3764 /** Address of the surface referred to by this state
3765 *
3766 * This address is relative to the start of the BO.
3767 */
3768 struct anv_address address;
3769 /* Address of the aux surface, if any
3770 *
3771 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
3772 *
3773 * With the exception of gfx8, the bottom 12 bits of this address' offset
3774 * include extra aux information.
3775 */
3776 struct anv_address aux_address;
3777 /* Address of the clear color, if any
3778 *
3779 * This address is relative to the start of the BO.
3780 */
3781 struct anv_address clear_address;
3782 };
3783
3784 struct anv_attachment {
3785 VkFormat vk_format;
3786 const struct anv_image_view *iview;
3787 VkImageLayout layout;
3788 enum isl_aux_usage aux_usage;
3789 struct anv_surface_state surface_state;
3790
3791 VkResolveModeFlagBits resolve_mode;
3792 const struct anv_image_view *resolve_iview;
3793 VkImageLayout resolve_layout;
3794 };
3795
3796 /** State tracking for vertex buffer flushes
3797 *
3798 * On Gfx8-9, the VF cache only considers the bottom 32 bits of memory
3799 * addresses. If you happen to have two vertex buffers which get placed
3800 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
3801 * collisions. In order to solve this problem, we track vertex address ranges
3802 * which are live in the cache and invalidate the cache if one ever exceeds 32
3803 * bits.
3804 */
3805 struct anv_vb_cache_range {
3806 /* Virtual address at which the live vertex buffer cache range starts for
3807 * this vertex buffer index.
3808 */
3809 uint64_t start;
3810
3811 /* Virtual address of the byte after where vertex buffer cache range ends.
3812 * This is exclusive such that end - start is the size of the range.
3813 */
3814 uint64_t end;
3815 };
3816
3817 static inline void
anv_merge_vb_cache_range(struct anv_vb_cache_range * dirty,const struct anv_vb_cache_range * bound)3818 anv_merge_vb_cache_range(struct anv_vb_cache_range *dirty,
3819 const struct anv_vb_cache_range *bound)
3820 {
3821 if (dirty->start == dirty->end) {
3822 *dirty = *bound;
3823 } else if (bound->start != bound->end) {
3824 dirty->start = MIN2(dirty->start, bound->start);
3825 dirty->end = MAX2(dirty->end, bound->end);
3826 }
3827 }
3828
3829 /* Check whether we need to apply the Gfx8-9 vertex buffer workaround*/
3830 static inline bool
anv_gfx8_9_vb_cache_range_needs_workaround(struct anv_vb_cache_range * bound,struct anv_vb_cache_range * dirty,struct anv_address vb_address,uint32_t vb_size)3831 anv_gfx8_9_vb_cache_range_needs_workaround(struct anv_vb_cache_range *bound,
3832 struct anv_vb_cache_range *dirty,
3833 struct anv_address vb_address,
3834 uint32_t vb_size)
3835 {
3836 if (vb_size == 0) {
3837 bound->start = 0;
3838 bound->end = 0;
3839 return false;
3840 }
3841
3842 bound->start = intel_48b_address(anv_address_physical(vb_address));
3843 bound->end = bound->start + vb_size;
3844 assert(bound->end > bound->start); /* No overflow */
3845
3846 /* Align everything to a cache line */
3847 bound->start &= ~(64ull - 1ull);
3848 bound->end = align64(bound->end, 64);
3849
3850 anv_merge_vb_cache_range(dirty, bound);
3851
3852 /* If our range is larger than 32 bits, we have to flush */
3853 assert(bound->end - bound->start <= (1ull << 32));
3854 return (dirty->end - dirty->start) > (1ull << 32);
3855 }
3856
3857 /**
3858 * State tracking for simple internal shaders
3859 */
3860 struct anv_simple_shader {
3861 /* The device associated with this emission */
3862 struct anv_device *device;
3863 /* The command buffer associated with this emission (can be NULL) */
3864 struct anv_cmd_buffer *cmd_buffer;
3865 /* State stream used for various internal allocations */
3866 struct anv_state_stream *dynamic_state_stream;
3867 struct anv_state_stream *general_state_stream;
3868 /* Where to emit the commands (can be different from cmd_buffer->batch) */
3869 struct anv_batch *batch;
3870 /* Shader to use */
3871 struct anv_shader_bin *kernel;
3872 /* L3 config used by the shader */
3873 const struct intel_l3_config *l3_config;
3874 /* Current URB config */
3875 const struct intel_urb_config *urb_cfg;
3876
3877 /* Managed by the simpler shader helper*/
3878 struct anv_state bt_state;
3879 };
3880
3881 /** State tracking for particular pipeline bind point
3882 *
3883 * This struct is the base struct for anv_cmd_graphics_state and
3884 * anv_cmd_compute_state. These are used to track state which is bound to a
3885 * particular type of pipeline. Generic state that applies per-stage such as
3886 * binding table offsets and push constants is tracked generically with a
3887 * per-stage array in anv_cmd_state.
3888 */
3889 struct anv_cmd_pipeline_state {
3890 struct anv_descriptor_set *descriptors[MAX_SETS];
3891 struct {
3892 bool bound;
3893 /**
3894 * Buffer index used by this descriptor set.
3895 */
3896 int32_t buffer_index; /* -1 means push descriptor */
3897 /**
3898 * Offset of the descriptor set in the descriptor buffer.
3899 */
3900 uint32_t buffer_offset;
3901 /**
3902 * Final computed address to be emitted in the descriptor set surface
3903 * state.
3904 */
3905 uint64_t address;
3906 /**
3907 * The descriptor set surface state.
3908 */
3909 struct anv_state state;
3910 } descriptor_buffers[MAX_SETS];
3911 struct anv_push_descriptor_set push_descriptor;
3912
3913 struct anv_push_constants push_constants;
3914
3915 /** Amount of data written to anv_push_constants::client_data */
3916 uint16_t push_constants_client_size;
3917
3918 /** Tracks whether the push constant data has changed and need to be reemitted */
3919 bool push_constants_data_dirty;
3920
3921 /* Push constant state allocated when flushing push constants. */
3922 struct anv_state push_constants_state;
3923
3924 /**
3925 * Dynamic buffer offsets.
3926 *
3927 * We have a maximum of MAX_DYNAMIC_BUFFERS per pipeline, but with
3928 * independent sets we cannot know which how much in total is going to be
3929 * used. As a result we need to store the maximum possible number per set.
3930 *
3931 * Those values are written into anv_push_constants::dynamic_offsets at
3932 * flush time when have the pipeline with the final
3933 * anv_pipeline_sets_layout.
3934 */
3935 struct {
3936 uint32_t offsets[MAX_DYNAMIC_BUFFERS];
3937 } dynamic_offsets[MAX_SETS];
3938
3939 /**
3940 * The current bound pipeline.
3941 */
3942 struct anv_pipeline *pipeline;
3943 };
3944
3945 enum anv_depth_reg_mode {
3946 ANV_DEPTH_REG_MODE_UNKNOWN = 0,
3947 ANV_DEPTH_REG_MODE_HW_DEFAULT,
3948 ANV_DEPTH_REG_MODE_D16_1X_MSAA,
3949 };
3950
3951 /** State tracking for graphics pipeline
3952 *
3953 * This has anv_cmd_pipeline_state as a base struct to track things which get
3954 * bound to a graphics pipeline. Along with general pipeline bind point state
3955 * which is in the anv_cmd_pipeline_state base struct, it also contains other
3956 * state which is graphics-specific.
3957 */
3958 struct anv_cmd_graphics_state {
3959 struct anv_cmd_pipeline_state base;
3960
3961 VkRenderingFlags rendering_flags;
3962 VkRect2D render_area;
3963 uint32_t layer_count;
3964 uint32_t samples;
3965 uint32_t view_mask;
3966 uint32_t color_att_count;
3967 struct anv_state att_states;
3968 struct anv_attachment color_att[MAX_RTS];
3969 struct anv_attachment depth_att;
3970 struct anv_attachment stencil_att;
3971 struct anv_state null_surface_state;
3972
3973 /* Map of color output from the last dispatched fragment shader to color
3974 * attachments in the render pass.
3975 */
3976 uint8_t color_output_mapping[MAX_RTS];
3977
3978 anv_cmd_dirty_mask_t dirty;
3979 uint32_t vb_dirty;
3980
3981 struct anv_vb_cache_range ib_bound_range;
3982 struct anv_vb_cache_range ib_dirty_range;
3983 struct anv_vb_cache_range vb_bound_ranges[33];
3984 struct anv_vb_cache_range vb_dirty_ranges[33];
3985
3986 uint32_t restart_index;
3987
3988 VkShaderStageFlags push_constant_stages;
3989
3990 bool used_task_shader;
3991
3992 struct anv_buffer *index_buffer;
3993 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
3994 uint32_t index_offset;
3995 uint32_t index_size;
3996
3997 uint32_t indirect_data_stride;
3998 bool indirect_data_stride_aligned;
3999
4000 struct vk_vertex_input_state vertex_input;
4001 struct vk_sample_locations_state sample_locations;
4002
4003 bool object_preemption;
4004 bool has_uint_rt;
4005
4006 /* State tracking for Wa_14018912822. */
4007 bool color_blend_zero;
4008 bool alpha_blend_zero;
4009
4010 /**
4011 * State tracking for Wa_18020335297.
4012 */
4013 bool viewport_set;
4014
4015 struct intel_urb_config urb_cfg;
4016
4017 uint32_t n_occlusion_queries;
4018
4019 /**
4020 * Whether or not the gfx8 PMA fix is enabled. We ensure that, at the top
4021 * of any command buffer it is disabled by disabling it in EndCommandBuffer
4022 * and before invoking the secondary in ExecuteCommands.
4023 */
4024 bool pma_fix_enabled;
4025
4026 /**
4027 * Whether or not we know for certain that HiZ is enabled for the current
4028 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
4029 * enabled or not, this will be false.
4030 */
4031 bool hiz_enabled;
4032
4033 /**
4034 * We ensure the registers for the gfx12 D16 fix are initialized at the
4035 * first non-NULL depth stencil packet emission of every command buffer.
4036 * For secondary command buffer execution, we transfer the state from the
4037 * last command buffer to the primary (if known).
4038 */
4039 enum anv_depth_reg_mode depth_reg_mode;
4040
4041 struct anv_gfx_dynamic_state dyn_state;
4042 };
4043
4044 /** State tracking for compute pipeline
4045 *
4046 * This has anv_cmd_pipeline_state as a base struct to track things which get
4047 * bound to a compute pipeline. Along with general pipeline bind point state
4048 * which is in the anv_cmd_pipeline_state base struct, it also contains other
4049 * state which is compute-specific.
4050 */
4051 struct anv_cmd_compute_state {
4052 struct anv_cmd_pipeline_state base;
4053
4054 bool pipeline_dirty;
4055
4056 uint32_t scratch_size;
4057 };
4058
4059 struct anv_cmd_ray_tracing_state {
4060 struct anv_cmd_pipeline_state base;
4061
4062 bool pipeline_dirty;
4063
4064 struct {
4065 struct anv_bo *bo;
4066 struct brw_rt_scratch_layout layout;
4067 } scratch;
4068
4069 uint32_t debug_marker_count;
4070 enum vk_acceleration_structure_build_step debug_markers[5];
4071
4072 struct anv_address build_priv_mem_addr;
4073 size_t build_priv_mem_size;
4074 };
4075
4076 enum anv_cmd_descriptor_buffer_mode {
4077 ANV_CMD_DESCRIPTOR_BUFFER_MODE_UNKNOWN,
4078 ANV_CMD_DESCRIPTOR_BUFFER_MODE_LEGACY,
4079 ANV_CMD_DESCRIPTOR_BUFFER_MODE_BUFFER,
4080 };
4081
4082 /** State required while building cmd buffer */
4083 struct anv_cmd_state {
4084 /* PIPELINE_SELECT.PipelineSelection */
4085 uint32_t current_pipeline;
4086 const struct intel_l3_config * current_l3_config;
4087 uint32_t last_aux_map_state;
4088
4089 struct anv_cmd_graphics_state gfx;
4090 struct anv_cmd_compute_state compute;
4091 struct anv_cmd_ray_tracing_state rt;
4092
4093 enum anv_pipe_bits pending_pipe_bits;
4094
4095 /**
4096 * Whether the last programmed STATE_BASE_ADDRESS references
4097 * anv_device::dynamic_state_pool or anv_device::dynamic_state_pool_db for
4098 * the dynamic state heap.
4099 */
4100 enum anv_cmd_descriptor_buffer_mode current_db_mode;
4101
4102 /**
4103 * Whether the command buffer has pending descriptor buffers bound it. This
4104 * variable changes before anv_device::current_db_mode.
4105 */
4106 enum anv_cmd_descriptor_buffer_mode pending_db_mode;
4107
4108 struct {
4109 /**
4110 * Tracks operations susceptible to interfere with queries in the
4111 * destination buffer of vkCmdCopyQueryResults, we need those operations to
4112 * have completed before we do the work of vkCmdCopyQueryResults.
4113 */
4114 enum anv_query_bits buffer_write_bits;
4115
4116 /**
4117 * Tracks clear operations of query buffers that can interact with
4118 * vkCmdQueryBegin*, vkCmdWriteTimestamp*,
4119 * vkCmdWriteAccelerationStructuresPropertiesKHR, etc...
4120 *
4121 * We need the clearing of the buffer completed before with write data with
4122 * the command streamer or a shader.
4123 */
4124 enum anv_query_bits clear_bits;
4125 } queries;
4126
4127 VkShaderStageFlags descriptors_dirty;
4128 VkShaderStageFlags push_descriptors_dirty;
4129 /** Tracks the 3DSTATE_CONSTANT_* instruction that needs to be reemitted */
4130 VkShaderStageFlags push_constants_dirty;
4131
4132 struct {
4133 uint64_t surfaces_address;
4134 uint64_t samplers_address;
4135 bool dirty;
4136 VkShaderStageFlags offsets_dirty;
4137 uint64_t address[MAX_SETS];
4138 } descriptor_buffers;
4139
4140 struct anv_vertex_binding vertex_bindings[MAX_VBS];
4141 bool xfb_enabled;
4142 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
4143 struct anv_state binding_tables[MESA_VULKAN_SHADER_STAGES];
4144 struct anv_state samplers[MESA_VULKAN_SHADER_STAGES];
4145
4146 unsigned char sampler_sha1s[MESA_VULKAN_SHADER_STAGES][20];
4147 unsigned char surface_sha1s[MESA_VULKAN_SHADER_STAGES][20];
4148 unsigned char push_sha1s[MESA_VULKAN_SHADER_STAGES][20];
4149
4150 /* The last auxiliary surface operation (or equivalent operation) provided
4151 * to genX(cmd_buffer_update_color_aux_op).
4152 */
4153 enum isl_aux_op color_aux_op;
4154
4155 /**
4156 * Whether RHWO optimization is enabled (Wa_1508744258).
4157 */
4158 bool rhwo_optimization_enabled;
4159
4160 /**
4161 * Pending state of the RHWO optimization, to be applied at the next
4162 * genX(cmd_buffer_apply_pipe_flushes).
4163 */
4164 bool pending_rhwo_optimization_enabled;
4165
4166 bool conditional_render_enabled;
4167
4168 /**
4169 * Last rendering scale argument provided to
4170 * genX(cmd_buffer_emit_hashing_mode)().
4171 */
4172 unsigned current_hash_scale;
4173
4174 /**
4175 * A buffer used for spill/fill of ray queries.
4176 */
4177 struct anv_bo * ray_query_shadow_bo;
4178
4179 /** Pointer to the last emitted COMPUTE_WALKER.
4180 *
4181 * This is used to edit the instruction post emission to replace the "Post
4182 * Sync" field for utrace timestamp emission.
4183 */
4184 void *last_compute_walker;
4185
4186 /** Pointer to the last emitted EXECUTE_INDIRECT_DISPATCH.
4187 *
4188 * This is used to edit the instruction post emission to replace the "Post
4189 * Sync" field for utrace timestamp emission.
4190 */
4191 void *last_indirect_dispatch;
4192 };
4193
4194 #define ANV_MIN_CMD_BUFFER_BATCH_SIZE 8192
4195 #define ANV_MAX_CMD_BUFFER_BATCH_SIZE (16 * 1024 * 1024)
4196
4197 enum anv_cmd_buffer_exec_mode {
4198 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
4199 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
4200 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
4201 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
4202 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
4203 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
4204 };
4205
4206 struct anv_measure_batch;
4207
4208 struct anv_cmd_buffer {
4209 struct vk_command_buffer vk;
4210
4211 struct anv_device * device;
4212 struct anv_queue_family * queue_family;
4213
4214 /** Batch where the main commands live */
4215 struct anv_batch batch;
4216
4217 /* Pointer to the location in the batch where MI_BATCH_BUFFER_END was
4218 * recorded upon calling vkEndCommandBuffer(). This is useful if we need to
4219 * rewrite the end to chain multiple batch together at vkQueueSubmit().
4220 */
4221 void * batch_end;
4222
4223 /* Fields required for the actual chain of anv_batch_bo's.
4224 *
4225 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
4226 */
4227 struct list_head batch_bos;
4228 enum anv_cmd_buffer_exec_mode exec_mode;
4229
4230 /* A vector of anv_batch_bo pointers for every batch or surface buffer
4231 * referenced by this command buffer
4232 *
4233 * initialized by anv_cmd_buffer_init_batch_bo_chain()
4234 */
4235 struct u_vector seen_bbos;
4236
4237 /* A vector of int32_t's for every block of binding tables.
4238 *
4239 * initialized by anv_cmd_buffer_init_batch_bo_chain()
4240 */
4241 struct u_vector bt_block_states;
4242 struct anv_state bt_next;
4243
4244 struct anv_reloc_list surface_relocs;
4245
4246 /* Serial for tracking buffer completion */
4247 uint32_t serial;
4248
4249 /* Stream objects for storing temporary data */
4250 struct anv_state_stream surface_state_stream;
4251 struct anv_state_stream dynamic_state_stream;
4252 struct anv_state_stream general_state_stream;
4253 struct anv_state_stream indirect_push_descriptor_stream;
4254 struct anv_state_stream push_descriptor_buffer_stream;
4255
4256 VkCommandBufferUsageFlags usage_flags;
4257
4258 struct anv_query_pool *perf_query_pool;
4259
4260 struct anv_cmd_state state;
4261
4262 /* Fast-clear statistics. */
4263 uint64_t num_dependent_clears;
4264 uint64_t num_independent_clears;
4265
4266 struct anv_address return_addr;
4267
4268 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
4269 uint64_t intel_perf_marker;
4270
4271 struct anv_measure_batch *measure;
4272
4273 /**
4274 * KHR_performance_query requires self modifying command buffers and this
4275 * array has the location of modifying commands to the query begin and end
4276 * instructions storing performance counters. The array length is
4277 * anv_physical_device::n_perf_query_commands.
4278 */
4279 struct mi_address_token *self_mod_locations;
4280
4281 /**
4282 * Index tracking which of the self_mod_locations items have already been
4283 * used.
4284 */
4285 uint32_t perf_reloc_idx;
4286
4287 /**
4288 * Sum of all the anv_batch_bo written sizes for this command buffer
4289 * including any executed secondary command buffer.
4290 */
4291 uint32_t total_batch_size;
4292
4293 struct {
4294 /** Batch generating part of the anv_cmd_buffer::batch */
4295 struct anv_batch batch;
4296
4297 /**
4298 * Location in anv_cmd_buffer::batch at which we left some space to
4299 * insert a MI_BATCH_BUFFER_START into the
4300 * anv_cmd_buffer::generation::batch if needed.
4301 */
4302 struct anv_address jump_addr;
4303
4304 /**
4305 * Location in anv_cmd_buffer::batch at which the generation batch
4306 * should jump back to.
4307 */
4308 struct anv_address return_addr;
4309
4310 /** List of anv_batch_bo used for generation
4311 *
4312 * We have to keep this separated of the anv_cmd_buffer::batch_bos that
4313 * is used for a chaining optimization.
4314 */
4315 struct list_head batch_bos;
4316
4317 /** Ring buffer of generated commands
4318 *
4319 * When generating draws in ring mode, this buffer will hold generated
4320 * 3DPRIMITIVE commands.
4321 */
4322 struct anv_bo *ring_bo;
4323
4324 /**
4325 * State tracking of the generation shader (only used for the non-ring
4326 * mode).
4327 */
4328 struct anv_simple_shader shader_state;
4329 } generation;
4330
4331 /**
4332 * A vector of anv_bo pointers for chunks of memory used by the command
4333 * buffer that are too large to be allocated through dynamic_state_stream.
4334 * This is the case for large enough acceleration structures.
4335 *
4336 * initialized by anv_cmd_buffer_init_batch_bo_chain()
4337 */
4338 struct u_vector dynamic_bos;
4339
4340 /**
4341 * Structure holding tracepoints recorded in the command buffer.
4342 */
4343 struct u_trace trace;
4344
4345 struct {
4346 struct anv_video_session *vid;
4347 struct anv_video_session_params *params;
4348 } video;
4349
4350 /**
4351 * Companion RCS command buffer to support the MSAA operations on compute
4352 * queue.
4353 */
4354 struct anv_cmd_buffer *companion_rcs_cmd_buffer;
4355
4356 /**
4357 * Whether this command buffer is a companion command buffer of compute one.
4358 */
4359 bool is_companion_rcs_cmd_buffer;
4360
4361 };
4362
4363 extern const struct vk_command_buffer_ops anv_cmd_buffer_ops;
4364
4365 /* Determine whether we can chain a given cmd_buffer to another one. We need
4366 * to make sure that we can edit the end of the batch to point to next one,
4367 * which requires the command buffer to not be used simultaneously.
4368 *
4369 * We could in theory also implement chaining with companion command buffers,
4370 * but let's sparse ourselves some pain and misery. This optimization has no
4371 * benefit on the brand new Xe kernel driver.
4372 */
4373 static inline bool
anv_cmd_buffer_is_chainable(struct anv_cmd_buffer * cmd_buffer)4374 anv_cmd_buffer_is_chainable(struct anv_cmd_buffer *cmd_buffer)
4375 {
4376 return !(cmd_buffer->usage_flags &
4377 VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) &&
4378 !(cmd_buffer->is_companion_rcs_cmd_buffer);
4379 }
4380
4381 static inline bool
anv_cmd_buffer_is_render_queue(const struct anv_cmd_buffer * cmd_buffer)4382 anv_cmd_buffer_is_render_queue(const struct anv_cmd_buffer *cmd_buffer)
4383 {
4384 struct anv_queue_family *queue_family = cmd_buffer->queue_family;
4385 return (queue_family->queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0;
4386 }
4387
4388 static inline bool
anv_cmd_buffer_is_video_queue(const struct anv_cmd_buffer * cmd_buffer)4389 anv_cmd_buffer_is_video_queue(const struct anv_cmd_buffer *cmd_buffer)
4390 {
4391 struct anv_queue_family *queue_family = cmd_buffer->queue_family;
4392 return ((queue_family->queueFlags & VK_QUEUE_VIDEO_DECODE_BIT_KHR) |
4393 (queue_family->queueFlags & VK_QUEUE_VIDEO_ENCODE_BIT_KHR)) != 0;
4394 }
4395
4396 static inline bool
anv_cmd_buffer_is_compute_queue(const struct anv_cmd_buffer * cmd_buffer)4397 anv_cmd_buffer_is_compute_queue(const struct anv_cmd_buffer *cmd_buffer)
4398 {
4399 struct anv_queue_family *queue_family = cmd_buffer->queue_family;
4400 return queue_family->engine_class == INTEL_ENGINE_CLASS_COMPUTE;
4401 }
4402
4403 static inline bool
anv_cmd_buffer_is_blitter_queue(const struct anv_cmd_buffer * cmd_buffer)4404 anv_cmd_buffer_is_blitter_queue(const struct anv_cmd_buffer *cmd_buffer)
4405 {
4406 struct anv_queue_family *queue_family = cmd_buffer->queue_family;
4407 return queue_family->engine_class == INTEL_ENGINE_CLASS_COPY;
4408 }
4409
4410 static inline bool
anv_cmd_buffer_is_render_or_compute_queue(const struct anv_cmd_buffer * cmd_buffer)4411 anv_cmd_buffer_is_render_or_compute_queue(const struct anv_cmd_buffer *cmd_buffer)
4412 {
4413 return anv_cmd_buffer_is_render_queue(cmd_buffer) ||
4414 anv_cmd_buffer_is_compute_queue(cmd_buffer);
4415 }
4416
4417 static inline uint8_t
anv_get_ray_query_bo_index(struct anv_cmd_buffer * cmd_buffer)4418 anv_get_ray_query_bo_index(struct anv_cmd_buffer *cmd_buffer)
4419 {
4420 if (intel_needs_workaround(cmd_buffer->device->isl_dev.info, 14022863161))
4421 return anv_cmd_buffer_is_compute_queue(cmd_buffer) ? 1 : 0;
4422 return 0;
4423 }
4424
4425 static inline struct anv_address
anv_cmd_buffer_dynamic_state_address(struct anv_cmd_buffer * cmd_buffer,struct anv_state state)4426 anv_cmd_buffer_dynamic_state_address(struct anv_cmd_buffer *cmd_buffer,
4427 struct anv_state state)
4428 {
4429 return anv_state_pool_state_address(
4430 &cmd_buffer->device->dynamic_state_pool, state);
4431 }
4432
4433 static inline uint64_t
anv_cmd_buffer_descriptor_buffer_address(struct anv_cmd_buffer * cmd_buffer,int32_t buffer_index)4434 anv_cmd_buffer_descriptor_buffer_address(struct anv_cmd_buffer *cmd_buffer,
4435 int32_t buffer_index)
4436 {
4437 if (buffer_index == -1)
4438 return cmd_buffer->device->physical->va.push_descriptor_buffer_pool.addr;
4439
4440 return cmd_buffer->state.descriptor_buffers.address[buffer_index];
4441 }
4442
4443 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
4444 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
4445 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
4446 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
4447 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
4448 struct anv_cmd_buffer *secondary);
4449 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
4450 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
4451 struct anv_cmd_buffer *cmd_buffer,
4452 const VkSemaphore *in_semaphores,
4453 const uint64_t *in_wait_values,
4454 uint32_t num_in_semaphores,
4455 const VkSemaphore *out_semaphores,
4456 const uint64_t *out_signal_values,
4457 uint32_t num_out_semaphores,
4458 VkFence fence,
4459 int perf_query_pass);
4460
4461 void anv_cmd_buffer_reset(struct vk_command_buffer *vk_cmd_buffer,
4462 UNUSED VkCommandBufferResetFlags flags);
4463
4464 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
4465 const void *data, uint32_t size, uint32_t alignment);
4466 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
4467 uint32_t *a, uint32_t *b,
4468 uint32_t dwords, uint32_t alignment);
4469
4470 struct anv_address
4471 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
4472 struct anv_state
4473 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
4474 uint32_t entries, uint32_t *state_offset);
4475 struct anv_state
4476 anv_cmd_buffer_alloc_surface_states(struct anv_cmd_buffer *cmd_buffer,
4477 uint32_t count);
4478 struct anv_state
4479 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
4480 uint32_t size, uint32_t alignment);
4481 struct anv_state
4482 anv_cmd_buffer_alloc_general_state(struct anv_cmd_buffer *cmd_buffer,
4483 uint32_t size, uint32_t alignment);
4484 static inline struct anv_state
anv_cmd_buffer_alloc_temporary_state(struct anv_cmd_buffer * cmd_buffer,uint32_t size,uint32_t alignment)4485 anv_cmd_buffer_alloc_temporary_state(struct anv_cmd_buffer *cmd_buffer,
4486 uint32_t size, uint32_t alignment)
4487 {
4488 struct anv_state state =
4489 anv_state_stream_alloc(&cmd_buffer->dynamic_state_stream,
4490 size, alignment);
4491 if (state.map == NULL)
4492 anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_OUT_OF_DEVICE_MEMORY);
4493 return state;
4494 }
4495 static inline struct anv_address
anv_cmd_buffer_temporary_state_address(struct anv_cmd_buffer * cmd_buffer,struct anv_state state)4496 anv_cmd_buffer_temporary_state_address(struct anv_cmd_buffer *cmd_buffer,
4497 struct anv_state state)
4498 {
4499 return anv_state_pool_state_address(
4500 &cmd_buffer->device->dynamic_state_pool, state);
4501 }
4502
4503 void
4504 anv_cmd_buffer_chain_command_buffers(struct anv_cmd_buffer **cmd_buffers,
4505 uint32_t num_cmd_buffers);
4506 void
4507 anv_cmd_buffer_exec_batch_debug(struct anv_queue *queue,
4508 uint32_t cmd_buffer_count,
4509 struct anv_cmd_buffer **cmd_buffers,
4510 struct anv_query_pool *perf_query_pool,
4511 uint32_t perf_query_pass);
4512 void
4513 anv_cmd_buffer_clflush(struct anv_cmd_buffer **cmd_buffers,
4514 uint32_t num_cmd_buffers);
4515
4516 void
4517 anv_cmd_buffer_update_pending_query_bits(struct anv_cmd_buffer *cmd_buffer,
4518 enum anv_pipe_bits flushed_bits);
4519
4520 /**
4521 * A allocation tied to a command buffer.
4522 *
4523 * Don't use anv_cmd_alloc::address::map to write memory from userspace, use
4524 * anv_cmd_alloc::map instead.
4525 */
4526 struct anv_cmd_alloc {
4527 struct anv_address address;
4528 void *map;
4529 size_t size;
4530 };
4531
4532 #define ANV_EMPTY_ALLOC ((struct anv_cmd_alloc) { .map = NULL, .size = 0 })
4533
4534 static inline bool
anv_cmd_alloc_is_empty(struct anv_cmd_alloc alloc)4535 anv_cmd_alloc_is_empty(struct anv_cmd_alloc alloc)
4536 {
4537 return alloc.size == 0;
4538 }
4539
4540 struct anv_cmd_alloc
4541 anv_cmd_buffer_alloc_space(struct anv_cmd_buffer *cmd_buffer,
4542 size_t size, uint32_t alignment,
4543 bool private);
4544
4545 VkResult
4546 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
4547
4548 void anv_cmd_buffer_emit_bt_pool_base_address(struct anv_cmd_buffer *cmd_buffer);
4549
4550 struct anv_state
4551 anv_cmd_buffer_gfx_push_constants(struct anv_cmd_buffer *cmd_buffer);
4552 struct anv_state
4553 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
4554
4555 VkResult
4556 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
4557 uint32_t num_entries,
4558 uint32_t *state_offset,
4559 struct anv_state *bt_state);
4560
4561 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
4562
4563 static inline unsigned
anv_cmd_buffer_get_view_count(struct anv_cmd_buffer * cmd_buffer)4564 anv_cmd_buffer_get_view_count(struct anv_cmd_buffer *cmd_buffer)
4565 {
4566 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
4567 return MAX2(1, util_bitcount(gfx->view_mask));
4568 }
4569
4570 /* Save/restore cmd buffer states for meta operations */
4571 enum anv_cmd_saved_state_flags {
4572 ANV_CMD_SAVED_STATE_COMPUTE_PIPELINE = BITFIELD_BIT(0),
4573 ANV_CMD_SAVED_STATE_DESCRIPTOR_SET_0 = BITFIELD_BIT(1),
4574 ANV_CMD_SAVED_STATE_DESCRIPTOR_SET_ALL = BITFIELD_BIT(2),
4575 ANV_CMD_SAVED_STATE_PUSH_CONSTANTS = BITFIELD_BIT(3),
4576 };
4577
4578 struct anv_cmd_saved_state {
4579 uint32_t flags;
4580
4581 struct anv_pipeline *pipeline;
4582 struct anv_descriptor_set *descriptor_set[MAX_SETS];
4583 uint8_t push_constants[MAX_PUSH_CONSTANTS_SIZE];
4584 };
4585
4586 void anv_cmd_buffer_save_state(struct anv_cmd_buffer *cmd_buffer,
4587 uint32_t flags,
4588 struct anv_cmd_saved_state *state);
4589
4590 void anv_cmd_buffer_restore_state(struct anv_cmd_buffer *cmd_buffer,
4591 struct anv_cmd_saved_state *state);
4592
4593 enum anv_bo_sync_state {
4594 /** Indicates that this is a new (or newly reset fence) */
4595 ANV_BO_SYNC_STATE_RESET,
4596
4597 /** Indicates that this fence has been submitted to the GPU but is still
4598 * (as far as we know) in use by the GPU.
4599 */
4600 ANV_BO_SYNC_STATE_SUBMITTED,
4601
4602 ANV_BO_SYNC_STATE_SIGNALED,
4603 };
4604
4605 struct anv_bo_sync {
4606 struct vk_sync sync;
4607
4608 enum anv_bo_sync_state state;
4609 struct anv_bo *bo;
4610 };
4611
4612 extern const struct vk_sync_type anv_bo_sync_type;
4613
4614 static inline bool
vk_sync_is_anv_bo_sync(const struct vk_sync * sync)4615 vk_sync_is_anv_bo_sync(const struct vk_sync *sync)
4616 {
4617 return sync->type == &anv_bo_sync_type;
4618 }
4619
4620 VkResult anv_create_sync_for_memory(struct vk_device *device,
4621 VkDeviceMemory memory,
4622 bool signal_memory,
4623 struct vk_sync **sync_out);
4624
4625 struct anv_event {
4626 struct vk_object_base base;
4627 uint64_t semaphore;
4628 struct anv_state state;
4629 };
4630
4631 #define ANV_STAGE_MASK ((1 << MESA_VULKAN_SHADER_STAGES) - 1)
4632
4633 #define anv_foreach_stage(stage, stage_bits) \
4634 for (gl_shader_stage stage, \
4635 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
4636 stage = __builtin_ffs(__tmp) - 1, __tmp; \
4637 __tmp &= ~(1 << (stage)))
4638
4639 struct anv_pipeline_bind_map {
4640 unsigned char surface_sha1[20];
4641 unsigned char sampler_sha1[20];
4642 unsigned char push_sha1[20];
4643
4644 uint32_t surface_count;
4645 uint32_t sampler_count;
4646 uint32_t embedded_sampler_count;
4647 uint16_t kernel_args_size;
4648 uint16_t kernel_arg_count;
4649
4650 struct anv_pipeline_binding * surface_to_descriptor;
4651 struct anv_pipeline_binding * sampler_to_descriptor;
4652 struct anv_pipeline_embedded_sampler_binding* embedded_sampler_to_binding;
4653 struct brw_kernel_arg_desc * kernel_args;
4654
4655 struct anv_push_range push_ranges[4];
4656 };
4657
4658 struct anv_push_descriptor_info {
4659 /* A bitfield of descriptors used. */
4660 uint32_t used_descriptors;
4661
4662 /* A bitfield of UBOs bindings fully promoted to push constants. */
4663 uint32_t fully_promoted_ubo_descriptors;
4664
4665 /* */
4666 uint8_t used_set_buffer;
4667 };
4668
4669 /* A list of values we push to implement some of the dynamic states */
4670 enum anv_dynamic_push_bits {
4671 ANV_DYNAMIC_PUSH_INPUT_VERTICES = BITFIELD_BIT(0),
4672 };
4673
4674 struct anv_shader_upload_params {
4675 gl_shader_stage stage;
4676
4677 const void *key_data;
4678 uint32_t key_size;
4679
4680 const void *kernel_data;
4681 uint32_t kernel_size;
4682
4683 const struct brw_stage_prog_data *prog_data;
4684 uint32_t prog_data_size;
4685
4686 const struct brw_compile_stats *stats;
4687 uint32_t num_stats;
4688
4689 const struct nir_xfb_info *xfb_info;
4690
4691 const struct anv_pipeline_bind_map *bind_map;
4692
4693 const struct anv_push_descriptor_info *push_desc_info;
4694
4695 enum anv_dynamic_push_bits dynamic_push_values;
4696 };
4697
4698 struct anv_embedded_sampler {
4699 uint32_t ref_cnt;
4700
4701 struct anv_embedded_sampler_key key;
4702
4703 struct anv_state sampler_state;
4704 struct anv_state border_color_state;
4705 };
4706
4707 struct anv_shader_bin {
4708 struct vk_pipeline_cache_object base;
4709
4710 gl_shader_stage stage;
4711
4712 struct anv_state kernel;
4713 uint32_t kernel_size;
4714
4715 const struct brw_stage_prog_data *prog_data;
4716 uint32_t prog_data_size;
4717
4718 struct brw_compile_stats stats[3];
4719 uint32_t num_stats;
4720
4721 struct nir_xfb_info *xfb_info;
4722
4723 struct anv_push_descriptor_info push_desc_info;
4724
4725 struct anv_pipeline_bind_map bind_map;
4726
4727 enum anv_dynamic_push_bits dynamic_push_values;
4728
4729 /* Not saved in the pipeline cache.
4730 *
4731 * Array of pointers of length bind_map.embedded_sampler_count
4732 */
4733 struct anv_embedded_sampler **embedded_samplers;
4734 };
4735
4736 static inline struct anv_shader_bin *
anv_shader_bin_ref(struct anv_shader_bin * shader)4737 anv_shader_bin_ref(struct anv_shader_bin *shader)
4738 {
4739 vk_pipeline_cache_object_ref(&shader->base);
4740
4741 return shader;
4742 }
4743
4744 static inline void
anv_shader_bin_unref(struct anv_device * device,struct anv_shader_bin * shader)4745 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
4746 {
4747 vk_pipeline_cache_object_unref(&device->vk, &shader->base);
4748 }
4749
4750 struct anv_pipeline_executable {
4751 gl_shader_stage stage;
4752
4753 struct brw_compile_stats stats;
4754
4755 char *nir;
4756 char *disasm;
4757 };
4758
4759 enum anv_pipeline_type {
4760 ANV_PIPELINE_GRAPHICS,
4761 ANV_PIPELINE_GRAPHICS_LIB,
4762 ANV_PIPELINE_COMPUTE,
4763 ANV_PIPELINE_RAY_TRACING,
4764 };
4765
4766 struct anv_pipeline {
4767 struct vk_object_base base;
4768
4769 struct anv_device * device;
4770
4771 struct anv_batch batch;
4772 struct anv_reloc_list batch_relocs;
4773
4774 void * mem_ctx;
4775
4776 enum anv_pipeline_type type;
4777 VkPipelineCreateFlags2KHR flags;
4778
4779 VkShaderStageFlags active_stages;
4780
4781 uint32_t ray_queries;
4782
4783 /**
4784 * Mask of stages that are accessing push descriptors.
4785 */
4786 VkShaderStageFlags use_push_descriptor;
4787
4788 /**
4789 * Mask of stages that are accessing the push descriptors buffer.
4790 */
4791 VkShaderStageFlags use_push_descriptor_buffer;
4792
4793 /**
4794 * Maximum scratch size for all shaders in this pipeline.
4795 */
4796 uint32_t scratch_size;
4797
4798 /* Layout of the sets used by the pipeline. */
4799 struct anv_pipeline_sets_layout layout;
4800
4801 struct util_dynarray executables;
4802
4803 const struct intel_l3_config * l3_config;
4804 };
4805
4806 /* The base graphics pipeline object only hold shaders. */
4807 struct anv_graphics_base_pipeline {
4808 struct anv_pipeline base;
4809
4810 struct vk_sample_locations_state sample_locations;
4811
4812 /* Shaders */
4813 struct anv_shader_bin * shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT];
4814
4815 /* A small hash based of shader_info::source_sha1 for identifying
4816 * shaders in renderdoc/shader-db.
4817 */
4818 uint32_t source_hashes[ANV_GRAPHICS_SHADER_STAGE_COUNT];
4819
4820 /* Feedback index in
4821 * VkPipelineCreationFeedbackCreateInfo::pPipelineStageCreationFeedbacks
4822 *
4823 * For pipeline libraries, we need to remember the order at creation when
4824 * included into a linked pipeline.
4825 */
4826 uint32_t feedback_index[ANV_GRAPHICS_SHADER_STAGE_COUNT];
4827
4828 /* Robustness flags used shaders
4829 */
4830 enum brw_robustness_flags robust_flags[ANV_GRAPHICS_SHADER_STAGE_COUNT];
4831
4832 /* True if at the time the fragment shader was compiled, it didn't have all
4833 * the information to avoid INTEL_MSAA_FLAG_ENABLE_DYNAMIC.
4834 */
4835 bool fragment_dynamic;
4836 };
4837
4838 /* The library graphics pipeline object has a partial graphic state and
4839 * possibly some shaders. If requested, shaders are also present in NIR early
4840 * form.
4841 */
4842 struct anv_graphics_lib_pipeline {
4843 struct anv_graphics_base_pipeline base;
4844
4845 VkGraphicsPipelineLibraryFlagsEXT lib_flags;
4846
4847 struct vk_graphics_pipeline_all_state all_state;
4848 struct vk_graphics_pipeline_state state;
4849
4850 /* Retained shaders for link optimization. */
4851 struct {
4852 /* This hash is the same as computed in
4853 * anv_graphics_pipeline_gather_shaders().
4854 */
4855 unsigned char shader_sha1[20];
4856
4857 enum gl_subgroup_size subgroup_size_type;
4858
4859 /* Hold on the value of VK_PIPELINE_CREATE_VIEW_INDEX_FROM_DEVICE_INDEX_BIT
4860 * from library that introduces the stage, so it remains consistent.
4861 */
4862 bool view_index_from_device_index;
4863
4864 /* NIR captured in anv_pipeline_stage_get_nir(), includes specialization
4865 * constants.
4866 */
4867 nir_shader * nir;
4868 } retained_shaders[ANV_GRAPHICS_SHADER_STAGE_COUNT];
4869
4870 /* Whether the shaders have been retained */
4871 bool retain_shaders;
4872 };
4873
4874 struct anv_gfx_state_ptr {
4875 /* Both in dwords */
4876 uint16_t offset;
4877 uint16_t len;
4878 };
4879
4880 /* The final graphics pipeline object has all the graphics state ready to be
4881 * programmed into HW packets (dynamic_state field) or fully baked in its
4882 * batch.
4883 */
4884 struct anv_graphics_pipeline {
4885 struct anv_graphics_base_pipeline base;
4886
4887 struct vk_vertex_input_state vertex_input;
4888 struct vk_sample_locations_state sample_locations;
4889 struct vk_dynamic_graphics_state dynamic_state;
4890
4891 /* If true, the patch control points are passed through push constants
4892 * (anv_push_constants::gfx::tcs_input_vertices)
4893 */
4894 bool dynamic_patch_control_points;
4895
4896 uint32_t view_mask;
4897 uint32_t instance_multiplier;
4898
4899 bool rp_has_ds_self_dep;
4900
4901 bool kill_pixel;
4902 bool uses_xfb;
4903 bool sample_shading_enable;
4904 float min_sample_shading;
4905
4906 /* Number of VERTEX_ELEMENT_STATE input elements used by the shader */
4907 uint32_t vs_input_elements;
4908
4909 /* Number of VERTEX_ELEMENT_STATE elements we need to implement some of the
4910 * draw parameters
4911 */
4912 uint32_t svgs_count;
4913
4914 /* Pre computed VERTEX_ELEMENT_STATE structures for the vertex input that
4915 * can be copied into the anv_cmd_buffer behind a 3DSTATE_VERTEX_BUFFER.
4916 *
4917 * When MESA_VK_DYNAMIC_VI is not dynamic
4918 *
4919 * vertex_input_elems = vs_input_elements + svgs_count
4920 *
4921 * All the VERTEX_ELEMENT_STATE can be directly copied behind a
4922 * 3DSTATE_VERTEX_ELEMENTS instruction in the command buffer. Otherwise
4923 * this array only holds the svgs_count elements.
4924 */
4925 uint32_t vertex_input_elems;
4926 uint32_t vertex_input_data[2 * 31 /* MAX_VES + 2 internal */];
4927
4928 /* Number of color outputs used by the fragment shader. */
4929 uint8_t num_color_outputs;
4930 /* Map of color output of the fragment shader to color attachments in the
4931 * render pass.
4932 */
4933 uint8_t color_output_mapping[MAX_RTS];
4934
4935 /* Pre computed CS instructions that can directly be copied into
4936 * anv_cmd_buffer.
4937 */
4938 uint32_t batch_data[480];
4939
4940 /* Urb setup utilized by this pipeline. */
4941 struct intel_urb_config urb_cfg;
4942
4943 /* Fully backed instructions, ready to be emitted in the anv_cmd_buffer */
4944 struct {
4945 struct anv_gfx_state_ptr urb;
4946 struct anv_gfx_state_ptr vf_sgvs;
4947 struct anv_gfx_state_ptr vf_sgvs_2;
4948 struct anv_gfx_state_ptr vf_sgvs_instancing;
4949 struct anv_gfx_state_ptr vf_instancing;
4950 struct anv_gfx_state_ptr primitive_replication;
4951 struct anv_gfx_state_ptr sbe;
4952 struct anv_gfx_state_ptr sbe_swiz;
4953 struct anv_gfx_state_ptr so_decl_list;
4954 struct anv_gfx_state_ptr vs;
4955 struct anv_gfx_state_ptr hs;
4956 struct anv_gfx_state_ptr ds;
4957 struct anv_gfx_state_ptr vs_protected;
4958 struct anv_gfx_state_ptr hs_protected;
4959 struct anv_gfx_state_ptr ds_protected;
4960
4961 struct anv_gfx_state_ptr task_control;
4962 struct anv_gfx_state_ptr task_control_protected;
4963 struct anv_gfx_state_ptr task_shader;
4964 struct anv_gfx_state_ptr task_redistrib;
4965 struct anv_gfx_state_ptr clip_mesh;
4966 struct anv_gfx_state_ptr mesh_control;
4967 struct anv_gfx_state_ptr mesh_control_protected;
4968 struct anv_gfx_state_ptr mesh_shader;
4969 struct anv_gfx_state_ptr mesh_distrib;
4970 struct anv_gfx_state_ptr sbe_mesh;
4971 } final;
4972
4973 /* Pre packed CS instructions & structures that need to be merged later
4974 * with dynamic state.
4975 */
4976 struct {
4977 struct anv_gfx_state_ptr clip;
4978 struct anv_gfx_state_ptr sf;
4979 struct anv_gfx_state_ptr ps_extra;
4980 struct anv_gfx_state_ptr wm;
4981 struct anv_gfx_state_ptr so;
4982 struct anv_gfx_state_ptr gs;
4983 struct anv_gfx_state_ptr gs_protected;
4984 struct anv_gfx_state_ptr te;
4985 struct anv_gfx_state_ptr ps;
4986 struct anv_gfx_state_ptr ps_protected;
4987 struct anv_gfx_state_ptr vfg;
4988 } partial;
4989 };
4990
4991 #define anv_batch_emit_pipeline_state(batch, pipeline, state) \
4992 do { \
4993 if ((pipeline)->state.len == 0) \
4994 break; \
4995 uint32_t *dw; \
4996 dw = anv_batch_emit_dwords((batch), (pipeline)->state.len); \
4997 if (!dw) \
4998 break; \
4999 memcpy(dw, &(pipeline)->batch_data[(pipeline)->state.offset], \
5000 4 * (pipeline)->state.len); \
5001 } while (0)
5002
5003 #define anv_batch_emit_pipeline_state_protected(batch, pipeline, \
5004 state, protected) \
5005 do { \
5006 struct anv_gfx_state_ptr *_cmd_state = protected ? \
5007 &(pipeline)->state##_protected : &(pipeline)->state; \
5008 if (_cmd_state->len == 0) \
5009 break; \
5010 uint32_t *dw; \
5011 dw = anv_batch_emit_dwords((batch), _cmd_state->len); \
5012 if (!dw) \
5013 break; \
5014 memcpy(dw, &(pipeline)->batch_data[_cmd_state->offset], \
5015 4 * _cmd_state->len); \
5016 } while (0)
5017
5018
5019 struct anv_compute_pipeline {
5020 struct anv_pipeline base;
5021
5022 struct anv_shader_bin * cs;
5023 uint32_t batch_data[9];
5024 uint32_t interface_descriptor_data[8];
5025
5026 /* A small hash based of shader_info::source_sha1 for identifying shaders
5027 * in renderdoc/shader-db.
5028 */
5029 uint32_t source_hash;
5030 };
5031
5032 struct anv_rt_shader_group {
5033 VkRayTracingShaderGroupTypeKHR type;
5034
5035 /* Whether this group was imported from another pipeline */
5036 bool imported;
5037
5038 struct anv_shader_bin *general;
5039 struct anv_shader_bin *closest_hit;
5040 struct anv_shader_bin *any_hit;
5041 struct anv_shader_bin *intersection;
5042
5043 /* VK_KHR_ray_tracing requires shaderGroupHandleSize == 32 */
5044 uint32_t handle[8];
5045 };
5046
5047 struct anv_ray_tracing_pipeline {
5048 struct anv_pipeline base;
5049
5050 /* All shaders in the pipeline */
5051 struct util_dynarray shaders;
5052
5053 uint32_t group_count;
5054 struct anv_rt_shader_group * groups;
5055
5056 /* If non-zero, this is the default computed stack size as per the stack
5057 * size computation in the Vulkan spec. If zero, that indicates that the
5058 * client has requested a dynamic stack size.
5059 */
5060 uint32_t stack_size;
5061 };
5062
5063 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
5064 static inline struct anv_##pipe_type##_pipeline * \
5065 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
5066 { \
5067 assert(pipeline->type == pipe_enum); \
5068 return (struct anv_##pipe_type##_pipeline *) pipeline; \
5069 }
5070
ANV_DECL_PIPELINE_DOWNCAST(graphics,ANV_PIPELINE_GRAPHICS)5071 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
5072 ANV_DECL_PIPELINE_DOWNCAST(graphics_lib, ANV_PIPELINE_GRAPHICS_LIB)
5073 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
5074 ANV_DECL_PIPELINE_DOWNCAST(ray_tracing, ANV_PIPELINE_RAY_TRACING)
5075
5076 /* Can't use the macro because we need to handle both types. */
5077 static inline struct anv_graphics_base_pipeline *
5078 anv_pipeline_to_graphics_base(struct anv_pipeline *pipeline)
5079 {
5080 assert(pipeline->type == ANV_PIPELINE_GRAPHICS ||
5081 pipeline->type == ANV_PIPELINE_GRAPHICS_LIB);
5082 return (struct anv_graphics_base_pipeline *) pipeline;
5083 }
5084
5085 static inline bool
anv_pipeline_has_stage(const struct anv_graphics_pipeline * pipeline,gl_shader_stage stage)5086 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
5087 gl_shader_stage stage)
5088 {
5089 return (pipeline->base.base.active_stages & mesa_to_vk_shader_stage(stage)) != 0;
5090 }
5091
5092 static inline bool
anv_pipeline_base_has_stage(const struct anv_graphics_base_pipeline * pipeline,gl_shader_stage stage)5093 anv_pipeline_base_has_stage(const struct anv_graphics_base_pipeline *pipeline,
5094 gl_shader_stage stage)
5095 {
5096 return (pipeline->base.active_stages & mesa_to_vk_shader_stage(stage)) != 0;
5097 }
5098
5099 static inline bool
anv_pipeline_is_primitive(const struct anv_graphics_pipeline * pipeline)5100 anv_pipeline_is_primitive(const struct anv_graphics_pipeline *pipeline)
5101 {
5102 return anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX);
5103 }
5104
5105 static inline bool
anv_pipeline_is_mesh(const struct anv_graphics_pipeline * pipeline)5106 anv_pipeline_is_mesh(const struct anv_graphics_pipeline *pipeline)
5107 {
5108 return anv_pipeline_has_stage(pipeline, MESA_SHADER_MESH);
5109 }
5110
5111 static inline bool
anv_gfx_all_color_write_masked(const struct anv_cmd_graphics_state * gfx,const struct vk_dynamic_graphics_state * dyn)5112 anv_gfx_all_color_write_masked(const struct anv_cmd_graphics_state *gfx,
5113 const struct vk_dynamic_graphics_state *dyn)
5114 {
5115 uint8_t color_writes = dyn->cb.color_write_enables;
5116
5117 /* All writes disabled through vkCmdSetColorWriteEnableEXT */
5118 if ((color_writes & ((1u << gfx->color_att_count) - 1)) == 0)
5119 return true;
5120
5121 /* Or all write masks are empty */
5122 for (uint32_t i = 0; i < gfx->color_att_count; i++) {
5123 if (dyn->cb.attachments[i].write_mask != 0)
5124 return false;
5125 }
5126
5127 return true;
5128 }
5129
5130 static inline void
anv_cmd_graphic_state_update_has_uint_rt(struct anv_cmd_graphics_state * state)5131 anv_cmd_graphic_state_update_has_uint_rt(struct anv_cmd_graphics_state *state)
5132 {
5133 state->has_uint_rt = false;
5134 for (unsigned a = 0; a < state->color_att_count; a++) {
5135 if (vk_format_is_int(state->color_att[a].vk_format)) {
5136 state->has_uint_rt = true;
5137 break;
5138 }
5139 }
5140 }
5141
5142 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
5143 static inline const struct brw_##prefix##_prog_data * \
5144 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
5145 { \
5146 if (anv_pipeline_has_stage(pipeline, stage)) { \
5147 return (const struct brw_##prefix##_prog_data *) \
5148 pipeline->base.shaders[stage]->prog_data; \
5149 } else { \
5150 return NULL; \
5151 } \
5152 }
5153
ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs,MESA_SHADER_VERTEX)5154 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
5155 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
5156 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
5157 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
5158 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
5159 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(mesh, MESA_SHADER_MESH)
5160 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(task, MESA_SHADER_TASK)
5161
5162 static inline const struct brw_cs_prog_data *
5163 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
5164 {
5165 assert(pipeline->cs);
5166 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
5167 }
5168
5169 static inline const struct brw_vue_prog_data *
anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline * pipeline)5170 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
5171 {
5172 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
5173 return &get_gs_prog_data(pipeline)->base;
5174 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
5175 return &get_tes_prog_data(pipeline)->base;
5176 else
5177 return &get_vs_prog_data(pipeline)->base;
5178 }
5179
5180 VkResult
5181 anv_device_init_rt_shaders(struct anv_device *device);
5182
5183 void
5184 anv_device_finish_rt_shaders(struct anv_device *device);
5185
5186 struct anv_kernel_arg {
5187 bool is_ptr;
5188 uint16_t size;
5189
5190 union {
5191 uint64_t u64;
5192 void *ptr;
5193 };
5194 };
5195
5196 struct anv_kernel {
5197 #ifndef NDEBUG
5198 const char *name;
5199 #endif
5200 struct anv_shader_bin *bin;
5201 const struct intel_l3_config *l3_config;
5202 };
5203
5204 struct anv_format_plane {
5205 enum isl_format isl_format:16;
5206 struct isl_swizzle swizzle;
5207
5208 /* What aspect is associated to this plane */
5209 VkImageAspectFlags aspect;
5210 };
5211
5212 enum anv_format_flag {
5213 /* Format supports YCbCr */
5214 ANV_FORMAT_FLAG_CAN_YCBCR = BITFIELD_BIT(0),
5215 /* Format supports video API */
5216 ANV_FORMAT_FLAG_CAN_VIDEO = BITFIELD_BIT(1),
5217 /* Format works if custom border colors without format is disabled */
5218 ANV_FORMAT_FLAG_NO_CBCWF = BITFIELD_BIT(2),
5219 };
5220
5221 struct anv_format {
5222 struct anv_format_plane planes[3];
5223 VkFormat vk_format;
5224 uint8_t n_planes;
5225 enum anv_format_flag flags:8;
5226 };
5227
5228 static inline void
anv_assert_valid_aspect_set(VkImageAspectFlags aspects)5229 anv_assert_valid_aspect_set(VkImageAspectFlags aspects)
5230 {
5231 if (util_bitcount(aspects) == 1) {
5232 assert(aspects & (VK_IMAGE_ASPECT_COLOR_BIT |
5233 VK_IMAGE_ASPECT_DEPTH_BIT |
5234 VK_IMAGE_ASPECT_STENCIL_BIT |
5235 VK_IMAGE_ASPECT_PLANE_0_BIT |
5236 VK_IMAGE_ASPECT_PLANE_1_BIT |
5237 VK_IMAGE_ASPECT_PLANE_2_BIT));
5238 } else if (aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) {
5239 assert(aspects == VK_IMAGE_ASPECT_PLANE_0_BIT ||
5240 aspects == (VK_IMAGE_ASPECT_PLANE_0_BIT |
5241 VK_IMAGE_ASPECT_PLANE_1_BIT) ||
5242 aspects == (VK_IMAGE_ASPECT_PLANE_0_BIT |
5243 VK_IMAGE_ASPECT_PLANE_1_BIT |
5244 VK_IMAGE_ASPECT_PLANE_2_BIT));
5245 } else {
5246 assert(aspects == (VK_IMAGE_ASPECT_DEPTH_BIT |
5247 VK_IMAGE_ASPECT_STENCIL_BIT));
5248 }
5249 }
5250
5251 /**
5252 * Return the aspect's plane relative to all_aspects. For an image, for
5253 * instance, all_aspects would be the set of aspects in the image. For
5254 * an image view, all_aspects would be the subset of aspects represented
5255 * by that particular view.
5256 */
5257 static inline uint32_t
anv_aspect_to_plane(VkImageAspectFlags all_aspects,VkImageAspectFlagBits aspect)5258 anv_aspect_to_plane(VkImageAspectFlags all_aspects,
5259 VkImageAspectFlagBits aspect)
5260 {
5261 anv_assert_valid_aspect_set(all_aspects);
5262 assert(util_bitcount(aspect) == 1);
5263 assert(!(aspect & ~all_aspects));
5264
5265 /* Because we always put image and view planes in aspect-bit-order, the
5266 * plane index is the number of bits in all_aspects before aspect.
5267 */
5268 return util_bitcount(all_aspects & (aspect - 1));
5269 }
5270
5271 #define anv_foreach_image_aspect_bit(b, image, aspects) \
5272 u_foreach_bit(b, vk_image_expand_aspect_mask(&(image)->vk, aspects))
5273
5274 const struct anv_format *
5275 anv_get_format(const struct anv_physical_device *device, VkFormat format);
5276
5277 static inline uint32_t
anv_get_format_planes(const struct anv_physical_device * device,VkFormat vk_format)5278 anv_get_format_planes(const struct anv_physical_device *device,
5279 VkFormat vk_format)
5280 {
5281 const struct anv_format *format = anv_get_format(device, vk_format);
5282
5283 return format != NULL ? format->n_planes : 0;
5284 }
5285
5286 struct anv_format_plane
5287 anv_get_format_plane(const struct anv_physical_device *device,
5288 VkFormat vk_format, uint32_t plane,
5289 VkImageTiling tiling);
5290
5291 struct anv_format_plane
5292 anv_get_format_aspect(const struct anv_physical_device *device,
5293 VkFormat vk_format,
5294 VkImageAspectFlagBits aspect, VkImageTiling tiling);
5295
5296 static inline enum isl_format
anv_get_isl_format(const struct anv_physical_device * device,VkFormat vk_format,VkImageAspectFlags aspect,VkImageTiling tiling)5297 anv_get_isl_format(const struct anv_physical_device *device, VkFormat vk_format,
5298 VkImageAspectFlags aspect, VkImageTiling tiling)
5299 {
5300 return anv_get_format_aspect(device, vk_format, aspect, tiling).isl_format;
5301 }
5302
5303 bool anv_format_supports_ccs_e(const struct anv_physical_device *device,
5304 const enum isl_format format);
5305
5306 bool anv_formats_ccs_e_compatible(const struct anv_physical_device *device,
5307 VkImageCreateFlags create_flags,
5308 VkFormat vk_format, VkImageTiling vk_tiling,
5309 VkImageUsageFlags vk_usage,
5310 const VkImageFormatListCreateInfo *fmt_list);
5311
5312 extern VkFormat
5313 vk_format_from_android(unsigned android_format, unsigned android_usage);
5314
5315 static inline VkFormat
anv_get_emulation_format(const struct anv_physical_device * pdevice,VkFormat format)5316 anv_get_emulation_format(const struct anv_physical_device *pdevice, VkFormat format)
5317 {
5318 if (pdevice->flush_astc_ldr_void_extent_denorms) {
5319 const struct util_format_description *desc =
5320 vk_format_description(format);
5321 if (desc->layout == UTIL_FORMAT_LAYOUT_ASTC &&
5322 desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB)
5323 return format;
5324 }
5325
5326 if (pdevice->emu_astc_ldr)
5327 return vk_texcompress_astc_emulation_format(format);
5328
5329 return VK_FORMAT_UNDEFINED;
5330 }
5331
5332 static inline bool
anv_is_format_emulated(const struct anv_physical_device * pdevice,VkFormat format)5333 anv_is_format_emulated(const struct anv_physical_device *pdevice, VkFormat format)
5334 {
5335 return anv_get_emulation_format(pdevice, format) != VK_FORMAT_UNDEFINED;
5336 }
5337
5338 static inline struct isl_swizzle
anv_swizzle_for_render(struct isl_swizzle swizzle)5339 anv_swizzle_for_render(struct isl_swizzle swizzle)
5340 {
5341 /* Sometimes the swizzle will have alpha map to one. We do this to fake
5342 * RGB as RGBA for texturing
5343 */
5344 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
5345 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
5346
5347 /* But it doesn't matter what we render to that channel */
5348 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
5349
5350 return swizzle;
5351 }
5352
5353 void
5354 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
5355
5356 /**
5357 * Describes how each part of anv_image will be bound to memory.
5358 */
5359 struct anv_image_memory_range {
5360 /**
5361 * Disjoint bindings into which each portion of the image will be bound.
5362 *
5363 * Binding images to memory can be complicated and invold binding different
5364 * portions of the image to different memory objects or regions. For most
5365 * images, everything lives in the MAIN binding and gets bound by
5366 * vkBindImageMemory. For disjoint multi-planar images, each plane has
5367 * a unique, disjoint binding and gets bound by vkBindImageMemory2 with
5368 * VkBindImagePlaneMemoryInfo. There may also exist bits of memory which are
5369 * implicit or driver-managed and live in special-case bindings.
5370 */
5371 enum anv_image_memory_binding {
5372 /**
5373 * Used if and only if image is not multi-planar disjoint. Bound by
5374 * vkBindImageMemory2 without VkBindImagePlaneMemoryInfo.
5375 */
5376 ANV_IMAGE_MEMORY_BINDING_MAIN,
5377
5378 /**
5379 * Used if and only if image is multi-planar disjoint. Bound by
5380 * vkBindImageMemory2 with VkBindImagePlaneMemoryInfo.
5381 */
5382 ANV_IMAGE_MEMORY_BINDING_PLANE_0,
5383 ANV_IMAGE_MEMORY_BINDING_PLANE_1,
5384 ANV_IMAGE_MEMORY_BINDING_PLANE_2,
5385
5386 /**
5387 * Driver-private bo. In special cases we may store the aux surface and/or
5388 * aux state in this binding.
5389 */
5390 ANV_IMAGE_MEMORY_BINDING_PRIVATE,
5391
5392 /** Sentinel */
5393 ANV_IMAGE_MEMORY_BINDING_END,
5394 } binding;
5395
5396 uint32_t alignment;
5397 uint64_t size;
5398
5399 /**
5400 * Offset is relative to the start of the binding created by
5401 * vkBindImageMemory, not to the start of the bo.
5402 */
5403 uint64_t offset;
5404 };
5405
5406 /**
5407 * Subsurface of an anv_image.
5408 */
5409 struct anv_surface {
5410 struct isl_surf isl;
5411 struct anv_image_memory_range memory_range;
5412 };
5413
5414 static inline bool MUST_CHECK
anv_surface_is_valid(const struct anv_surface * surface)5415 anv_surface_is_valid(const struct anv_surface *surface)
5416 {
5417 return surface->isl.size_B > 0 && surface->memory_range.size > 0;
5418 }
5419
5420 struct anv_image {
5421 struct vk_image vk;
5422
5423 uint32_t n_planes;
5424
5425 /**
5426 * Image has multi-planar format and was created with
5427 * VK_IMAGE_CREATE_DISJOINT_BIT.
5428 */
5429 bool disjoint;
5430
5431 /**
5432 * Image is a WSI image
5433 */
5434 bool from_wsi;
5435
5436 /**
5437 * Image is a WSI blit src image, it will never be scanout directly to
5438 * display but will be copied to a dma-buf that can be scanout.
5439 */
5440 bool wsi_blit_src;
5441
5442 /**
5443 * Image was imported from an struct AHardwareBuffer. We have to delay
5444 * final image creation until bind time.
5445 */
5446 bool from_ahb;
5447
5448 /**
5449 * Image was imported from gralloc with VkNativeBufferANDROID. The gralloc bo
5450 * must be released when the image is destroyed.
5451 */
5452 bool from_gralloc;
5453
5454 /**
5455 * If not UNDEFINED, image has a hidden plane at planes[n_planes] for ASTC
5456 * LDR workaround or emulation.
5457 */
5458 VkFormat emu_plane_format;
5459
5460 /**
5461 * The set of formats that will be used with the first plane of this image.
5462 *
5463 * Assuming all view formats have the same bits-per-channel, we support the
5464 * largest number of variations which may exist.
5465 */
5466 enum isl_format view_formats[5];
5467 unsigned num_view_formats;
5468
5469 /**
5470 * The memory bindings created by vkCreateImage and vkBindImageMemory.
5471 *
5472 * For details on the image's memory layout, see check_memory_bindings().
5473 *
5474 * vkCreateImage constructs the `memory_range` for each
5475 * anv_image_memory_binding. After vkCreateImage, each binding is valid if
5476 * and only if `memory_range::size > 0`.
5477 *
5478 * vkBindImageMemory binds each valid `memory_range` to an `address`.
5479 * Usually, the app will provide the address via the parameters of
5480 * vkBindImageMemory. However, special-case bindings may be bound to
5481 * driver-private memory.
5482 *
5483 * If needed a host pointer to the image is mapped for host image copies.
5484 */
5485 struct anv_image_binding {
5486 struct anv_image_memory_range memory_range;
5487 struct anv_address address;
5488 struct anv_sparse_binding_data sparse_data;
5489 void *host_map;
5490 uint64_t map_delta;
5491 uint64_t map_size;
5492 } bindings[ANV_IMAGE_MEMORY_BINDING_END];
5493
5494 /**
5495 * Image subsurfaces
5496 *
5497 * For each foo, anv_image::planes[x].surface is valid if and only if
5498 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
5499 * to figure the number associated with a given aspect.
5500 *
5501 * The hardware requires that the depth buffer and stencil buffer be
5502 * separate surfaces. From Vulkan's perspective, though, depth and stencil
5503 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
5504 * allocate the depth and stencil buffers as separate surfaces in the same
5505 * bo.
5506 */
5507 struct anv_image_plane {
5508 struct anv_surface primary_surface;
5509
5510 /**
5511 * The base aux usage for this image. For color images, this can be
5512 * either CCS_E or CCS_D depending on whether or not we can reliably
5513 * leave CCS on all the time.
5514 */
5515 enum isl_aux_usage aux_usage;
5516
5517 struct anv_surface aux_surface;
5518
5519 /** Location of the compression control surface. */
5520 struct anv_image_memory_range compr_ctrl_memory_range;
5521
5522 /** Location of the fast clear state. */
5523 struct anv_image_memory_range fast_clear_memory_range;
5524
5525 struct {
5526 /** Whether the image has CCS data mapped through AUX-TT. */
5527 bool mapped;
5528
5529 /** Main address of the mapping. */
5530 uint64_t addr;
5531
5532 /** Size of the mapping. */
5533 uint64_t size;
5534 } aux_tt;
5535 } planes[3];
5536
5537 struct anv_image_memory_range vid_dmv_top_surface;
5538
5539 /* Link in the anv_device.image_private_objects list */
5540 struct list_head link;
5541 struct anv_image_memory_range av1_cdf_table;
5542 };
5543
5544 static inline bool
anv_image_is_protected(const struct anv_image * image)5545 anv_image_is_protected(const struct anv_image *image)
5546 {
5547 return image->vk.create_flags & VK_IMAGE_CREATE_PROTECTED_BIT;
5548 }
5549
5550 static inline bool
anv_image_is_sparse(const struct anv_image * image)5551 anv_image_is_sparse(const struct anv_image *image)
5552 {
5553 return image->vk.create_flags & VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
5554 }
5555
5556 static inline bool
anv_image_is_externally_shared(const struct anv_image * image)5557 anv_image_is_externally_shared(const struct anv_image *image)
5558 {
5559 return image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID ||
5560 image->vk.external_handle_types != 0;
5561 }
5562
5563 static inline bool
anv_image_has_private_binding(const struct anv_image * image)5564 anv_image_has_private_binding(const struct anv_image *image)
5565 {
5566 const struct anv_image_binding private_binding =
5567 image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE];
5568 return private_binding.memory_range.size != 0;
5569 }
5570
5571 static inline bool
anv_image_format_is_d16_or_s8(const struct anv_image * image)5572 anv_image_format_is_d16_or_s8(const struct anv_image *image)
5573 {
5574 return image->vk.format == VK_FORMAT_D16_UNORM ||
5575 image->vk.format == VK_FORMAT_D16_UNORM_S8_UINT ||
5576 image->vk.format == VK_FORMAT_D24_UNORM_S8_UINT ||
5577 image->vk.format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
5578 image->vk.format == VK_FORMAT_S8_UINT;
5579 }
5580
5581 static inline bool
anv_image_can_host_memcpy(const struct anv_image * image)5582 anv_image_can_host_memcpy(const struct anv_image *image)
5583 {
5584 const struct isl_surf *surf = &image->planes[0].primary_surface.isl;
5585 struct isl_tile_info tile_info;
5586 isl_surf_get_tile_info(surf, &tile_info);
5587
5588 const bool array_pitch_aligned_to_tile =
5589 surf->array_pitch_el_rows % tile_info.logical_extent_el.height == 0;
5590
5591 return image->vk.tiling != VK_IMAGE_TILING_LINEAR &&
5592 image->n_planes == 1 &&
5593 array_pitch_aligned_to_tile &&
5594 image->vk.mip_levels == 1;
5595 }
5596
5597 /* The ordering of this enum is important */
5598 enum anv_fast_clear_type {
5599 /** Image does not have/support any fast-clear blocks */
5600 ANV_FAST_CLEAR_NONE = 0,
5601 /** Image has/supports fast-clear but only to the default value */
5602 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
5603 /** Image has/supports fast-clear with an arbitrary fast-clear value */
5604 ANV_FAST_CLEAR_ANY = 2,
5605 };
5606
5607 /**
5608 * Return the aspect's _format_ plane, not its _memory_ plane (using the
5609 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
5610 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
5611 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
5612 */
5613 static inline uint32_t
anv_image_aspect_to_plane(const struct anv_image * image,VkImageAspectFlagBits aspect)5614 anv_image_aspect_to_plane(const struct anv_image *image,
5615 VkImageAspectFlagBits aspect)
5616 {
5617 return anv_aspect_to_plane(image->vk.aspects, aspect);
5618 }
5619
5620 /* Returns the number of auxiliary buffer levels attached to an image. */
5621 static inline uint8_t
anv_image_aux_levels(const struct anv_image * const image,VkImageAspectFlagBits aspect)5622 anv_image_aux_levels(const struct anv_image * const image,
5623 VkImageAspectFlagBits aspect)
5624 {
5625 uint32_t plane = anv_image_aspect_to_plane(image, aspect);
5626 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
5627 return 0;
5628
5629 return image->vk.mip_levels;
5630 }
5631
5632 /* Returns the number of auxiliary buffer layers attached to an image. */
5633 static inline uint32_t
anv_image_aux_layers(const struct anv_image * const image,VkImageAspectFlagBits aspect,const uint8_t miplevel)5634 anv_image_aux_layers(const struct anv_image * const image,
5635 VkImageAspectFlagBits aspect,
5636 const uint8_t miplevel)
5637 {
5638 assert(image);
5639
5640 /* The miplevel must exist in the main buffer. */
5641 assert(miplevel < image->vk.mip_levels);
5642
5643 if (miplevel >= anv_image_aux_levels(image, aspect)) {
5644 /* There are no layers with auxiliary data because the miplevel has no
5645 * auxiliary data.
5646 */
5647 return 0;
5648 }
5649
5650 return MAX2(image->vk.array_layers, image->vk.extent.depth >> miplevel);
5651 }
5652
5653 static inline struct anv_address MUST_CHECK
anv_image_address(const struct anv_image * image,const struct anv_image_memory_range * mem_range)5654 anv_image_address(const struct anv_image *image,
5655 const struct anv_image_memory_range *mem_range)
5656 {
5657 const struct anv_image_binding *binding = &image->bindings[mem_range->binding];
5658 assert(binding->memory_range.offset == 0);
5659
5660 if (mem_range->size == 0)
5661 return ANV_NULL_ADDRESS;
5662
5663 return anv_address_add(binding->address, mem_range->offset);
5664 }
5665
5666 bool
5667 anv_image_view_formats_incomplete(const struct anv_image *image);
5668
5669 static inline struct anv_address
anv_image_get_clear_color_addr(UNUSED const struct anv_device * device,const struct anv_image * image,enum isl_format view_format,VkImageAspectFlagBits aspect,bool for_sampler)5670 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
5671 const struct anv_image *image,
5672 enum isl_format view_format,
5673 VkImageAspectFlagBits aspect,
5674 bool for_sampler)
5675 {
5676 uint32_t plane = anv_image_aspect_to_plane(image, aspect);
5677 const struct anv_image_memory_range *mem_range =
5678 &image->planes[plane].fast_clear_memory_range;
5679
5680 const struct anv_address base_addr = anv_image_address(image, mem_range);
5681 if (anv_address_is_null(base_addr))
5682 return ANV_NULL_ADDRESS;
5683
5684 if (view_format == ISL_FORMAT_UNSUPPORTED)
5685 view_format = image->planes[plane].primary_surface.isl.format;
5686
5687 uint64_t access_offset = device->info->ver == 9 && for_sampler ? 16 : 0;
5688 const unsigned clear_state_size = device->info->ver >= 11 ? 64 : 32;
5689 for (int i = 0; i < image->num_view_formats; i++) {
5690 if (view_format == image->view_formats[i]) {
5691 uint64_t entry_offset = i * clear_state_size + access_offset;
5692 return anv_address_add(base_addr, entry_offset);
5693 }
5694 }
5695
5696 assert(anv_image_view_formats_incomplete(image));
5697 return anv_address_add(base_addr, access_offset);
5698 }
5699
5700 static inline struct anv_address
anv_image_get_fast_clear_type_addr(const struct anv_device * device,const struct anv_image * image,VkImageAspectFlagBits aspect)5701 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
5702 const struct anv_image *image,
5703 VkImageAspectFlagBits aspect)
5704 {
5705 /* Xe2+ platforms don't need fast clear type. We shouldn't get here. */
5706 assert(device->info->ver < 20);
5707 struct anv_address addr =
5708 anv_image_get_clear_color_addr(device, image, ISL_FORMAT_UNSUPPORTED,
5709 aspect, false);
5710
5711 /* Refer to add_aux_state_tracking_buffer(). */
5712 unsigned clear_color_state_size;
5713 if (device->info->ver >= 11) {
5714 assert(device->isl_dev.ss.clear_color_state_size == 32);
5715 clear_color_state_size = (image->num_view_formats - 1) * 64 + 32 - 8;
5716 } else {
5717 assert(device->isl_dev.ss.clear_value_size == 16);
5718 clear_color_state_size = image->num_view_formats * 16 * 2;
5719 }
5720
5721 return anv_address_add(addr, clear_color_state_size);
5722 }
5723
5724 static inline struct anv_address
anv_image_get_compression_state_addr(const struct anv_device * device,const struct anv_image * image,VkImageAspectFlagBits aspect,uint32_t level,uint32_t array_layer)5725 anv_image_get_compression_state_addr(const struct anv_device *device,
5726 const struct anv_image *image,
5727 VkImageAspectFlagBits aspect,
5728 uint32_t level, uint32_t array_layer)
5729 {
5730 /* Xe2+ platforms don't use compression state. We shouldn't get here. */
5731 assert(device->info->ver < 20);
5732 assert(level < anv_image_aux_levels(image, aspect));
5733 assert(array_layer < anv_image_aux_layers(image, aspect, level));
5734 UNUSED uint32_t plane = anv_image_aspect_to_plane(image, aspect);
5735 assert(isl_aux_usage_has_ccs_e(image->planes[plane].aux_usage));
5736
5737 /* Relative to start of the plane's fast clear type */
5738 uint32_t offset;
5739
5740 offset = 4; /* Go past the fast clear type */
5741
5742 if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
5743 for (uint32_t l = 0; l < level; l++)
5744 offset += u_minify(image->vk.extent.depth, l) * 4;
5745 } else {
5746 offset += level * image->vk.array_layers * 4;
5747 }
5748
5749 offset += array_layer * 4;
5750
5751 assert(offset < image->planes[plane].fast_clear_memory_range.size);
5752
5753 return anv_address_add(
5754 anv_image_get_fast_clear_type_addr(device, image, aspect),
5755 offset);
5756 }
5757
5758 static inline const struct anv_image_memory_range *
anv_image_get_aux_memory_range(const struct anv_image * image,uint32_t plane)5759 anv_image_get_aux_memory_range(const struct anv_image *image,
5760 uint32_t plane)
5761 {
5762 if (image->planes[plane].aux_surface.memory_range.size > 0)
5763 return &image->planes[plane].aux_surface.memory_range;
5764 else
5765 return &image->planes[plane].compr_ctrl_memory_range;
5766 }
5767
5768 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
5769 static inline bool
anv_can_sample_with_hiz(const struct intel_device_info * const devinfo,const struct anv_image * image)5770 anv_can_sample_with_hiz(const struct intel_device_info * const devinfo,
5771 const struct anv_image *image)
5772 {
5773 if (!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
5774 return false;
5775
5776 /* For Gfx8-11, there are some restrictions around sampling from HiZ.
5777 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
5778 * say:
5779 *
5780 * "If this field is set to AUX_HIZ, Number of Multisamples must
5781 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
5782 */
5783 if (image->vk.image_type == VK_IMAGE_TYPE_3D)
5784 return false;
5785
5786 if (!devinfo->has_sample_with_hiz)
5787 return false;
5788
5789 return image->vk.samples == 1;
5790 }
5791
5792 /* Returns true if an MCS-enabled buffer can be sampled from. */
5793 static inline bool
anv_can_sample_mcs_with_clear(const struct intel_device_info * const devinfo,const struct anv_image * image)5794 anv_can_sample_mcs_with_clear(const struct intel_device_info * const devinfo,
5795 const struct anv_image *image)
5796 {
5797 assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5798 const uint32_t plane =
5799 anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_COLOR_BIT);
5800
5801 assert(isl_aux_usage_has_mcs(image->planes[plane].aux_usage));
5802
5803 const struct anv_surface *anv_surf = &image->planes[plane].primary_surface;
5804
5805 /* On TGL, the sampler has an issue with some 8 and 16bpp MSAA fast clears.
5806 * See HSD 1707282275, wa_14013111325. Due to the use of
5807 * format-reinterpretation, a simplified workaround is implemented.
5808 */
5809 if (intel_needs_workaround(devinfo, 14013111325) &&
5810 isl_format_get_layout(anv_surf->isl.format)->bpb <= 16) {
5811 return false;
5812 }
5813
5814 return true;
5815 }
5816
5817 static inline bool
anv_image_plane_uses_aux_map(const struct anv_device * device,const struct anv_image * image,uint32_t plane)5818 anv_image_plane_uses_aux_map(const struct anv_device *device,
5819 const struct anv_image *image,
5820 uint32_t plane)
5821 {
5822 return device->info->has_aux_map &&
5823 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
5824 }
5825
5826 static inline bool
anv_image_uses_aux_map(const struct anv_device * device,const struct anv_image * image)5827 anv_image_uses_aux_map(const struct anv_device *device,
5828 const struct anv_image *image)
5829 {
5830 for (uint32_t p = 0; p < image->n_planes; ++p) {
5831 if (anv_image_plane_uses_aux_map(device, image, p))
5832 return true;
5833 }
5834
5835 return false;
5836 }
5837
5838 static inline bool
anv_bo_allows_aux_map(const struct anv_device * device,const struct anv_bo * bo)5839 anv_bo_allows_aux_map(const struct anv_device *device,
5840 const struct anv_bo *bo)
5841 {
5842 if (device->aux_map_ctx == NULL)
5843 return false;
5844
5845 return (bo->alloc_flags & ANV_BO_ALLOC_AUX_TT_ALIGNED) != 0;
5846 }
5847
5848 static inline bool
anv_address_allows_aux_map(const struct anv_device * device,struct anv_address addr)5849 anv_address_allows_aux_map(const struct anv_device *device,
5850 struct anv_address addr)
5851 {
5852 if (device->aux_map_ctx == NULL)
5853 return false;
5854
5855 /* Technically, we really only care about what offset the image is bound
5856 * into on the BO, but we don't have that information here. As a heuristic,
5857 * rely on the BO offset instead.
5858 */
5859 if (anv_address_physical(addr) %
5860 intel_aux_map_get_alignment(device->aux_map_ctx) != 0)
5861 return false;
5862
5863 return true;
5864 }
5865
5866 void
5867 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
5868 const struct anv_image *image,
5869 VkImageAspectFlagBits aspect,
5870 enum isl_aux_usage aux_usage,
5871 uint32_t level,
5872 uint32_t base_layer,
5873 uint32_t layer_count);
5874
5875 void
5876 anv_cmd_buffer_mark_image_fast_cleared(struct anv_cmd_buffer *cmd_buffer,
5877 const struct anv_image *image,
5878 const enum isl_format format,
5879 const struct isl_swizzle swizzle,
5880 union isl_color_value clear_color);
5881
5882 void
5883 anv_cmd_buffer_load_clear_color(struct anv_cmd_buffer *cmd_buffer,
5884 struct anv_state state,
5885 const struct anv_image_view *iview);
5886
5887 enum anv_image_memory_binding
5888 anv_image_aspect_to_binding(struct anv_image *image,
5889 VkImageAspectFlags aspect);
5890
5891 void
5892 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
5893 const struct anv_image *image,
5894 VkImageAspectFlagBits aspect,
5895 enum isl_aux_usage aux_usage,
5896 enum isl_format format, struct isl_swizzle swizzle,
5897 uint32_t level, uint32_t base_layer, uint32_t layer_count,
5898 VkRect2D area, union isl_color_value clear_color);
5899 void
5900 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
5901 const struct anv_image *image,
5902 VkImageAspectFlags aspects,
5903 enum isl_aux_usage depth_aux_usage,
5904 uint32_t level,
5905 uint32_t base_layer, uint32_t layer_count,
5906 VkRect2D area,
5907 const VkClearDepthStencilValue *clear_value);
5908 void
5909 anv_attachment_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
5910 const struct anv_attachment *att,
5911 VkImageLayout layout,
5912 VkImageAspectFlagBits aspect);
5913
5914 static inline union isl_color_value
anv_image_hiz_clear_value(const struct anv_image * image)5915 anv_image_hiz_clear_value(const struct anv_image *image)
5916 {
5917 /* The benchmarks we're tracking tend to prefer clearing depth buffers to
5918 * 0.0f when the depth buffers are part of images with multiple aspects.
5919 * Otherwise, they tend to prefer clearing depth buffers to 1.0f.
5920 */
5921 if (image->n_planes == 2)
5922 return (union isl_color_value) { .f32 = { 0.0f, } };
5923 else
5924 return (union isl_color_value) { .f32 = { 1.0f, } };
5925 }
5926
5927 void
5928 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
5929 const struct anv_image *image,
5930 VkImageAspectFlagBits aspect, uint32_t level,
5931 uint32_t base_layer, uint32_t layer_count,
5932 enum isl_aux_op hiz_op);
5933 void
5934 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
5935 const struct anv_image *image,
5936 VkImageAspectFlags aspects,
5937 uint32_t level,
5938 uint32_t base_layer, uint32_t layer_count,
5939 VkRect2D area,
5940 const VkClearDepthStencilValue *clear_value);
5941 void
5942 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
5943 const struct anv_image *image,
5944 enum isl_format format, struct isl_swizzle swizzle,
5945 VkImageAspectFlagBits aspect,
5946 uint32_t base_layer, uint32_t layer_count,
5947 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
5948 bool predicate);
5949 void
5950 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
5951 const struct anv_image *image,
5952 enum isl_format format, struct isl_swizzle swizzle,
5953 VkImageAspectFlagBits aspect, uint32_t level,
5954 uint32_t base_layer, uint32_t layer_count,
5955 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
5956 bool predicate);
5957
5958 isl_surf_usage_flags_t
5959 anv_image_choose_isl_surf_usage(struct anv_physical_device *device,
5960 VkImageCreateFlags vk_create_flags,
5961 VkImageUsageFlags vk_usage,
5962 isl_surf_usage_flags_t isl_extra_usage,
5963 VkImageAspectFlagBits aspect,
5964 VkImageCompressionFlagsEXT comp_flags);
5965
5966 void
5967 anv_cmd_copy_addr(struct anv_cmd_buffer *cmd_buffer,
5968 struct anv_address src_addr,
5969 struct anv_address dst_addr,
5970 uint64_t size);
5971 void
5972 anv_cmd_buffer_fill_area(struct anv_cmd_buffer *cmd_buffer,
5973 struct anv_address address,
5974 VkDeviceSize size,
5975 uint32_t data,
5976 bool protected);
5977 void
5978 anv_cmd_fill_buffer_addr(VkCommandBuffer cmd_buffer,
5979 VkDeviceAddress dstAddr,
5980 VkDeviceSize size,
5981 uint32_t data);
5982 void
5983 anv_cmd_buffer_update_addr(struct anv_cmd_buffer *cmd_buffer,
5984 struct anv_address address,
5985 VkDeviceSize dstOffset,
5986 VkDeviceSize dataSize,
5987 const void* pData,
5988 bool is_protected);
5989 void
5990 anv_cmd_write_buffer_cp(VkCommandBuffer cmd_buffer,
5991 VkDeviceAddress dstAddr,
5992 void *data,
5993 uint32_t size);
5994 void
5995 anv_cmd_dispatch_unaligned(VkCommandBuffer cmd_buffer,
5996 uint32_t invocations_x,
5997 uint32_t invocations_y,
5998 uint32_t invocations_z);
5999
6000 void
6001 anv_cmd_flush_buffer_write_cp(VkCommandBuffer cmd_buffer);
6002
6003 VkResult
6004 anv_cmd_buffer_ensure_rcs_companion(struct anv_cmd_buffer *cmd_buffer);
6005
6006 bool
6007 anv_can_hiz_clear_ds_view(struct anv_device *device,
6008 const struct anv_image_view *iview,
6009 VkImageLayout layout,
6010 VkImageAspectFlags clear_aspects,
6011 float depth_clear_value,
6012 VkRect2D render_area,
6013 const VkQueueFlagBits queue_flags);
6014
6015 bool
6016 anv_can_fast_clear_color(const struct anv_cmd_buffer *cmd_buffer,
6017 const struct anv_image *image,
6018 unsigned level,
6019 const struct VkClearRect *clear_rect,
6020 VkImageLayout layout,
6021 enum isl_format view_format,
6022 union isl_color_value clear_color);
6023
6024 enum isl_aux_state ATTRIBUTE_PURE
6025 anv_layout_to_aux_state(const struct intel_device_info * const devinfo,
6026 const struct anv_image *image,
6027 const VkImageAspectFlagBits aspect,
6028 const VkImageLayout layout,
6029 const VkQueueFlagBits queue_flags);
6030
6031 enum isl_aux_usage ATTRIBUTE_PURE
6032 anv_layout_to_aux_usage(const struct intel_device_info * const devinfo,
6033 const struct anv_image *image,
6034 const VkImageAspectFlagBits aspect,
6035 const VkImageUsageFlagBits usage,
6036 const VkImageLayout layout,
6037 const VkQueueFlagBits queue_flags);
6038
6039 enum anv_fast_clear_type ATTRIBUTE_PURE
6040 anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo,
6041 const struct anv_image * const image,
6042 const VkImageAspectFlagBits aspect,
6043 const VkImageLayout layout,
6044 const VkQueueFlagBits queue_flags);
6045
6046 bool ATTRIBUTE_PURE
6047 anv_layout_has_untracked_aux_writes(const struct intel_device_info * const devinfo,
6048 const struct anv_image * const image,
6049 const VkImageAspectFlagBits aspect,
6050 const VkImageLayout layout,
6051 const VkQueueFlagBits queue_flags);
6052
6053 static inline bool
anv_image_aspects_compatible(VkImageAspectFlags aspects1,VkImageAspectFlags aspects2)6054 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
6055 VkImageAspectFlags aspects2)
6056 {
6057 if (aspects1 == aspects2)
6058 return true;
6059
6060 /* Only 1 color aspects are compatibles. */
6061 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
6062 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
6063 util_bitcount(aspects1) == util_bitcount(aspects2))
6064 return true;
6065
6066 return false;
6067 }
6068
6069 struct anv_image_view {
6070 struct vk_image_view vk;
6071
6072 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
6073
6074 unsigned n_planes;
6075
6076 /**
6077 * True if the surface states (if any) are owned by some anv_state_stream
6078 * from internal_surface_state_pool.
6079 */
6080 bool use_surface_state_stream;
6081
6082 struct {
6083 struct isl_view isl;
6084
6085 /**
6086 * A version of the image view for storage usage (can apply 3D image
6087 * slicing).
6088 */
6089 struct isl_view isl_storage;
6090
6091 /**
6092 * RENDER_SURFACE_STATE when using image as a sampler surface with an
6093 * image layout of SHADER_READ_ONLY_OPTIMAL or
6094 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
6095 */
6096 struct anv_surface_state optimal_sampler;
6097
6098 /**
6099 * RENDER_SURFACE_STATE when using image as a sampler surface with an
6100 * image layout of GENERAL.
6101 */
6102 struct anv_surface_state general_sampler;
6103
6104 /**
6105 * RENDER_SURFACE_STATE when using image as a storage image.
6106 */
6107 struct anv_surface_state storage;
6108 } planes[3];
6109 };
6110
6111 enum anv_image_view_state_flags {
6112 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 0),
6113 };
6114
6115 void anv_image_fill_surface_state(struct anv_device *device,
6116 const struct anv_image *image,
6117 VkImageAspectFlagBits aspect,
6118 const struct isl_view *view,
6119 isl_surf_usage_flags_t view_usage,
6120 enum isl_aux_usage aux_usage,
6121 const union isl_color_value *clear_color,
6122 enum anv_image_view_state_flags flags,
6123 struct anv_surface_state *state_inout);
6124
6125
6126 static inline const struct anv_surface_state *
anv_image_view_texture_surface_state(const struct anv_image_view * iview,uint32_t plane,VkImageLayout layout)6127 anv_image_view_texture_surface_state(const struct anv_image_view *iview,
6128 uint32_t plane, VkImageLayout layout)
6129 {
6130 return (layout == VK_IMAGE_LAYOUT_GENERAL ||
6131 layout == VK_IMAGE_LAYOUT_RENDERING_LOCAL_READ_KHR) ?
6132 &iview->planes[plane].general_sampler :
6133 &iview->planes[plane].optimal_sampler;
6134 }
6135
6136 static inline const struct anv_surface_state *
anv_image_view_storage_surface_state(const struct anv_image_view * iview)6137 anv_image_view_storage_surface_state(const struct anv_image_view *iview)
6138 {
6139 return &iview->planes[0].storage;
6140 }
6141
6142 static inline bool
anv_cmd_graphics_state_has_image_as_attachment(const struct anv_cmd_graphics_state * state,const struct anv_image * image)6143 anv_cmd_graphics_state_has_image_as_attachment(const struct anv_cmd_graphics_state *state,
6144 const struct anv_image *image)
6145 {
6146 for (unsigned a = 0; a < state->color_att_count; a++) {
6147 if (state->color_att[a].iview &&
6148 state->color_att[a].iview->image == image)
6149 return true;
6150 }
6151
6152 if (state->depth_att.iview && state->depth_att.iview->image == image)
6153 return true;
6154 if (state->stencil_att.iview && state->stencil_att.iview->image == image)
6155 return true;
6156
6157 return false;
6158 }
6159
6160 struct anv_image_create_info {
6161 const VkImageCreateInfo *vk_info;
6162
6163 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
6164 isl_tiling_flags_t isl_tiling_flags;
6165
6166 /** These flags will be added to any derived from VkImageCreateInfo. */
6167 isl_surf_usage_flags_t isl_extra_usage_flags;
6168
6169 /** An opt-in stride in pixels, should be 0 for implicit layouts */
6170 uint32_t stride;
6171
6172 /** Whether to allocate private binding */
6173 bool no_private_binding_alloc;
6174 };
6175
6176 VkResult anv_image_init(struct anv_device *device, struct anv_image *image,
6177 const struct anv_image_create_info *create_info);
6178
6179 void anv_image_finish(struct anv_image *image);
6180
6181 void anv_image_get_memory_requirements(struct anv_device *device,
6182 struct anv_image *image,
6183 VkImageAspectFlags aspects,
6184 VkMemoryRequirements2 *pMemoryRequirements);
6185
6186 void anv_image_view_init(struct anv_device *device,
6187 struct anv_image_view *iview,
6188 const VkImageViewCreateInfo *pCreateInfo,
6189 struct anv_state_stream *state_stream);
6190
6191 void anv_image_view_finish(struct anv_image_view *iview);
6192
6193 enum isl_format
6194 anv_isl_format_for_descriptor_type(const struct anv_device *device,
6195 VkDescriptorType type);
6196
6197 static inline isl_surf_usage_flags_t
anv_isl_usage_for_descriptor_type(const VkDescriptorType type)6198 anv_isl_usage_for_descriptor_type(const VkDescriptorType type)
6199 {
6200 switch(type) {
6201 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
6202 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
6203 return ISL_SURF_USAGE_CONSTANT_BUFFER_BIT;
6204 default:
6205 return ISL_SURF_USAGE_STORAGE_BIT;
6206 }
6207 }
6208
6209 VkFormatFeatureFlags2
6210 anv_get_image_format_features2(const struct anv_physical_device *physical_device,
6211 VkFormat vk_format,
6212 const struct anv_format *anv_format,
6213 VkImageTiling vk_tiling,
6214 const struct isl_drm_modifier_info *isl_mod_info);
6215
6216 void anv_fill_buffer_surface_state(struct anv_device *device,
6217 void *surface_state_ptr,
6218 enum isl_format format,
6219 struct isl_swizzle swizzle,
6220 isl_surf_usage_flags_t usage,
6221 struct anv_address address,
6222 uint32_t range, uint32_t stride);
6223
6224
6225 struct gfx8_border_color {
6226 union {
6227 float float32[4];
6228 uint32_t uint32[4];
6229 };
6230 /* Pad out to 64 bytes */
6231 uint32_t _pad[12];
6232 };
6233
6234 struct anv_sampler {
6235 struct vk_sampler vk;
6236
6237 /* Hash of the sampler state + border color, useful for embedded samplers
6238 * and included in the descriptor layout hash.
6239 */
6240 unsigned char sha1[20];
6241
6242 uint32_t state[3][4];
6243 /* Packed SAMPLER_STATE without the border color pointer. */
6244 uint32_t state_no_bc[3][4];
6245 uint32_t n_planes;
6246
6247 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
6248 * and with a 32-byte stride for use as bindless samplers.
6249 */
6250 struct anv_state bindless_state;
6251
6252 struct anv_state custom_border_color;
6253 };
6254
6255
6256 struct anv_query_pool {
6257 struct vk_query_pool vk;
6258
6259 /** Stride between queries, in bytes */
6260 uint32_t stride;
6261 /** Number of slots in this query pool */
6262 struct anv_bo * bo;
6263
6264 /** Location for the KHR_performance_query small batch updating
6265 * ANV_PERF_QUERY_OFFSET_REG
6266 */
6267 uint32_t khr_perf_preambles_offset;
6268
6269 /** Size of each small batch */
6270 uint32_t khr_perf_preamble_stride;
6271
6272 /* KHR perf queries : */
6273 /** Query pass size in bytes(availability + padding + query data) */
6274 uint32_t pass_size;
6275 /** Offset of the query data within a pass */
6276 uint32_t data_offset;
6277 /** query data / 2 */
6278 uint32_t snapshot_size;
6279 uint32_t n_counters;
6280 struct intel_perf_counter_pass *counter_pass;
6281 uint32_t n_passes;
6282 struct intel_perf_query_info **pass_query;
6283
6284 /* Video encoding queries */
6285 VkVideoCodecOperationFlagsKHR codec;
6286 };
6287
khr_perf_query_preamble_offset(const struct anv_query_pool * pool,uint32_t pass)6288 static inline uint32_t khr_perf_query_preamble_offset(const struct anv_query_pool *pool,
6289 uint32_t pass)
6290 {
6291 return pool->khr_perf_preambles_offset +
6292 pool->khr_perf_preamble_stride * pass;
6293 }
6294
6295 struct anv_vid_mem {
6296 struct anv_device_memory *mem;
6297 VkDeviceSize offset;
6298 VkDeviceSize size;
6299 };
6300
6301 #define ANV_MB_WIDTH 16
6302 #define ANV_MB_HEIGHT 16
6303 #define ANV_VIDEO_H264_MAX_DPB_SLOTS 17
6304 #define ANV_VIDEO_H264_MAX_NUM_REF_FRAME 16
6305 #define ANV_VIDEO_H265_MAX_NUM_REF_FRAME 16
6306 #define ANV_VIDEO_H265_HCP_NUM_REF_FRAME 8
6307 #define ANV_MAX_H265_CTB_SIZE 64
6308
6309 enum anv_vid_mem_h264_types {
6310 ANV_VID_MEM_H264_INTRA_ROW_STORE,
6311 ANV_VID_MEM_H264_DEBLOCK_FILTER_ROW_STORE,
6312 ANV_VID_MEM_H264_BSD_MPC_ROW_SCRATCH,
6313 ANV_VID_MEM_H264_MPR_ROW_SCRATCH,
6314 ANV_VID_MEM_H264_MAX,
6315 };
6316
6317 enum anv_vid_mem_h265_types {
6318 ANV_VID_MEM_H265_DEBLOCK_FILTER_ROW_STORE_LINE,
6319 ANV_VID_MEM_H265_DEBLOCK_FILTER_ROW_STORE_TILE_LINE,
6320 ANV_VID_MEM_H265_DEBLOCK_FILTER_ROW_STORE_TILE_COLUMN,
6321 ANV_VID_MEM_H265_METADATA_LINE,
6322 ANV_VID_MEM_H265_METADATA_TILE_LINE,
6323 ANV_VID_MEM_H265_METADATA_TILE_COLUMN,
6324 ANV_VID_MEM_H265_SAO_LINE,
6325 ANV_VID_MEM_H265_SAO_TILE_LINE,
6326 ANV_VID_MEM_H265_SAO_TILE_COLUMN,
6327 ANV_VID_MEM_H265_DEC_MAX,
6328 ANV_VID_MEM_H265_SSE_SRC_PIX_ROW_STORE = ANV_VID_MEM_H265_DEC_MAX,
6329 ANV_VID_MEM_H265_ENC_MAX,
6330 };
6331
6332 enum anv_vid_mem_av1_types {
6333 ANV_VID_MEM_AV1_BITSTREAM_LINE_ROWSTORE,
6334 ANV_VID_MEM_AV1_BITSTREAM_TILE_LINE_ROWSTORE,
6335 ANV_VID_MEM_AV1_INTRA_PREDICTION_LINE_ROWSTORE,
6336 ANV_VID_MEM_AV1_INTRA_PREDICTION_TILE_LINE_ROWSTORE,
6337 ANV_VID_MEM_AV1_SPATIAL_MOTION_VECTOR_LINE,
6338 ANV_VID_MEM_AV1_SPATIAL_MOTION_VECTOR_TILE_LINE,
6339 ANV_VID_MEM_AV1_LOOP_RESTORATION_META_TILE_COLUMN,
6340 ANV_VID_MEM_AV1_LOOP_RESTORATION_FILTER_TILE_LINE_Y,
6341 ANV_VID_MEM_AV1_LOOP_RESTORATION_FILTER_TILE_LINE_U,
6342 ANV_VID_MEM_AV1_LOOP_RESTORATION_FILTER_TILE_LINE_V,
6343 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_LINE_Y,
6344 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_LINE_U,
6345 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_LINE_V,
6346 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_TILE_LINE_Y,
6347 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_TILE_LINE_U,
6348 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_TILE_LINE_V,
6349 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_TILE_COLUMN_Y,
6350 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_TILE_COLUMN_U,
6351 ANV_VID_MEM_AV1_DEBLOCKER_FILTER_TILE_COLUMN_V,
6352 ANV_VID_MEM_AV1_CDEF_FILTER_LINE,
6353 ANV_VID_MEM_AV1_CDEF_FILTER_TILE_LINE,
6354 ANV_VID_MEM_AV1_CDEF_FILTER_TILE_COLUMN,
6355 ANV_VID_MEM_AV1_CDEF_FILTER_META_TILE_LINE,
6356 ANV_VID_MEM_AV1_CDEF_FILTER_META_TILE_COLUMN,
6357 ANV_VID_MEM_AV1_CDEF_FILTER_TOP_LEFT_CORNER,
6358 ANV_VID_MEM_AV1_SUPER_RES_TILE_COLUMN_Y,
6359 ANV_VID_MEM_AV1_SUPER_RES_TILE_COLUMN_U,
6360 ANV_VID_MEM_AV1_SUPER_RES_TILE_COLUMN_V,
6361 ANV_VID_MEM_AV1_LOOP_RESTORATION_FILTER_TILE_COLUMN_Y,
6362 ANV_VID_MEM_AV1_LOOP_RESTORATION_FILTER_TILE_COLUMN_U,
6363 ANV_VID_MEM_AV1_LOOP_RESTORATION_FILTER_TILE_COLUMN_V,
6364 ANV_VID_MEM_AV1_CDF_DEFAULTS_0,
6365 ANV_VID_MEM_AV1_CDF_DEFAULTS_1,
6366 ANV_VID_MEM_AV1_CDF_DEFAULTS_2,
6367 ANV_VID_MEM_AV1_CDF_DEFAULTS_3,
6368 ANV_VID_MEM_AV1_DBD_BUFFER,
6369 ANV_VID_MEM_AV1_MAX,
6370 };
6371
6372 struct anv_av1_video_refs_info {
6373 const struct anv_image *img;
6374 uint8_t default_cdf_index;
6375 };
6376
6377 struct anv_video_session {
6378 struct vk_video_session vk;
6379
6380 bool cdf_initialized;
6381 /* the decoder needs some private memory allocations */
6382 struct anv_vid_mem vid_mem[ANV_VID_MEM_AV1_MAX];
6383 struct anv_av1_video_refs_info prev_refs[STD_VIDEO_AV1_NUM_REF_FRAMES];
6384 };
6385
6386 struct anv_video_session_params {
6387 struct vk_video_session_parameters vk;
6388 VkVideoEncodeRateControlModeFlagBitsKHR rc_mode;
6389 };
6390
6391 void anv_init_av1_cdf_tables(struct anv_cmd_buffer *cmd,
6392 struct anv_video_session *vid);
6393
6394 uint32_t anv_video_get_image_mv_size(struct anv_device *device,
6395 struct anv_image *image,
6396 const struct VkVideoProfileListInfoKHR *profile_list);
6397
6398 void
6399 anv_dump_pipe_bits(enum anv_pipe_bits bits, FILE *f);
6400
6401 void
6402 anv_cmd_buffer_pending_pipe_debug(struct anv_cmd_buffer *cmd_buffer,
6403 enum anv_pipe_bits bits,
6404 const char* reason);
6405
6406 static inline void
anv_add_pending_pipe_bits(struct anv_cmd_buffer * cmd_buffer,enum anv_pipe_bits bits,const char * reason)6407 anv_add_pending_pipe_bits(struct anv_cmd_buffer* cmd_buffer,
6408 enum anv_pipe_bits bits,
6409 const char* reason)
6410 {
6411 cmd_buffer->state.pending_pipe_bits |= bits;
6412 if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) {
6413 anv_cmd_buffer_pending_pipe_debug(cmd_buffer, bits, reason);
6414 }
6415 }
6416
6417 struct anv_performance_configuration_intel {
6418 struct vk_object_base base;
6419
6420 struct intel_perf_registers *register_config;
6421
6422 uint64_t config_id;
6423 };
6424
6425 void anv_physical_device_init_va_ranges(struct anv_physical_device *device);
6426 void anv_physical_device_init_perf(struct anv_physical_device *device, int fd);
6427 void anv_device_perf_init(struct anv_device *device);
6428 void anv_device_perf_close(struct anv_device *device);
6429 void anv_perf_write_pass_results(struct intel_perf_config *perf,
6430 struct anv_query_pool *pool, uint32_t pass,
6431 const struct intel_perf_query_result *accumulated_results,
6432 union VkPerformanceCounterResultKHR *results);
6433
6434 void anv_apply_per_prim_attr_wa(struct nir_shader *ms_nir,
6435 struct nir_shader *fs_nir,
6436 struct anv_device *device,
6437 const VkGraphicsPipelineCreateInfo *info);
6438
6439 /* Use to emit a series of memcpy operations */
6440 struct anv_memcpy_state {
6441 struct anv_device *device;
6442 struct anv_cmd_buffer *cmd_buffer;
6443 struct anv_batch *batch;
6444
6445 /* Configuration programmed by the memcpy operation */
6446 struct intel_urb_config urb_cfg;
6447
6448 struct anv_vb_cache_range vb_bound;
6449 struct anv_vb_cache_range vb_dirty;
6450 };
6451
6452 VkResult anv_device_init_internal_kernels(struct anv_device *device);
6453 void anv_device_finish_internal_kernels(struct anv_device *device);
6454 VkResult anv_device_get_internal_shader(struct anv_device *device,
6455 enum anv_internal_kernel_name name,
6456 struct anv_shader_bin **out_bin);
6457
6458 VkResult anv_device_init_astc_emu(struct anv_device *device);
6459 void anv_device_finish_astc_emu(struct anv_device *device);
6460 void anv_astc_emu_process(struct anv_cmd_buffer *cmd_buffer,
6461 struct anv_image *image,
6462 VkImageLayout layout,
6463 const VkImageSubresourceLayers *subresource,
6464 VkOffset3D block_offset,
6465 VkExtent3D block_extent);
6466
6467 /* This structure is used in 2 scenarios :
6468 *
6469 * - copy utrace timestamps from command buffer so that command buffer can
6470 * be resubmitted multiple times without the recorded timestamps being
6471 * overwritten before they're read back
6472 *
6473 * - emit trace points for queue debug tagging
6474 * (vkQueueBeginDebugUtilsLabelEXT/vkQueueEndDebugUtilsLabelEXT)
6475 */
6476 struct anv_utrace_submit {
6477 struct anv_async_submit base;
6478
6479 /* structure used by the perfetto glue */
6480 struct intel_ds_flush_data ds;
6481
6482 /* Stream for temporary allocations */
6483 struct anv_state_stream dynamic_state_stream;
6484 struct anv_state_stream general_state_stream;
6485
6486 /* Last fully read 64bit timestamp (used to rebuild the upper bits of 32bit
6487 * timestamps)
6488 */
6489 uint64_t last_full_timestamp;
6490
6491 /* Memcpy state tracking (only used for timestamp copies on render engine) */
6492 struct anv_memcpy_state memcpy_state;
6493
6494 /* Memcpy state tracking (only used for timestamp copies on compute engine) */
6495 struct anv_simple_shader simple_state;
6496 };
6497
6498 void anv_device_utrace_init(struct anv_device *device);
6499 void anv_device_utrace_finish(struct anv_device *device);
6500 VkResult
6501 anv_device_utrace_flush_cmd_buffers(struct anv_queue *queue,
6502 uint32_t cmd_buffer_count,
6503 struct anv_cmd_buffer **cmd_buffers,
6504 struct anv_utrace_submit **out_submit);
6505
6506 void
6507 anv_device_utrace_emit_gfx_copy_buffer(struct u_trace_context *utctx,
6508 void *cmdstream,
6509 void *ts_from, uint64_t from_offset_B,
6510 void *ts_to, uint64_t to_offset_B,
6511 uint64_t size_B);
6512
6513 static bool
anv_has_cooperative_matrix(const struct anv_physical_device * device)6514 anv_has_cooperative_matrix(const struct anv_physical_device *device)
6515 {
6516 return device->has_cooperative_matrix;
6517 }
6518
6519 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
6520 VK_FROM_HANDLE(__anv_type, __name, __handle)
6521
6522 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, vk.base, VkCommandBuffer,
6523 VK_OBJECT_TYPE_COMMAND_BUFFER)
6524 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
6525 VK_DEFINE_HANDLE_CASTS(anv_instance, vk.base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
6526 VK_DEFINE_HANDLE_CASTS(anv_physical_device, vk.base, VkPhysicalDevice,
6527 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
6528 VK_DEFINE_HANDLE_CASTS(anv_queue, vk.base, VkQueue, VK_OBJECT_TYPE_QUEUE)
6529
6530 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, vk.base, VkBuffer,
6531 VK_OBJECT_TYPE_BUFFER)
6532 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, vk.base, VkBufferView,
6533 VK_OBJECT_TYPE_BUFFER_VIEW)
6534 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
6535 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
6536 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
6537 VK_OBJECT_TYPE_DESCRIPTOR_SET)
6538 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
6539 VkDescriptorSetLayout,
6540 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
6541 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, vk.base, VkDeviceMemory,
6542 VK_OBJECT_TYPE_DEVICE_MEMORY)
6543 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
6544 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, vk.base, VkImage, VK_OBJECT_TYPE_IMAGE)
6545 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, vk.base, VkImageView,
6546 VK_OBJECT_TYPE_IMAGE_VIEW);
6547 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
6548 VK_OBJECT_TYPE_PIPELINE)
6549 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
6550 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
6551 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, vk.base, VkQueryPool,
6552 VK_OBJECT_TYPE_QUERY_POOL)
6553 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, vk.base, VkSampler,
6554 VK_OBJECT_TYPE_SAMPLER)
6555 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_performance_configuration_intel, base,
6556 VkPerformanceConfigurationINTEL,
6557 VK_OBJECT_TYPE_PERFORMANCE_CONFIGURATION_INTEL)
6558 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_video_session, vk.base,
6559 VkVideoSessionKHR,
6560 VK_OBJECT_TYPE_VIDEO_SESSION_KHR)
6561 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_video_session_params, vk.base,
6562 VkVideoSessionParametersKHR,
6563 VK_OBJECT_TYPE_VIDEO_SESSION_PARAMETERS_KHR)
6564
6565 #define anv_genX(devinfo, thing) ({ \
6566 __typeof(&gfx9_##thing) genX_thing; \
6567 switch ((devinfo)->verx10) { \
6568 case 90: \
6569 genX_thing = &gfx9_##thing; \
6570 break; \
6571 case 110: \
6572 genX_thing = &gfx11_##thing; \
6573 break; \
6574 case 120: \
6575 genX_thing = &gfx12_##thing; \
6576 break; \
6577 case 125: \
6578 genX_thing = &gfx125_##thing; \
6579 break; \
6580 case 200: \
6581 genX_thing = &gfx20_##thing; \
6582 break; \
6583 case 300: \
6584 genX_thing = &gfx30_##thing; \
6585 break; \
6586 default: \
6587 unreachable("Unknown hardware generation"); \
6588 } \
6589 genX_thing; \
6590 })
6591
6592 /* Gen-specific function declarations */
6593 #ifdef genX
6594 # include "anv_genX.h"
6595 #else
6596 # define genX(x) gfx9_##x
6597 # include "anv_genX.h"
6598 # undef genX
6599 # define genX(x) gfx11_##x
6600 # include "anv_genX.h"
6601 # undef genX
6602 # define genX(x) gfx12_##x
6603 # include "anv_genX.h"
6604 # undef genX
6605 # define genX(x) gfx125_##x
6606 # include "anv_genX.h"
6607 # undef genX
6608 # define genX(x) gfx20_##x
6609 # include "anv_genX.h"
6610 # undef genX
6611 # define genX(x) gfx30_##x
6612 # include "anv_genX.h"
6613 # undef genX
6614 #endif
6615
6616 #ifdef __cplusplus
6617 }
6618 #endif
6619
6620 #endif /* ANV_PRIVATE_H */
6621