1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "anv_measure.h"
29 #include "vk_format.h"
30 #include "vk_render_pass.h"
31 #include "vk_util.h"
32 #include "util/fast_idiv_by_const.h"
33
34 #include "common/intel_l3_config.h"
35 #include "genxml/gen_macros.h"
36 #include "genxml/genX_pack.h"
37 #include "common/intel_guardband.h"
38 #include "compiler/elk/elk_prim.h"
39
40 #include "nir/nir_xfb_info.h"
41
42 #include "ds/intel_tracepoints.h"
43
44 /* We reserve :
45 * - GPR 14 for secondary command buffer returns
46 * - GPR 15 for conditional rendering
47 */
48 #define MI_BUILDER_NUM_ALLOC_GPRS 14
49 #define __gen_get_batch_dwords anv_batch_emit_dwords
50 #define __gen_address_offset anv_address_add
51 #define __gen_get_batch_address(b, a) anv_batch_address(b, a)
52 #include "common/mi_builder.h"
53
54 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
55 uint32_t pipeline);
56
57 static enum anv_pipe_bits
convert_pc_to_bits(struct GENX (PIPE_CONTROL)* pc)58 convert_pc_to_bits(struct GENX(PIPE_CONTROL) *pc) {
59 enum anv_pipe_bits bits = 0;
60 bits |= (pc->DepthCacheFlushEnable) ? ANV_PIPE_DEPTH_CACHE_FLUSH_BIT : 0;
61 bits |= (pc->DCFlushEnable) ? ANV_PIPE_DATA_CACHE_FLUSH_BIT : 0;
62 bits |= (pc->RenderTargetCacheFlushEnable) ? ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT : 0;
63 bits |= (pc->VFCacheInvalidationEnable) ? ANV_PIPE_VF_CACHE_INVALIDATE_BIT : 0;
64 bits |= (pc->StateCacheInvalidationEnable) ? ANV_PIPE_STATE_CACHE_INVALIDATE_BIT : 0;
65 bits |= (pc->ConstantCacheInvalidationEnable) ? ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT : 0;
66 bits |= (pc->TextureCacheInvalidationEnable) ? ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT : 0;
67 bits |= (pc->InstructionCacheInvalidateEnable) ? ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT : 0;
68 bits |= (pc->StallAtPixelScoreboard) ? ANV_PIPE_STALL_AT_SCOREBOARD_BIT : 0;
69 bits |= (pc->DepthStallEnable) ? ANV_PIPE_DEPTH_STALL_BIT : 0;
70 bits |= (pc->CommandStreamerStallEnable) ? ANV_PIPE_CS_STALL_BIT : 0;
71 return bits;
72 }
73
74 #define anv_debug_dump_pc(pc) \
75 if (INTEL_DEBUG(DEBUG_PIPE_CONTROL)) { \
76 fputs("pc: emit PC=( ", stderr); \
77 anv_dump_pipe_bits(convert_pc_to_bits(&(pc))); \
78 fprintf(stderr, ") reason: %s\n", __func__); \
79 }
80
81 static bool
is_render_queue_cmd_buffer(const struct anv_cmd_buffer * cmd_buffer)82 is_render_queue_cmd_buffer(const struct anv_cmd_buffer *cmd_buffer)
83 {
84 struct anv_queue_family *queue_family = cmd_buffer->queue_family;
85 return (queue_family->queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0;
86 }
87
88 void
genX(cmd_buffer_emit_state_base_address)89 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
90 {
91 struct anv_device *device = cmd_buffer->device;
92 uint32_t mocs = isl_mocs(&device->isl_dev, 0, false);
93
94 /* If we are emitting a new state base address we probably need to re-emit
95 * binding tables.
96 */
97 cmd_buffer->state.descriptors_dirty |= ~0;
98
99 /* Emit a render target cache flush.
100 *
101 * This isn't documented anywhere in the PRM. However, it seems to be
102 * necessary prior to changing the surface state base address. Without
103 * this, we get GPU hangs when using multi-level command buffers which
104 * clear depth, reset state base address, and then go render stuff.
105 */
106 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
107 pc.DCFlushEnable = true;
108 pc.RenderTargetCacheFlushEnable = true;
109 pc.CommandStreamerStallEnable = true;
110 anv_debug_dump_pc(pc);
111 }
112
113 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
114 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
115 sba.GeneralStateMOCS = mocs;
116 sba.GeneralStateBaseAddressModifyEnable = true;
117
118 sba.StatelessDataPortAccessMOCS = mocs;
119
120 sba.SurfaceStateBaseAddress =
121 anv_cmd_buffer_surface_base_address(cmd_buffer);
122 sba.SurfaceStateMOCS = mocs;
123 sba.SurfaceStateBaseAddressModifyEnable = true;
124
125 sba.DynamicStateBaseAddress =
126 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
127 sba.DynamicStateMOCS = mocs;
128 sba.DynamicStateBaseAddressModifyEnable = true;
129
130 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
131 sba.IndirectObjectMOCS = mocs;
132 sba.IndirectObjectBaseAddressModifyEnable = true;
133
134 sba.InstructionBaseAddress =
135 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
136 sba.InstructionMOCS = mocs;
137 sba.InstructionBaseAddressModifyEnable = true;
138
139 # if (GFX_VER >= 8)
140 /* Broadwell requires that we specify a buffer size for a bunch of
141 * these fields. However, since we will be growing the BO's live, we
142 * just set them all to the maximum.
143 */
144 sba.GeneralStateBufferSize = 0xfffff;
145 sba.IndirectObjectBufferSize = 0xfffff;
146 if (anv_use_relocations(device->physical)) {
147 sba.DynamicStateBufferSize = 0xfffff;
148 sba.InstructionBufferSize = 0xfffff;
149 } else {
150 /* With softpin, we use fixed addresses so we actually know how big
151 * our base addresses are.
152 */
153 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
154 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
155 }
156 sba.GeneralStateBufferSizeModifyEnable = true;
157 sba.IndirectObjectBufferSizeModifyEnable = true;
158 sba.DynamicStateBufferSizeModifyEnable = true;
159 sba.InstructionBuffersizeModifyEnable = true;
160 # else
161 /* On gfx7, we have upper bounds instead. According to the docs,
162 * setting an upper bound of zero means that no bounds checking is
163 * performed so, in theory, we should be able to leave them zero.
164 * However, border color is broken and the GPU bounds-checks anyway.
165 * To avoid this and other potential problems, we may as well set it
166 * for everything.
167 */
168 sba.GeneralStateAccessUpperBound =
169 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
170 sba.GeneralStateAccessUpperBoundModifyEnable = true;
171 sba.DynamicStateAccessUpperBound =
172 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
173 sba.DynamicStateAccessUpperBoundModifyEnable = true;
174 sba.InstructionAccessUpperBound =
175 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
176 sba.InstructionAccessUpperBoundModifyEnable = true;
177 # endif
178 }
179
180 /* After re-setting the surface state base address, we have to do some
181 * cache flushing so that the sampler engine will pick up the new
182 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
183 * Shared Function > 3D Sampler > State > State Caching (page 96):
184 *
185 * Coherency with system memory in the state cache, like the texture
186 * cache is handled partially by software. It is expected that the
187 * command stream or shader will issue Cache Flush operation or
188 * Cache_Flush sampler message to ensure that the L1 cache remains
189 * coherent with system memory.
190 *
191 * [...]
192 *
193 * Whenever the value of the Dynamic_State_Base_Addr,
194 * Surface_State_Base_Addr are altered, the L1 state cache must be
195 * invalidated to ensure the new surface or sampler state is fetched
196 * from system memory.
197 *
198 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
199 * which, according the PIPE_CONTROL instruction documentation in the
200 * Broadwell PRM:
201 *
202 * Setting this bit is independent of any other bit in this packet.
203 * This bit controls the invalidation of the L1 and L2 state caches
204 * at the top of the pipe i.e. at the parsing time.
205 *
206 * Unfortunately, experimentation seems to indicate that state cache
207 * invalidation through a PIPE_CONTROL does nothing whatsoever in
208 * regards to surface state and binding tables. In stead, it seems that
209 * invalidating the texture cache is what is actually needed.
210 *
211 * XXX: As far as we have been able to determine through
212 * experimentation, shows that flush the texture cache appears to be
213 * sufficient. The theory here is that all of the sampling/rendering
214 * units cache the binding table in the texture cache. However, we have
215 * yet to be able to actually confirm this.
216 *
217 * Wa_14013910100:
218 *
219 * "DG2 128/256/512-A/B: S/W must program STATE_BASE_ADDRESS command twice
220 * or program pipe control with Instruction cache invalidate post
221 * STATE_BASE_ADDRESS command"
222 */
223 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
224 pc.TextureCacheInvalidationEnable = true;
225 pc.ConstantCacheInvalidationEnable = true;
226 pc.StateCacheInvalidationEnable = true;
227 anv_debug_dump_pc(pc);
228 }
229 }
230
231 static void
add_surface_reloc(struct anv_cmd_buffer * cmd_buffer,struct anv_state state,struct anv_address addr)232 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
233 struct anv_state state, struct anv_address addr)
234 {
235 VkResult result;
236
237 if (anv_use_relocations(cmd_buffer->device->physical)) {
238 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
239 result = anv_reloc_list_add(&cmd_buffer->surface_relocs,
240 &cmd_buffer->vk.pool->alloc,
241 state.offset + isl_dev->ss.addr_offset,
242 addr.bo, addr.offset, NULL);
243 } else {
244 result = anv_reloc_list_add_bo(&cmd_buffer->surface_relocs,
245 &cmd_buffer->vk.pool->alloc,
246 addr.bo);
247 }
248
249 if (unlikely(result != VK_SUCCESS))
250 anv_batch_set_error(&cmd_buffer->batch, result);
251 }
252
253 static void
add_surface_state_relocs(struct anv_cmd_buffer * cmd_buffer,struct anv_surface_state state)254 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
255 struct anv_surface_state state)
256 {
257 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
258
259 assert(!anv_address_is_null(state.address));
260 add_surface_reloc(cmd_buffer, state.state, state.address);
261
262 if (!anv_address_is_null(state.aux_address)) {
263 VkResult result =
264 anv_reloc_list_add(&cmd_buffer->surface_relocs,
265 &cmd_buffer->vk.pool->alloc,
266 state.state.offset + isl_dev->ss.aux_addr_offset,
267 state.aux_address.bo,
268 state.aux_address.offset,
269 NULL);
270 if (result != VK_SUCCESS)
271 anv_batch_set_error(&cmd_buffer->batch, result);
272 }
273
274 if (!anv_address_is_null(state.clear_address)) {
275 VkResult result =
276 anv_reloc_list_add(&cmd_buffer->surface_relocs,
277 &cmd_buffer->vk.pool->alloc,
278 state.state.offset +
279 isl_dev->ss.clear_color_state_offset,
280 state.clear_address.bo,
281 state.clear_address.offset,
282 NULL);
283 if (result != VK_SUCCESS)
284 anv_batch_set_error(&cmd_buffer->batch, result);
285 }
286 }
287
288 static bool
isl_color_value_requires_conversion(union isl_color_value color,const struct isl_surf * surf,const struct isl_view * view)289 isl_color_value_requires_conversion(union isl_color_value color,
290 const struct isl_surf *surf,
291 const struct isl_view *view)
292 {
293 if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle))
294 return false;
295
296 uint32_t surf_pack[4] = { 0, 0, 0, 0 };
297 isl_color_value_pack(&color, surf->format, surf_pack);
298
299 uint32_t view_pack[4] = { 0, 0, 0, 0 };
300 union isl_color_value swiz_color =
301 isl_color_value_swizzle_inv(color, view->swizzle);
302 isl_color_value_pack(&swiz_color, view->format, view_pack);
303
304 return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0;
305 }
306
307 static bool
anv_can_fast_clear_color_view(struct anv_device * device,struct anv_image_view * iview,VkImageLayout layout,union isl_color_value clear_color,uint32_t num_layers,VkRect2D render_area)308 anv_can_fast_clear_color_view(struct anv_device * device,
309 struct anv_image_view *iview,
310 VkImageLayout layout,
311 union isl_color_value clear_color,
312 uint32_t num_layers,
313 VkRect2D render_area)
314 {
315 if (iview->planes[0].isl.base_array_layer >=
316 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
317 iview->planes[0].isl.base_level))
318 return false;
319
320 /* Start by getting the fast clear type. We use the first subpass
321 * layout here because we don't want to fast-clear if the first subpass
322 * to use the attachment can't handle fast-clears.
323 */
324 enum anv_fast_clear_type fast_clear_type =
325 anv_layout_to_fast_clear_type(device->info, iview->image,
326 VK_IMAGE_ASPECT_COLOR_BIT,
327 layout);
328 switch (fast_clear_type) {
329 case ANV_FAST_CLEAR_NONE:
330 return false;
331 case ANV_FAST_CLEAR_DEFAULT_VALUE:
332 if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format))
333 return false;
334 break;
335 case ANV_FAST_CLEAR_ANY:
336 break;
337 }
338
339 /* Potentially, we could do partial fast-clears but doing so has crazy
340 * alignment restrictions. It's easier to just restrict to full size
341 * fast clears for now.
342 */
343 if (render_area.offset.x != 0 ||
344 render_area.offset.y != 0 ||
345 render_area.extent.width != iview->vk.extent.width ||
346 render_area.extent.height != iview->vk.extent.height)
347 return false;
348
349 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
350 if (!isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format))
351 return false;
352
353 /* If the clear color is one that would require non-trivial format
354 * conversion on resolve, we don't bother with the fast clear. This
355 * shouldn't be common as most clear colors are 0/1 and the most common
356 * format re-interpretation is for sRGB.
357 */
358 if (isl_color_value_requires_conversion(clear_color,
359 &iview->image->planes[0].primary_surface.isl,
360 &iview->planes[0].isl)) {
361 anv_perf_warn(VK_LOG_OBJS(&iview->vk.base),
362 "Cannot fast-clear to colors which would require "
363 "format conversion on resolve");
364 return false;
365 }
366
367 /* We only allow fast clears to the first slice of an image (level 0,
368 * layer 0) and only for the entire slice. This guarantees us that, at
369 * any given time, there is only one clear color on any given image at
370 * any given time. At the time of our testing (Jan 17, 2018), there
371 * were no known applications which would benefit from fast-clearing
372 * more than just the first slice.
373 */
374 if (iview->planes[0].isl.base_level > 0 ||
375 iview->planes[0].isl.base_array_layer > 0) {
376 anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
377 "Rendering with multi-lod or multi-layer framebuffer "
378 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
379 "baseArrayLayer > 0. Not fast clearing.");
380 return false;
381 }
382
383 if (num_layers > 1) {
384 anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
385 "Rendering to a multi-layer framebuffer with "
386 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
387 }
388
389 return true;
390 }
391
392 static bool
anv_can_hiz_clear_ds_view(struct anv_device * device,const struct anv_image_view * iview,VkImageLayout layout,VkImageAspectFlags clear_aspects,float depth_clear_value,VkRect2D render_area)393 anv_can_hiz_clear_ds_view(struct anv_device *device,
394 const struct anv_image_view *iview,
395 VkImageLayout layout,
396 VkImageAspectFlags clear_aspects,
397 float depth_clear_value,
398 VkRect2D render_area)
399 {
400 /* We don't do any HiZ or depth fast-clears on gfx7 yet */
401 if (GFX_VER == 7)
402 return false;
403
404 /* If we're just clearing stencil, we can always HiZ clear */
405 if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
406 return true;
407
408 /* We must have depth in order to have HiZ */
409 if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
410 return false;
411
412 const enum isl_aux_usage clear_aux_usage =
413 anv_layout_to_aux_usage(device->info, iview->image,
414 VK_IMAGE_ASPECT_DEPTH_BIT,
415 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
416 layout);
417 if (!isl_aux_usage_has_fast_clears(clear_aux_usage))
418 return false;
419
420 assert(GFX_VER == 8);
421 assert(iview->vk.format != VK_FORMAT_D16_UNORM_S8_UINT);
422 if (iview->vk.format == VK_FORMAT_D16_UNORM) {
423 /* From the BDW PRM, Vol 7, "Depth Buffer Clear":
424 *
425 * The following restrictions apply only if the depth buffer surface
426 * type is D16_UNORM and software does not use the “full surf clear”:
427 *
428 * If Number of Multisamples is NUMSAMPLES_1, the rectangle must be
429 * aligned to an 8x4 pixel block relative to the upper left corner of
430 * the depth buffer, and contain an integer number of these pixel
431 * blocks, and all 8x4 pixels must be lit.
432 *
433 * Simply disable partial clears for D16 on BDW.
434 */
435 if (render_area.offset.x > 0 ||
436 render_area.offset.y > 0 ||
437 render_area.extent.width !=
438 u_minify(iview->vk.extent.width, iview->vk.base_mip_level) ||
439 render_area.extent.height !=
440 u_minify(iview->vk.extent.height, iview->vk.base_mip_level)) {
441 return false;
442 }
443 }
444
445 if (depth_clear_value != ANV_HZ_FC_VAL)
446 return false;
447
448 /* Only gfx9+ supports returning ANV_HZ_FC_VAL when sampling a fast-cleared
449 * portion of a HiZ buffer. Testing has revealed that Gfx8 only supports
450 * returning 0.0f. Gens prior to gfx8 do not support this feature at all.
451 */
452 if (GFX_VER == 8 && anv_can_sample_with_hiz(device->info, iview->image))
453 return false;
454
455 /* If we got here, then we can fast clear */
456 return true;
457 }
458
459 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
460
461 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
462 * the initial layout is undefined, the HiZ buffer and depth buffer will
463 * represent the same data at the end of this operation.
464 */
465 static void
transition_depth_buffer(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,uint32_t base_layer,uint32_t layer_count,VkImageLayout initial_layout,VkImageLayout final_layout,bool will_full_fast_clear)466 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
467 const struct anv_image *image,
468 uint32_t base_layer, uint32_t layer_count,
469 VkImageLayout initial_layout,
470 VkImageLayout final_layout,
471 bool will_full_fast_clear)
472 {
473 const uint32_t depth_plane =
474 anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
475 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
476 return;
477
478 /* If will_full_fast_clear is set, the caller promises to fast-clear the
479 * largest portion of the specified range as it can. For depth images,
480 * that means the entire image because we don't support multi-LOD HiZ.
481 */
482 assert(image->planes[0].primary_surface.isl.levels == 1);
483 if (will_full_fast_clear)
484 return;
485
486 const enum isl_aux_state initial_state =
487 anv_layout_to_aux_state(cmd_buffer->device->info, image,
488 VK_IMAGE_ASPECT_DEPTH_BIT,
489 initial_layout);
490 const enum isl_aux_state final_state =
491 anv_layout_to_aux_state(cmd_buffer->device->info, image,
492 VK_IMAGE_ASPECT_DEPTH_BIT,
493 final_layout);
494
495 const bool initial_depth_valid =
496 isl_aux_state_has_valid_primary(initial_state);
497 const bool initial_hiz_valid =
498 isl_aux_state_has_valid_aux(initial_state);
499 const bool final_needs_depth =
500 isl_aux_state_has_valid_primary(final_state);
501 const bool final_needs_hiz =
502 isl_aux_state_has_valid_aux(final_state);
503
504 /* Getting into the pass-through state for Depth is tricky and involves
505 * both a resolve and an ambiguate. We don't handle that state right now
506 * as anv_layout_to_aux_state never returns it.
507 */
508 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
509
510 if (final_needs_depth && !initial_depth_valid) {
511 assert(initial_hiz_valid);
512 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
513 0, base_layer, layer_count, ISL_AUX_OP_FULL_RESOLVE);
514 } else if (final_needs_hiz && !initial_hiz_valid) {
515 assert(initial_depth_valid);
516 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
517 0, base_layer, layer_count, ISL_AUX_OP_AMBIGUATE);
518 }
519 }
520
521 #if GFX_VER == 7
522 static inline bool
vk_image_layout_stencil_write_optimal(VkImageLayout layout)523 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
524 {
525 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
526 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
527 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL ||
528 layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL;
529 }
530 #endif
531
532 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
533 * the initial layout is undefined, the HiZ buffer and depth buffer will
534 * represent the same data at the end of this operation.
535 */
536 static void
transition_stencil_buffer(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,uint32_t base_level,uint32_t level_count,uint32_t base_layer,uint32_t layer_count,VkImageLayout initial_layout,VkImageLayout final_layout,bool will_full_fast_clear)537 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
538 const struct anv_image *image,
539 uint32_t base_level, uint32_t level_count,
540 uint32_t base_layer, uint32_t layer_count,
541 VkImageLayout initial_layout,
542 VkImageLayout final_layout,
543 bool will_full_fast_clear)
544 {
545 #if GFX_VER == 7
546 const uint32_t plane =
547 anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
548
549 /* On gfx7, we have to store a texturable version of the stencil buffer in
550 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
551 * forth at strategic points. Stencil writes are only allowed in following
552 * layouts:
553 *
554 * - VK_IMAGE_LAYOUT_GENERAL
555 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
556 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
557 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
558 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
559 * - VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL
560 *
561 * For general, we have no nice opportunity to transition so we do the copy
562 * to the shadow unconditionally at the end of the subpass. For transfer
563 * destinations, we can update it as part of the transfer op. For the other
564 * layouts, we delay the copy until a transition into some other layout.
565 */
566 if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
567 vk_image_layout_stencil_write_optimal(initial_layout) &&
568 !vk_image_layout_stencil_write_optimal(final_layout)) {
569 anv_image_copy_to_shadow(cmd_buffer, image,
570 VK_IMAGE_ASPECT_STENCIL_BIT,
571 base_level, level_count,
572 base_layer, layer_count);
573 }
574 #endif
575 }
576
577 #define MI_PREDICATE_SRC0 0x2400
578 #define MI_PREDICATE_SRC1 0x2408
579 #define MI_PREDICATE_RESULT 0x2418
580
581 static void
set_image_fast_clear_state(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,enum anv_fast_clear_type fast_clear)582 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
583 const struct anv_image *image,
584 VkImageAspectFlagBits aspect,
585 enum anv_fast_clear_type fast_clear)
586 {
587 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
588 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
589 image, aspect);
590 sdi.ImmediateData = fast_clear;
591 }
592 }
593
594 /* This is only really practical on haswell and above because it requires
595 * MI math in order to get it correct.
596 */
597 #if GFX_VERx10 >= 75
598 static void
anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,uint32_t level,uint32_t array_layer,enum isl_aux_op resolve_op,enum anv_fast_clear_type fast_clear_supported)599 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
600 const struct anv_image *image,
601 VkImageAspectFlagBits aspect,
602 uint32_t level, uint32_t array_layer,
603 enum isl_aux_op resolve_op,
604 enum anv_fast_clear_type fast_clear_supported)
605 {
606 struct mi_builder b;
607 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
608
609 const struct mi_value fast_clear_type =
610 mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
611 image, aspect));
612
613 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
614 if (level == 0 && array_layer == 0) {
615 /* In this case, we are doing a partial resolve to get rid of fast-clear
616 * colors. We don't care about the compression state but we do care
617 * about how much fast clear is allowed by the final layout.
618 */
619 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
620 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
621
622 /* We need to compute (fast_clear_supported < image->fast_clear) */
623 struct mi_value pred =
624 mi_ult(&b, mi_imm(fast_clear_supported), fast_clear_type);
625 mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), mi_value_ref(&b, pred));
626
627 /* If the predicate is true, we want to write 0 to the fast clear type
628 * and, if it's false, leave it alone. We can do this by writing
629 *
630 * clear_type = clear_type & ~predicate;
631 */
632 struct mi_value new_fast_clear_type =
633 mi_iand(&b, fast_clear_type, mi_inot(&b, pred));
634 mi_store(&b, fast_clear_type, new_fast_clear_type);
635 } else {
636 /* In this case, we're trying to do a partial resolve on a slice that
637 * doesn't have clear color. There's nothing to do.
638 */
639 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
640 return;
641 }
642
643 /* Set src1 to 0 and use a != condition */
644 mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
645
646 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
647 mip.LoadOperation = LOAD_LOADINV;
648 mip.CombineOperation = COMBINE_SET;
649 mip.CompareOperation = COMPARE_SRCS_EQUAL;
650 }
651 }
652 #endif /* GFX_VERx10 >= 75 */
653
654 static void
anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,uint32_t level,uint32_t array_layer,enum isl_aux_op resolve_op,enum anv_fast_clear_type fast_clear_supported)655 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
656 const struct anv_image *image,
657 VkImageAspectFlagBits aspect,
658 uint32_t level, uint32_t array_layer,
659 enum isl_aux_op resolve_op,
660 enum anv_fast_clear_type fast_clear_supported)
661 {
662 struct mi_builder b;
663 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
664
665 struct mi_value fast_clear_type_mem =
666 mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
667 image, aspect));
668
669 /* This only works for partial resolves and only when the clear color is
670 * all or nothing. On the upside, this emits less command streamer code
671 * and works on Ivybridge and Bay Trail.
672 */
673 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
674 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
675
676 /* We don't support fast clears on anything other than the first slice. */
677 if (level > 0 || array_layer > 0)
678 return;
679
680 /* On gfx8, we don't have a concept of default clear colors because we
681 * can't sample from CCS surfaces. It's enough to just load the fast clear
682 * state into the predicate register.
683 */
684 mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
685 mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
686 mi_store(&b, fast_clear_type_mem, mi_imm(0));
687
688 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
689 mip.LoadOperation = LOAD_LOADINV;
690 mip.CombineOperation = COMBINE_SET;
691 mip.CompareOperation = COMPARE_SRCS_EQUAL;
692 }
693 }
694
695 static void
anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,enum isl_format format,struct isl_swizzle swizzle,VkImageAspectFlagBits aspect,uint32_t level,uint32_t array_layer,enum isl_aux_op resolve_op,enum anv_fast_clear_type fast_clear_supported)696 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
697 const struct anv_image *image,
698 enum isl_format format,
699 struct isl_swizzle swizzle,
700 VkImageAspectFlagBits aspect,
701 uint32_t level, uint32_t array_layer,
702 enum isl_aux_op resolve_op,
703 enum anv_fast_clear_type fast_clear_supported)
704 {
705 const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
706
707 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
708 aspect, level, array_layer,
709 resolve_op, fast_clear_supported);
710
711 /* CCS_D only supports full resolves and BLORP will assert on us if we try
712 * to do a partial resolve on a CCS_D surface.
713 */
714 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
715 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
716 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
717
718 anv_image_ccs_op(cmd_buffer, image, format, swizzle, aspect,
719 level, array_layer, 1, resolve_op, NULL, true);
720 }
721
722 static void
anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,enum isl_format format,struct isl_swizzle swizzle,VkImageAspectFlagBits aspect,uint32_t array_layer,enum isl_aux_op resolve_op,enum anv_fast_clear_type fast_clear_supported)723 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
724 const struct anv_image *image,
725 enum isl_format format,
726 struct isl_swizzle swizzle,
727 VkImageAspectFlagBits aspect,
728 uint32_t array_layer,
729 enum isl_aux_op resolve_op,
730 enum anv_fast_clear_type fast_clear_supported)
731 {
732 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
733 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
734
735 #if GFX_VERx10 >= 75
736 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
737 aspect, 0, array_layer,
738 resolve_op, fast_clear_supported);
739
740 anv_image_mcs_op(cmd_buffer, image, format, swizzle, aspect,
741 array_layer, 1, resolve_op, NULL, true);
742 #else
743 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
744 #endif
745 }
746
747 void
genX(cmd_buffer_mark_image_written)748 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
749 const struct anv_image *image,
750 VkImageAspectFlagBits aspect,
751 enum isl_aux_usage aux_usage,
752 uint32_t level,
753 uint32_t base_layer,
754 uint32_t layer_count)
755 {
756 /* The aspect must be exactly one of the image aspects. */
757 assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));
758 }
759
760 static void
set_image_clear_color(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,const VkImageAspectFlags aspect,const union isl_color_value clear_color)761 set_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
762 const struct anv_image *image,
763 const VkImageAspectFlags aspect,
764 const union isl_color_value clear_color)
765 {
766 uint32_t plane = anv_image_aspect_to_plane(image, aspect);
767 enum isl_format format = image->planes[plane].primary_surface.isl.format;
768
769 struct anv_address addr =
770 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
771 assert(!anv_address_is_null(addr));
772
773 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
774 sdi.Address = addr;
775 if (GFX_VERx10 >= 75) {
776 /* On HSW+, the RENDER_SURFACE_STATE dword containing the clear
777 * values also contains other fields. The dword constructed here
778 * will later be copied onto a surface state as-is. So, initialize
779 * those fields to match the values that we typically expect in a
780 * surface.
781 *
782 * XXX: Handle other values for ShaderChannelSelect and
783 * ResourceMinLOD.
784 */
785 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
786 ISL_CHANNEL_SELECT_GREEN << 22 |
787 ISL_CHANNEL_SELECT_BLUE << 19 |
788 ISL_CHANNEL_SELECT_ALPHA << 16;
789 }
790 if (isl_format_has_int_channel(format)) {
791 for (unsigned i = 0; i < 4; i++) {
792 assert(clear_color.u32[i] == 0 ||
793 clear_color.u32[i] == 1);
794 }
795 sdi.ImmediateData |= (clear_color.u32[0] != 0) << 31;
796 sdi.ImmediateData |= (clear_color.u32[1] != 0) << 30;
797 sdi.ImmediateData |= (clear_color.u32[2] != 0) << 29;
798 sdi.ImmediateData |= (clear_color.u32[3] != 0) << 28;
799 } else {
800 for (unsigned i = 0; i < 4; i++) {
801 assert(clear_color.f32[i] == 0.0f ||
802 clear_color.f32[i] == 1.0f);
803 }
804 sdi.ImmediateData |= (clear_color.f32[0] != 0.0f) << 31;
805 sdi.ImmediateData |= (clear_color.f32[1] != 0.0f) << 30;
806 sdi.ImmediateData |= (clear_color.f32[2] != 0.0f) << 29;
807 sdi.ImmediateData |= (clear_color.f32[3] != 0.0f) << 28;
808 }
809 }
810 }
811
812 /* Copy the fast-clear value dword(s) between a surface state object and an
813 * image's fast clear state buffer.
814 */
815 static void
genX(copy_fast_clear_dwords)816 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
817 struct anv_state surface_state,
818 const struct anv_image *image,
819 VkImageAspectFlagBits aspect,
820 bool copy_from_surface_state)
821 {
822 assert(cmd_buffer && image);
823 assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
824
825 struct anv_address ss_clear_addr = {
826 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
827 .offset = surface_state.offset +
828 cmd_buffer->device->isl_dev.ss.clear_value_offset,
829 };
830 const struct anv_address entry_addr =
831 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
832 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
833
834 #if GFX_VER == 7
835 /* On gfx7, the combination of commands used here(MI_LOAD_REGISTER_MEM
836 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
837 * in-flight when they are issued even if the memory touched is not
838 * currently active for rendering. The weird bit is that it is not the
839 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
840 * rendering hangs such that the next stalling command after the
841 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
842 *
843 * It is unclear exactly why this hang occurs. Both MI commands come with
844 * warnings about the 3D pipeline but that doesn't seem to fully explain
845 * it. My (Faith's) best theory is that it has something to do with the
846 * fact that we're using a GPU state register as our temporary and that
847 * something with reading/writing it is causing problems.
848 *
849 * In order to work around this issue, we emit a PIPE_CONTROL with the
850 * command streamer stall bit set.
851 */
852 anv_add_pending_pipe_bits(cmd_buffer,
853 ANV_PIPE_CS_STALL_BIT,
854 "after copy_fast_clear_dwords. Avoid potential hang");
855 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
856 #endif
857
858 struct mi_builder b;
859 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
860
861 if (copy_from_surface_state) {
862 mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
863 } else {
864 mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
865
866 /* Updating a surface state object may require that the state cache be
867 * invalidated. From the SKL PRM, Shared Functions -> State -> State
868 * Caching:
869 *
870 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
871 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
872 * modified [...], the L1 state cache must be invalidated to ensure
873 * the new surface or sampler state is fetched from system memory.
874 *
875 * In testing, SKL doesn't actually seem to need this, but HSW does.
876 */
877 anv_add_pending_pipe_bits(cmd_buffer,
878 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT,
879 "after copy_fast_clear_dwords surface state update");
880 }
881 }
882
883 /**
884 * @brief Transitions a color buffer from one layout to another.
885 *
886 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
887 * more information.
888 *
889 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
890 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
891 * this represents the maximum layers to transition at each
892 * specified miplevel.
893 */
894 static void
transition_color_buffer(struct anv_cmd_buffer * cmd_buffer,const struct anv_image * image,VkImageAspectFlagBits aspect,const uint32_t base_level,uint32_t level_count,uint32_t base_layer,uint32_t layer_count,VkImageLayout initial_layout,VkImageLayout final_layout,uint32_t src_queue_family,uint32_t dst_queue_family,bool will_full_fast_clear)895 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
896 const struct anv_image *image,
897 VkImageAspectFlagBits aspect,
898 const uint32_t base_level, uint32_t level_count,
899 uint32_t base_layer, uint32_t layer_count,
900 VkImageLayout initial_layout,
901 VkImageLayout final_layout,
902 uint32_t src_queue_family,
903 uint32_t dst_queue_family,
904 bool will_full_fast_clear)
905 {
906 struct anv_device *device = cmd_buffer->device;
907 const struct intel_device_info *devinfo = device->info;
908 /* Validate the inputs. */
909 assert(cmd_buffer);
910 assert(image && image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
911 /* These values aren't supported for simplicity's sake. */
912 assert(level_count != VK_REMAINING_MIP_LEVELS &&
913 layer_count != VK_REMAINING_ARRAY_LAYERS);
914 /* Ensure the subresource range is valid. */
915 UNUSED uint64_t last_level_num = base_level + level_count;
916 const uint32_t max_depth = u_minify(image->vk.extent.depth, base_level);
917 UNUSED const uint32_t image_layers = MAX2(image->vk.array_layers, max_depth);
918 assert((uint64_t)base_layer + layer_count <= image_layers);
919 assert(last_level_num <= image->vk.mip_levels);
920 /* If there is a layout transfer, the final layout cannot be undefined or
921 * preinitialized (VUID-VkImageMemoryBarrier-newLayout-01198).
922 */
923 assert(initial_layout == final_layout ||
924 (final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
925 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED));
926 const struct isl_drm_modifier_info *isl_mod_info =
927 image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT
928 ? isl_drm_modifier_get_info(image->vk.drm_format_mod)
929 : NULL;
930
931 const bool src_queue_external =
932 src_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT ||
933 src_queue_family == VK_QUEUE_FAMILY_EXTERNAL;
934
935 const bool dst_queue_external =
936 dst_queue_family == VK_QUEUE_FAMILY_FOREIGN_EXT ||
937 dst_queue_family == VK_QUEUE_FAMILY_EXTERNAL;
938
939 /* Simultaneous acquire and release on external queues is illegal. */
940 assert(!src_queue_external || !dst_queue_external);
941
942 /* Ownership transition on an external queue requires special action if the
943 * image has a DRM format modifier because we store image data in
944 * a driver-private bo which is inaccessible to the external queue.
945 */
946 const bool private_binding_acquire =
947 src_queue_external &&
948 anv_image_is_externally_shared(image) &&
949 anv_image_has_private_binding(image);
950
951 const bool private_binding_release =
952 dst_queue_external &&
953 anv_image_is_externally_shared(image) &&
954 anv_image_has_private_binding(image);
955
956 if (initial_layout == final_layout &&
957 !private_binding_acquire && !private_binding_release) {
958 /* No work is needed. */
959 return;
960 }
961
962 const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
963
964 if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
965 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
966 /* This surface is a linear compressed image with a tiled shadow surface
967 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
968 * we need to ensure the shadow copy is up-to-date.
969 */
970 assert(image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT);
971 assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
972 assert(image->planes[plane].primary_surface.isl.tiling == ISL_TILING_LINEAR);
973 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
974 assert(isl_format_is_compressed(image->planes[plane].primary_surface.isl.format));
975 assert(plane == 0);
976 anv_image_copy_to_shadow(cmd_buffer, image,
977 VK_IMAGE_ASPECT_COLOR_BIT,
978 base_level, level_count,
979 base_layer, layer_count);
980 }
981
982 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
983 return;
984
985 assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR);
986
987 /* The following layouts are equivalent for non-linear images. */
988 const bool initial_layout_undefined =
989 initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
990 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED;
991
992 bool must_init_fast_clear_state = false;
993 bool must_init_aux_surface = false;
994
995 if (initial_layout_undefined) {
996 /* The subresource may have been aliased and populated with arbitrary
997 * data.
998 */
999 must_init_fast_clear_state = true;
1000 must_init_aux_surface = true;
1001 } else if (private_binding_acquire) {
1002 /* The fast clear state lives in a driver-private bo, and therefore the
1003 * external/foreign queue is unaware of it.
1004 *
1005 * If this is the first time we are accessing the image, then the fast
1006 * clear state is uninitialized.
1007 *
1008 * If this is NOT the first time we are accessing the image, then the fast
1009 * clear state may still be valid and correct due to the resolve during
1010 * our most recent ownership release. However, we do not track the aux
1011 * state with MI stores, and therefore must assume the worst-case: that
1012 * this is the first time we are accessing the image.
1013 */
1014 assert(image->planes[plane].fast_clear_memory_range.binding ==
1015 ANV_IMAGE_MEMORY_BINDING_PRIVATE);
1016 must_init_fast_clear_state = true;
1017
1018 /* The aux surface, like the fast clear state, lives in
1019 * a driver-private bo. We must initialize the aux surface for the
1020 * same reasons we must initialize the fast clear state.
1021 */
1022 assert(image->planes[plane].aux_surface.memory_range.binding ==
1023 ANV_IMAGE_MEMORY_BINDING_PRIVATE);
1024 must_init_aux_surface = true;
1025 }
1026
1027 if (must_init_fast_clear_state) {
1028 if (base_level == 0 && base_layer == 0) {
1029 const union isl_color_value zero_color = {};
1030 set_image_clear_color(cmd_buffer, image, aspect, zero_color);
1031 set_image_fast_clear_state(cmd_buffer, image, aspect,
1032 ANV_FAST_CLEAR_NONE);
1033 }
1034 }
1035
1036 if (must_init_aux_surface) {
1037 assert(must_init_fast_clear_state);
1038
1039 /* Initialize the aux buffers to enable correct rendering. In order to
1040 * ensure that things such as storage images work correctly, aux buffers
1041 * need to be initialized to valid data.
1042 *
1043 * Having an aux buffer with invalid data is a problem for two reasons:
1044 *
1045 * 1) Having an invalid value in the buffer can confuse the hardware.
1046 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1047 * invalid and leads to the hardware doing strange things. It
1048 * doesn't hang as far as we can tell but rendering corruption can
1049 * occur.
1050 *
1051 * 2) If this transition is into the GENERAL layout and we then use the
1052 * image as a storage image, then we must have the aux buffer in the
1053 * pass-through state so that, if we then go to texture from the
1054 * image, we get the results of our storage image writes and not the
1055 * fast clear color or other random data.
1056 *
1057 * For CCS both of the problems above are real demonstrable issues. In
1058 * that case, the only thing we can do is to perform an ambiguate to
1059 * transition the aux surface into the pass-through state.
1060 *
1061 * For MCS, (2) is never an issue because we don't support multisampled
1062 * storage images. In theory, issue (1) is a problem with MCS but we've
1063 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1064 * theory, be interpreted as something but we don't know that all bit
1065 * patterns are actually valid. For 2x and 8x, you could easily end up
1066 * with the MCS referring to an invalid plane because not all bits of
1067 * the MCS value are actually used. Even though we've never seen issues
1068 * in the wild, it's best to play it safe and initialize the MCS. We
1069 * can use a fast-clear for MCS because we only ever touch from render
1070 * and texture (no image load store).
1071 */
1072 if (image->vk.samples == 1) {
1073 for (uint32_t l = 0; l < level_count; l++) {
1074 const uint32_t level = base_level + l;
1075
1076 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1077 if (base_layer >= aux_layers)
1078 break; /* We will only get fewer layers as level increases */
1079 uint32_t level_layer_count =
1080 MIN2(layer_count, aux_layers - base_layer);
1081
1082 /* If will_full_fast_clear is set, the caller promises to
1083 * fast-clear the largest portion of the specified range as it can.
1084 * For color images, that means only the first LOD and array slice.
1085 */
1086 if (level == 0 && base_layer == 0 && will_full_fast_clear) {
1087 base_layer++;
1088 level_layer_count--;
1089 if (level_layer_count == 0)
1090 continue;
1091 }
1092
1093 anv_image_ccs_op(cmd_buffer, image,
1094 image->planes[plane].primary_surface.isl.format,
1095 ISL_SWIZZLE_IDENTITY,
1096 aspect, level, base_layer, level_layer_count,
1097 ISL_AUX_OP_AMBIGUATE, NULL, false);
1098 }
1099 } else {
1100 if (image->vk.samples == 4 || image->vk.samples == 16) {
1101 anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
1102 "Doing a potentially unnecessary fast-clear to "
1103 "define an MCS buffer.");
1104 }
1105
1106 /* If will_full_fast_clear is set, the caller promises to fast-clear
1107 * the largest portion of the specified range as it can.
1108 */
1109 if (will_full_fast_clear)
1110 return;
1111
1112 assert(base_level == 0 && level_count == 1);
1113 anv_image_mcs_op(cmd_buffer, image,
1114 image->planes[plane].primary_surface.isl.format,
1115 ISL_SWIZZLE_IDENTITY,
1116 aspect, base_layer, layer_count,
1117 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1118 }
1119 return;
1120 }
1121
1122 enum isl_aux_usage initial_aux_usage =
1123 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1124 enum isl_aux_usage final_aux_usage =
1125 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1126 enum anv_fast_clear_type initial_fast_clear =
1127 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1128 enum anv_fast_clear_type final_fast_clear =
1129 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1130
1131 /* We must override the anv_layout_to_* functions because they are unaware of
1132 * acquire/release direction.
1133 */
1134 if (private_binding_acquire) {
1135 assert(!isl_drm_modifier_has_aux(isl_mod_info->modifier));
1136 initial_aux_usage = ISL_AUX_USAGE_NONE;
1137 initial_fast_clear = ANV_FAST_CLEAR_NONE;
1138 } else if (private_binding_release) {
1139 assert(!isl_drm_modifier_has_aux(isl_mod_info->modifier));
1140 final_aux_usage = ISL_AUX_USAGE_NONE;
1141 final_fast_clear = ANV_FAST_CLEAR_NONE;
1142 }
1143
1144 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1145 * We can handle transitions between CCS_D/E to and from NONE. What we
1146 * don't yet handle is switching between CCS_E and CCS_D within a given
1147 * image. Doing so in a performant way requires more detailed aux state
1148 * tracking such as what is done in i965. For now, just assume that we
1149 * only have one type of compression.
1150 */
1151 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1152 final_aux_usage == ISL_AUX_USAGE_NONE ||
1153 initial_aux_usage == final_aux_usage);
1154
1155 /* If initial aux usage is NONE, there is nothing to resolve */
1156 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1157 return;
1158
1159 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1160
1161 /* If the initial layout supports more fast clear than the final layout
1162 * then we need at least a partial resolve.
1163 */
1164 if (final_fast_clear < initial_fast_clear)
1165 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1166
1167 if (resolve_op == ISL_AUX_OP_NONE)
1168 return;
1169
1170 /* Perform a resolve to synchronize data between the main and aux buffer.
1171 * Before we begin, we must satisfy the cache flushing requirement specified
1172 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1173 *
1174 * Any transition from any value in {Clear, Render, Resolve} to a
1175 * different value in {Clear, Render, Resolve} requires end of pipe
1176 * synchronization.
1177 *
1178 * We perform a flush of the write cache before and after the clear and
1179 * resolve operations to meet this requirement.
1180 *
1181 * Unlike other drawing, fast clear operations are not properly
1182 * synchronized. The first PIPE_CONTROL here likely ensures that the
1183 * contents of the previous render or clear hit the render target before we
1184 * resolve and the second likely ensures that the resolve is complete before
1185 * we do any more rendering or clearing.
1186 */
1187 anv_add_pending_pipe_bits(cmd_buffer,
1188 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
1189 ANV_PIPE_END_OF_PIPE_SYNC_BIT,
1190 "after transition RT");
1191
1192 for (uint32_t l = 0; l < level_count; l++) {
1193 uint32_t level = base_level + l;
1194
1195 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1196 if (base_layer >= aux_layers)
1197 break; /* We will only get fewer layers as level increases */
1198 uint32_t level_layer_count =
1199 MIN2(layer_count, aux_layers - base_layer);
1200
1201 for (uint32_t a = 0; a < level_layer_count; a++) {
1202 uint32_t array_layer = base_layer + a;
1203
1204 /* If will_full_fast_clear is set, the caller promises to fast-clear
1205 * the largest portion of the specified range as it can. For color
1206 * images, that means only the first LOD and array slice.
1207 */
1208 if (level == 0 && array_layer == 0 && will_full_fast_clear)
1209 continue;
1210
1211 if (image->vk.samples == 1) {
1212 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1213 image->planes[plane].primary_surface.isl.format,
1214 ISL_SWIZZLE_IDENTITY,
1215 aspect, level, array_layer, resolve_op,
1216 final_fast_clear);
1217 } else {
1218 /* We only support fast-clear on the first layer so partial
1219 * resolves should not be used on other layers as they will use
1220 * the clear color stored in memory that is only valid for layer0.
1221 */
1222 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1223 array_layer != 0)
1224 continue;
1225
1226 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1227 image->planes[plane].primary_surface.isl.format,
1228 ISL_SWIZZLE_IDENTITY,
1229 aspect, array_layer, resolve_op,
1230 final_fast_clear);
1231 }
1232 }
1233 }
1234
1235 anv_add_pending_pipe_bits(cmd_buffer,
1236 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
1237 ANV_PIPE_END_OF_PIPE_SYNC_BIT,
1238 "after transition RT");
1239 }
1240
1241 static MUST_CHECK VkResult
anv_cmd_buffer_init_attachments(struct anv_cmd_buffer * cmd_buffer,uint32_t color_att_count)1242 anv_cmd_buffer_init_attachments(struct anv_cmd_buffer *cmd_buffer,
1243 uint32_t color_att_count)
1244 {
1245 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
1246
1247 /* Reserve one for the NULL state. */
1248 unsigned num_states = 1 + color_att_count;
1249 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1250 const uint32_t ss_stride = align(isl_dev->ss.size, isl_dev->ss.align);
1251 gfx->att_states =
1252 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1253 num_states * ss_stride, isl_dev->ss.align);
1254 if (gfx->att_states.map == NULL) {
1255 return anv_batch_set_error(&cmd_buffer->batch,
1256 VK_ERROR_OUT_OF_DEVICE_MEMORY);
1257 }
1258
1259 struct anv_state next_state = gfx->att_states;
1260 next_state.alloc_size = isl_dev->ss.size;
1261
1262 gfx->null_surface_state = next_state;
1263 next_state.offset += ss_stride;
1264 next_state.map += ss_stride;
1265
1266 gfx->color_att_count = color_att_count;
1267 for (uint32_t i = 0; i < color_att_count; i++) {
1268 gfx->color_att[i] = (struct anv_attachment) {
1269 .surface_state.state = next_state,
1270 };
1271 next_state.offset += ss_stride;
1272 next_state.map += ss_stride;
1273 }
1274 gfx->depth_att = (struct anv_attachment) { };
1275 gfx->stencil_att = (struct anv_attachment) { };
1276
1277 return VK_SUCCESS;
1278 }
1279
1280 static void
anv_cmd_buffer_reset_rendering(struct anv_cmd_buffer * cmd_buffer)1281 anv_cmd_buffer_reset_rendering(struct anv_cmd_buffer *cmd_buffer)
1282 {
1283 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
1284
1285 gfx->render_area = (VkRect2D) { };
1286 gfx->layer_count = 0;
1287 gfx->samples = 0;
1288
1289 gfx->color_att_count = 0;
1290 gfx->depth_att = (struct anv_attachment) { };
1291 gfx->stencil_att = (struct anv_attachment) { };
1292 gfx->null_surface_state = ANV_STATE_NULL;
1293 }
1294
1295 VkResult
genX(BeginCommandBuffer)1296 genX(BeginCommandBuffer)(
1297 VkCommandBuffer commandBuffer,
1298 const VkCommandBufferBeginInfo* pBeginInfo)
1299 {
1300 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1301 VkResult result;
1302
1303 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1304 * command buffer's state. Otherwise, we must *reset* its state. In both
1305 * cases we reset it.
1306 *
1307 * From the Vulkan 1.0 spec:
1308 *
1309 * If a command buffer is in the executable state and the command buffer
1310 * was allocated from a command pool with the
1311 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1312 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1313 * as if vkResetCommandBuffer had been called with
1314 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1315 * the command buffer in the recording state.
1316 */
1317 anv_cmd_buffer_reset(&cmd_buffer->vk, 0);
1318 anv_cmd_buffer_reset_rendering(cmd_buffer);
1319
1320 cmd_buffer->usage_flags = pBeginInfo->flags;
1321
1322 /* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for
1323 * primary level command buffers.
1324 *
1325 * From the Vulkan 1.0 spec:
1326 *
1327 * VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a
1328 * secondary command buffer is considered to be entirely inside a render
1329 * pass. If this is a primary command buffer, then this bit is ignored.
1330 */
1331 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1332 cmd_buffer->usage_flags &= ~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT;
1333
1334 trace_intel_begin_cmd_buffer(&cmd_buffer->trace);
1335
1336 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1337
1338 /* We sometimes store vertex data in the dynamic state buffer for blorp
1339 * operations and our dynamic state stream may re-use data from previous
1340 * command buffers. In order to prevent stale cache data, we flush the VF
1341 * cache. We could do this on every blorp call but that's not really
1342 * needed as all of the data will get written by the CPU prior to the GPU
1343 * executing anything. The chances are fairly high that they will use
1344 * blorp at least once per primary command buffer so it shouldn't be
1345 * wasted.
1346 *
1347 * There is also a workaround on gfx8 which requires us to invalidate the
1348 * VF cache occasionally. It's easier if we can assume we start with a
1349 * fresh cache (See also genX(cmd_buffer_set_binding_for_gfx8_vb_flush).)
1350 */
1351 anv_add_pending_pipe_bits(cmd_buffer,
1352 ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
1353 "new cmd buffer");
1354
1355 /* We send an "Indirect State Pointers Disable" packet at
1356 * EndCommandBuffer, so all push constant packets are ignored during a
1357 * context restore. Documentation says after that command, we need to
1358 * emit push constants again before any rendering operation. So we
1359 * flag them dirty here to make sure they get emitted.
1360 */
1361 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1362
1363 if (cmd_buffer->usage_flags &
1364 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1365 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
1366
1367 char gcbiar_data[VK_GCBIARR_DATA_SIZE(MAX_RTS)];
1368 const VkRenderingInfo *resume_info =
1369 vk_get_command_buffer_inheritance_as_rendering_resume(cmd_buffer->vk.level,
1370 pBeginInfo,
1371 gcbiar_data);
1372 if (resume_info != NULL) {
1373 genX(CmdBeginRendering)(commandBuffer, resume_info);
1374 } else {
1375 const VkCommandBufferInheritanceRenderingInfo *inheritance_info =
1376 vk_get_command_buffer_inheritance_rendering_info(cmd_buffer->vk.level,
1377 pBeginInfo);
1378 assert(inheritance_info);
1379
1380 gfx->rendering_flags = inheritance_info->flags;
1381 gfx->render_area = (VkRect2D) { };
1382 gfx->layer_count = 0;
1383 gfx->samples = inheritance_info->rasterizationSamples;
1384 gfx->view_mask = inheritance_info->viewMask;
1385
1386 uint32_t color_att_count = inheritance_info->colorAttachmentCount;
1387 result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count);
1388 if (result != VK_SUCCESS)
1389 return result;
1390
1391 for (uint32_t i = 0; i < color_att_count; i++) {
1392 gfx->color_att[i].vk_format =
1393 inheritance_info->pColorAttachmentFormats[i];
1394 }
1395 gfx->depth_att.vk_format =
1396 inheritance_info->depthAttachmentFormat;
1397 gfx->stencil_att.vk_format =
1398 inheritance_info->stencilAttachmentFormat;
1399
1400 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1401
1402 anv_cmd_graphic_state_update_has_uint_rt(gfx);
1403 }
1404 }
1405
1406 #if GFX_VER >= 8
1407 /* Emit the sample pattern at the beginning of the batch because the
1408 * default locations emitted at the device initialization might have been
1409 * changed by a previous command buffer.
1410 *
1411 * Do not change that when we're continuing a previous renderpass.
1412 */
1413 if (cmd_buffer->device->vk.enabled_extensions.EXT_sample_locations &&
1414 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT))
1415 genX(emit_sample_pattern)(&cmd_buffer->batch, NULL);
1416 #endif
1417
1418 #if GFX_VERx10 >= 75
1419 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1420 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1421 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1422
1423 /* If secondary buffer supports conditional rendering
1424 * we should emit commands as if conditional rendering is enabled.
1425 */
1426 cmd_buffer->state.conditional_render_enabled =
1427 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1428 }
1429 #endif
1430
1431 return VK_SUCCESS;
1432 }
1433
1434 /* From the PRM, Volume 2a:
1435 *
1436 * "Indirect State Pointers Disable
1437 *
1438 * At the completion of the post-sync operation associated with this pipe
1439 * control packet, the indirect state pointers in the hardware are
1440 * considered invalid; the indirect pointers are not saved in the context.
1441 * If any new indirect state commands are executed in the command stream
1442 * while the pipe control is pending, the new indirect state commands are
1443 * preserved.
1444 *
1445 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1446 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1447 * commands are only considered as Indirect State Pointers. Once ISP is
1448 * issued in a context, SW must initialize by programming push constant
1449 * commands for all the shaders (at least to zero length) before attempting
1450 * any rendering operation for the same context."
1451 *
1452 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1453 * even though they point to a BO that has been already unreferenced at
1454 * the end of the previous batch buffer. This has been fine so far since
1455 * we are protected by these scratch page (every address not covered by
1456 * a BO should be pointing to the scratch page). But on CNL, it is
1457 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1458 * instruction.
1459 *
1460 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1461 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1462 * context restore, so the mentioned hang doesn't happen. However,
1463 * software must program push constant commands for all stages prior to
1464 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1465 *
1466 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1467 * constants have been loaded into the EUs prior to disable the push constants
1468 * so that it doesn't hang a previous 3DPRIMITIVE.
1469 */
1470 static void
emit_isp_disable(struct anv_cmd_buffer * cmd_buffer)1471 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1472 {
1473 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1474 pc.StallAtPixelScoreboard = true;
1475 pc.CommandStreamerStallEnable = true;
1476 anv_debug_dump_pc(pc);
1477 }
1478 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1479 pc.IndirectStatePointersDisable = true;
1480 pc.CommandStreamerStallEnable = true;
1481 anv_debug_dump_pc(pc);
1482 }
1483 }
1484
1485 VkResult
genX(EndCommandBuffer)1486 genX(EndCommandBuffer)(
1487 VkCommandBuffer commandBuffer)
1488 {
1489 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1490
1491 if (anv_batch_has_error(&cmd_buffer->batch))
1492 return cmd_buffer->batch.status;
1493
1494 anv_measure_endcommandbuffer(cmd_buffer);
1495
1496 /* We want every command buffer to start with the PMA fix in a known state,
1497 * so we disable it at the end of the command buffer.
1498 */
1499 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1500
1501 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1502
1503 emit_isp_disable(cmd_buffer);
1504
1505 trace_intel_end_cmd_buffer(&cmd_buffer->trace, cmd_buffer->vk.level);
1506
1507 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1508
1509 return VK_SUCCESS;
1510 }
1511
1512 void
genX(CmdExecuteCommands)1513 genX(CmdExecuteCommands)(
1514 VkCommandBuffer commandBuffer,
1515 uint32_t commandBufferCount,
1516 const VkCommandBuffer* pCmdBuffers)
1517 {
1518 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1519
1520 assert(primary->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1521
1522 if (anv_batch_has_error(&primary->batch))
1523 return;
1524
1525 /* The secondary command buffers will assume that the PMA fix is disabled
1526 * when they begin executing. Make sure this is true.
1527 */
1528 genX(cmd_buffer_enable_pma_fix)(primary, false);
1529
1530 /* The secondary command buffer doesn't know which textures etc. have been
1531 * flushed prior to their execution. Apply those flushes now.
1532 */
1533 genX(cmd_buffer_apply_pipe_flushes)(primary);
1534
1535 for (uint32_t i = 0; i < commandBufferCount; i++) {
1536 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1537
1538 assert(secondary->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1539 assert(!anv_batch_has_error(&secondary->batch));
1540
1541 #if GFX_VERx10 >= 75
1542 if (secondary->state.conditional_render_enabled) {
1543 if (!primary->state.conditional_render_enabled) {
1544 /* Secondary buffer is constructed as if it will be executed
1545 * with conditional rendering, we should satisfy this dependency
1546 * regardless of conditional rendering being enabled in primary.
1547 */
1548 struct mi_builder b;
1549 mi_builder_init(&b, primary->device->info, &primary->batch);
1550 mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
1551 mi_imm(UINT64_MAX));
1552 }
1553 }
1554 #endif
1555
1556 if (secondary->usage_flags &
1557 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1558 /* If we're continuing a render pass from the primary, we need to
1559 * copy the surface states for the current subpass into the storage
1560 * we allocated for them in BeginCommandBuffer.
1561 */
1562 struct anv_bo *ss_bo =
1563 primary->device->surface_state_pool.block_pool.bo;
1564 struct anv_state src_state = primary->state.gfx.att_states;
1565 struct anv_state dst_state = secondary->state.gfx.att_states;
1566 assert(src_state.alloc_size == dst_state.alloc_size);
1567
1568 genX(cmd_buffer_so_memcpy)(primary,
1569 (struct anv_address) {
1570 .bo = ss_bo,
1571 .offset = dst_state.offset,
1572 },
1573 (struct anv_address) {
1574 .bo = ss_bo,
1575 .offset = src_state.offset,
1576 },
1577 src_state.alloc_size);
1578 }
1579
1580 anv_cmd_buffer_add_secondary(primary, secondary);
1581
1582 assert(secondary->perf_query_pool == NULL || primary->perf_query_pool == NULL ||
1583 secondary->perf_query_pool == primary->perf_query_pool);
1584 if (secondary->perf_query_pool)
1585 primary->perf_query_pool = secondary->perf_query_pool;
1586 }
1587
1588 /* The secondary isn't counted in our VF cache tracking so we need to
1589 * invalidate the whole thing.
1590 */
1591 if (GFX_VER == 8) {
1592 anv_add_pending_pipe_bits(primary,
1593 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
1594 "Secondary cmd buffer not tracked in VF cache");
1595 }
1596
1597 /* The secondary may have selected a different pipeline (3D or compute) and
1598 * may have changed the current L3$ configuration. Reset our tracking
1599 * variables to invalid values to ensure that we re-emit these in the case
1600 * where we do any draws or compute dispatches from the primary after the
1601 * secondary has returned.
1602 */
1603 primary->state.current_pipeline = UINT32_MAX;
1604 primary->state.current_l3_config = NULL;
1605 primary->state.current_hash_scale = 0;
1606 primary->state.gfx.push_constant_stages = 0;
1607 vk_dynamic_graphics_state_dirty_all(&primary->vk.dynamic_graphics_state);
1608
1609 /* Each of the secondary command buffers will use its own state base
1610 * address. We need to re-emit state base address for the primary after
1611 * all of the secondaries are done.
1612 *
1613 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1614 * address calls?
1615 */
1616 genX(cmd_buffer_emit_state_base_address)(primary);
1617 }
1618
1619 /**
1620 * Program the hardware to use the specified L3 configuration.
1621 */
1622 void
genX(cmd_buffer_config_l3)1623 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1624 const struct intel_l3_config *cfg)
1625 {
1626 assert(cfg);
1627 if (cfg == cmd_buffer->state.current_l3_config)
1628 return;
1629
1630 if (INTEL_DEBUG(DEBUG_L3)) {
1631 mesa_logd("L3 config transition: ");
1632 intel_dump_l3_config(cfg, stderr);
1633 }
1634
1635 /* According to the hardware docs, the L3 partitioning can only be changed
1636 * while the pipeline is completely drained and the caches are flushed,
1637 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1638 */
1639 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1640 pc.DCFlushEnable = true;
1641 pc.PostSyncOperation = NoWrite;
1642 pc.CommandStreamerStallEnable = true;
1643 anv_debug_dump_pc(pc);
1644 }
1645
1646 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1647 * invalidation of the relevant caches. Note that because RO invalidation
1648 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1649 * command is processed by the CS) we cannot combine it with the previous
1650 * stalling flush as the hardware documentation suggests, because that
1651 * would cause the CS to stall on previous rendering *after* RO
1652 * invalidation and wouldn't prevent the RO caches from being polluted by
1653 * concurrent rendering before the stall completes. This intentionally
1654 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1655 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1656 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1657 * already guarantee that there is no concurrent GPGPU kernel execution
1658 * (see SKL HSD 2132585).
1659 */
1660 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1661 pc.TextureCacheInvalidationEnable = true;
1662 pc.ConstantCacheInvalidationEnable = true;
1663 pc.InstructionCacheInvalidateEnable = true;
1664 pc.StateCacheInvalidationEnable = true;
1665 pc.PostSyncOperation = NoWrite;
1666 anv_debug_dump_pc(pc);
1667 }
1668
1669 /* Now send a third stalling flush to make sure that invalidation is
1670 * complete when the L3 configuration registers are modified.
1671 */
1672 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1673 pc.DCFlushEnable = true;
1674 pc.PostSyncOperation = NoWrite;
1675 pc.CommandStreamerStallEnable = true;
1676 anv_debug_dump_pc(pc);
1677 }
1678
1679 genX(emit_l3_config)(&cmd_buffer->batch, cmd_buffer->device, cfg);
1680 cmd_buffer->state.current_l3_config = cfg;
1681 }
1682
1683 ALWAYS_INLINE enum anv_pipe_bits
genX(emit_apply_pipe_flushes)1684 genX(emit_apply_pipe_flushes)(struct anv_batch *batch,
1685 struct anv_device *device,
1686 uint32_t current_pipeline,
1687 enum anv_pipe_bits bits)
1688 {
1689 /*
1690 * From Sandybridge PRM, volume 2, "1.7.2 End-of-Pipe Synchronization":
1691 *
1692 * Write synchronization is a special case of end-of-pipe
1693 * synchronization that requires that the render cache and/or depth
1694 * related caches are flushed to memory, where the data will become
1695 * globally visible. This type of synchronization is required prior to
1696 * SW (CPU) actually reading the result data from memory, or initiating
1697 * an operation that will use as a read surface (such as a texture
1698 * surface) a previous render target and/or depth/stencil buffer
1699 *
1700 *
1701 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
1702 *
1703 * Exercising the write cache flush bits (Render Target Cache Flush
1704 * Enable, Depth Cache Flush Enable, DC Flush) in PIPE_CONTROL only
1705 * ensures the write caches are flushed and doesn't guarantee the data
1706 * is globally visible.
1707 *
1708 * SW can track the completion of the end-of-pipe-synchronization by
1709 * using "Notify Enable" and "PostSync Operation - Write Immediate
1710 * Data" in the PIPE_CONTROL command.
1711 *
1712 * In other words, flushes are pipelined while invalidations are handled
1713 * immediately. Therefore, if we're flushing anything then we need to
1714 * schedule an end-of-pipe sync before any invalidations can happen.
1715 */
1716 if (bits & ANV_PIPE_FLUSH_BITS)
1717 bits |= ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
1718
1719 /* If we're going to do an invalidate and we have a pending end-of-pipe
1720 * sync that has yet to be resolved, we do the end-of-pipe sync now.
1721 */
1722 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1723 (bits & ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT)) {
1724 bits |= ANV_PIPE_END_OF_PIPE_SYNC_BIT;
1725 bits &= ~ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT;
1726 }
1727
1728 /* Project: SKL / Argument: LRI Post Sync Operation [23]
1729 *
1730 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
1731 * programmed prior to programming a PIPECONTROL command with "LRI
1732 * Post Sync Operation" in GPGPU mode of operation (i.e when
1733 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
1734 *
1735 * The same text exists a few rows below for Post Sync Op.
1736 */
1737 if (bits & ANV_PIPE_POST_SYNC_BIT)
1738 bits &= ~ANV_PIPE_POST_SYNC_BIT;
1739
1740 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
1741 ANV_PIPE_END_OF_PIPE_SYNC_BIT)) {
1742 anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe) {
1743 /* Flushing HDC pipeline requires DC Flush on earlier HW. */
1744 pipe.DCFlushEnable |= bits & ANV_PIPE_HDC_PIPELINE_FLUSH_BIT;
1745 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1746 pipe.DCFlushEnable |= bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1747 pipe.RenderTargetCacheFlushEnable =
1748 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1749
1750 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1751 #if GFX_VER == 8
1752 /* From Broadwell PRM, volume 2a:
1753 * PIPE_CONTROL: Command Streamer Stall Enable:
1754 *
1755 * "This bit must be always set when PIPE_CONTROL command is
1756 * programmed by GPGPU and MEDIA workloads, except for the cases
1757 * when only Read Only Cache Invalidation bits are set (State
1758 * Cache Invalidation Enable, Instruction cache Invalidation
1759 * Enable, Texture Cache Invalidation Enable, Constant Cache
1760 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
1761 * need not implemented when FF_DOP_CG is disabled."
1762 *
1763 * Since we do all the invalidation in the following PIPE_CONTROL,
1764 * if we got here, we need a stall.
1765 */
1766 pipe.CommandStreamerStallEnable |= current_pipeline == GPGPU;
1767 #endif
1768
1769 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1770
1771 /* From Sandybridge PRM, volume 2, "1.7.3.1 Writing a Value to Memory":
1772 *
1773 * "The most common action to perform upon reaching a
1774 * synchronization point is to write a value out to memory. An
1775 * immediate value (included with the synchronization command) may
1776 * be written."
1777 *
1778 *
1779 * From Broadwell PRM, volume 7, "End-of-Pipe Synchronization":
1780 *
1781 * "In case the data flushed out by the render engine is to be
1782 * read back in to the render engine in coherent manner, then the
1783 * render engine has to wait for the fence completion before
1784 * accessing the flushed data. This can be achieved by following
1785 * means on various products: PIPE_CONTROL command with CS Stall
1786 * and the required write caches flushed with Post-Sync-Operation
1787 * as Write Immediate Data.
1788 *
1789 * Example:
1790 * - Workload-1 (3D/GPGPU/MEDIA)
1791 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
1792 * Immediate Data, Required Write Cache Flush bits set)
1793 * - Workload-2 (Can use the data produce or output by
1794 * Workload-1)
1795 */
1796 if (bits & ANV_PIPE_END_OF_PIPE_SYNC_BIT) {
1797 pipe.CommandStreamerStallEnable = true;
1798 pipe.PostSyncOperation = WriteImmediateData;
1799 pipe.Address = device->workaround_address;
1800 }
1801
1802 /*
1803 * According to the Broadwell documentation, any PIPE_CONTROL with the
1804 * "Command Streamer Stall" bit set must also have another bit set,
1805 * with five different options:
1806 *
1807 * - Render Target Cache Flush
1808 * - Depth Cache Flush
1809 * - Stall at Pixel Scoreboard
1810 * - Post-Sync Operation
1811 * - Depth Stall
1812 * - DC Flush Enable
1813 *
1814 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1815 * mesa and it seems to work fine. The choice is fairly arbitrary.
1816 */
1817 if (pipe.CommandStreamerStallEnable &&
1818 !pipe.RenderTargetCacheFlushEnable &&
1819 !pipe.DepthCacheFlushEnable &&
1820 !pipe.StallAtPixelScoreboard &&
1821 !pipe.PostSyncOperation &&
1822 !pipe.DepthStallEnable &&
1823 !pipe.DCFlushEnable)
1824 pipe.StallAtPixelScoreboard = true;
1825 anv_debug_dump_pc(pipe);
1826 }
1827
1828 /* If a render target flush was emitted, then we can toggle off the bit
1829 * saying that render target writes are ongoing.
1830 */
1831 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1832 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
1833
1834 if (GFX_VERx10 == 75) {
1835 /* Haswell needs addition work-arounds:
1836 *
1837 * From Haswell PRM, volume 2, part 1, "End-of-Pipe Synchronization":
1838 *
1839 * Option 1:
1840 * PIPE_CONTROL command with the CS Stall and the required write
1841 * caches flushed with Post-SyncOperation as Write Immediate Data
1842 * followed by eight dummy MI_STORE_DATA_IMM (write to scratch
1843 * spce) commands.
1844 *
1845 * Example:
1846 * - Workload-1
1847 * - PIPE_CONTROL (CS Stall, Post-Sync-Operation Write
1848 * Immediate Data, Required Write Cache Flush bits set)
1849 * - MI_STORE_DATA_IMM (8 times) (Dummy data, Scratch Address)
1850 * - Workload-2 (Can use the data produce or output by
1851 * Workload-1)
1852 *
1853 * Unfortunately, both the PRMs and the internal docs are a bit
1854 * out-of-date in this regard. What the windows driver does (and
1855 * this appears to actually work) is to emit a register read from the
1856 * memory address written by the pipe control above.
1857 *
1858 * What register we load into doesn't matter. We choose an indirect
1859 * rendering register because we know it always exists and it's one
1860 * of the first registers the command parser allows us to write. If
1861 * you don't have command parser support in your kernel (pre-4.2),
1862 * this will get turned into MI_NOOP and you won't get the
1863 * workaround. Unfortunately, there's just not much we can do in
1864 * that case. This register is perfectly safe to write since we
1865 * always re-load all of the indirect draw registers right before
1866 * 3DPRIMITIVE when needed anyway.
1867 */
1868 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
1869 lrm.RegisterAddress = 0x243C; /* GFX7_3DPRIM_START_INSTANCE */
1870 lrm.MemoryAddress = device->workaround_address;
1871 }
1872 }
1873
1874 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS |
1875 ANV_PIPE_END_OF_PIPE_SYNC_BIT);
1876 }
1877
1878 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1879 anv_batch_emit(batch, GENX(PIPE_CONTROL), pipe) {
1880 pipe.StateCacheInvalidationEnable =
1881 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1882 pipe.ConstantCacheInvalidationEnable =
1883 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1884 pipe.VFCacheInvalidationEnable =
1885 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1886 pipe.TextureCacheInvalidationEnable =
1887 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1888 pipe.InstructionCacheInvalidateEnable =
1889 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1890
1891 anv_debug_dump_pc(pipe);
1892 }
1893
1894 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1895 }
1896
1897 return bits;
1898 }
1899
1900 ALWAYS_INLINE void
genX(cmd_buffer_apply_pipe_flushes)1901 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1902 {
1903 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1904
1905 if (unlikely(cmd_buffer->device->physical->always_flush_cache))
1906 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
1907 else if (bits == 0)
1908 return;
1909
1910 bool trace_flush =
1911 (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_STALL_BITS | ANV_PIPE_INVALIDATE_BITS)) != 0;
1912 if (trace_flush)
1913 trace_intel_begin_stall(&cmd_buffer->trace);
1914
1915 if (GFX_VER == 8 &&
1916 (bits & ANV_PIPE_CS_STALL_BIT) &&
1917 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
1918 /* If we are doing a VF cache invalidate AND a CS stall (it must be
1919 * both) then we can reset our vertex cache tracking.
1920 */
1921 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
1922 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
1923 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
1924 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
1925 }
1926
1927 cmd_buffer->state.pending_pipe_bits =
1928 genX(emit_apply_pipe_flushes)(&cmd_buffer->batch,
1929 cmd_buffer->device,
1930 cmd_buffer->state.current_pipeline,
1931 bits);
1932
1933 if (trace_flush) {
1934 trace_intel_end_stall(&cmd_buffer->trace, bits,
1935 anv_pipe_flush_bit_to_ds_stall_flag,
1936 NULL, NULL, NULL, NULL);
1937 }
1938 }
1939
1940 static void
cmd_buffer_barrier(struct anv_cmd_buffer * cmd_buffer,const VkDependencyInfo * dep_info,const char * reason)1941 cmd_buffer_barrier(struct anv_cmd_buffer *cmd_buffer,
1942 const VkDependencyInfo *dep_info,
1943 const char *reason)
1944 {
1945 /* XXX: Right now, we're really dumb and just flush whatever categories
1946 * the app asks for. One of these days we may make this a bit better
1947 * but right now that's all the hardware allows for in most areas.
1948 */
1949 VkAccessFlags2 src_flags = 0;
1950 VkAccessFlags2 dst_flags = 0;
1951
1952 for (uint32_t i = 0; i < dep_info->memoryBarrierCount; i++) {
1953 src_flags |= dep_info->pMemoryBarriers[i].srcAccessMask;
1954 dst_flags |= dep_info->pMemoryBarriers[i].dstAccessMask;
1955 }
1956
1957 for (uint32_t i = 0; i < dep_info->bufferMemoryBarrierCount; i++) {
1958 src_flags |= dep_info->pBufferMemoryBarriers[i].srcAccessMask;
1959 dst_flags |= dep_info->pBufferMemoryBarriers[i].dstAccessMask;
1960 }
1961
1962 for (uint32_t i = 0; i < dep_info->imageMemoryBarrierCount; i++) {
1963 const VkImageMemoryBarrier2 *img_barrier =
1964 &dep_info->pImageMemoryBarriers[i];
1965
1966 src_flags |= img_barrier->srcAccessMask;
1967 dst_flags |= img_barrier->dstAccessMask;
1968
1969 ANV_FROM_HANDLE(anv_image, image, img_barrier->image);
1970 const VkImageSubresourceRange *range = &img_barrier->subresourceRange;
1971
1972 uint32_t base_layer, layer_count;
1973 if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
1974 base_layer = 0;
1975 layer_count = u_minify(image->vk.extent.depth, range->baseMipLevel);
1976 } else {
1977 base_layer = range->baseArrayLayer;
1978 layer_count = vk_image_subresource_layer_count(&image->vk, range);
1979 }
1980 const uint32_t level_count =
1981 vk_image_subresource_level_count(&image->vk, range);
1982
1983 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1984 transition_depth_buffer(cmd_buffer, image,
1985 base_layer, layer_count,
1986 img_barrier->oldLayout,
1987 img_barrier->newLayout,
1988 false /* will_full_fast_clear */);
1989 }
1990
1991 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
1992 transition_stencil_buffer(cmd_buffer, image,
1993 range->baseMipLevel, level_count,
1994 base_layer, layer_count,
1995 img_barrier->oldLayout,
1996 img_barrier->newLayout,
1997 false /* will_full_fast_clear */);
1998
1999 /* If we are in a renderpass, the gfx7 stencil shadow may need to be
2000 * updated even if the layout doesn't change
2001 */
2002 if (cmd_buffer->state.gfx.samples &&
2003 (img_barrier->dstAccessMask & (VK_ACCESS_2_SHADER_READ_BIT |
2004 VK_ACCESS_2_SHADER_SAMPLED_READ_BIT |
2005 VK_ACCESS_2_INPUT_ATTACHMENT_READ_BIT))) {
2006 const uint32_t plane =
2007 anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
2008 if (anv_surface_is_valid(&image->planes[plane].shadow_surface))
2009 anv_image_copy_to_shadow(cmd_buffer, image,
2010 VK_IMAGE_ASPECT_STENCIL_BIT,
2011 range->baseMipLevel, level_count,
2012 base_layer, layer_count);
2013 }
2014 }
2015
2016 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2017 VkImageAspectFlags color_aspects =
2018 vk_image_expand_aspect_mask(&image->vk, range->aspectMask);
2019 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2020 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2021 range->baseMipLevel, level_count,
2022 base_layer, layer_count,
2023 img_barrier->oldLayout,
2024 img_barrier->newLayout,
2025 img_barrier->srcQueueFamilyIndex,
2026 img_barrier->dstQueueFamilyIndex,
2027 false /* will_full_fast_clear */);
2028 }
2029 }
2030 }
2031
2032 enum anv_pipe_bits bits =
2033 anv_pipe_flush_bits_for_access_flags(cmd_buffer->device, src_flags) |
2034 anv_pipe_invalidate_bits_for_access_flags(cmd_buffer->device, dst_flags);
2035
2036 anv_add_pending_pipe_bits(cmd_buffer, bits, reason);
2037 }
2038
genX(CmdPipelineBarrier2)2039 void genX(CmdPipelineBarrier2)(
2040 VkCommandBuffer commandBuffer,
2041 const VkDependencyInfo* pDependencyInfo)
2042 {
2043 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2044
2045 cmd_buffer_barrier(cmd_buffer, pDependencyInfo, "pipe barrier");
2046 }
2047
2048 static void
cmd_buffer_alloc_push_constants(struct anv_cmd_buffer * cmd_buffer)2049 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2050 {
2051 VkShaderStageFlags stages =
2052 cmd_buffer->state.gfx.pipeline->active_stages;
2053
2054 /* In order to avoid thrash, we assume that vertex and fragment stages
2055 * always exist. In the rare case where one is missing *and* the other
2056 * uses push concstants, this may be suboptimal. However, avoiding stalls
2057 * seems more important.
2058 */
2059 stages |= VK_SHADER_STAGE_FRAGMENT_BIT;
2060 if (anv_pipeline_is_primitive(cmd_buffer->state.gfx.pipeline))
2061 stages |= VK_SHADER_STAGE_VERTEX_BIT;
2062
2063 if (stages == cmd_buffer->state.gfx.push_constant_stages)
2064 return;
2065
2066 const unsigned push_constant_kb =
2067 cmd_buffer->device->info->max_constant_urb_size_kb;
2068
2069 const unsigned num_stages =
2070 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2071 unsigned size_per_stage = push_constant_kb / num_stages;
2072
2073 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2074 * units of 2KB. Incidentally, these are the same platforms that have
2075 * 32KB worth of push constant space.
2076 */
2077 if (push_constant_kb == 32)
2078 size_per_stage &= ~1u;
2079
2080 uint32_t kb_used = 0;
2081 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2082 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2083 anv_batch_emit(&cmd_buffer->batch,
2084 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2085 alloc._3DCommandSubOpcode = 18 + i;
2086 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2087 alloc.ConstantBufferSize = push_size;
2088 }
2089 kb_used += push_size;
2090 }
2091
2092 anv_batch_emit(&cmd_buffer->batch,
2093 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2094 alloc.ConstantBufferOffset = kb_used;
2095 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2096 }
2097
2098 cmd_buffer->state.gfx.push_constant_stages = stages;
2099
2100 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2101 *
2102 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2103 * the next 3DPRIMITIVE command after programming the
2104 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2105 *
2106 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2107 * pipeline setup, we need to dirty push constants.
2108 */
2109 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2110 }
2111
2112 static VkResult
emit_binding_table(struct anv_cmd_buffer * cmd_buffer,struct anv_cmd_pipeline_state * pipe_state,struct anv_shader_bin * shader,struct anv_state * bt_state)2113 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2114 struct anv_cmd_pipeline_state *pipe_state,
2115 struct anv_shader_bin *shader,
2116 struct anv_state *bt_state)
2117 {
2118 uint32_t state_offset;
2119
2120 struct anv_pipeline_bind_map *map = &shader->bind_map;
2121 if (map->surface_count == 0) {
2122 *bt_state = (struct anv_state) { 0, };
2123 return VK_SUCCESS;
2124 }
2125
2126 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2127 map->surface_count,
2128 &state_offset);
2129 uint32_t *bt_map = bt_state->map;
2130
2131 if (bt_state->map == NULL)
2132 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2133
2134 /* We only need to emit relocs if we're not using softpin. If we are using
2135 * softpin then we always keep all user-allocated memory objects resident.
2136 */
2137 const bool need_client_mem_relocs =
2138 anv_use_relocations(cmd_buffer->device->physical);
2139 struct anv_push_constants *push = &pipe_state->push_constants;
2140
2141 for (uint32_t s = 0; s < map->surface_count; s++) {
2142 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2143
2144 struct anv_state surface_state;
2145
2146 switch (binding->set) {
2147 case ANV_DESCRIPTOR_SET_NULL:
2148 bt_map[s] = 0;
2149 break;
2150
2151 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2152 /* Color attachment binding */
2153 assert(shader->stage == MESA_SHADER_FRAGMENT);
2154 if (binding->index < cmd_buffer->state.gfx.color_att_count) {
2155 const struct anv_attachment *att =
2156 &cmd_buffer->state.gfx.color_att[binding->index];
2157 surface_state = att->surface_state.state;
2158 } else {
2159 surface_state = cmd_buffer->state.gfx.null_surface_state;
2160 }
2161 assert(surface_state.map);
2162 bt_map[s] = surface_state.offset + state_offset;
2163 break;
2164
2165 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2166 struct anv_state surface_state =
2167 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2168
2169 struct anv_address constant_data = {
2170 .bo = cmd_buffer->device->instruction_state_pool.block_pool.bo,
2171 .offset = shader->kernel.offset +
2172 shader->prog_data->const_data_offset,
2173 };
2174 unsigned constant_data_size = shader->prog_data->const_data_size;
2175
2176 const enum isl_format format =
2177 anv_isl_format_for_descriptor_type(cmd_buffer->device,
2178 VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2179 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2180 format, ISL_SWIZZLE_IDENTITY,
2181 ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
2182 constant_data, constant_data_size, 1);
2183
2184 assert(surface_state.map);
2185 bt_map[s] = surface_state.offset + state_offset;
2186 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2187 break;
2188 }
2189
2190 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2191 /* This is always the first binding for compute shaders */
2192 assert(shader->stage == MESA_SHADER_COMPUTE && s == 0);
2193
2194 struct anv_state surface_state =
2195 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2196
2197 const enum isl_format format =
2198 anv_isl_format_for_descriptor_type(cmd_buffer->device,
2199 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2200 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2201 format, ISL_SWIZZLE_IDENTITY,
2202 ISL_SURF_USAGE_CONSTANT_BUFFER_BIT,
2203 cmd_buffer->state.compute.num_workgroups,
2204 12, 1);
2205
2206 assert(surface_state.map);
2207 bt_map[s] = surface_state.offset + state_offset;
2208 if (need_client_mem_relocs) {
2209 add_surface_reloc(cmd_buffer, surface_state,
2210 cmd_buffer->state.compute.num_workgroups);
2211 }
2212 break;
2213 }
2214
2215 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2216 /* This is a descriptor set buffer so the set index is actually
2217 * given by binding->binding. (Yes, that's confusing.)
2218 */
2219 struct anv_descriptor_set *set =
2220 pipe_state->descriptors[binding->index];
2221 assert(set->desc_mem.alloc_size);
2222 assert(set->desc_surface_state.alloc_size);
2223 bt_map[s] = set->desc_surface_state.offset + state_offset;
2224 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2225 anv_descriptor_set_address(set));
2226 break;
2227 }
2228
2229 default: {
2230 assert(binding->set < MAX_SETS);
2231 const struct anv_descriptor_set *set =
2232 pipe_state->descriptors[binding->set];
2233 if (binding->index >= set->descriptor_count) {
2234 /* From the Vulkan spec section entitled "DescriptorSet and
2235 * Binding Assignment":
2236 *
2237 * "If the array is runtime-sized, then array elements greater
2238 * than or equal to the size of that binding in the bound
2239 * descriptor set must not be used."
2240 *
2241 * Unfortunately, the compiler isn't smart enough to figure out
2242 * when a dynamic binding isn't used so it may grab the whole
2243 * array and stick it in the binding table. In this case, it's
2244 * safe to just skip those bindings that are OOB.
2245 */
2246 assert(binding->index < set->layout->descriptor_count);
2247 continue;
2248 }
2249 const struct anv_descriptor *desc = &set->descriptors[binding->index];
2250
2251 switch (desc->type) {
2252 case VK_DESCRIPTOR_TYPE_SAMPLER:
2253 /* Nothing for us to do here */
2254 continue;
2255
2256 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2257 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
2258 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: {
2259 if (desc->image_view) {
2260 struct anv_surface_state sstate =
2261 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2262 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2263 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2264 surface_state = sstate.state;
2265 assert(surface_state.alloc_size);
2266 if (need_client_mem_relocs)
2267 add_surface_state_relocs(cmd_buffer, sstate);
2268 } else {
2269 surface_state = cmd_buffer->device->null_surface_state;
2270 }
2271 break;
2272 }
2273
2274 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2275 if (desc->image_view) {
2276 struct anv_surface_state sstate =
2277 binding->lowered_storage_surface
2278 ? desc->image_view->planes[binding->plane].lowered_storage_surface_state
2279 : desc->image_view->planes[binding->plane].storage_surface_state;
2280 surface_state = sstate.state;
2281 assert(surface_state.alloc_size);
2282 if (surface_state.offset == 0) {
2283 mesa_loge("Bound a image to a descriptor where the "
2284 "descriptor does not have NonReadable "
2285 "set and the image does not have a "
2286 "corresponding SPIR-V format enum.");
2287 vk_debug_report(&cmd_buffer->device->physical->instance->vk,
2288 VK_DEBUG_REPORT_ERROR_BIT_EXT,
2289 &desc->image_view->vk.base,
2290 __LINE__, 0, "anv",
2291 "Bound a image to a descriptor where the "
2292 "descriptor does not have NonReadable "
2293 "set and the image does not have a "
2294 "corresponding SPIR-V format enum.");
2295 }
2296 if (surface_state.offset && need_client_mem_relocs)
2297 add_surface_state_relocs(cmd_buffer, sstate);
2298 } else {
2299 surface_state = cmd_buffer->device->null_surface_state;
2300 }
2301 break;
2302 }
2303
2304 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2305 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2306 if (desc->set_buffer_view) {
2307 surface_state = desc->set_buffer_view->surface_state;
2308 assert(surface_state.alloc_size);
2309 if (need_client_mem_relocs) {
2310 add_surface_reloc(cmd_buffer, surface_state,
2311 desc->set_buffer_view->address);
2312 }
2313 } else {
2314 surface_state = cmd_buffer->device->null_surface_state;
2315 }
2316 break;
2317
2318 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2319 if (desc->buffer_view) {
2320 surface_state = desc->buffer_view->surface_state;
2321 assert(surface_state.alloc_size);
2322 if (need_client_mem_relocs) {
2323 add_surface_reloc(cmd_buffer, surface_state,
2324 desc->buffer_view->address);
2325 }
2326 } else {
2327 surface_state = cmd_buffer->device->null_surface_state;
2328 }
2329 break;
2330
2331 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2332 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2333 if (desc->buffer) {
2334 /* Compute the offset within the buffer */
2335 uint32_t dynamic_offset =
2336 push->dynamic_offsets[binding->dynamic_offset_index];
2337 uint64_t offset = desc->offset + dynamic_offset;
2338 /* Clamp to the buffer size */
2339 offset = MIN2(offset, desc->buffer->vk.size);
2340 /* Clamp the range to the buffer size */
2341 uint32_t range = MIN2(desc->range, desc->buffer->vk.size - offset);
2342
2343 /* Align the range for consistency */
2344 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC)
2345 range = align(range, ANV_UBO_ALIGNMENT);
2346
2347 struct anv_address address =
2348 anv_address_add(desc->buffer->address, offset);
2349
2350 surface_state =
2351 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2352 enum isl_format format =
2353 anv_isl_format_for_descriptor_type(cmd_buffer->device,
2354 desc->type);
2355
2356 isl_surf_usage_flags_t usage =
2357 desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ?
2358 ISL_SURF_USAGE_CONSTANT_BUFFER_BIT :
2359 ISL_SURF_USAGE_STORAGE_BIT;
2360
2361 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2362 format, ISL_SWIZZLE_IDENTITY,
2363 usage, address, range, 1);
2364 if (need_client_mem_relocs)
2365 add_surface_reloc(cmd_buffer, surface_state, address);
2366 } else {
2367 surface_state = cmd_buffer->device->null_surface_state;
2368 }
2369 break;
2370 }
2371
2372 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2373 if (desc->buffer_view) {
2374 surface_state = binding->lowered_storage_surface
2375 ? desc->buffer_view->lowered_storage_surface_state
2376 : desc->buffer_view->storage_surface_state;
2377 assert(surface_state.alloc_size);
2378 if (need_client_mem_relocs) {
2379 add_surface_reloc(cmd_buffer, surface_state,
2380 desc->buffer_view->address);
2381 }
2382 } else {
2383 surface_state = cmd_buffer->device->null_surface_state;
2384 }
2385 break;
2386
2387 default:
2388 assert(!"Invalid descriptor type");
2389 continue;
2390 }
2391 assert(surface_state.map);
2392 bt_map[s] = surface_state.offset + state_offset;
2393 break;
2394 }
2395 }
2396 }
2397
2398 return VK_SUCCESS;
2399 }
2400
2401 static VkResult
emit_samplers(struct anv_cmd_buffer * cmd_buffer,struct anv_cmd_pipeline_state * pipe_state,struct anv_shader_bin * shader,struct anv_state * state)2402 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2403 struct anv_cmd_pipeline_state *pipe_state,
2404 struct anv_shader_bin *shader,
2405 struct anv_state *state)
2406 {
2407 struct anv_pipeline_bind_map *map = &shader->bind_map;
2408 if (map->sampler_count == 0) {
2409 *state = (struct anv_state) { 0, };
2410 return VK_SUCCESS;
2411 }
2412
2413 uint32_t size = map->sampler_count * 16;
2414 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2415
2416 if (state->map == NULL)
2417 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2418
2419 for (uint32_t s = 0; s < map->sampler_count; s++) {
2420 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2421 const struct anv_descriptor *desc =
2422 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2423
2424 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2425 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2426 continue;
2427
2428 struct anv_sampler *sampler = desc->sampler;
2429
2430 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2431 * happens to be zero.
2432 */
2433 if (sampler == NULL)
2434 continue;
2435
2436 memcpy(state->map + (s * 16),
2437 sampler->state[binding->plane], sizeof(sampler->state[0]));
2438 }
2439
2440 return VK_SUCCESS;
2441 }
2442
2443 static uint32_t
flush_descriptor_sets(struct anv_cmd_buffer * cmd_buffer,struct anv_cmd_pipeline_state * pipe_state,const VkShaderStageFlags dirty,struct anv_shader_bin ** shaders,uint32_t num_shaders)2444 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2445 struct anv_cmd_pipeline_state *pipe_state,
2446 const VkShaderStageFlags dirty,
2447 struct anv_shader_bin **shaders,
2448 uint32_t num_shaders)
2449 {
2450 VkShaderStageFlags flushed = 0;
2451
2452 VkResult result = VK_SUCCESS;
2453 for (uint32_t i = 0; i < num_shaders; i++) {
2454 if (!shaders[i])
2455 continue;
2456
2457 gl_shader_stage stage = shaders[i]->stage;
2458 VkShaderStageFlags vk_stage = mesa_to_vk_shader_stage(stage);
2459 if ((vk_stage & dirty) == 0)
2460 continue;
2461
2462 assert(stage < ARRAY_SIZE(cmd_buffer->state.samplers));
2463 result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2464 &cmd_buffer->state.samplers[stage]);
2465 if (result != VK_SUCCESS)
2466 break;
2467
2468 assert(stage < ARRAY_SIZE(cmd_buffer->state.binding_tables));
2469 result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2470 &cmd_buffer->state.binding_tables[stage]);
2471 if (result != VK_SUCCESS)
2472 break;
2473
2474 flushed |= vk_stage;
2475 }
2476
2477 if (result != VK_SUCCESS) {
2478 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2479
2480 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2481 if (result != VK_SUCCESS)
2482 return 0;
2483
2484 /* Re-emit state base addresses so we get the new surface state base
2485 * address before we start emitting binding tables etc.
2486 */
2487 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2488
2489 /* Re-emit all active binding tables */
2490 flushed = 0;
2491
2492 for (uint32_t i = 0; i < num_shaders; i++) {
2493 if (!shaders[i])
2494 continue;
2495
2496 gl_shader_stage stage = shaders[i]->stage;
2497
2498 result = emit_samplers(cmd_buffer, pipe_state, shaders[i],
2499 &cmd_buffer->state.samplers[stage]);
2500 if (result != VK_SUCCESS) {
2501 anv_batch_set_error(&cmd_buffer->batch, result);
2502 return 0;
2503 }
2504 result = emit_binding_table(cmd_buffer, pipe_state, shaders[i],
2505 &cmd_buffer->state.binding_tables[stage]);
2506 if (result != VK_SUCCESS) {
2507 anv_batch_set_error(&cmd_buffer->batch, result);
2508 return 0;
2509 }
2510
2511 flushed |= mesa_to_vk_shader_stage(stage);
2512 }
2513 }
2514
2515 return flushed;
2516 }
2517
2518 static void
cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer * cmd_buffer,uint32_t stages)2519 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2520 uint32_t stages)
2521 {
2522 static const uint32_t sampler_state_opcodes[] = {
2523 [MESA_SHADER_VERTEX] = 43,
2524 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2525 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2526 [MESA_SHADER_GEOMETRY] = 46,
2527 [MESA_SHADER_FRAGMENT] = 47,
2528 };
2529
2530 static const uint32_t binding_table_opcodes[] = {
2531 [MESA_SHADER_VERTEX] = 38,
2532 [MESA_SHADER_TESS_CTRL] = 39,
2533 [MESA_SHADER_TESS_EVAL] = 40,
2534 [MESA_SHADER_GEOMETRY] = 41,
2535 [MESA_SHADER_FRAGMENT] = 42,
2536 };
2537
2538 anv_foreach_stage(s, stages) {
2539 assert(s < ARRAY_SIZE(binding_table_opcodes));
2540
2541 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2542 anv_batch_emit(&cmd_buffer->batch,
2543 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2544 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2545 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2546 }
2547 }
2548
2549 /* Always emit binding table pointers if we're asked to, since on SKL
2550 * this is what flushes push constants. */
2551 anv_batch_emit(&cmd_buffer->batch,
2552 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2553 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2554 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2555 }
2556 }
2557 }
2558
2559 static struct anv_address
get_push_range_address(struct anv_cmd_buffer * cmd_buffer,const struct anv_shader_bin * shader,const struct anv_push_range * range)2560 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2561 const struct anv_shader_bin *shader,
2562 const struct anv_push_range *range)
2563 {
2564 struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2565 switch (range->set) {
2566 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2567 /* This is a descriptor set buffer so the set index is
2568 * actually given by binding->binding. (Yes, that's
2569 * confusing.)
2570 */
2571 struct anv_descriptor_set *set =
2572 gfx_state->base.descriptors[range->index];
2573 return anv_descriptor_set_address(set);
2574 }
2575
2576 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2577 if (gfx_state->base.push_constants_state.alloc_size == 0) {
2578 gfx_state->base.push_constants_state =
2579 anv_cmd_buffer_gfx_push_constants(cmd_buffer);
2580 }
2581 return (struct anv_address) {
2582 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2583 .offset = gfx_state->base.push_constants_state.offset,
2584 };
2585 }
2586
2587 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
2588 return (struct anv_address) {
2589 .bo = cmd_buffer->device->instruction_state_pool.block_pool.bo,
2590 .offset = shader->kernel.offset +
2591 shader->prog_data->const_data_offset,
2592 };
2593
2594 default: {
2595 assert(range->set < MAX_SETS);
2596 struct anv_descriptor_set *set =
2597 gfx_state->base.descriptors[range->set];
2598 const struct anv_descriptor *desc =
2599 &set->descriptors[range->index];
2600
2601 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2602 if (desc->buffer_view)
2603 return desc->buffer_view->address;
2604 } else {
2605 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2606 if (desc->buffer) {
2607 const struct anv_push_constants *push =
2608 &gfx_state->base.push_constants;
2609 uint32_t dynamic_offset =
2610 push->dynamic_offsets[range->dynamic_offset_index];
2611 return anv_address_add(desc->buffer->address,
2612 desc->offset + dynamic_offset);
2613 }
2614 }
2615
2616 /* For NULL UBOs, we just return an address in the workaround BO. We do
2617 * writes to it for workarounds but always at the bottom. The higher
2618 * bytes should be all zeros.
2619 */
2620 assert(range->length * 32 <= 2048);
2621 return (struct anv_address) {
2622 .bo = cmd_buffer->device->workaround_bo,
2623 .offset = 1024,
2624 };
2625 }
2626 }
2627 }
2628
2629
2630 /** Returns the size in bytes of the bound buffer
2631 *
2632 * The range is relative to the start of the buffer, not the start of the
2633 * range. The returned range may be smaller than
2634 *
2635 * (range->start + range->length) * 32;
2636 */
2637 static uint32_t
get_push_range_bound_size(struct anv_cmd_buffer * cmd_buffer,const struct anv_shader_bin * shader,const struct anv_push_range * range)2638 get_push_range_bound_size(struct anv_cmd_buffer *cmd_buffer,
2639 const struct anv_shader_bin *shader,
2640 const struct anv_push_range *range)
2641 {
2642 assert(shader->stage != MESA_SHADER_COMPUTE);
2643 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2644 switch (range->set) {
2645 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2646 struct anv_descriptor_set *set =
2647 gfx_state->base.descriptors[range->index];
2648 assert(range->start * 32 < set->desc_mem.alloc_size);
2649 assert((range->start + range->length) * 32 <= set->desc_mem.alloc_size);
2650 return set->desc_mem.alloc_size;
2651 }
2652
2653 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS:
2654 return (range->start + range->length) * 32;
2655
2656 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS:
2657 return ALIGN(shader->prog_data->const_data_size, ANV_UBO_ALIGNMENT);
2658
2659 default: {
2660 assert(range->set < MAX_SETS);
2661 struct anv_descriptor_set *set =
2662 gfx_state->base.descriptors[range->set];
2663 const struct anv_descriptor *desc =
2664 &set->descriptors[range->index];
2665
2666 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2667 /* Here we promote a UBO to a binding table entry so that we can avoid a layer of indirection.
2668 * We use the descriptor set's internally allocated surface state to fill the binding table entry.
2669 */
2670 if (!desc->set_buffer_view)
2671 return 0;
2672
2673 if (range->start * 32 > desc->set_buffer_view->range)
2674 return 0;
2675
2676 return desc->set_buffer_view->range;
2677 } else {
2678 if (!desc->buffer)
2679 return 0;
2680
2681 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2682 /* Compute the offset within the buffer */
2683 const struct anv_push_constants *push =
2684 &gfx_state->base.push_constants;
2685 uint32_t dynamic_offset =
2686 push->dynamic_offsets[range->dynamic_offset_index];
2687 uint64_t offset = desc->offset + dynamic_offset;
2688 /* Clamp to the buffer size */
2689 offset = MIN2(offset, desc->buffer->vk.size);
2690 /* Clamp the range to the buffer size */
2691 uint32_t bound_range = MIN2(desc->range, desc->buffer->vk.size - offset);
2692
2693 /* Align the range for consistency */
2694 bound_range = align(bound_range, ANV_UBO_ALIGNMENT);
2695
2696 return bound_range;
2697 }
2698 }
2699 }
2700 }
2701
2702 static void
cmd_buffer_emit_push_constant(struct anv_cmd_buffer * cmd_buffer,gl_shader_stage stage,struct anv_address * buffers,unsigned buffer_count)2703 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2704 gl_shader_stage stage,
2705 struct anv_address *buffers,
2706 unsigned buffer_count)
2707 {
2708 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2709 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
2710
2711 static const uint32_t push_constant_opcodes[] = {
2712 [MESA_SHADER_VERTEX] = 21,
2713 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2714 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2715 [MESA_SHADER_GEOMETRY] = 22,
2716 [MESA_SHADER_FRAGMENT] = 23,
2717 };
2718
2719 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2720
2721 UNUSED uint32_t mocs = anv_mocs(cmd_buffer->device, NULL, 0);
2722
2723 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2724 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2725
2726 /* Set MOCS, except on Gfx8, because the Broadwell PRM says:
2727 *
2728 * "Constant Buffer Object Control State must be always
2729 * programmed to zero."
2730 *
2731 * This restriction does not exist on any newer platforms.
2732 *
2733 * We only have one MOCS field for the whole packet, not one per
2734 * buffer. We could go out of our way here to walk over all of
2735 * the buffers and see if any of them are used externally and use
2736 * the external MOCS. However, the notion that someone would use
2737 * the same bit of memory for both scanout and a UBO is nuts.
2738 *
2739 * Let's not bother and assume it's all internal.
2740 */
2741 #if GFX_VER != 8
2742 c.ConstantBody.MOCS = mocs;
2743 #endif
2744
2745 if (anv_pipeline_has_stage(pipeline, stage)) {
2746 const struct anv_pipeline_bind_map *bind_map =
2747 &pipeline->shaders[stage]->bind_map;
2748
2749 #if GFX_VERx10 >= 75
2750 /* The Skylake PRM contains the following restriction:
2751 *
2752 * "The driver must ensure The following case does not occur
2753 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2754 * buffer 3 read length equal to zero committed followed by a
2755 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2756 * zero committed."
2757 *
2758 * To avoid this, we program the buffers in the highest slots.
2759 * This way, slot 0 is only used if slot 3 is also used.
2760 */
2761 assert(buffer_count <= 4);
2762 const unsigned shift = 4 - buffer_count;
2763 for (unsigned i = 0; i < buffer_count; i++) {
2764 const struct anv_push_range *range = &bind_map->push_ranges[i];
2765
2766 /* At this point we only have non-empty ranges */
2767 assert(range->length > 0);
2768
2769 /* For Ivy Bridge, make sure we only set the first range (actual
2770 * push constants)
2771 */
2772 assert((GFX_VERx10 >= 75) || i == 0);
2773
2774 c.ConstantBody.ReadLength[i + shift] = range->length;
2775 c.ConstantBody.Buffer[i + shift] =
2776 anv_address_add(buffers[i], range->start * 32);
2777 }
2778 #else
2779 /* For Ivy Bridge, push constants are relative to dynamic state
2780 * base address and we only ever push actual push constants.
2781 */
2782 if (bind_map->push_ranges[0].length > 0) {
2783 assert(buffer_count == 1);
2784 assert(bind_map->push_ranges[0].set ==
2785 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2786 assert(buffers[0].bo ==
2787 cmd_buffer->device->dynamic_state_pool.block_pool.bo);
2788 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
2789 c.ConstantBody.Buffer[0].bo = NULL;
2790 c.ConstantBody.Buffer[0].offset = buffers[0].offset;
2791 }
2792 assert(bind_map->push_ranges[1].length == 0);
2793 assert(bind_map->push_ranges[2].length == 0);
2794 assert(bind_map->push_ranges[3].length == 0);
2795 #endif
2796 }
2797 }
2798 }
2799
2800 static void
cmd_buffer_flush_push_constants(struct anv_cmd_buffer * cmd_buffer,VkShaderStageFlags dirty_stages)2801 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2802 VkShaderStageFlags dirty_stages)
2803 {
2804 VkShaderStageFlags flushed = 0;
2805 struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2806 const struct anv_graphics_pipeline *pipeline = gfx_state->pipeline;
2807
2808 /* Compute robust pushed register access mask for each stage. */
2809 if (cmd_buffer->device->vk.enabled_features.robustBufferAccess) {
2810 anv_foreach_stage(stage, dirty_stages) {
2811 if (!anv_pipeline_has_stage(pipeline, stage))
2812 continue;
2813
2814 const struct anv_shader_bin *shader = pipeline->shaders[stage];
2815 const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
2816 struct anv_push_constants *push = &gfx_state->base.push_constants;
2817
2818 push->push_reg_mask[stage] = 0;
2819 /* Start of the current range in the shader, relative to the start of
2820 * push constants in the shader.
2821 */
2822 unsigned range_start_reg = 0;
2823 for (unsigned i = 0; i < 4; i++) {
2824 const struct anv_push_range *range = &bind_map->push_ranges[i];
2825 if (range->length == 0)
2826 continue;
2827
2828 unsigned bound_size =
2829 get_push_range_bound_size(cmd_buffer, shader, range);
2830 if (bound_size >= range->start * 32) {
2831 unsigned bound_regs =
2832 MIN2(DIV_ROUND_UP(bound_size, 32) - range->start,
2833 range->length);
2834 assert(range_start_reg + bound_regs <= 64);
2835 push->push_reg_mask[stage] |= BITFIELD64_RANGE(range_start_reg,
2836 bound_regs);
2837 }
2838
2839 cmd_buffer->state.push_constants_dirty |=
2840 mesa_to_vk_shader_stage(stage);
2841
2842 range_start_reg += range->length;
2843 }
2844 }
2845 }
2846
2847 /* Resets the push constant state so that we allocate a new one if
2848 * needed.
2849 */
2850 gfx_state->base.push_constants_state = ANV_STATE_NULL;
2851
2852 anv_foreach_stage(stage, dirty_stages) {
2853 unsigned buffer_count = 0;
2854 flushed |= mesa_to_vk_shader_stage(stage);
2855 UNUSED uint32_t max_push_range = 0;
2856
2857 struct anv_address buffers[4] = {};
2858 if (anv_pipeline_has_stage(pipeline, stage)) {
2859 const struct anv_shader_bin *shader = pipeline->shaders[stage];
2860 const struct anv_pipeline_bind_map *bind_map = &shader->bind_map;
2861
2862 /* We have to gather buffer addresses as a second step because the
2863 * loop above puts data into the push constant area and the call to
2864 * get_push_range_address is what locks our push constants and copies
2865 * them into the actual GPU buffer. If we did the two loops at the
2866 * same time, we'd risk only having some of the sizes in the push
2867 * constant buffer when we did the copy.
2868 */
2869 for (unsigned i = 0; i < 4; i++) {
2870 const struct anv_push_range *range = &bind_map->push_ranges[i];
2871 if (range->length == 0)
2872 break;
2873
2874 buffers[i] = get_push_range_address(cmd_buffer, shader, range);
2875 max_push_range = MAX2(max_push_range, range->length);
2876 buffer_count++;
2877 }
2878
2879 /* We have at most 4 buffers but they should be tightly packed */
2880 for (unsigned i = buffer_count; i < 4; i++)
2881 assert(bind_map->push_ranges[i].length == 0);
2882 }
2883
2884 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffers, buffer_count);
2885 }
2886
2887 cmd_buffer->state.push_constants_dirty &= ~flushed;
2888 }
2889
2890 static void
cmd_buffer_emit_clip(struct anv_cmd_buffer * cmd_buffer)2891 cmd_buffer_emit_clip(struct anv_cmd_buffer *cmd_buffer)
2892 {
2893 const struct vk_dynamic_graphics_state *dyn =
2894 &cmd_buffer->vk.dynamic_graphics_state;
2895
2896 if (!(cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) &&
2897 !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY) &&
2898 #if GFX_VER <= 7
2899 !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_CULL_MODE) &&
2900 !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_FRONT_FACE) &&
2901 #endif
2902 !BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT))
2903 return;
2904
2905 /* Take dynamic primitive topology in to account with
2906 * 3DSTATE_CLIP::ViewportXYClipTestEnable
2907 */
2908 VkPolygonMode dynamic_raster_mode =
2909 genX(raster_polygon_mode)(cmd_buffer->state.gfx.pipeline,
2910 dyn->ia.primitive_topology);
2911 bool xy_clip_test_enable = (dynamic_raster_mode == VK_POLYGON_MODE_FILL);
2912
2913 struct GENX(3DSTATE_CLIP) clip = {
2914 GENX(3DSTATE_CLIP_header),
2915 #if GFX_VER <= 7
2916 .FrontWinding = genX(vk_to_intel_front_face)[dyn->rs.front_face],
2917 .CullMode = genX(vk_to_intel_cullmode)[dyn->rs.cull_mode],
2918 #endif
2919 .ViewportXYClipTestEnable = xy_clip_test_enable,
2920 };
2921 uint32_t dwords[GENX(3DSTATE_CLIP_length)];
2922
2923 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
2924 if (anv_pipeline_is_primitive(pipeline)) {
2925 const struct elk_vue_prog_data *last =
2926 anv_pipeline_get_last_vue_prog_data(pipeline);
2927 if (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
2928 clip.MaximumVPIndex = dyn->vp.viewport_count > 0 ?
2929 dyn->vp.viewport_count - 1 : 0;
2930 }
2931 }
2932
2933 GENX(3DSTATE_CLIP_pack)(NULL, dwords, &clip);
2934 anv_batch_emit_merge(&cmd_buffer->batch, dwords,
2935 pipeline->gfx7.clip);
2936 }
2937
2938 static void
cmd_buffer_emit_viewport(struct anv_cmd_buffer * cmd_buffer)2939 cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
2940 {
2941 struct anv_instance *instance = cmd_buffer->device->physical->instance;
2942 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
2943 const struct vk_dynamic_graphics_state *dyn =
2944 &cmd_buffer->vk.dynamic_graphics_state;
2945 uint32_t count = dyn->vp.viewport_count;
2946 const VkViewport *viewports = dyn->vp.viewports;
2947 struct anv_state sf_clip_state =
2948 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
2949
2950 bool negative_one_to_one =
2951 cmd_buffer->state.gfx.pipeline->negative_one_to_one;
2952
2953 float scale = negative_one_to_one ? 0.5f : 1.0f;
2954
2955 for (uint32_t i = 0; i < count; i++) {
2956 const VkViewport *vp = &viewports[i];
2957
2958 /* The gfx7 state struct has just the matrix and guardband fields, the
2959 * gfx8 struct adds the min/max viewport fields. */
2960 struct GENX(SF_CLIP_VIEWPORT) sfv = {
2961 .ViewportMatrixElementm00 = vp->width / 2,
2962 .ViewportMatrixElementm11 = vp->height / 2,
2963 .ViewportMatrixElementm22 = (vp->maxDepth - vp->minDepth) * scale,
2964 .ViewportMatrixElementm30 = vp->x + vp->width / 2,
2965 .ViewportMatrixElementm31 = vp->y + vp->height / 2,
2966 .ViewportMatrixElementm32 = negative_one_to_one ?
2967 (vp->minDepth + vp->maxDepth) * scale : vp->minDepth,
2968 .XMinClipGuardband = -1.0f,
2969 .XMaxClipGuardband = 1.0f,
2970 .YMinClipGuardband = -1.0f,
2971 .YMaxClipGuardband = 1.0f,
2972 #if GFX_VER >= 8
2973 .XMinViewPort = vp->x,
2974 .XMaxViewPort = vp->x + vp->width - 1,
2975 .YMinViewPort = MIN2(vp->y, vp->y + vp->height),
2976 .YMaxViewPort = MAX2(vp->y, vp->y + vp->height) - 1,
2977 #endif
2978 };
2979
2980 /* Fix depth test misrenderings by lowering translated depth range */
2981 if (instance->lower_depth_range_rate != 1.0f)
2982 sfv.ViewportMatrixElementm32 *= instance->lower_depth_range_rate;
2983
2984 const uint32_t fb_size_max = 1 << 14;
2985 uint32_t x_min = 0, x_max = fb_size_max;
2986 uint32_t y_min = 0, y_max = fb_size_max;
2987
2988 /* If we have a valid renderArea, include that */
2989 if (gfx->render_area.extent.width > 0 &&
2990 gfx->render_area.extent.height > 0) {
2991 x_min = MAX2(x_min, gfx->render_area.offset.x);
2992 x_max = MIN2(x_min, gfx->render_area.offset.x +
2993 gfx->render_area.extent.width);
2994 y_min = MAX2(y_min, gfx->render_area.offset.y);
2995 y_max = MIN2(y_min, gfx->render_area.offset.y +
2996 gfx->render_area.extent.height);
2997 }
2998
2999 /* The client is required to have enough scissors for whatever it sets
3000 * as ViewportIndex but it's possible that they've got more viewports
3001 * set from a previous command. Also, from the Vulkan 1.3.207:
3002 *
3003 * "The application must ensure (using scissor if necessary) that
3004 * all rendering is contained within the render area."
3005 *
3006 * If the client doesn't set a scissor, that basically means it
3007 * guarantees everything is in-bounds already. If we end up using a
3008 * guardband of [-1, 1] in that case, there shouldn't be much loss.
3009 * It's theoretically possible that they could do all their clipping
3010 * with clip planes but that'd be a bit odd.
3011 */
3012 if (i < dyn->vp.scissor_count) {
3013 const VkRect2D *scissor = &dyn->vp.scissors[i];
3014 x_min = MAX2(x_min, scissor->offset.x);
3015 x_max = MIN2(x_min, scissor->offset.x + scissor->extent.width);
3016 y_min = MAX2(y_min, scissor->offset.y);
3017 y_max = MIN2(y_min, scissor->offset.y + scissor->extent.height);
3018 }
3019
3020 /* Only bother calculating the guardband if our known render area is
3021 * less than the maximum size. Otherwise, it will calculate [-1, 1]
3022 * anyway but possibly with precision loss.
3023 */
3024 if (x_min > 0 || x_max < fb_size_max ||
3025 y_min > 0 || y_max < fb_size_max) {
3026 intel_calculate_guardband_size(x_min, x_max, y_min, y_max,
3027 sfv.ViewportMatrixElementm00,
3028 sfv.ViewportMatrixElementm11,
3029 sfv.ViewportMatrixElementm30,
3030 sfv.ViewportMatrixElementm31,
3031 &sfv.XMinClipGuardband,
3032 &sfv.XMaxClipGuardband,
3033 &sfv.YMinClipGuardband,
3034 &sfv.YMaxClipGuardband);
3035 }
3036
3037 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64, &sfv);
3038 }
3039
3040 anv_batch_emit(&cmd_buffer->batch,
3041 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) {
3042 clip.SFClipViewportPointer = sf_clip_state.offset;
3043 }
3044 }
3045
3046 static void
cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer * cmd_buffer,bool depth_clamp_enable)3047 cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
3048 bool depth_clamp_enable)
3049 {
3050 const struct vk_dynamic_graphics_state *dyn =
3051 &cmd_buffer->vk.dynamic_graphics_state;
3052 uint32_t count = dyn->vp.viewport_count;
3053 const VkViewport *viewports = dyn->vp.viewports;
3054 struct anv_state cc_state =
3055 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
3056
3057 for (uint32_t i = 0; i < count; i++) {
3058 const VkViewport *vp = &viewports[i];
3059
3060 /* From the Vulkan spec:
3061 *
3062 * "It is valid for minDepth to be greater than or equal to
3063 * maxDepth."
3064 */
3065 float min_depth = MIN2(vp->minDepth, vp->maxDepth);
3066 float max_depth = MAX2(vp->minDepth, vp->maxDepth);
3067
3068 if (dyn->vp.depth_clamp_mode == VK_DEPTH_CLAMP_MODE_USER_DEFINED_RANGE_EXT) {
3069 min_depth = dyn->vp.depth_clamp_range.minDepthClamp;
3070 max_depth = dyn->vp.depth_clamp_range.maxDepthClamp;
3071 }
3072
3073 struct GENX(CC_VIEWPORT) cc_viewport = {
3074 .MinimumDepth = depth_clamp_enable ? min_depth : 0.0f,
3075 .MaximumDepth = depth_clamp_enable ? max_depth : 1.0f,
3076 };
3077
3078 GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
3079 }
3080
3081 anv_batch_emit(&cmd_buffer->batch,
3082 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) {
3083 cc.CCViewportPointer = cc_state.offset;
3084 }
3085 }
3086
3087 static void
cmd_buffer_emit_scissor(struct anv_cmd_buffer * cmd_buffer)3088 cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer)
3089 {
3090 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
3091 const struct vk_dynamic_graphics_state *dyn =
3092 &cmd_buffer->vk.dynamic_graphics_state;
3093 uint32_t count = dyn->vp.scissor_count;
3094 const VkRect2D *scissors = dyn->vp.scissors;
3095 const VkViewport *viewports = dyn->vp.viewports;
3096
3097 /* Wa_1409725701:
3098 * "The viewport-specific state used by the SF unit (SCISSOR_RECT) is
3099 * stored as an array of up to 16 elements. The location of first
3100 * element of the array, as specified by Pointer to SCISSOR_RECT, should
3101 * be aligned to a 64-byte boundary.
3102 */
3103 uint32_t alignment = 64;
3104 struct anv_state scissor_state =
3105 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, alignment);
3106
3107 for (uint32_t i = 0; i < count; i++) {
3108 const VkRect2D *s = &scissors[i];
3109 const VkViewport *vp = &viewports[i];
3110
3111 /* Since xmax and ymax are inclusive, we have to have xmax < xmin or
3112 * ymax < ymin for empty clips. In case clip x, y, width height are all
3113 * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't
3114 * what we want. Just special case empty clips and produce a canonical
3115 * empty clip. */
3116 static const struct GENX(SCISSOR_RECT) empty_scissor = {
3117 .ScissorRectangleYMin = 1,
3118 .ScissorRectangleXMin = 1,
3119 .ScissorRectangleYMax = 0,
3120 .ScissorRectangleXMax = 0
3121 };
3122
3123 const int max = 0xffff;
3124
3125 uint32_t y_min = MAX2(s->offset.y, MIN2(vp->y, vp->y + vp->height));
3126 uint32_t x_min = MAX2(s->offset.x, vp->x);
3127 int64_t y_max = MIN2(s->offset.y + s->extent.height - 1,
3128 MAX2(vp->y, vp->y + vp->height) - 1);
3129 int64_t x_max = MIN2(s->offset.x + s->extent.width - 1,
3130 vp->x + vp->width - 1);
3131
3132 y_max = CLAMP(y_max, 0, INT16_MAX >> 1);
3133 x_max = CLAMP(x_max, 0, INT16_MAX >> 1);
3134
3135 /* Do this math using int64_t so overflow gets clamped correctly. */
3136 if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
3137 y_min = CLAMP((uint64_t) y_min, gfx->render_area.offset.y, max);
3138 x_min = CLAMP((uint64_t) x_min, gfx->render_area.offset.x, max);
3139 y_max = CLAMP((uint64_t) y_max, 0,
3140 gfx->render_area.offset.y +
3141 gfx->render_area.extent.height - 1);
3142 x_max = CLAMP((uint64_t) x_max, 0,
3143 gfx->render_area.offset.x +
3144 gfx->render_area.extent.width - 1);
3145 }
3146
3147 struct GENX(SCISSOR_RECT) scissor = {
3148 .ScissorRectangleYMin = y_min,
3149 .ScissorRectangleXMin = x_min,
3150 .ScissorRectangleYMax = y_max,
3151 .ScissorRectangleXMax = x_max
3152 };
3153
3154 if (s->extent.width <= 0 || s->extent.height <= 0) {
3155 GENX(SCISSOR_RECT_pack)(NULL, scissor_state.map + i * 8,
3156 &empty_scissor);
3157 } else {
3158 GENX(SCISSOR_RECT_pack)(NULL, scissor_state.map + i * 8, &scissor);
3159 }
3160 }
3161
3162 anv_batch_emit(&cmd_buffer->batch,
3163 GENX(3DSTATE_SCISSOR_STATE_POINTERS), ssp) {
3164 ssp.ScissorRectPointer = scissor_state.offset;
3165 }
3166 }
3167
3168 static void
cmd_buffer_emit_streamout(struct anv_cmd_buffer * cmd_buffer)3169 cmd_buffer_emit_streamout(struct anv_cmd_buffer *cmd_buffer)
3170 {
3171 const struct vk_dynamic_graphics_state *dyn =
3172 &cmd_buffer->vk.dynamic_graphics_state;
3173 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3174
3175 #if GFX_VER == 7
3176 # define streamout_state_dw pipeline->gfx7.streamout_state
3177 #else
3178 # define streamout_state_dw pipeline->gfx8.streamout_state
3179 #endif
3180
3181 uint32_t dwords[GENX(3DSTATE_STREAMOUT_length)];
3182
3183 struct GENX(3DSTATE_STREAMOUT) so = {
3184 GENX(3DSTATE_STREAMOUT_header),
3185 .RenderingDisable = dyn->rs.rasterizer_discard_enable,
3186 };
3187 GENX(3DSTATE_STREAMOUT_pack)(NULL, dwords, &so);
3188 anv_batch_emit_merge(&cmd_buffer->batch, dwords, streamout_state_dw);
3189 }
3190
3191 ALWAYS_INLINE static void
genX(cmd_buffer_flush_gfx_state)3192 genX(cmd_buffer_flush_gfx_state)(struct anv_cmd_buffer *cmd_buffer)
3193 {
3194 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3195 const struct vk_dynamic_graphics_state *dyn =
3196 &cmd_buffer->vk.dynamic_graphics_state;
3197 uint32_t *p;
3198
3199 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3200
3201 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
3202
3203 genX(flush_pipeline_select_3d)(cmd_buffer);
3204
3205 /* Apply any pending pipeline flushes we may have. We want to apply them
3206 * now because, if any of those flushes are for things like push constants,
3207 * the GPU will read the state at weird times.
3208 */
3209 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3210
3211 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
3212 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
3213 vb_emit |= pipeline->vb_used;
3214
3215 if (vb_emit) {
3216 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3217 const uint32_t num_dwords = 1 + num_buffers * 4;
3218
3219 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3220 GENX(3DSTATE_VERTEX_BUFFERS));
3221 uint32_t i = 0;
3222 u_foreach_bit(vb, vb_emit) {
3223 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3224 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3225
3226 struct GENX(VERTEX_BUFFER_STATE) state;
3227 if (buffer) {
3228 uint32_t stride = dyn->vi_binding_strides[vb];
3229 UNUSED uint32_t size = cmd_buffer->state.vertex_bindings[vb].size;
3230
3231 #if GFX_VER <= 7
3232 bool per_instance = pipeline->vb[vb].instanced;
3233 uint32_t divisor = pipeline->vb[vb].instance_divisor *
3234 pipeline->instance_multiplier;
3235 #endif
3236
3237 state = (struct GENX(VERTEX_BUFFER_STATE)) {
3238 .VertexBufferIndex = vb,
3239
3240 .MOCS = anv_mocs(cmd_buffer->device, buffer->address.bo,
3241 ISL_SURF_USAGE_VERTEX_BUFFER_BIT),
3242 #if GFX_VER <= 7
3243 .BufferAccessType = per_instance ? INSTANCEDATA : VERTEXDATA,
3244 .InstanceDataStepRate = per_instance ? divisor : 1,
3245 #endif
3246 .AddressModifyEnable = true,
3247 .BufferPitch = stride,
3248 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3249 .NullVertexBuffer = offset >= buffer->vk.size,
3250
3251 #if GFX_VER >= 8
3252 .BufferSize = size,
3253 #else
3254 /* XXX: to handle dynamic offset for older gens we might want
3255 * to modify Endaddress, but there are issues when doing so:
3256 *
3257 * https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/7439
3258 */
3259 .EndAddress = anv_address_add(buffer->address, buffer->vk.size - 1),
3260 #endif
3261 };
3262 } else {
3263 state = (struct GENX(VERTEX_BUFFER_STATE)) {
3264 .VertexBufferIndex = vb,
3265 .NullVertexBuffer = true,
3266 .MOCS = anv_mocs(cmd_buffer->device, NULL,
3267 ISL_SURF_USAGE_VERTEX_BUFFER_BIT),
3268 };
3269 }
3270
3271 #if GFX_VER == 8
3272 genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer, vb,
3273 state.BufferStartingAddress,
3274 state.BufferSize);
3275 #endif
3276
3277 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3278 i++;
3279 }
3280 }
3281
3282 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3283
3284 uint32_t descriptors_dirty = cmd_buffer->state.descriptors_dirty &
3285 pipeline->active_stages;
3286 if (!cmd_buffer->state.gfx.dirty && !descriptors_dirty &&
3287 !vk_dynamic_graphics_state_any_dirty(dyn) &&
3288 !cmd_buffer->state.push_constants_dirty)
3289 return;
3290
3291 if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) ||
3292 (GFX_VER == 7 && (cmd_buffer->state.gfx.dirty &
3293 ANV_CMD_DIRTY_PIPELINE))) {
3294 /* Wa_16011411144:
3295 *
3296 * SW must insert a PIPE_CONTROL cmd before and after the
3297 * 3dstate_so_buffer_index_0/1/2/3 states to ensure so_buffer_index_*
3298 * state is not combined with other state changes.
3299 */
3300 if (intel_device_info_is_dg2(cmd_buffer->device->info)) {
3301 anv_add_pending_pipe_bits(cmd_buffer,
3302 ANV_PIPE_CS_STALL_BIT,
3303 "before SO_BUFFER change WA");
3304 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3305 }
3306
3307 /* We don't need any per-buffer dirty tracking because you're not
3308 * allowed to bind different XFB buffers while XFB is enabled.
3309 */
3310 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3311 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3312 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3313 sob.SOBufferIndex = idx;
3314
3315 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3316 sob.MOCS = anv_mocs(cmd_buffer->device, xfb->buffer->address.bo,
3317 ISL_SURF_USAGE_STREAM_OUT_BIT);
3318 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3319 xfb->offset);
3320 #if GFX_VER >= 8
3321 sob.SOBufferEnable = true;
3322 sob.StreamOffsetWriteEnable = false;
3323 /* Size is in DWords - 1 */
3324 sob.SurfaceSize = DIV_ROUND_UP(xfb->size, 4) - 1;
3325 #else
3326 /* We don't have SOBufferEnable in 3DSTATE_SO_BUFFER on Gfx7 so
3327 * we trust in SurfaceEndAddress = SurfaceBaseAddress = 0 (the
3328 * default for an empty SO_BUFFER packet) to disable them.
3329 */
3330 sob.SurfacePitch = pipeline->gfx7.xfb_bo_pitch[idx];
3331 sob.SurfaceEndAddress = anv_address_add(xfb->buffer->address,
3332 xfb->offset + xfb->size);
3333 #endif
3334 } else {
3335 sob.MOCS = anv_mocs(cmd_buffer->device, NULL, 0);
3336 }
3337 }
3338 }
3339 }
3340
3341 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3342 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
3343
3344 /* If the pipeline changed, we may need to re-allocate push constant
3345 * space in the URB.
3346 */
3347 cmd_buffer_alloc_push_constants(cmd_buffer);
3348 }
3349
3350 #if GFX_VER <= 7
3351 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3352 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3353 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3354 *
3355 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3356 * stall needs to be sent just prior to any 3DSTATE_VS,
3357 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3358 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3359 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3360 * PIPE_CONTROL needs to be sent before any combination of VS
3361 * associated 3DSTATE."
3362 */
3363 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3364 pc.DepthStallEnable = true;
3365 pc.PostSyncOperation = WriteImmediateData;
3366 pc.Address = cmd_buffer->device->workaround_address;
3367 anv_debug_dump_pc(pc);
3368 }
3369 }
3370 #endif
3371
3372 /* Render targets live in the same binding table as fragment descriptors */
3373 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3374 descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3375
3376 /* We emit the binding tables and sampler tables first, then emit push
3377 * constants and then finally emit binding table and sampler table
3378 * pointers. It has to happen in this order, since emitting the binding
3379 * tables may change the push constants (in case of storage images). After
3380 * emitting push constants, on SKL+ we have to emit the corresponding
3381 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3382 */
3383 uint32_t dirty = 0;
3384 if (descriptors_dirty) {
3385 dirty = flush_descriptor_sets(cmd_buffer,
3386 &cmd_buffer->state.gfx.base,
3387 descriptors_dirty,
3388 pipeline->shaders,
3389 ARRAY_SIZE(pipeline->shaders));
3390 cmd_buffer->state.descriptors_dirty &= ~dirty;
3391 }
3392
3393 if (dirty || cmd_buffer->state.push_constants_dirty) {
3394 /* Because we're pushing UBOs, we have to push whenever either
3395 * descriptors or push constants is dirty.
3396 */
3397 dirty |= cmd_buffer->state.push_constants_dirty;
3398 cmd_buffer_flush_push_constants(cmd_buffer,
3399 dirty & VK_SHADER_STAGE_ALL_GRAPHICS);
3400 }
3401
3402 if (dirty & VK_SHADER_STAGE_ALL_GRAPHICS) {
3403 cmd_buffer_emit_descriptor_pointers(cmd_buffer,
3404 dirty & VK_SHADER_STAGE_ALL_GRAPHICS);
3405 }
3406
3407 cmd_buffer_emit_clip(cmd_buffer);
3408
3409 if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
3410 ANV_CMD_DIRTY_XFB_ENABLE)) ||
3411 BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_RS_RASTERIZER_DISCARD_ENABLE))
3412 cmd_buffer_emit_streamout(cmd_buffer);
3413
3414 if ((cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_PIPELINE |
3415 ANV_CMD_DIRTY_RENDER_TARGETS)) ||
3416 BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) ||
3417 BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_VP_SCISSORS)) {
3418 cmd_buffer_emit_viewport(cmd_buffer);
3419 cmd_buffer_emit_depth_viewport(cmd_buffer,
3420 pipeline->depth_clamp_enable);
3421 cmd_buffer_emit_scissor(cmd_buffer);
3422 }
3423
3424 if ((cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) ||
3425 BITSET_TEST(dyn->dirty, MESA_VK_DYNAMIC_IA_PRIMITIVE_TOPOLOGY)) {
3426 uint32_t topology;
3427 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3428 topology = _3DPRIM_PATCHLIST(pipeline->patch_control_points);
3429 else
3430 topology = genX(vk_to_intel_primitive_type)[dyn->ia.primitive_topology];
3431
3432 cmd_buffer->state.gfx.primitive_topology = topology;
3433
3434 #if (GFX_VER >= 8)
3435 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
3436 vft.PrimitiveTopologyType = topology;
3437 }
3438 #endif
3439 }
3440
3441 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3442 }
3443
3444 static void
emit_vertex_bo(struct anv_cmd_buffer * cmd_buffer,struct anv_address addr,uint32_t size,uint32_t index)3445 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3446 struct anv_address addr,
3447 uint32_t size, uint32_t index)
3448 {
3449 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3450 GENX(3DSTATE_VERTEX_BUFFERS));
3451
3452 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3453 &(struct GENX(VERTEX_BUFFER_STATE)) {
3454 .VertexBufferIndex = index,
3455 .AddressModifyEnable = true,
3456 .BufferPitch = 0,
3457 .MOCS = anv_mocs(cmd_buffer->device, addr.bo,
3458 ISL_SURF_USAGE_VERTEX_BUFFER_BIT),
3459 .NullVertexBuffer = size == 0,
3460 #if (GFX_VER >= 8)
3461 .BufferStartingAddress = addr,
3462 .BufferSize = size
3463 #else
3464 .BufferStartingAddress = addr,
3465 .EndAddress = anv_address_add(addr, size),
3466 #endif
3467 });
3468
3469 genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(cmd_buffer,
3470 index, addr, size);
3471 }
3472
3473 static void
emit_base_vertex_instance_bo(struct anv_cmd_buffer * cmd_buffer,struct anv_address addr)3474 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3475 struct anv_address addr)
3476 {
3477 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3478 }
3479
3480 static void
emit_base_vertex_instance(struct anv_cmd_buffer * cmd_buffer,uint32_t base_vertex,uint32_t base_instance)3481 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3482 uint32_t base_vertex, uint32_t base_instance)
3483 {
3484 if (base_vertex == 0 && base_instance == 0) {
3485 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3486 } else {
3487 struct anv_state id_state =
3488 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3489
3490 ((uint32_t *)id_state.map)[0] = base_vertex;
3491 ((uint32_t *)id_state.map)[1] = base_instance;
3492
3493 struct anv_address addr = {
3494 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3495 .offset = id_state.offset,
3496 };
3497
3498 emit_base_vertex_instance_bo(cmd_buffer, addr);
3499 }
3500 }
3501
3502 static void
emit_draw_index(struct anv_cmd_buffer * cmd_buffer,uint32_t draw_index)3503 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3504 {
3505 struct anv_state state =
3506 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3507
3508 ((uint32_t *)state.map)[0] = draw_index;
3509
3510 struct anv_address addr = {
3511 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3512 .offset = state.offset,
3513 };
3514
3515 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3516 }
3517
3518 static void
update_dirty_vbs_for_gfx8_vb_flush(struct anv_cmd_buffer * cmd_buffer,uint32_t access_type)3519 update_dirty_vbs_for_gfx8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3520 uint32_t access_type)
3521 {
3522 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3523 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3524
3525 uint64_t vb_used = pipeline->vb_used;
3526 if (vs_prog_data->uses_firstvertex ||
3527 vs_prog_data->uses_baseinstance)
3528 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3529 if (vs_prog_data->uses_drawid)
3530 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3531
3532 genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(cmd_buffer,
3533 access_type == RANDOM,
3534 vb_used);
3535 }
3536
3537 ALWAYS_INLINE static void
cmd_buffer_emit_vertex_constants_and_flush(struct anv_cmd_buffer * cmd_buffer,const struct elk_vs_prog_data * vs_prog_data,uint32_t base_vertex,uint32_t base_instance,uint32_t draw_id,bool force_flush)3538 cmd_buffer_emit_vertex_constants_and_flush(struct anv_cmd_buffer *cmd_buffer,
3539 const struct elk_vs_prog_data *vs_prog_data,
3540 uint32_t base_vertex,
3541 uint32_t base_instance,
3542 uint32_t draw_id,
3543 bool force_flush)
3544 {
3545 bool emitted = false;
3546 if (vs_prog_data->uses_firstvertex ||
3547 vs_prog_data->uses_baseinstance) {
3548 emit_base_vertex_instance(cmd_buffer, base_vertex, base_instance);
3549 emitted = true;
3550 }
3551 if (vs_prog_data->uses_drawid) {
3552 emit_draw_index(cmd_buffer, draw_id);
3553 emitted = true;
3554 }
3555 /* Emitting draw index or vertex index BOs may result in needing
3556 * additional VF cache flushes.
3557 */
3558 if (emitted || force_flush)
3559 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3560 }
3561
genX(CmdDraw)3562 void genX(CmdDraw)(
3563 VkCommandBuffer commandBuffer,
3564 uint32_t vertexCount,
3565 uint32_t instanceCount,
3566 uint32_t firstVertex,
3567 uint32_t firstInstance)
3568 {
3569 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3570 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3571 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3572
3573 if (anv_batch_has_error(&cmd_buffer->batch))
3574 return;
3575
3576 const uint32_t count =
3577 vertexCount * instanceCount * pipeline->instance_multiplier;
3578 anv_measure_snapshot(cmd_buffer,
3579 INTEL_SNAPSHOT_DRAW,
3580 "draw", count);
3581 trace_intel_begin_draw(&cmd_buffer->trace);
3582
3583 /* Select pipeline here to allow
3584 * cmd_buffer_emit_vertex_constants_and_flush() without flushing before
3585 * cmd_buffer_flush_gfx_state().
3586 */
3587 genX(flush_pipeline_select_3d)(cmd_buffer);
3588
3589 if (cmd_buffer->state.conditional_render_enabled)
3590 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3591
3592 cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
3593 firstVertex, firstInstance, 0,
3594 false /* force_flush */);
3595
3596 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
3597
3598 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3599 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3600 prim.VertexAccessType = SEQUENTIAL;
3601 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
3602 prim.VertexCountPerInstance = vertexCount;
3603 prim.StartVertexLocation = firstVertex;
3604 prim.InstanceCount = instanceCount *
3605 pipeline->instance_multiplier;
3606 prim.StartInstanceLocation = firstInstance;
3607 prim.BaseVertexLocation = 0;
3608 }
3609
3610 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
3611
3612 trace_intel_end_draw(&cmd_buffer->trace, count, 0, 0);
3613 }
3614
genX(CmdDrawMultiEXT)3615 void genX(CmdDrawMultiEXT)(
3616 VkCommandBuffer commandBuffer,
3617 uint32_t drawCount,
3618 const VkMultiDrawInfoEXT *pVertexInfo,
3619 uint32_t instanceCount,
3620 uint32_t firstInstance,
3621 uint32_t stride)
3622 {
3623 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3624 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3625 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3626
3627 if (anv_batch_has_error(&cmd_buffer->batch))
3628 return;
3629
3630 const uint32_t count =
3631 drawCount * instanceCount * pipeline->instance_multiplier;
3632 anv_measure_snapshot(cmd_buffer,
3633 INTEL_SNAPSHOT_DRAW,
3634 "draw_multi", count);
3635 trace_intel_begin_draw_multi(&cmd_buffer->trace);
3636
3637 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
3638
3639 if (cmd_buffer->state.conditional_render_enabled)
3640 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3641
3642 uint32_t i = 0;
3643 vk_foreach_multi_draw(draw, i, pVertexInfo, drawCount, stride) {
3644 cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
3645 draw->firstVertex,
3646 firstInstance, i, !i);
3647
3648 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3649 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3650 prim.VertexAccessType = SEQUENTIAL;
3651 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
3652 prim.VertexCountPerInstance = draw->vertexCount;
3653 prim.StartVertexLocation = draw->firstVertex;
3654 prim.InstanceCount = instanceCount *
3655 pipeline->instance_multiplier;
3656 prim.StartInstanceLocation = firstInstance;
3657 prim.BaseVertexLocation = 0;
3658 }
3659 }
3660
3661 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
3662
3663 trace_intel_end_draw_multi(&cmd_buffer->trace, count, 0, 0);
3664 }
3665
genX(CmdDrawIndexed)3666 void genX(CmdDrawIndexed)(
3667 VkCommandBuffer commandBuffer,
3668 uint32_t indexCount,
3669 uint32_t instanceCount,
3670 uint32_t firstIndex,
3671 int32_t vertexOffset,
3672 uint32_t firstInstance)
3673 {
3674 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3675 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3676 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3677
3678 if (anv_batch_has_error(&cmd_buffer->batch))
3679 return;
3680
3681 const uint32_t count =
3682 indexCount * instanceCount * pipeline->instance_multiplier;
3683 anv_measure_snapshot(cmd_buffer,
3684 INTEL_SNAPSHOT_DRAW,
3685 "draw indexed",
3686 count);
3687 trace_intel_begin_draw_indexed(&cmd_buffer->trace);
3688
3689 /* Select pipeline here to allow
3690 * cmd_buffer_emit_vertex_constants_and_flush() without flushing before
3691 * cmd_buffer_flush_gfx_state().
3692 */
3693 genX(flush_pipeline_select_3d)(cmd_buffer);
3694
3695 if (cmd_buffer->state.conditional_render_enabled)
3696 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3697
3698 cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
3699 vertexOffset, firstInstance,
3700 0, false /* force_flush */);
3701
3702 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
3703
3704 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3705 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3706 prim.VertexAccessType = RANDOM;
3707 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
3708 prim.VertexCountPerInstance = indexCount;
3709 prim.StartVertexLocation = firstIndex;
3710 prim.InstanceCount = instanceCount *
3711 pipeline->instance_multiplier;
3712 prim.StartInstanceLocation = firstInstance;
3713 prim.BaseVertexLocation = vertexOffset;
3714 }
3715
3716 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
3717
3718 trace_intel_end_draw_indexed(&cmd_buffer->trace, count, 0, 0);
3719 }
3720
genX(CmdDrawMultiIndexedEXT)3721 void genX(CmdDrawMultiIndexedEXT)(
3722 VkCommandBuffer commandBuffer,
3723 uint32_t drawCount,
3724 const VkMultiDrawIndexedInfoEXT *pIndexInfo,
3725 uint32_t instanceCount,
3726 uint32_t firstInstance,
3727 uint32_t stride,
3728 const int32_t *pVertexOffset)
3729 {
3730 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3731 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3732 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3733
3734 if (anv_batch_has_error(&cmd_buffer->batch))
3735 return;
3736
3737 const uint32_t count =
3738 drawCount * instanceCount * pipeline->instance_multiplier;
3739 anv_measure_snapshot(cmd_buffer,
3740 INTEL_SNAPSHOT_DRAW,
3741 "draw indexed_multi",
3742 count);
3743 trace_intel_begin_draw_indexed_multi(&cmd_buffer->trace);
3744
3745 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
3746
3747 if (cmd_buffer->state.conditional_render_enabled)
3748 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3749
3750 uint32_t i = 0;
3751 if (pVertexOffset) {
3752 if (vs_prog_data->uses_drawid) {
3753 bool emitted = true;
3754 if (vs_prog_data->uses_firstvertex ||
3755 vs_prog_data->uses_baseinstance) {
3756 emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance);
3757 emitted = true;
3758 }
3759 vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
3760 if (vs_prog_data->uses_drawid) {
3761 emit_draw_index(cmd_buffer, i);
3762 emitted = true;
3763 }
3764 /* Emitting draw index or vertex index BOs may result in needing
3765 * additional VF cache flushes.
3766 */
3767 if (emitted)
3768 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3769
3770 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3771 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3772 prim.VertexAccessType = RANDOM;
3773 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
3774 prim.VertexCountPerInstance = draw->indexCount;
3775 prim.StartVertexLocation = draw->firstIndex;
3776 prim.InstanceCount = instanceCount *
3777 pipeline->instance_multiplier;
3778 prim.StartInstanceLocation = firstInstance;
3779 prim.BaseVertexLocation = *pVertexOffset;
3780 }
3781 emitted = false;
3782 }
3783 } else {
3784 if (vs_prog_data->uses_firstvertex ||
3785 vs_prog_data->uses_baseinstance) {
3786 emit_base_vertex_instance(cmd_buffer, *pVertexOffset, firstInstance);
3787 /* Emitting draw index or vertex index BOs may result in needing
3788 * additional VF cache flushes.
3789 */
3790 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3791 }
3792 vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
3793 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3794 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3795 prim.VertexAccessType = RANDOM;
3796 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
3797 prim.VertexCountPerInstance = draw->indexCount;
3798 prim.StartVertexLocation = draw->firstIndex;
3799 prim.InstanceCount = instanceCount *
3800 pipeline->instance_multiplier;
3801 prim.StartInstanceLocation = firstInstance;
3802 prim.BaseVertexLocation = *pVertexOffset;
3803 }
3804 }
3805 }
3806 } else {
3807 vk_foreach_multi_draw_indexed(draw, i, pIndexInfo, drawCount, stride) {
3808 cmd_buffer_emit_vertex_constants_and_flush(cmd_buffer, vs_prog_data,
3809 draw->vertexOffset,
3810 firstInstance, i, i != 0);
3811
3812 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3813 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3814 prim.VertexAccessType = RANDOM;
3815 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
3816 prim.VertexCountPerInstance = draw->indexCount;
3817 prim.StartVertexLocation = draw->firstIndex;
3818 prim.InstanceCount = instanceCount *
3819 pipeline->instance_multiplier;
3820 prim.StartInstanceLocation = firstInstance;
3821 prim.BaseVertexLocation = draw->vertexOffset;
3822 }
3823 }
3824 }
3825
3826 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
3827
3828 trace_intel_end_draw_indexed_multi(&cmd_buffer->trace, count, 0, 0);
3829 }
3830
3831 /* Auto-Draw / Indirect Registers */
3832 #define GFX7_3DPRIM_END_OFFSET 0x2420
3833 #define GFX7_3DPRIM_START_VERTEX 0x2430
3834 #define GFX7_3DPRIM_VERTEX_COUNT 0x2434
3835 #define GFX7_3DPRIM_INSTANCE_COUNT 0x2438
3836 #define GFX7_3DPRIM_START_INSTANCE 0x243C
3837 #define GFX7_3DPRIM_BASE_VERTEX 0x2440
3838
genX(CmdDrawIndirectByteCountEXT)3839 void genX(CmdDrawIndirectByteCountEXT)(
3840 VkCommandBuffer commandBuffer,
3841 uint32_t instanceCount,
3842 uint32_t firstInstance,
3843 VkBuffer counterBuffer,
3844 VkDeviceSize counterBufferOffset,
3845 uint32_t counterOffset,
3846 uint32_t vertexStride)
3847 {
3848 #if GFX_VERx10 >= 75
3849 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3850 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3851 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3852 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3853
3854 /* firstVertex is always zero for this draw function */
3855 const uint32_t firstVertex = 0;
3856
3857 if (anv_batch_has_error(&cmd_buffer->batch))
3858 return;
3859
3860 anv_measure_snapshot(cmd_buffer,
3861 INTEL_SNAPSHOT_DRAW,
3862 "draw indirect byte count",
3863 instanceCount * pipeline->instance_multiplier);
3864 trace_intel_begin_draw_indirect_byte_count(&cmd_buffer->trace);
3865
3866 /* Select pipeline here to allow
3867 * cmd_buffer_emit_vertex_constants_and_flush() without flushing before
3868 * emit_base_vertex_instance() & emit_draw_index().
3869 */
3870 genX(flush_pipeline_select_3d)(cmd_buffer);
3871
3872 if (cmd_buffer->state.conditional_render_enabled)
3873 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3874
3875 if (vs_prog_data->uses_firstvertex ||
3876 vs_prog_data->uses_baseinstance)
3877 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3878 if (vs_prog_data->uses_drawid)
3879 emit_draw_index(cmd_buffer, 0);
3880
3881 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
3882
3883 struct mi_builder b;
3884 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
3885 struct mi_value count =
3886 mi_mem32(anv_address_add(counter_buffer->address,
3887 counterBufferOffset));
3888 if (counterOffset)
3889 count = mi_isub(&b, count, mi_imm(counterOffset));
3890 count = mi_udiv32_imm(&b, count, vertexStride);
3891 mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT), count);
3892
3893 mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX), mi_imm(firstVertex));
3894 mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT),
3895 mi_imm(instanceCount * pipeline->instance_multiplier));
3896 mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE), mi_imm(firstInstance));
3897 mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0));
3898
3899 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3900 prim.IndirectParameterEnable = true;
3901 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3902 prim.VertexAccessType = SEQUENTIAL;
3903 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
3904 }
3905
3906 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
3907
3908 trace_intel_end_draw_indirect_byte_count(&cmd_buffer->trace,
3909 instanceCount * pipeline->instance_multiplier, 0, 0);
3910 #endif /* GFX_VERx10 >= 75 */
3911 }
3912
3913 static void
load_indirect_parameters(struct anv_cmd_buffer * cmd_buffer,struct anv_address addr,bool indexed)3914 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3915 struct anv_address addr,
3916 bool indexed)
3917 {
3918 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3919
3920 struct mi_builder b;
3921 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
3922
3923 mi_store(&b, mi_reg32(GFX7_3DPRIM_VERTEX_COUNT),
3924 mi_mem32(anv_address_add(addr, 0)));
3925
3926 struct mi_value instance_count = mi_mem32(anv_address_add(addr, 4));
3927 if (pipeline->instance_multiplier > 1) {
3928 #if GFX_VERx10 >= 75
3929 instance_count = mi_imul_imm(&b, instance_count,
3930 pipeline->instance_multiplier);
3931 #else
3932 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3933 "MI_MATH is not supported on Ivy Bridge");
3934 #endif
3935 }
3936 mi_store(&b, mi_reg32(GFX7_3DPRIM_INSTANCE_COUNT), instance_count);
3937
3938 mi_store(&b, mi_reg32(GFX7_3DPRIM_START_VERTEX),
3939 mi_mem32(anv_address_add(addr, 8)));
3940
3941 if (indexed) {
3942 mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX),
3943 mi_mem32(anv_address_add(addr, 12)));
3944 mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE),
3945 mi_mem32(anv_address_add(addr, 16)));
3946 } else {
3947 mi_store(&b, mi_reg32(GFX7_3DPRIM_START_INSTANCE),
3948 mi_mem32(anv_address_add(addr, 12)));
3949 mi_store(&b, mi_reg32(GFX7_3DPRIM_BASE_VERTEX), mi_imm(0));
3950 }
3951 }
3952
genX(CmdDrawIndirect)3953 void genX(CmdDrawIndirect)(
3954 VkCommandBuffer commandBuffer,
3955 VkBuffer _buffer,
3956 VkDeviceSize offset,
3957 uint32_t drawCount,
3958 uint32_t stride)
3959 {
3960 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3961 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3962 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
3963 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3964
3965 if (anv_batch_has_error(&cmd_buffer->batch))
3966 return;
3967
3968 anv_measure_snapshot(cmd_buffer,
3969 INTEL_SNAPSHOT_DRAW,
3970 "draw indirect",
3971 drawCount);
3972 trace_intel_begin_draw_indirect(&cmd_buffer->trace);
3973
3974 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
3975
3976 if (cmd_buffer->state.conditional_render_enabled)
3977 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3978
3979 for (uint32_t i = 0; i < drawCount; i++) {
3980 struct anv_address draw = anv_address_add(buffer->address, offset);
3981
3982 if (vs_prog_data->uses_firstvertex ||
3983 vs_prog_data->uses_baseinstance)
3984 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3985 if (vs_prog_data->uses_drawid)
3986 emit_draw_index(cmd_buffer, i);
3987
3988 /* Emitting draw index or vertex index BOs may result in needing
3989 * additional VF cache flushes.
3990 */
3991 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3992
3993 load_indirect_parameters(cmd_buffer, draw, false);
3994
3995 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3996 prim.IndirectParameterEnable = true;
3997 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3998 prim.VertexAccessType = SEQUENTIAL;
3999 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
4000 }
4001
4002 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
4003
4004 offset += stride;
4005 }
4006
4007 trace_intel_end_draw_indirect(&cmd_buffer->trace, drawCount, 0, 0);
4008 }
4009
genX(CmdDrawIndexedIndirect)4010 void genX(CmdDrawIndexedIndirect)(
4011 VkCommandBuffer commandBuffer,
4012 VkBuffer _buffer,
4013 VkDeviceSize offset,
4014 uint32_t drawCount,
4015 uint32_t stride)
4016 {
4017 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4018 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4019 struct anv_graphics_pipeline *pipeline = cmd_buffer->state.gfx.pipeline;
4020 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4021
4022 if (anv_batch_has_error(&cmd_buffer->batch))
4023 return;
4024
4025 anv_measure_snapshot(cmd_buffer,
4026 INTEL_SNAPSHOT_DRAW,
4027 "draw indexed indirect",
4028 drawCount);
4029 trace_intel_begin_draw_indexed_indirect(&cmd_buffer->trace);
4030
4031 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
4032
4033 if (cmd_buffer->state.conditional_render_enabled)
4034 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4035
4036 for (uint32_t i = 0; i < drawCount; i++) {
4037 struct anv_address draw = anv_address_add(buffer->address, offset);
4038
4039 /* TODO: We need to stomp base vertex to 0 somehow */
4040 if (vs_prog_data->uses_firstvertex ||
4041 vs_prog_data->uses_baseinstance)
4042 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
4043 if (vs_prog_data->uses_drawid)
4044 emit_draw_index(cmd_buffer, i);
4045
4046 /* Emitting draw index or vertex index BOs may result in needing
4047 * additional VF cache flushes.
4048 */
4049 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4050
4051 load_indirect_parameters(cmd_buffer, draw, true);
4052
4053 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4054 prim.IndirectParameterEnable = true;
4055 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4056 prim.VertexAccessType = RANDOM;
4057 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
4058 }
4059
4060 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
4061
4062 offset += stride;
4063 }
4064
4065 trace_intel_end_draw_indexed_indirect(&cmd_buffer->trace, drawCount, 0, 0);
4066 }
4067
4068 static struct mi_value
prepare_for_draw_count_predicate(struct anv_cmd_buffer * cmd_buffer,struct mi_builder * b,struct anv_address count_address)4069 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
4070 struct mi_builder *b,
4071 struct anv_address count_address)
4072 {
4073 struct mi_value ret = mi_imm(0);
4074
4075 if (cmd_buffer->state.conditional_render_enabled) {
4076 #if GFX_VERx10 >= 75
4077 ret = mi_new_gpr(b);
4078 mi_store(b, mi_value_ref(b, ret), mi_mem32(count_address));
4079 #endif
4080 } else {
4081 /* Upload the current draw count from the draw parameters buffer to
4082 * MI_PREDICATE_SRC0.
4083 */
4084 mi_store(b, mi_reg64(MI_PREDICATE_SRC0), mi_mem32(count_address));
4085 mi_store(b, mi_reg32(MI_PREDICATE_SRC1 + 4), mi_imm(0));
4086 }
4087
4088 return ret;
4089 }
4090
4091 static void
emit_draw_count_predicate(struct anv_cmd_buffer * cmd_buffer,struct mi_builder * b,uint32_t draw_index)4092 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
4093 struct mi_builder *b,
4094 uint32_t draw_index)
4095 {
4096 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
4097 mi_store(b, mi_reg32(MI_PREDICATE_SRC1), mi_imm(draw_index));
4098
4099 if (draw_index == 0) {
4100 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4101 mip.LoadOperation = LOAD_LOADINV;
4102 mip.CombineOperation = COMBINE_SET;
4103 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4104 }
4105 } else {
4106 /* While draw_index < draw_count the predicate's result will be
4107 * (draw_index == draw_count) ^ TRUE = TRUE
4108 * When draw_index == draw_count the result is
4109 * (TRUE) ^ TRUE = FALSE
4110 * After this all results will be:
4111 * (FALSE) ^ FALSE = FALSE
4112 */
4113 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4114 mip.LoadOperation = LOAD_LOAD;
4115 mip.CombineOperation = COMBINE_XOR;
4116 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4117 }
4118 }
4119 }
4120
4121 #if GFX_VERx10 >= 75
4122 static void
emit_draw_count_predicate_with_conditional_render(struct anv_cmd_buffer * cmd_buffer,struct mi_builder * b,uint32_t draw_index,struct mi_value max)4123 emit_draw_count_predicate_with_conditional_render(
4124 struct anv_cmd_buffer *cmd_buffer,
4125 struct mi_builder *b,
4126 uint32_t draw_index,
4127 struct mi_value max)
4128 {
4129 struct mi_value pred = mi_ult(b, mi_imm(draw_index), max);
4130 pred = mi_iand(b, pred, mi_reg64(ANV_PREDICATE_RESULT_REG));
4131
4132 #if GFX_VER >= 8
4133 mi_store(b, mi_reg32(MI_PREDICATE_RESULT), pred);
4134 #else
4135 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
4136 * so we emit MI_PREDICATE to set it.
4137 */
4138
4139 mi_store(b, mi_reg64(MI_PREDICATE_SRC0), pred);
4140 mi_store(b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
4141
4142 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
4143 mip.LoadOperation = LOAD_LOADINV;
4144 mip.CombineOperation = COMBINE_SET;
4145 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4146 }
4147 #endif
4148 }
4149 #endif
4150
4151 static void
emit_draw_count_predicate_cond(struct anv_cmd_buffer * cmd_buffer,struct mi_builder * b,uint32_t draw_index,struct mi_value max)4152 emit_draw_count_predicate_cond(struct anv_cmd_buffer *cmd_buffer,
4153 struct mi_builder *b,
4154 uint32_t draw_index,
4155 struct mi_value max)
4156 {
4157 #if GFX_VERx10 >= 75
4158 if (cmd_buffer->state.conditional_render_enabled) {
4159 emit_draw_count_predicate_with_conditional_render(
4160 cmd_buffer, b, draw_index, mi_value_ref(b, max));
4161 } else {
4162 emit_draw_count_predicate(cmd_buffer, b, draw_index);
4163 }
4164 #else
4165 emit_draw_count_predicate(cmd_buffer, b, draw_index);
4166 #endif
4167 }
4168
genX(CmdDrawIndirectCount)4169 void genX(CmdDrawIndirectCount)(
4170 VkCommandBuffer commandBuffer,
4171 VkBuffer _buffer,
4172 VkDeviceSize offset,
4173 VkBuffer _countBuffer,
4174 VkDeviceSize countBufferOffset,
4175 uint32_t maxDrawCount,
4176 uint32_t stride)
4177 {
4178 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4179 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4180 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
4181 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4182 struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
4183 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4184
4185 if (anv_batch_has_error(&cmd_buffer->batch))
4186 return;
4187
4188 anv_measure_snapshot(cmd_buffer,
4189 INTEL_SNAPSHOT_DRAW,
4190 "draw indirect count",
4191 0);
4192 trace_intel_begin_draw_indirect_count(&cmd_buffer->trace);
4193
4194 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
4195
4196 struct mi_builder b;
4197 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
4198 struct anv_address count_address =
4199 anv_address_add(count_buffer->address, countBufferOffset);
4200 struct mi_value max =
4201 prepare_for_draw_count_predicate(cmd_buffer, &b, count_address);
4202
4203 for (uint32_t i = 0; i < maxDrawCount; i++) {
4204 struct anv_address draw = anv_address_add(buffer->address, offset);
4205
4206 emit_draw_count_predicate_cond(cmd_buffer, &b, i, max);
4207
4208 if (vs_prog_data->uses_firstvertex ||
4209 vs_prog_data->uses_baseinstance)
4210 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
4211 if (vs_prog_data->uses_drawid)
4212 emit_draw_index(cmd_buffer, i);
4213
4214 /* Emitting draw index or vertex index BOs may result in needing
4215 * additional VF cache flushes.
4216 */
4217 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4218
4219 load_indirect_parameters(cmd_buffer, draw, false);
4220
4221 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4222 prim.IndirectParameterEnable = true;
4223 prim.PredicateEnable = true;
4224 prim.VertexAccessType = SEQUENTIAL;
4225 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
4226 }
4227
4228 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, SEQUENTIAL);
4229
4230 offset += stride;
4231 }
4232
4233 mi_value_unref(&b, max);
4234
4235 trace_intel_end_draw_indirect_count(&cmd_buffer->trace,
4236 anv_address_utrace(count_address), 0, 0);
4237 }
4238
genX(CmdDrawIndexedIndirectCount)4239 void genX(CmdDrawIndexedIndirectCount)(
4240 VkCommandBuffer commandBuffer,
4241 VkBuffer _buffer,
4242 VkDeviceSize offset,
4243 VkBuffer _countBuffer,
4244 VkDeviceSize countBufferOffset,
4245 uint32_t maxDrawCount,
4246 uint32_t stride)
4247 {
4248 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4249 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4250 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
4251 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4252 struct anv_graphics_pipeline *pipeline = cmd_state->gfx.pipeline;
4253 const struct elk_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
4254
4255 if (anv_batch_has_error(&cmd_buffer->batch))
4256 return;
4257
4258 anv_measure_snapshot(cmd_buffer,
4259 INTEL_SNAPSHOT_DRAW,
4260 "draw indexed indirect count",
4261 0);
4262 trace_intel_begin_draw_indexed_indirect_count(&cmd_buffer->trace);
4263
4264 genX(cmd_buffer_flush_gfx_state)(cmd_buffer);
4265
4266 struct mi_builder b;
4267 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
4268 struct anv_address count_address =
4269 anv_address_add(count_buffer->address, countBufferOffset);
4270 struct mi_value max =
4271 prepare_for_draw_count_predicate(cmd_buffer, &b, count_address);
4272
4273 for (uint32_t i = 0; i < maxDrawCount; i++) {
4274 struct anv_address draw = anv_address_add(buffer->address, offset);
4275
4276 emit_draw_count_predicate_cond(cmd_buffer, &b, i, max);
4277
4278 /* TODO: We need to stomp base vertex to 0 somehow */
4279 if (vs_prog_data->uses_firstvertex ||
4280 vs_prog_data->uses_baseinstance)
4281 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
4282 if (vs_prog_data->uses_drawid)
4283 emit_draw_index(cmd_buffer, i);
4284
4285 /* Emitting draw index or vertex index BOs may result in needing
4286 * additional VF cache flushes.
4287 */
4288 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4289
4290 load_indirect_parameters(cmd_buffer, draw, true);
4291
4292 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
4293 prim.IndirectParameterEnable = true;
4294 prim.PredicateEnable = true;
4295 prim.VertexAccessType = RANDOM;
4296 prim.PrimitiveTopologyType = cmd_buffer->state.gfx.primitive_topology;
4297 }
4298
4299 update_dirty_vbs_for_gfx8_vb_flush(cmd_buffer, RANDOM);
4300
4301 offset += stride;
4302 }
4303
4304 mi_value_unref(&b, max);
4305
4306 trace_intel_end_draw_indexed_indirect_count(&cmd_buffer->trace,
4307 anv_address_utrace(count_address), 0, 0);
4308 }
4309
genX(CmdBeginTransformFeedbackEXT)4310 void genX(CmdBeginTransformFeedbackEXT)(
4311 VkCommandBuffer commandBuffer,
4312 uint32_t firstCounterBuffer,
4313 uint32_t counterBufferCount,
4314 const VkBuffer* pCounterBuffers,
4315 const VkDeviceSize* pCounterBufferOffsets)
4316 {
4317 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4318
4319 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4320 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4321 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4322
4323 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4324 *
4325 * "Ssoftware must ensure that no HW stream output operations can be in
4326 * process or otherwise pending at the point that the MI_LOAD/STORE
4327 * commands are processed. This will likely require a pipeline flush."
4328 */
4329 anv_add_pending_pipe_bits(cmd_buffer,
4330 ANV_PIPE_CS_STALL_BIT,
4331 "begin transform feedback");
4332 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4333
4334 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
4335 /* If we have a counter buffer, this is a resume so we need to load the
4336 * value into the streamout offset register. Otherwise, this is a begin
4337 * and we need to reset it to zero.
4338 */
4339 if (pCounterBuffers &&
4340 idx >= firstCounterBuffer &&
4341 idx - firstCounterBuffer < counterBufferCount &&
4342 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
4343 uint32_t cb_idx = idx - firstCounterBuffer;
4344 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4345 uint64_t offset = pCounterBufferOffsets ?
4346 pCounterBufferOffsets[cb_idx] : 0;
4347
4348 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
4349 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4350 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
4351 offset);
4352 }
4353 } else {
4354 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
4355 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4356 lri.DataDWord = 0;
4357 }
4358 }
4359 }
4360
4361 cmd_buffer->state.xfb_enabled = true;
4362 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4363 }
4364
genX(CmdEndTransformFeedbackEXT)4365 void genX(CmdEndTransformFeedbackEXT)(
4366 VkCommandBuffer commandBuffer,
4367 uint32_t firstCounterBuffer,
4368 uint32_t counterBufferCount,
4369 const VkBuffer* pCounterBuffers,
4370 const VkDeviceSize* pCounterBufferOffsets)
4371 {
4372 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4373
4374 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
4375 assert(counterBufferCount <= MAX_XFB_BUFFERS);
4376 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
4377
4378 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
4379 *
4380 * "Ssoftware must ensure that no HW stream output operations can be in
4381 * process or otherwise pending at the point that the MI_LOAD/STORE
4382 * commands are processed. This will likely require a pipeline flush."
4383 */
4384 anv_add_pending_pipe_bits(cmd_buffer,
4385 ANV_PIPE_CS_STALL_BIT,
4386 "end transform feedback");
4387 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4388
4389 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
4390 unsigned idx = firstCounterBuffer + cb_idx;
4391
4392 /* If we have a counter buffer, this is a resume so we need to load the
4393 * value into the streamout offset register. Otherwise, this is a begin
4394 * and we need to reset it to zero.
4395 */
4396 if (pCounterBuffers &&
4397 cb_idx < counterBufferCount &&
4398 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
4399 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
4400 uint64_t offset = pCounterBufferOffsets ?
4401 pCounterBufferOffsets[cb_idx] : 0;
4402
4403 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
4404 srm.MemoryAddress = anv_address_add(counter_buffer->address,
4405 offset);
4406 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
4407 }
4408 }
4409 }
4410
4411 cmd_buffer->state.xfb_enabled = false;
4412 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
4413 }
4414
4415 static void
genX(cmd_buffer_flush_compute_state)4416 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
4417 {
4418 struct anv_cmd_compute_state *comp_state = &cmd_buffer->state.compute;
4419 struct anv_compute_pipeline *pipeline = comp_state->pipeline;
4420
4421 assert(pipeline->cs);
4422
4423 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->base.l3_config);
4424
4425 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
4426
4427 /* Apply any pending pipeline flushes we may have. We want to apply them
4428 * now because, if any of those flushes are for things like push constants,
4429 * the GPU will read the state at weird times.
4430 */
4431 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4432
4433 if (cmd_buffer->state.compute.pipeline_dirty) {
4434 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
4435 *
4436 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4437 * the only bits that are changed are scoreboard related: Scoreboard
4438 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4439 * these scoreboard related states, a MEDIA_STATE_FLUSH is
4440 * sufficient."
4441 */
4442 anv_add_pending_pipe_bits(cmd_buffer,
4443 ANV_PIPE_CS_STALL_BIT,
4444 "flush compute state");
4445 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4446
4447 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->base.batch);
4448
4449 /* The workgroup size of the pipeline affects our push constant layout
4450 * so flag push constants as dirty if we change the pipeline.
4451 */
4452 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4453 }
4454
4455 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
4456 cmd_buffer->state.compute.pipeline_dirty) {
4457 flush_descriptor_sets(cmd_buffer,
4458 &cmd_buffer->state.compute.base,
4459 VK_SHADER_STAGE_COMPUTE_BIT,
4460 &pipeline->cs, 1);
4461 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4462
4463 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
4464 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
4465 .BindingTablePointer =
4466 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
4467 .SamplerStatePointer =
4468 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
4469 };
4470 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
4471
4472 struct anv_state state =
4473 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
4474 pipeline->interface_descriptor_data,
4475 GENX(INTERFACE_DESCRIPTOR_DATA_length),
4476 64);
4477
4478 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4479 anv_batch_emit(&cmd_buffer->batch,
4480 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
4481 mid.InterfaceDescriptorTotalLength = size;
4482 mid.InterfaceDescriptorDataStartAddress = state.offset;
4483 }
4484 }
4485
4486 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
4487 comp_state->push_data =
4488 anv_cmd_buffer_cs_push_constants(cmd_buffer);
4489
4490 if (comp_state->push_data.alloc_size) {
4491 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
4492 curbe.CURBETotalDataLength = comp_state->push_data.alloc_size;
4493 curbe.CURBEDataStartAddress = comp_state->push_data.offset;
4494 }
4495 }
4496
4497 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
4498 }
4499
4500 cmd_buffer->state.compute.pipeline_dirty = false;
4501
4502 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4503 }
4504
4505 #if GFX_VER == 7
4506
4507 static VkResult
verify_cmd_parser(const struct anv_device * device,int required_version,const char * function)4508 verify_cmd_parser(const struct anv_device *device,
4509 int required_version,
4510 const char *function)
4511 {
4512 if (device->physical->cmd_parser_version < required_version) {
4513 return vk_errorf(device->physical, VK_ERROR_FEATURE_NOT_PRESENT,
4514 "cmd parser version %d is required for %s",
4515 required_version, function);
4516 } else {
4517 return VK_SUCCESS;
4518 }
4519 }
4520
4521 #endif
4522
4523 static void
anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer * cmd_buffer,uint32_t baseGroupX,uint32_t baseGroupY,uint32_t baseGroupZ)4524 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
4525 uint32_t baseGroupX,
4526 uint32_t baseGroupY,
4527 uint32_t baseGroupZ)
4528 {
4529 if (anv_batch_has_error(&cmd_buffer->batch))
4530 return;
4531
4532 struct anv_push_constants *push =
4533 &cmd_buffer->state.compute.base.push_constants;
4534 if (push->cs.base_work_group_id[0] != baseGroupX ||
4535 push->cs.base_work_group_id[1] != baseGroupY ||
4536 push->cs.base_work_group_id[2] != baseGroupZ) {
4537 push->cs.base_work_group_id[0] = baseGroupX;
4538 push->cs.base_work_group_id[1] = baseGroupY;
4539 push->cs.base_work_group_id[2] = baseGroupZ;
4540
4541 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4542 }
4543 }
4544
4545 static inline void
emit_gpgpu_walker(struct anv_cmd_buffer * cmd_buffer,const struct anv_compute_pipeline * pipeline,bool indirect,const struct elk_cs_prog_data * prog_data,uint32_t groupCountX,uint32_t groupCountY,uint32_t groupCountZ)4546 emit_gpgpu_walker(struct anv_cmd_buffer *cmd_buffer,
4547 const struct anv_compute_pipeline *pipeline, bool indirect,
4548 const struct elk_cs_prog_data *prog_data,
4549 uint32_t groupCountX, uint32_t groupCountY,
4550 uint32_t groupCountZ)
4551 {
4552 bool predicate = (GFX_VER <= 7 && indirect) ||
4553 cmd_buffer->state.conditional_render_enabled;
4554
4555 const struct intel_device_info *devinfo = pipeline->base.device->info;
4556 const struct intel_cs_dispatch_info dispatch =
4557 elk_cs_get_dispatch_info(devinfo, prog_data, NULL);
4558
4559 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4560 ggw.IndirectParameterEnable = indirect;
4561 ggw.PredicateEnable = predicate;
4562 ggw.SIMDSize = dispatch.simd_size / 16;
4563 ggw.ThreadDepthCounterMaximum = 0;
4564 ggw.ThreadHeightCounterMaximum = 0;
4565 ggw.ThreadWidthCounterMaximum = dispatch.threads - 1;
4566 ggw.ThreadGroupIDXDimension = groupCountX;
4567 ggw.ThreadGroupIDYDimension = groupCountY;
4568 ggw.ThreadGroupIDZDimension = groupCountZ;
4569 ggw.RightExecutionMask = dispatch.right_mask;
4570 ggw.BottomExecutionMask = 0xffffffff;
4571 }
4572
4573 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4574 }
4575
4576 static inline void
emit_cs_walker(struct anv_cmd_buffer * cmd_buffer,const struct anv_compute_pipeline * pipeline,bool indirect,const struct elk_cs_prog_data * prog_data,uint32_t groupCountX,uint32_t groupCountY,uint32_t groupCountZ)4577 emit_cs_walker(struct anv_cmd_buffer *cmd_buffer,
4578 const struct anv_compute_pipeline *pipeline, bool indirect,
4579 const struct elk_cs_prog_data *prog_data,
4580 uint32_t groupCountX, uint32_t groupCountY,
4581 uint32_t groupCountZ)
4582 {
4583 emit_gpgpu_walker(cmd_buffer, pipeline, indirect, prog_data, groupCountX,
4584 groupCountY, groupCountZ);
4585 }
4586
genX(CmdDispatchBase)4587 void genX(CmdDispatchBase)(
4588 VkCommandBuffer commandBuffer,
4589 uint32_t baseGroupX,
4590 uint32_t baseGroupY,
4591 uint32_t baseGroupZ,
4592 uint32_t groupCountX,
4593 uint32_t groupCountY,
4594 uint32_t groupCountZ)
4595 {
4596 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4597 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4598 const struct elk_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4599
4600 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4601 baseGroupY, baseGroupZ);
4602
4603 if (anv_batch_has_error(&cmd_buffer->batch))
4604 return;
4605
4606 anv_measure_snapshot(cmd_buffer,
4607 INTEL_SNAPSHOT_COMPUTE,
4608 "compute",
4609 groupCountX * groupCountY * groupCountZ *
4610 prog_data->local_size[0] * prog_data->local_size[1] *
4611 prog_data->local_size[2]);
4612
4613 trace_intel_begin_compute(&cmd_buffer->trace);
4614
4615 if (prog_data->uses_num_work_groups) {
4616 struct anv_state state =
4617 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4618 uint32_t *sizes = state.map;
4619 sizes[0] = groupCountX;
4620 sizes[1] = groupCountY;
4621 sizes[2] = groupCountZ;
4622 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4623 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4624 .offset = state.offset,
4625 };
4626
4627 /* The num_workgroups buffer goes in the binding table */
4628 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4629 }
4630
4631 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4632
4633 if (cmd_buffer->state.conditional_render_enabled)
4634 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4635
4636 emit_cs_walker(cmd_buffer, pipeline, false, prog_data, groupCountX,
4637 groupCountY, groupCountZ);
4638
4639 trace_intel_end_compute(&cmd_buffer->trace,
4640 groupCountX, groupCountY, groupCountZ,
4641 0);
4642 }
4643
4644 #define GPGPU_DISPATCHDIMX 0x2500
4645 #define GPGPU_DISPATCHDIMY 0x2504
4646 #define GPGPU_DISPATCHDIMZ 0x2508
4647
genX(CmdDispatchIndirect)4648 void genX(CmdDispatchIndirect)(
4649 VkCommandBuffer commandBuffer,
4650 VkBuffer _buffer,
4651 VkDeviceSize offset)
4652 {
4653 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4654 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4655 struct anv_compute_pipeline *pipeline = cmd_buffer->state.compute.pipeline;
4656 const struct elk_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4657 struct anv_address addr = anv_address_add(buffer->address, offset);
4658 UNUSED struct anv_batch *batch = &cmd_buffer->batch;
4659
4660 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4661
4662 #if GFX_VER == 7
4663 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4664 * indirect dispatch registers to be written.
4665 */
4666 if (verify_cmd_parser(cmd_buffer->device, 5,
4667 "vkCmdDispatchIndirect") != VK_SUCCESS)
4668 return;
4669 #endif
4670
4671 anv_measure_snapshot(cmd_buffer,
4672 INTEL_SNAPSHOT_COMPUTE,
4673 "compute indirect",
4674 0);
4675 trace_intel_begin_compute(&cmd_buffer->trace);
4676
4677 if (prog_data->uses_num_work_groups) {
4678 cmd_buffer->state.compute.num_workgroups = addr;
4679
4680 /* The num_workgroups buffer goes in the binding table */
4681 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4682 }
4683
4684 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4685
4686 struct mi_builder b;
4687 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
4688
4689 struct mi_value size_x = mi_mem32(anv_address_add(addr, 0));
4690 struct mi_value size_y = mi_mem32(anv_address_add(addr, 4));
4691 struct mi_value size_z = mi_mem32(anv_address_add(addr, 8));
4692
4693 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4694 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4695 mi_store(&b, mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4696
4697 #if GFX_VER <= 7
4698 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4699 mi_store(&b, mi_reg64(MI_PREDICATE_SRC0), size_x);
4700 mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
4701 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4702 mip.LoadOperation = LOAD_LOAD;
4703 mip.CombineOperation = COMBINE_SET;
4704 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4705 }
4706
4707 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4708 mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_y);
4709 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4710 mip.LoadOperation = LOAD_LOAD;
4711 mip.CombineOperation = COMBINE_OR;
4712 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4713 }
4714
4715 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4716 mi_store(&b, mi_reg32(MI_PREDICATE_SRC0), size_z);
4717 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4718 mip.LoadOperation = LOAD_LOAD;
4719 mip.CombineOperation = COMBINE_OR;
4720 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4721 }
4722
4723 /* predicate = !predicate; */
4724 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4725 mip.LoadOperation = LOAD_LOADINV;
4726 mip.CombineOperation = COMBINE_OR;
4727 mip.CompareOperation = COMPARE_FALSE;
4728 }
4729
4730 #if GFX_VERx10 == 75
4731 if (cmd_buffer->state.conditional_render_enabled) {
4732 /* predicate &= !(conditional_rendering_predicate == 0); */
4733 mi_store(&b, mi_reg32(MI_PREDICATE_SRC0),
4734 mi_reg32(ANV_PREDICATE_RESULT_REG));
4735 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4736 mip.LoadOperation = LOAD_LOADINV;
4737 mip.CombineOperation = COMBINE_AND;
4738 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4739 }
4740 }
4741 #endif
4742
4743 #else /* GFX_VER > 7 */
4744 if (cmd_buffer->state.conditional_render_enabled)
4745 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4746 #endif
4747
4748 emit_cs_walker(cmd_buffer, pipeline, true, prog_data, 0, 0, 0);
4749 trace_intel_end_compute(&cmd_buffer->trace, 0, 0, 0, 0);
4750 }
4751
4752 static void
genX(flush_pipeline_select)4753 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4754 uint32_t pipeline)
4755 {
4756 UNUSED const struct intel_device_info *devinfo = cmd_buffer->device->info;
4757
4758 if (cmd_buffer->state.current_pipeline == pipeline)
4759 return;
4760
4761 #if GFX_VER >= 8
4762 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4763 *
4764 * Software must clear the COLOR_CALC_STATE Valid field in
4765 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4766 * with Pipeline Select set to GPGPU.
4767 *
4768 * The internal hardware docs recommend the same workaround for Gfx9
4769 * hardware too.
4770 */
4771 if (pipeline == GPGPU)
4772 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4773 #endif
4774
4775 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4776 * PIPELINE_SELECT [DevBWR+]":
4777 *
4778 * Project: DEVSNB+
4779 *
4780 * Software must ensure all the write caches are flushed through a
4781 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4782 * command to invalidate read only caches prior to programming
4783 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4784 *
4785 * Note the cmd_buffer_apply_pipe_flushes will split this into two
4786 * PIPE_CONTROLs.
4787 */
4788 anv_add_pending_pipe_bits(cmd_buffer,
4789 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
4790 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT |
4791 ANV_PIPE_HDC_PIPELINE_FLUSH_BIT |
4792 ANV_PIPE_CS_STALL_BIT |
4793 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4794 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT |
4795 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT |
4796 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT |
4797 ANV_PIPE_UNTYPED_DATAPORT_CACHE_FLUSH_BIT,
4798 "flush and invalidate for PIPELINE_SELECT");
4799 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4800
4801 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4802 ps.PipelineSelection = pipeline;
4803 }
4804
4805 cmd_buffer->state.current_pipeline = pipeline;
4806 }
4807
4808 void
genX(flush_pipeline_select_3d)4809 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4810 {
4811 genX(flush_pipeline_select)(cmd_buffer, _3D);
4812 }
4813
4814 void
genX(flush_pipeline_select_gpgpu)4815 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4816 {
4817 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4818 }
4819
4820 void
genX(cmd_buffer_emit_gfx7_depth_flush)4821 genX(cmd_buffer_emit_gfx7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4822 {
4823 if (GFX_VER >= 8)
4824 return;
4825
4826 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4827 *
4828 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4829 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4830 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4831 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4832 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4833 * Depth Flush Bit set, followed by another pipelined depth stall
4834 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4835 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4836 * via a preceding MI_FLUSH)."
4837 */
4838 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4839 pipe.DepthStallEnable = true;
4840 anv_debug_dump_pc(pipe);
4841 }
4842 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4843 pipe.DepthCacheFlushEnable = true;
4844 anv_debug_dump_pc(pipe);
4845 }
4846 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4847 pipe.DepthStallEnable = true;
4848 anv_debug_dump_pc(pipe);
4849 }
4850 }
4851
4852 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4853 *
4854 * "The VF cache needs to be invalidated before binding and then using
4855 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4856 * (at a 64B granularity) since the last invalidation. A VF cache
4857 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4858 * bit in PIPE_CONTROL."
4859 *
4860 * This is implemented by carefully tracking all vertex and index buffer
4861 * bindings and flushing if the cache ever ends up with a range in the cache
4862 * that would exceed 4 GiB. This is implemented in three parts:
4863 *
4864 * 1. genX(cmd_buffer_set_binding_for_gfx8_vb_flush)() which must be called
4865 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4866 * tracking code of the new binding. If this new binding would cause
4867 * the cache to have a too-large range on the next draw call, a pipeline
4868 * stall and VF cache invalidate are added to pending_pipeline_bits.
4869 *
4870 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4871 * empty whenever we emit a VF invalidate.
4872 *
4873 * 3. genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)() must be called
4874 * after every 3DPRIMITIVE and copies the bound range into the dirty
4875 * range for each used buffer. This has to be a separate step because
4876 * we don't always re-bind all buffers and so 1. can't know which
4877 * buffers are actually bound.
4878 */
4879 void
genX(cmd_buffer_set_binding_for_gfx8_vb_flush)4880 genX(cmd_buffer_set_binding_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4881 int vb_index,
4882 struct anv_address vb_address,
4883 uint32_t vb_size)
4884 {
4885 if (GFX_VER < 8 || anv_use_relocations(cmd_buffer->device->physical))
4886 return;
4887
4888 struct anv_vb_cache_range *bound, *dirty;
4889 if (vb_index == -1) {
4890 bound = &cmd_buffer->state.gfx.ib_bound_range;
4891 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4892 } else {
4893 assert(vb_index >= 0);
4894 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4895 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4896 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4897 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4898 }
4899
4900 if (anv_gfx8_9_vb_cache_range_needs_workaround(bound, dirty,
4901 vb_address,
4902 vb_size)) {
4903 anv_add_pending_pipe_bits(cmd_buffer,
4904 ANV_PIPE_CS_STALL_BIT |
4905 ANV_PIPE_VF_CACHE_INVALIDATE_BIT,
4906 "vb > 32b range");
4907 }
4908 }
4909
4910 void
genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)4911 genX(cmd_buffer_update_dirty_vbs_for_gfx8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4912 uint32_t access_type,
4913 uint64_t vb_used)
4914 {
4915 if (GFX_VER < 8 || anv_use_relocations(cmd_buffer->device->physical))
4916 return;
4917
4918 if (access_type == RANDOM) {
4919 /* We have an index buffer */
4920 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4921 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4922
4923 anv_merge_vb_cache_range(dirty, bound);
4924 }
4925
4926 uint64_t mask = vb_used;
4927 while (mask) {
4928 int i = u_bit_scan64(&mask);
4929 assert(i >= 0);
4930 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4931 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4932
4933 struct anv_vb_cache_range *bound, *dirty;
4934 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4935 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4936
4937 anv_merge_vb_cache_range(dirty, bound);
4938 }
4939 }
4940
4941 static void
cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer * cmd_buffer)4942 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4943 {
4944 struct anv_device *device = cmd_buffer->device;
4945 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
4946
4947 /* FIXME: Width and Height are wrong */
4948
4949 genX(cmd_buffer_emit_gfx7_depth_flush)(cmd_buffer);
4950
4951 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4952 device->isl_dev.ds.size / 4);
4953 if (dw == NULL)
4954 return;
4955
4956 struct isl_view isl_view = {};
4957 struct isl_depth_stencil_hiz_emit_info info = {
4958 .view = &isl_view,
4959 .mocs = anv_mocs(device, NULL, ISL_SURF_USAGE_DEPTH_BIT),
4960 };
4961
4962 if (gfx->depth_att.iview != NULL) {
4963 isl_view = gfx->depth_att.iview->planes[0].isl;
4964 } else if (gfx->stencil_att.iview != NULL) {
4965 isl_view = gfx->stencil_att.iview->planes[0].isl;
4966 }
4967
4968 if (gfx->view_mask) {
4969 assert(isl_view.array_len == 0 ||
4970 isl_view.array_len >= util_last_bit(gfx->view_mask));
4971 isl_view.array_len = util_last_bit(gfx->view_mask);
4972 } else {
4973 assert(isl_view.array_len == 0 ||
4974 isl_view.array_len >= util_last_bit(gfx->layer_count));
4975 isl_view.array_len = gfx->layer_count;
4976 }
4977
4978 if (gfx->depth_att.iview != NULL) {
4979 const struct anv_image_view *iview = gfx->depth_att.iview;
4980 const struct anv_image *image = iview->image;
4981
4982 const uint32_t depth_plane =
4983 anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_DEPTH_BIT);
4984 const struct anv_surface *depth_surface =
4985 &image->planes[depth_plane].primary_surface;
4986 const struct anv_address depth_address =
4987 anv_image_address(image, &depth_surface->memory_range);
4988
4989 info.depth_surf = &depth_surface->isl;
4990
4991 info.depth_address =
4992 anv_batch_emit_reloc(&cmd_buffer->batch,
4993 dw + device->isl_dev.ds.depth_offset / 4,
4994 depth_address.bo, depth_address.offset);
4995 info.mocs =
4996 anv_mocs(device, depth_address.bo, ISL_SURF_USAGE_DEPTH_BIT);
4997
4998 info.hiz_usage = gfx->depth_att.aux_usage;
4999 if (info.hiz_usage != ISL_AUX_USAGE_NONE) {
5000 assert(isl_aux_usage_has_hiz(info.hiz_usage));
5001
5002 const struct anv_surface *hiz_surface =
5003 &image->planes[depth_plane].aux_surface;
5004 const struct anv_address hiz_address =
5005 anv_image_address(image, &hiz_surface->memory_range);
5006
5007 info.hiz_surf = &hiz_surface->isl;
5008
5009 info.hiz_address =
5010 anv_batch_emit_reloc(&cmd_buffer->batch,
5011 dw + device->isl_dev.ds.hiz_offset / 4,
5012 hiz_address.bo, hiz_address.offset);
5013
5014 info.depth_clear_value = ANV_HZ_FC_VAL;
5015 }
5016 }
5017
5018 if (gfx->stencil_att.iview != NULL) {
5019 const struct anv_image_view *iview = gfx->stencil_att.iview;
5020 const struct anv_image *image = iview->image;
5021
5022 const uint32_t stencil_plane =
5023 anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
5024 const struct anv_surface *stencil_surface =
5025 &image->planes[stencil_plane].primary_surface;
5026 const struct anv_address stencil_address =
5027 anv_image_address(image, &stencil_surface->memory_range);
5028
5029 info.stencil_surf = &stencil_surface->isl;
5030
5031 info.stencil_aux_usage = image->planes[stencil_plane].aux_usage;
5032 info.stencil_address =
5033 anv_batch_emit_reloc(&cmd_buffer->batch,
5034 dw + device->isl_dev.ds.stencil_offset / 4,
5035 stencil_address.bo, stencil_address.offset);
5036 info.mocs =
5037 anv_mocs(device, stencil_address.bo, ISL_SURF_USAGE_STENCIL_BIT);
5038 }
5039
5040 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
5041
5042 cmd_buffer->state.hiz_enabled = isl_aux_usage_has_hiz(info.hiz_usage);
5043 }
5044
5045 static VkImageLayout
attachment_initial_layout(const VkRenderingAttachmentInfo * att)5046 attachment_initial_layout(const VkRenderingAttachmentInfo *att)
5047 {
5048 const VkRenderingAttachmentInitialLayoutInfoMESA *layout_info =
5049 vk_find_struct_const(att->pNext,
5050 RENDERING_ATTACHMENT_INITIAL_LAYOUT_INFO_MESA);
5051 if (layout_info != NULL)
5052 return layout_info->initialLayout;
5053
5054 return att->imageLayout;
5055 }
5056
genX(CmdBeginRendering)5057 void genX(CmdBeginRendering)(
5058 VkCommandBuffer commandBuffer,
5059 const VkRenderingInfo* pRenderingInfo)
5060 {
5061 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5062 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
5063 VkResult result;
5064
5065 if (!is_render_queue_cmd_buffer(cmd_buffer)) {
5066 assert(!"Trying to start a render pass on non-render queue!");
5067 anv_batch_set_error(&cmd_buffer->batch, VK_ERROR_UNKNOWN);
5068 return;
5069 }
5070
5071 anv_measure_beginrenderpass(cmd_buffer);
5072 trace_intel_begin_render_pass(&cmd_buffer->trace);
5073
5074 gfx->rendering_flags = pRenderingInfo->flags;
5075 gfx->render_area = pRenderingInfo->renderArea;
5076 gfx->view_mask = pRenderingInfo->viewMask;
5077 gfx->layer_count = pRenderingInfo->layerCount;
5078 gfx->samples = 0;
5079
5080 const bool is_multiview = gfx->view_mask != 0;
5081 const VkRect2D render_area = gfx->render_area;
5082 const uint32_t layers =
5083 is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count;
5084
5085 /* The framebuffer size is at least large enough to contain the render
5086 * area. Because a zero renderArea is possible, we MAX with 1.
5087 */
5088 struct isl_extent3d fb_size = {
5089 .w = MAX2(1, render_area.offset.x + render_area.extent.width),
5090 .h = MAX2(1, render_area.offset.y + render_area.extent.height),
5091 .d = layers,
5092 };
5093
5094 const uint32_t color_att_count = pRenderingInfo->colorAttachmentCount;
5095 result = anv_cmd_buffer_init_attachments(cmd_buffer, color_att_count);
5096 if (result != VK_SUCCESS)
5097 return;
5098
5099 genX(flush_pipeline_select_3d)(cmd_buffer);
5100
5101 for (uint32_t i = 0; i < gfx->color_att_count; i++) {
5102 if (pRenderingInfo->pColorAttachments[i].imageView == VK_NULL_HANDLE)
5103 continue;
5104
5105 const VkRenderingAttachmentInfo *att =
5106 &pRenderingInfo->pColorAttachments[i];
5107 ANV_FROM_HANDLE(anv_image_view, iview, att->imageView);
5108 const VkImageLayout initial_layout = attachment_initial_layout(att);
5109
5110 assert(render_area.offset.x + render_area.extent.width <=
5111 iview->vk.extent.width);
5112 assert(render_area.offset.y + render_area.extent.height <=
5113 iview->vk.extent.height);
5114 assert(layers <= iview->vk.layer_count);
5115
5116 fb_size.w = MAX2(fb_size.w, iview->vk.extent.width);
5117 fb_size.h = MAX2(fb_size.h, iview->vk.extent.height);
5118
5119 assert(gfx->samples == 0 || gfx->samples == iview->vk.image->samples);
5120 gfx->samples |= iview->vk.image->samples;
5121
5122 enum isl_aux_usage aux_usage =
5123 anv_layout_to_aux_usage(cmd_buffer->device->info,
5124 iview->image,
5125 VK_IMAGE_ASPECT_COLOR_BIT,
5126 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
5127 att->imageLayout);
5128
5129 union isl_color_value fast_clear_color = { .u32 = { 0, } };
5130
5131 if (att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
5132 !(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) {
5133 const union isl_color_value clear_color =
5134 vk_to_isl_color_with_format(att->clearValue.color,
5135 iview->planes[0].isl.format);
5136
5137 /* We only support fast-clears on the first layer */
5138 const bool fast_clear =
5139 (!is_multiview || (gfx->view_mask & 1)) &&
5140 anv_can_fast_clear_color_view(cmd_buffer->device, iview,
5141 att->imageLayout, clear_color,
5142 layers, render_area);
5143
5144 if (att->imageLayout != initial_layout) {
5145 assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
5146 render_area.extent.width == iview->vk.extent.width &&
5147 render_area.extent.height == iview->vk.extent.height);
5148 if (is_multiview) {
5149 u_foreach_bit(view, gfx->view_mask) {
5150 transition_color_buffer(cmd_buffer, iview->image,
5151 VK_IMAGE_ASPECT_COLOR_BIT,
5152 iview->vk.base_mip_level, 1,
5153 iview->vk.base_array_layer + view,
5154 1, /* layer_count */
5155 initial_layout, att->imageLayout,
5156 VK_QUEUE_FAMILY_IGNORED,
5157 VK_QUEUE_FAMILY_IGNORED,
5158 fast_clear);
5159 }
5160 } else {
5161 transition_color_buffer(cmd_buffer, iview->image,
5162 VK_IMAGE_ASPECT_COLOR_BIT,
5163 iview->vk.base_mip_level, 1,
5164 iview->vk.base_array_layer,
5165 gfx->layer_count,
5166 initial_layout, att->imageLayout,
5167 VK_QUEUE_FAMILY_IGNORED,
5168 VK_QUEUE_FAMILY_IGNORED,
5169 fast_clear);
5170 }
5171 }
5172
5173 uint32_t clear_view_mask = pRenderingInfo->viewMask;
5174 uint32_t base_clear_layer = iview->vk.base_array_layer;
5175 uint32_t clear_layer_count = gfx->layer_count;
5176 if (fast_clear) {
5177 /* We only support fast-clears on the first layer */
5178 assert(iview->vk.base_mip_level == 0 &&
5179 iview->vk.base_array_layer == 0);
5180
5181 fast_clear_color = clear_color;
5182
5183 if (iview->image->vk.samples == 1) {
5184 anv_image_ccs_op(cmd_buffer, iview->image,
5185 iview->planes[0].isl.format,
5186 iview->planes[0].isl.swizzle,
5187 VK_IMAGE_ASPECT_COLOR_BIT,
5188 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
5189 &fast_clear_color,
5190 false);
5191 } else {
5192 anv_image_mcs_op(cmd_buffer, iview->image,
5193 iview->planes[0].isl.format,
5194 iview->planes[0].isl.swizzle,
5195 VK_IMAGE_ASPECT_COLOR_BIT,
5196 0, 1, ISL_AUX_OP_FAST_CLEAR,
5197 &fast_clear_color,
5198 false);
5199 }
5200 clear_view_mask &= ~1u;
5201 base_clear_layer++;
5202 clear_layer_count--;
5203
5204 set_image_clear_color(cmd_buffer, iview->image,
5205 VK_IMAGE_ASPECT_COLOR_BIT, clear_color);
5206
5207 if (isl_color_value_is_zero(clear_color,
5208 iview->planes[0].isl.format)) {
5209 /* This image has the auxiliary buffer enabled. We can mark the
5210 * subresource as not needing a resolve because the clear color
5211 * will match what's in every RENDER_SURFACE_STATE object when
5212 * it's being used for sampling.
5213 */
5214 set_image_fast_clear_state(cmd_buffer, iview->image,
5215 VK_IMAGE_ASPECT_COLOR_BIT,
5216 ANV_FAST_CLEAR_DEFAULT_VALUE);
5217 } else {
5218 set_image_fast_clear_state(cmd_buffer, iview->image,
5219 VK_IMAGE_ASPECT_COLOR_BIT,
5220 ANV_FAST_CLEAR_ANY);
5221 }
5222 }
5223
5224 if (is_multiview) {
5225 u_foreach_bit(view, clear_view_mask) {
5226 anv_image_clear_color(cmd_buffer, iview->image,
5227 VK_IMAGE_ASPECT_COLOR_BIT,
5228 aux_usage,
5229 iview->planes[0].isl.format,
5230 iview->planes[0].isl.swizzle,
5231 iview->vk.base_mip_level,
5232 iview->vk.base_array_layer + view, 1,
5233 render_area, clear_color);
5234 }
5235 } else if (clear_layer_count > 0) {
5236 anv_image_clear_color(cmd_buffer, iview->image,
5237 VK_IMAGE_ASPECT_COLOR_BIT,
5238 aux_usage,
5239 iview->planes[0].isl.format,
5240 iview->planes[0].isl.swizzle,
5241 iview->vk.base_mip_level,
5242 base_clear_layer, clear_layer_count,
5243 render_area, clear_color);
5244 }
5245 } else {
5246 /* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */
5247 assert(att->imageLayout == initial_layout);
5248 }
5249
5250 gfx->color_att[i].vk_format = iview->vk.format;
5251 gfx->color_att[i].iview = iview;
5252 gfx->color_att[i].layout = att->imageLayout;
5253 gfx->color_att[i].aux_usage = aux_usage;
5254
5255 struct isl_view isl_view = iview->planes[0].isl;
5256 if (pRenderingInfo->viewMask) {
5257 assert(isl_view.array_len >= util_last_bit(pRenderingInfo->viewMask));
5258 isl_view.array_len = util_last_bit(pRenderingInfo->viewMask);
5259 } else {
5260 assert(isl_view.array_len >= pRenderingInfo->layerCount);
5261 isl_view.array_len = pRenderingInfo->layerCount;
5262 }
5263
5264 anv_image_fill_surface_state(cmd_buffer->device,
5265 iview->image,
5266 VK_IMAGE_ASPECT_COLOR_BIT,
5267 &isl_view,
5268 ISL_SURF_USAGE_RENDER_TARGET_BIT,
5269 aux_usage, &fast_clear_color,
5270 0, /* anv_image_view_state_flags */
5271 &gfx->color_att[i].surface_state,
5272 NULL);
5273
5274 add_surface_state_relocs(cmd_buffer, gfx->color_att[i].surface_state);
5275
5276 if ((att->loadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
5277 (gfx->rendering_flags & VK_RENDERING_RESUMING_BIT)) &&
5278 iview->image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
5279 iview->planes[0].isl.base_level == 0 &&
5280 iview->planes[0].isl.base_array_layer == 0) {
5281 genX(copy_fast_clear_dwords)(cmd_buffer,
5282 gfx->color_att[i].surface_state.state,
5283 iview->image,
5284 VK_IMAGE_ASPECT_COLOR_BIT,
5285 false /* copy to ss */);
5286 }
5287
5288 if (att->resolveMode != VK_RESOLVE_MODE_NONE) {
5289 gfx->color_att[i].resolve_mode = att->resolveMode;
5290 gfx->color_att[i].resolve_iview =
5291 anv_image_view_from_handle(att->resolveImageView);
5292 gfx->color_att[i].resolve_layout = att->resolveImageLayout;
5293 }
5294 }
5295
5296 anv_cmd_graphic_state_update_has_uint_rt(gfx);
5297
5298 const struct anv_image_view *ds_iview = NULL;
5299 const VkRenderingAttachmentInfo *d_att = pRenderingInfo->pDepthAttachment;
5300 const VkRenderingAttachmentInfo *s_att = pRenderingInfo->pStencilAttachment;
5301 if ((d_att != NULL && d_att->imageView != VK_NULL_HANDLE) ||
5302 (s_att != NULL && s_att->imageView != VK_NULL_HANDLE)) {
5303 const struct anv_image_view *d_iview = NULL, *s_iview = NULL;
5304 VkImageLayout depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5305 VkImageLayout stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5306 VkImageLayout initial_depth_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5307 VkImageLayout initial_stencil_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5308 enum isl_aux_usage depth_aux_usage = ISL_AUX_USAGE_NONE;
5309 enum isl_aux_usage stencil_aux_usage = ISL_AUX_USAGE_NONE;
5310 float depth_clear_value = 0;
5311 uint32_t stencil_clear_value = 0;
5312
5313 if (d_att != NULL && d_att->imageView != VK_NULL_HANDLE) {
5314 d_iview = anv_image_view_from_handle(d_att->imageView);
5315 initial_depth_layout = attachment_initial_layout(d_att);
5316 depth_layout = d_att->imageLayout;
5317 depth_aux_usage =
5318 anv_layout_to_aux_usage(cmd_buffer->device->info,
5319 d_iview->image,
5320 VK_IMAGE_ASPECT_DEPTH_BIT,
5321 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
5322 depth_layout);
5323 depth_clear_value = d_att->clearValue.depthStencil.depth;
5324 }
5325
5326 if (s_att != NULL && s_att->imageView != VK_NULL_HANDLE) {
5327 s_iview = anv_image_view_from_handle(s_att->imageView);
5328 initial_stencil_layout = attachment_initial_layout(s_att);
5329 stencil_layout = s_att->imageLayout;
5330 stencil_aux_usage =
5331 anv_layout_to_aux_usage(cmd_buffer->device->info,
5332 s_iview->image,
5333 VK_IMAGE_ASPECT_STENCIL_BIT,
5334 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
5335 stencil_layout);
5336 stencil_clear_value = s_att->clearValue.depthStencil.stencil;
5337 }
5338
5339 assert(s_iview == NULL || d_iview == NULL || s_iview == d_iview);
5340 ds_iview = d_iview != NULL ? d_iview : s_iview;
5341 assert(ds_iview != NULL);
5342
5343 assert(render_area.offset.x + render_area.extent.width <=
5344 ds_iview->vk.extent.width);
5345 assert(render_area.offset.y + render_area.extent.height <=
5346 ds_iview->vk.extent.height);
5347 assert(layers <= ds_iview->vk.layer_count);
5348
5349 fb_size.w = MAX2(fb_size.w, ds_iview->vk.extent.width);
5350 fb_size.h = MAX2(fb_size.h, ds_iview->vk.extent.height);
5351
5352 assert(gfx->samples == 0 || gfx->samples == ds_iview->vk.image->samples);
5353 gfx->samples |= ds_iview->vk.image->samples;
5354
5355 VkImageAspectFlags clear_aspects = 0;
5356 if (d_iview != NULL && d_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
5357 !(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT))
5358 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
5359 if (s_iview != NULL && s_att->loadOp == VK_ATTACHMENT_LOAD_OP_CLEAR &&
5360 !(gfx->rendering_flags & VK_RENDERING_RESUMING_BIT))
5361 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
5362
5363 if (clear_aspects != 0) {
5364 const bool hiz_clear =
5365 anv_can_hiz_clear_ds_view(cmd_buffer->device, d_iview,
5366 depth_layout, clear_aspects,
5367 depth_clear_value,
5368 render_area);
5369
5370 if (depth_layout != initial_depth_layout) {
5371 assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
5372 render_area.extent.width == d_iview->vk.extent.width &&
5373 render_area.extent.height == d_iview->vk.extent.height);
5374
5375 if (is_multiview) {
5376 u_foreach_bit(view, gfx->view_mask) {
5377 transition_depth_buffer(cmd_buffer, d_iview->image,
5378 d_iview->vk.base_array_layer + view,
5379 1 /* layer_count */,
5380 initial_depth_layout, depth_layout,
5381 hiz_clear);
5382 }
5383 } else {
5384 transition_depth_buffer(cmd_buffer, d_iview->image,
5385 d_iview->vk.base_array_layer,
5386 gfx->layer_count,
5387 initial_depth_layout, depth_layout,
5388 hiz_clear);
5389 }
5390 }
5391
5392 if (stencil_layout != initial_stencil_layout) {
5393 assert(render_area.offset.x == 0 && render_area.offset.y == 0 &&
5394 render_area.extent.width == s_iview->vk.extent.width &&
5395 render_area.extent.height == s_iview->vk.extent.height);
5396
5397 if (is_multiview) {
5398 u_foreach_bit(view, gfx->view_mask) {
5399 transition_stencil_buffer(cmd_buffer, s_iview->image,
5400 s_iview->vk.base_mip_level, 1,
5401 s_iview->vk.base_array_layer + view,
5402 1 /* layer_count */,
5403 initial_stencil_layout,
5404 stencil_layout,
5405 hiz_clear);
5406 }
5407 } else {
5408 transition_stencil_buffer(cmd_buffer, s_iview->image,
5409 s_iview->vk.base_mip_level, 1,
5410 s_iview->vk.base_array_layer,
5411 gfx->layer_count,
5412 initial_stencil_layout,
5413 stencil_layout,
5414 hiz_clear);
5415 }
5416 }
5417
5418 if (is_multiview) {
5419 uint32_t clear_view_mask = pRenderingInfo->viewMask;
5420 while (clear_view_mask) {
5421 int view = u_bit_scan(&clear_view_mask);
5422
5423 uint32_t level = ds_iview->vk.base_mip_level;
5424 uint32_t layer = ds_iview->vk.base_array_layer + view;
5425
5426 if (hiz_clear) {
5427 anv_image_hiz_clear(cmd_buffer, ds_iview->image,
5428 clear_aspects,
5429 level, layer, 1,
5430 render_area,
5431 stencil_clear_value);
5432 } else {
5433 anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image,
5434 clear_aspects,
5435 depth_aux_usage,
5436 level, layer, 1,
5437 render_area,
5438 depth_clear_value,
5439 stencil_clear_value);
5440 }
5441 }
5442 } else {
5443 uint32_t level = ds_iview->vk.base_mip_level;
5444 uint32_t base_layer = ds_iview->vk.base_array_layer;
5445 uint32_t layer_count = gfx->layer_count;
5446
5447 if (hiz_clear) {
5448 anv_image_hiz_clear(cmd_buffer, ds_iview->image,
5449 clear_aspects,
5450 level, base_layer, layer_count,
5451 render_area,
5452 stencil_clear_value);
5453 } else {
5454 anv_image_clear_depth_stencil(cmd_buffer, ds_iview->image,
5455 clear_aspects,
5456 depth_aux_usage,
5457 level, base_layer, layer_count,
5458 render_area,
5459 depth_clear_value,
5460 stencil_clear_value);
5461 }
5462 }
5463 } else {
5464 /* If not LOAD_OP_CLEAR, we shouldn't have a layout transition. */
5465 assert(depth_layout == initial_depth_layout);
5466 assert(stencil_layout == initial_stencil_layout);
5467 }
5468
5469 if (d_iview != NULL) {
5470 gfx->depth_att.vk_format = d_iview->vk.format;
5471 gfx->depth_att.iview = d_iview;
5472 gfx->depth_att.layout = depth_layout;
5473 gfx->depth_att.aux_usage = depth_aux_usage;
5474 if (d_att != NULL && d_att->resolveMode != VK_RESOLVE_MODE_NONE) {
5475 assert(d_att->resolveImageView != VK_NULL_HANDLE);
5476 gfx->depth_att.resolve_mode = d_att->resolveMode;
5477 gfx->depth_att.resolve_iview =
5478 anv_image_view_from_handle(d_att->resolveImageView);
5479 gfx->depth_att.resolve_layout = d_att->resolveImageLayout;
5480 }
5481 }
5482
5483 if (s_iview != NULL) {
5484 gfx->stencil_att.vk_format = s_iview->vk.format;
5485 gfx->stencil_att.iview = s_iview;
5486 gfx->stencil_att.layout = stencil_layout;
5487 gfx->stencil_att.aux_usage = stencil_aux_usage;
5488 if (s_att->resolveMode != VK_RESOLVE_MODE_NONE) {
5489 assert(s_att->resolveImageView != VK_NULL_HANDLE);
5490 gfx->stencil_att.resolve_mode = s_att->resolveMode;
5491 gfx->stencil_att.resolve_iview =
5492 anv_image_view_from_handle(s_att->resolveImageView);
5493 gfx->stencil_att.resolve_layout = s_att->resolveImageLayout;
5494 }
5495 }
5496 }
5497
5498 /* Finally, now that we know the right size, set up the null surface */
5499 assert(util_bitcount(gfx->samples) <= 1);
5500 isl_null_fill_state(&cmd_buffer->device->isl_dev,
5501 gfx->null_surface_state.map,
5502 .size = fb_size);
5503
5504 for (uint32_t i = 0; i < gfx->color_att_count; i++) {
5505 if (pRenderingInfo->pColorAttachments[i].imageView != VK_NULL_HANDLE)
5506 continue;
5507
5508 isl_null_fill_state(&cmd_buffer->device->isl_dev,
5509 gfx->color_att[i].surface_state.state.map,
5510 .size = fb_size);
5511 }
5512
5513 /****** We can now start emitting code to begin the render pass ******/
5514
5515 gfx->dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
5516
5517 /* Our implementation of VK_KHR_multiview uses instancing to draw the
5518 * different views. If the client asks for instancing, we need to use the
5519 * Instance Data Step Rate to ensure that we repeat the client's
5520 * per-instance data once for each view. Since this bit is in
5521 * VERTEX_BUFFER_STATE on gfx7, we need to dirty vertex buffers at the top
5522 * of each subpass.
5523 */
5524 if (GFX_VER == 7)
5525 gfx->vb_dirty |= ~0;
5526
5527 /* It is possible to start a render pass with an old pipeline. Because the
5528 * render pass and subpass index are both baked into the pipeline, this is
5529 * highly unlikely. In order to do so, it requires that you have a render
5530 * pass with a single subpass and that you use that render pass twice
5531 * back-to-back and use the same pipeline at the start of the second render
5532 * pass as at the end of the first. In order to avoid unpredictable issues
5533 * with this edge case, we just dirty the pipeline at the start of every
5534 * subpass.
5535 */
5536 gfx->dirty |= ANV_CMD_DIRTY_PIPELINE;
5537
5538 cmd_buffer_emit_depth_stencil(cmd_buffer);
5539 }
5540
5541 static void
cmd_buffer_mark_attachment_written(struct anv_cmd_buffer * cmd_buffer,struct anv_attachment * att,VkImageAspectFlagBits aspect)5542 cmd_buffer_mark_attachment_written(struct anv_cmd_buffer *cmd_buffer,
5543 struct anv_attachment *att,
5544 VkImageAspectFlagBits aspect)
5545 {
5546 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
5547 const struct anv_image_view *iview = att->iview;
5548
5549 if (iview == NULL)
5550 return;
5551
5552 if (gfx->view_mask == 0) {
5553 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5554 aspect, att->aux_usage,
5555 iview->planes[0].isl.base_level,
5556 iview->planes[0].isl.base_array_layer,
5557 gfx->layer_count);
5558 } else {
5559 uint32_t res_view_mask = gfx->view_mask;
5560 while (res_view_mask) {
5561 int i = u_bit_scan(&res_view_mask);
5562
5563 const uint32_t level = iview->planes[0].isl.base_level;
5564 const uint32_t layer = iview->planes[0].isl.base_array_layer + i;
5565
5566 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
5567 aspect, att->aux_usage,
5568 level, layer, 1);
5569 }
5570 }
5571 }
5572
genX(CmdEndRendering)5573 void genX(CmdEndRendering)(
5574 VkCommandBuffer commandBuffer)
5575 {
5576 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5577 struct anv_cmd_graphics_state *gfx = &cmd_buffer->state.gfx;
5578
5579 if (anv_batch_has_error(&cmd_buffer->batch))
5580 return;
5581
5582 const bool is_multiview = gfx->view_mask != 0;
5583 const uint32_t layers =
5584 is_multiview ? util_last_bit(gfx->view_mask) : gfx->layer_count;
5585
5586 bool has_color_resolve = false;
5587 for (uint32_t i = 0; i < gfx->color_att_count; i++) {
5588 cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->color_att[i],
5589 VK_IMAGE_ASPECT_COLOR_BIT);
5590
5591 /* Stash this off for later */
5592 if (gfx->color_att[i].resolve_mode != VK_RESOLVE_MODE_NONE &&
5593 !(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT))
5594 has_color_resolve = true;
5595 }
5596
5597 cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->depth_att,
5598 VK_IMAGE_ASPECT_DEPTH_BIT);
5599
5600 cmd_buffer_mark_attachment_written(cmd_buffer, &gfx->stencil_att,
5601 VK_IMAGE_ASPECT_STENCIL_BIT);
5602
5603 if (has_color_resolve) {
5604 /* We are about to do some MSAA resolves. We need to flush so that the
5605 * result of writes to the MSAA color attachments show up in the sampler
5606 * when we blit to the single-sampled resolve target.
5607 */
5608 anv_add_pending_pipe_bits(cmd_buffer,
5609 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5610 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT,
5611 "MSAA resolve");
5612 }
5613
5614 if (gfx->depth_att.resolve_mode != VK_RESOLVE_MODE_NONE ||
5615 gfx->stencil_att.resolve_mode != VK_RESOLVE_MODE_NONE) {
5616 /* We are about to do some MSAA resolves. We need to flush so that the
5617 * result of writes to the MSAA depth attachments show up in the sampler
5618 * when we blit to the single-sampled resolve target.
5619 */
5620 anv_add_pending_pipe_bits(cmd_buffer,
5621 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5622 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT,
5623 "MSAA resolve");
5624 }
5625
5626 for (uint32_t i = 0; i < gfx->color_att_count; i++) {
5627 const struct anv_attachment *att = &gfx->color_att[i];
5628 if (att->resolve_mode == VK_RESOLVE_MODE_NONE ||
5629 (gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT))
5630 continue;
5631
5632 anv_attachment_msaa_resolve(cmd_buffer, att, att->layout,
5633 VK_IMAGE_ASPECT_COLOR_BIT);
5634 }
5635
5636 if (gfx->depth_att.resolve_mode != VK_RESOLVE_MODE_NONE &&
5637 !(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) {
5638 const struct anv_image_view *src_iview = gfx->depth_att.iview;
5639
5640 /* MSAA resolves sample from the source attachment. Transition the
5641 * depth attachment first to get rid of any HiZ that we may not be
5642 * able to handle.
5643 */
5644 transition_depth_buffer(cmd_buffer, src_iview->image,
5645 src_iview->planes[0].isl.base_array_layer,
5646 layers,
5647 gfx->depth_att.layout,
5648 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
5649 false /* will_full_fast_clear */);
5650
5651 anv_attachment_msaa_resolve(cmd_buffer, &gfx->depth_att,
5652 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
5653 VK_IMAGE_ASPECT_DEPTH_BIT);
5654
5655 /* Transition the source back to the original layout. This seems a bit
5656 * inefficient but, since HiZ resolves aren't destructive, going from
5657 * less HiZ to more is generally a no-op.
5658 */
5659 transition_depth_buffer(cmd_buffer, src_iview->image,
5660 src_iview->planes[0].isl.base_array_layer,
5661 layers,
5662 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
5663 gfx->depth_att.layout,
5664 false /* will_full_fast_clear */);
5665 }
5666
5667 if (gfx->stencil_att.resolve_mode != VK_RESOLVE_MODE_NONE &&
5668 !(gfx->rendering_flags & VK_RENDERING_SUSPENDING_BIT)) {
5669 anv_attachment_msaa_resolve(cmd_buffer, &gfx->stencil_att,
5670 gfx->stencil_att.layout,
5671 VK_IMAGE_ASPECT_STENCIL_BIT);
5672 }
5673
5674 #if GFX_VER == 7
5675 /* On gfx7, we have to store a texturable version of the stencil buffer in
5676 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5677 * forth at strategic points. Stencil writes are only allowed in following
5678 * layouts:
5679 *
5680 * - VK_IMAGE_LAYOUT_GENERAL
5681 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5682 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5683 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5684 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL
5685 * - VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL
5686 * - VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT
5687 *
5688 * For general, we have no nice opportunity to transition so we do the copy
5689 * to the shadow unconditionally at the end of the subpass. For transfer
5690 * destinations, we can update it as part of the transfer op. For the other
5691 * layouts, we delay the copy until a transition into some other layout.
5692 */
5693 if (gfx->stencil_att.iview != NULL) {
5694 const struct anv_image_view *iview = gfx->stencil_att.iview;
5695 const struct anv_image *image = iview->image;
5696 const uint32_t plane =
5697 anv_image_aspect_to_plane(image, VK_IMAGE_ASPECT_STENCIL_BIT);
5698
5699 if (anv_surface_is_valid(&image->planes[plane].shadow_surface) &&
5700 (gfx->stencil_att.layout == VK_IMAGE_LAYOUT_GENERAL ||
5701 gfx->stencil_att.layout == VK_IMAGE_LAYOUT_ATTACHMENT_FEEDBACK_LOOP_OPTIMAL_EXT)) {
5702 anv_image_copy_to_shadow(cmd_buffer, image,
5703 VK_IMAGE_ASPECT_STENCIL_BIT,
5704 iview->planes[plane].isl.base_level, 1,
5705 iview->planes[plane].isl.base_array_layer,
5706 layers);
5707 }
5708 }
5709 #endif
5710
5711 anv_cmd_buffer_reset_rendering(cmd_buffer);
5712 }
5713
5714 void
genX(cmd_emit_conditional_render_predicate)5715 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5716 {
5717 #if GFX_VERx10 >= 75
5718 struct mi_builder b;
5719 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
5720
5721 mi_store(&b, mi_reg64(MI_PREDICATE_SRC0),
5722 mi_reg32(ANV_PREDICATE_RESULT_REG));
5723 mi_store(&b, mi_reg64(MI_PREDICATE_SRC1), mi_imm(0));
5724
5725 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5726 mip.LoadOperation = LOAD_LOADINV;
5727 mip.CombineOperation = COMBINE_SET;
5728 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5729 }
5730 #endif
5731 }
5732
5733 #if GFX_VERx10 >= 75
genX(CmdBeginConditionalRenderingEXT)5734 void genX(CmdBeginConditionalRenderingEXT)(
5735 VkCommandBuffer commandBuffer,
5736 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5737 {
5738 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5739 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5740 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5741 struct anv_address value_address =
5742 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5743
5744 const bool isInverted = pConditionalRenderingBegin->flags &
5745 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5746
5747 cmd_state->conditional_render_enabled = true;
5748
5749 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5750
5751 struct mi_builder b;
5752 mi_builder_init(&b, cmd_buffer->device->info, &cmd_buffer->batch);
5753
5754 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5755 *
5756 * If the value of the predicate in buffer memory changes
5757 * while conditional rendering is active, the rendering commands
5758 * may be discarded in an implementation-dependent way.
5759 * Some implementations may latch the value of the predicate
5760 * upon beginning conditional rendering while others
5761 * may read it before every rendering command.
5762 *
5763 * So it's perfectly fine to read a value from the buffer once.
5764 */
5765 struct mi_value value = mi_mem32(value_address);
5766
5767 /* Precompute predicate result, it is necessary to support secondary
5768 * command buffers since it is unknown if conditional rendering is
5769 * inverted when populating them.
5770 */
5771 mi_store(&b, mi_reg64(ANV_PREDICATE_RESULT_REG),
5772 isInverted ? mi_uge(&b, mi_imm(0), value) :
5773 mi_ult(&b, mi_imm(0), value));
5774 }
5775
genX(CmdEndConditionalRenderingEXT)5776 void genX(CmdEndConditionalRenderingEXT)(
5777 VkCommandBuffer commandBuffer)
5778 {
5779 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5780 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5781
5782 cmd_state->conditional_render_enabled = false;
5783 }
5784 #endif
5785
5786 /* Set of stage bits for which are pipelined, i.e. they get queued
5787 * by the command streamer for later execution.
5788 */
5789 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5790 ~(VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT | \
5791 VK_PIPELINE_STAGE_2_DRAW_INDIRECT_BIT | \
5792 VK_PIPELINE_STAGE_2_HOST_BIT | \
5793 VK_PIPELINE_STAGE_2_CONDITIONAL_RENDERING_BIT_EXT)
5794
genX(CmdSetEvent2)5795 void genX(CmdSetEvent2)(
5796 VkCommandBuffer commandBuffer,
5797 VkEvent _event,
5798 const VkDependencyInfo* pDependencyInfo)
5799 {
5800 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5801 ANV_FROM_HANDLE(anv_event, event, _event);
5802
5803 VkPipelineStageFlags2 src_stages = 0;
5804
5805 for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++)
5806 src_stages |= pDependencyInfo->pMemoryBarriers[i].srcStageMask;
5807 for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++)
5808 src_stages |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask;
5809 for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++)
5810 src_stages |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask;
5811
5812 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5813 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5814
5815 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5816 if (src_stages & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5817 pc.StallAtPixelScoreboard = true;
5818 pc.CommandStreamerStallEnable = true;
5819 }
5820
5821 pc.DestinationAddressType = DAT_PPGTT,
5822 pc.PostSyncOperation = WriteImmediateData,
5823 pc.Address = (struct anv_address) {
5824 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5825 event->state.offset
5826 };
5827 pc.ImmediateData = VK_EVENT_SET;
5828 anv_debug_dump_pc(pc);
5829 }
5830 }
5831
genX(CmdResetEvent2)5832 void genX(CmdResetEvent2)(
5833 VkCommandBuffer commandBuffer,
5834 VkEvent _event,
5835 VkPipelineStageFlags2 stageMask)
5836 {
5837 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5838 ANV_FROM_HANDLE(anv_event, event, _event);
5839
5840 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_POST_SYNC_BIT;
5841 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5842
5843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5844 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5845 pc.StallAtPixelScoreboard = true;
5846 pc.CommandStreamerStallEnable = true;
5847 }
5848
5849 pc.DestinationAddressType = DAT_PPGTT;
5850 pc.PostSyncOperation = WriteImmediateData;
5851 pc.Address = (struct anv_address) {
5852 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5853 event->state.offset
5854 };
5855 pc.ImmediateData = VK_EVENT_RESET;
5856 anv_debug_dump_pc(pc);
5857 }
5858 }
5859
genX(CmdWaitEvents2)5860 void genX(CmdWaitEvents2)(
5861 VkCommandBuffer commandBuffer,
5862 uint32_t eventCount,
5863 const VkEvent* pEvents,
5864 const VkDependencyInfo* pDependencyInfos)
5865 {
5866 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5867
5868 #if GFX_VER >= 8
5869 for (uint32_t i = 0; i < eventCount; i++) {
5870 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5871
5872 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5873 sem.WaitMode = PollingMode,
5874 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5875 sem.SemaphoreDataDword = VK_EVENT_SET,
5876 sem.SemaphoreAddress = (struct anv_address) {
5877 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5878 event->state.offset
5879 };
5880 }
5881 }
5882 #else
5883 anv_finishme("Implement events on gfx7");
5884 #endif
5885
5886 cmd_buffer_barrier(cmd_buffer, pDependencyInfos, "wait event");
5887 }
5888
vk_to_intel_index_type(VkIndexType type)5889 static uint32_t vk_to_intel_index_type(VkIndexType type)
5890 {
5891 switch (type) {
5892 case VK_INDEX_TYPE_UINT8_EXT:
5893 return INDEX_BYTE;
5894 case VK_INDEX_TYPE_UINT16:
5895 return INDEX_WORD;
5896 case VK_INDEX_TYPE_UINT32:
5897 return INDEX_DWORD;
5898 default:
5899 unreachable("invalid index type");
5900 }
5901 }
5902
genX(CmdBindIndexBuffer)5903 void genX(CmdBindIndexBuffer)(
5904 VkCommandBuffer commandBuffer,
5905 VkBuffer _buffer,
5906 VkDeviceSize offset,
5907 VkIndexType indexType)
5908 {
5909 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5910 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
5911
5912 cmd_buffer->state.gfx.restart_index = vk_index_to_restart(indexType);
5913 cmd_buffer->state.gfx.index_buffer = buffer;
5914 cmd_buffer->state.gfx.index_type = vk_to_intel_index_type(indexType);
5915 cmd_buffer->state.gfx.index_offset = offset;
5916
5917 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
5918 }
5919
genX(CmdSetPerformanceOverrideINTEL)5920 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5921 VkCommandBuffer commandBuffer,
5922 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5923 {
5924 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5925
5926 switch (pOverrideInfo->type) {
5927 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5928 anv_batch_write_reg(&cmd_buffer->batch, GENX(INSTPM), instpm) {
5929 instpm._3DRenderingInstructionDisable = pOverrideInfo->enable;
5930 instpm.MediaInstructionDisable = pOverrideInfo->enable;
5931 instpm._3DRenderingInstructionDisableMask = true;
5932 instpm.MediaInstructionDisableMask = true;
5933 }
5934 break;
5935 }
5936
5937 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5938 if (pOverrideInfo->enable) {
5939 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5940 anv_add_pending_pipe_bits(cmd_buffer,
5941 ANV_PIPE_FLUSH_BITS |
5942 ANV_PIPE_INVALIDATE_BITS,
5943 "perf counter isolation");
5944 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5945 }
5946 break;
5947
5948 default:
5949 unreachable("Invalid override");
5950 }
5951
5952 return VK_SUCCESS;
5953 }
5954
genX(CmdSetPerformanceStreamMarkerINTEL)5955 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5956 VkCommandBuffer commandBuffer,
5957 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5958 {
5959 /* TODO: Waiting on the register to write, might depend on generation. */
5960
5961 return VK_SUCCESS;
5962 }
5963
5964 #define TIMESTAMP 0x2358
5965
genX(cmd_emit_timestamp)5966 void genX(cmd_emit_timestamp)(struct anv_batch *batch,
5967 struct anv_device *device,
5968 struct anv_address addr,
5969 enum anv_timestamp_capture_type type) {
5970 switch (type) {
5971 case ANV_TIMESTAMP_CAPTURE_TOP_OF_PIPE: {
5972 struct mi_builder b;
5973 mi_builder_init(&b, device->info, batch);
5974 mi_store(&b, mi_mem64(addr), mi_reg64(TIMESTAMP));
5975 break;
5976 }
5977
5978 case ANV_TIMESTAMP_CAPTURE_END_OF_PIPE:
5979 anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) {
5980 pc.PostSyncOperation = WriteTimestamp;
5981 pc.Address = addr;
5982 anv_debug_dump_pc(pc);
5983 }
5984 break;
5985
5986 case ANV_TIMESTAMP_CAPTURE_AT_CS_STALL:
5987 anv_batch_emit(batch, GENX(PIPE_CONTROL), pc) {
5988 pc.CommandStreamerStallEnable = true;
5989 pc.PostSyncOperation = WriteTimestamp;
5990 pc.Address = addr;
5991 anv_debug_dump_pc(pc);
5992 }
5993 break;
5994
5995 default:
5996 unreachable("invalid");
5997 }
5998 }
5999
genX(cmd_capture_data)6000 void genX(cmd_capture_data)(struct anv_batch *batch,
6001 struct anv_device *device,
6002 struct anv_address dst_addr,
6003 struct anv_address src_addr,
6004 uint32_t size_B)
6005 {
6006 struct mi_builder b;
6007 mi_builder_init(&b, device->info, batch);
6008 mi_memcpy(&b, dst_addr, src_addr, size_B);
6009 }
6010