1 /*
2 * Copyright 2019 Google LLC
3 * SPDX-License-Identifier: MIT
4 *
5 * based in part on anv and radv which are:
6 * Copyright © 2015 Intel Corporation
7 * Copyright © 2016 Red Hat.
8 * Copyright © 2016 Bas Nieuwenhuizen
9 */
10
11 #include "vn_buffer.h"
12
13 #include "venus-protocol/vn_protocol_driver_buffer.h"
14 #include "venus-protocol/vn_protocol_driver_buffer_view.h"
15
16 #include "vn_android.h"
17 #include "vn_device.h"
18 #include "vn_device_memory.h"
19 #include "vn_physical_device.h"
20
21 /* buffer commands */
22
23 static inline uint64_t
vn_buffer_get_cache_index(const VkBufferCreateInfo * create_info,struct vn_buffer_reqs_cache * cache)24 vn_buffer_get_cache_index(const VkBufferCreateInfo *create_info,
25 struct vn_buffer_reqs_cache *cache)
26 {
27 /* For simplicity, cache only when below conditions are met:
28 * - pNext is NULL
29 * - VK_SHARING_MODE_EXCLUSIVE or VK_SHARING_MODE_CONCURRENT across all
30 *
31 * Combine sharing mode, flags and usage bits to form a unique index.
32 *
33 * Btw, we assume VkBufferCreateFlagBits won't exhaust all 32bits, at least
34 * no earlier than VkBufferUsageFlagBits.
35 *
36 * TODO: extend cache to cover VkBufferUsageFlags2CreateInfo (introduced in
37 * VK_KHR_maintenance5 and promoted to 1.4).
38 */
39 assert(!(create_info->flags & 0x80000000));
40
41 const bool is_exclusive =
42 create_info->sharingMode == VK_SHARING_MODE_EXCLUSIVE;
43 const bool is_concurrent =
44 create_info->sharingMode == VK_SHARING_MODE_CONCURRENT &&
45 create_info->queueFamilyIndexCount == cache->queue_family_count;
46 if (create_info->size <= cache->max_buffer_size &&
47 create_info->pNext == NULL && (is_exclusive || is_concurrent)) {
48 return (uint64_t)is_concurrent << 63 |
49 (uint64_t)create_info->flags << 32 | create_info->usage;
50 }
51
52 /* index being zero suggests uncachable since usage must not be zero */
53 return 0;
54 }
55
56 static inline uint64_t
vn_buffer_get_max_buffer_size(struct vn_physical_device * physical_dev)57 vn_buffer_get_max_buffer_size(struct vn_physical_device *physical_dev)
58 {
59 /* Without maintenance4, hardcode the min of supported drivers:
60 * - anv: 1ull << 30
61 * - radv: UINT32_MAX - 4
62 * - tu: UINT32_MAX + 1
63 * - lvp: UINT32_MAX
64 * - mali: UINT32_MAX
65 */
66 static const uint64_t safe_max_buffer_size = 1ULL << 30;
67 return physical_dev->base.base.supported_features.maintenance4
68 ? physical_dev->base.base.properties.maxBufferSize
69 : safe_max_buffer_size;
70 }
71
72 void
vn_buffer_reqs_cache_init(struct vn_device * dev)73 vn_buffer_reqs_cache_init(struct vn_device *dev)
74 {
75 assert(dev->physical_device->queue_family_count);
76
77 dev->buffer_reqs_cache.max_buffer_size =
78 vn_buffer_get_max_buffer_size(dev->physical_device);
79 dev->buffer_reqs_cache.queue_family_count =
80 dev->physical_device->queue_family_count;
81
82 simple_mtx_init(&dev->buffer_reqs_cache.mutex, mtx_plain);
83 util_sparse_array_init(&dev->buffer_reqs_cache.entries,
84 sizeof(struct vn_buffer_reqs_cache_entry), 64);
85 }
86
87 static void
vn_buffer_reqs_cache_debug_dump(struct vn_buffer_reqs_cache * cache)88 vn_buffer_reqs_cache_debug_dump(struct vn_buffer_reqs_cache *cache)
89 {
90 vn_log(NULL, "dumping buffer cache statistics");
91 vn_log(NULL, " cache hit: %d", cache->debug.cache_hit_count);
92 vn_log(NULL, " cache miss: %d", cache->debug.cache_miss_count);
93 vn_log(NULL, " cache skip: %d", cache->debug.cache_skip_count);
94 }
95
96 void
vn_buffer_reqs_cache_fini(struct vn_device * dev)97 vn_buffer_reqs_cache_fini(struct vn_device *dev)
98 {
99 util_sparse_array_finish(&dev->buffer_reqs_cache.entries);
100 simple_mtx_destroy(&dev->buffer_reqs_cache.mutex);
101
102 if (VN_DEBUG(CACHE))
103 vn_buffer_reqs_cache_debug_dump(&dev->buffer_reqs_cache);
104 }
105
106 static inline uint32_t
vn_buffer_get_ahb_memory_type_bits(struct vn_device * dev)107 vn_buffer_get_ahb_memory_type_bits(struct vn_device *dev)
108 {
109 struct vn_buffer_reqs_cache *cache = &dev->buffer_reqs_cache;
110 if (unlikely(!cache->ahb_mem_type_bits_valid)) {
111 simple_mtx_lock(&cache->mutex);
112 if (!cache->ahb_mem_type_bits_valid) {
113 cache->ahb_mem_type_bits =
114 vn_android_get_ahb_buffer_memory_type_bits(dev);
115 cache->ahb_mem_type_bits_valid = true;
116 }
117 simple_mtx_unlock(&cache->mutex);
118 }
119
120 return cache->ahb_mem_type_bits;
121 }
122
123 static inline VkDeviceSize
vn_buffer_get_aligned_memory_requirement_size(VkDeviceSize size,const VkMemoryRequirements * req)124 vn_buffer_get_aligned_memory_requirement_size(VkDeviceSize size,
125 const VkMemoryRequirements *req)
126 {
127 /* TODO remove comment after mandating VK_KHR_maintenance4
128 *
129 * This is based on below implementation defined behavior:
130 * req.size <= align64(info.size, req.alignment)
131 */
132 return align64(size, req->alignment);
133 }
134
135 static struct vn_buffer_reqs_cache_entry *
vn_buffer_get_cached_memory_requirements(struct vn_buffer_reqs_cache * cache,const VkBufferCreateInfo * create_info,struct vn_buffer_memory_requirements * out)136 vn_buffer_get_cached_memory_requirements(
137 struct vn_buffer_reqs_cache *cache,
138 const VkBufferCreateInfo *create_info,
139 struct vn_buffer_memory_requirements *out)
140 {
141 if (VN_PERF(NO_ASYNC_BUFFER_CREATE))
142 return NULL;
143
144 /* 12.7. Resource Memory Association
145 *
146 * The memoryTypeBits member is identical for all VkBuffer objects created
147 * with the same value for the flags and usage members in the
148 * VkBufferCreateInfo structure and the handleTypes member of the
149 * VkExternalMemoryBufferCreateInfo structure passed to vkCreateBuffer.
150 */
151 const uint64_t idx = vn_buffer_get_cache_index(create_info, cache);
152 if (idx) {
153 struct vn_buffer_reqs_cache_entry *entry =
154 util_sparse_array_get(&cache->entries, idx);
155
156 if (entry->valid) {
157 *out = entry->requirements;
158
159 out->memory.memoryRequirements.size =
160 vn_buffer_get_aligned_memory_requirement_size(
161 create_info->size, &out->memory.memoryRequirements);
162
163 p_atomic_inc(&cache->debug.cache_hit_count);
164 } else {
165 p_atomic_inc(&cache->debug.cache_miss_count);
166 }
167
168 return entry;
169 }
170
171 p_atomic_inc(&cache->debug.cache_skip_count);
172
173 return NULL;
174 }
175
176 static void
vn_buffer_reqs_cache_entry_init(struct vn_buffer_reqs_cache * cache,struct vn_buffer_reqs_cache_entry * entry,VkMemoryRequirements2 * req)177 vn_buffer_reqs_cache_entry_init(struct vn_buffer_reqs_cache *cache,
178 struct vn_buffer_reqs_cache_entry *entry,
179 VkMemoryRequirements2 *req)
180 {
181 simple_mtx_lock(&cache->mutex);
182
183 /* Entry might have already been initialized by another thread
184 * before the lock
185 */
186 if (entry->valid)
187 goto unlock;
188
189 entry->requirements.memory = *req;
190
191 const VkMemoryDedicatedRequirements *dedicated_req =
192 vk_find_struct_const(req->pNext, MEMORY_DEDICATED_REQUIREMENTS);
193 if (dedicated_req)
194 entry->requirements.dedicated = *dedicated_req;
195
196 entry->valid = true;
197
198 unlock:
199 simple_mtx_unlock(&cache->mutex);
200
201 /* ensure invariance of the memory requirement size */
202 req->memoryRequirements.size =
203 vn_buffer_get_aligned_memory_requirement_size(
204 req->memoryRequirements.size,
205 &entry->requirements.memory.memoryRequirements);
206 }
207
208 static void
vn_copy_cached_memory_requirements(const struct vn_buffer_memory_requirements * cached,VkMemoryRequirements2 * out_mem_req)209 vn_copy_cached_memory_requirements(
210 const struct vn_buffer_memory_requirements *cached,
211 VkMemoryRequirements2 *out_mem_req)
212 {
213 union {
214 VkBaseOutStructure *pnext;
215 VkMemoryRequirements2 *two;
216 VkMemoryDedicatedRequirements *dedicated;
217 } u = { .two = out_mem_req };
218
219 while (u.pnext) {
220 switch (u.pnext->sType) {
221 case VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2:
222 u.two->memoryRequirements = cached->memory.memoryRequirements;
223 break;
224 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS:
225 u.dedicated->prefersDedicatedAllocation =
226 cached->dedicated.prefersDedicatedAllocation;
227 u.dedicated->requiresDedicatedAllocation =
228 cached->dedicated.requiresDedicatedAllocation;
229 break;
230 default:
231 break;
232 }
233 u.pnext = u.pnext->pNext;
234 }
235 }
236
237 static VkResult
vn_buffer_init(struct vn_device * dev,const VkBufferCreateInfo * create_info,struct vn_buffer * buf)238 vn_buffer_init(struct vn_device *dev,
239 const VkBufferCreateInfo *create_info,
240 struct vn_buffer *buf)
241 {
242 VkDevice dev_handle = vn_device_to_handle(dev);
243 VkBuffer buf_handle = vn_buffer_to_handle(buf);
244 struct vn_buffer_reqs_cache *cache = &dev->buffer_reqs_cache;
245 VkResult result;
246
247 /* If cacheable and mem requirements found in cache, make async call */
248 struct vn_buffer_reqs_cache_entry *entry =
249 vn_buffer_get_cached_memory_requirements(cache, create_info,
250 &buf->requirements);
251
252 /* Check size instead of entry->valid to be lock free */
253 if (buf->requirements.memory.memoryRequirements.size) {
254 vn_async_vkCreateBuffer(dev->primary_ring, dev_handle, create_info,
255 NULL, &buf_handle);
256 return VK_SUCCESS;
257 }
258
259 /* If cache miss or not cacheable, make synchronous call */
260 result = vn_call_vkCreateBuffer(dev->primary_ring, dev_handle, create_info,
261 NULL, &buf_handle);
262 if (result != VK_SUCCESS)
263 return result;
264
265 buf->requirements.memory.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2;
266 buf->requirements.memory.pNext = &buf->requirements.dedicated;
267 buf->requirements.dedicated.sType =
268 VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS;
269 buf->requirements.dedicated.pNext = NULL;
270
271 vn_call_vkGetBufferMemoryRequirements2(
272 dev->primary_ring, dev_handle,
273 &(VkBufferMemoryRequirementsInfo2){
274 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
275 .buffer = buf_handle,
276 },
277 &buf->requirements.memory);
278
279 /* If cacheable, store mem requirements from the synchronous call */
280 if (entry) {
281 vn_buffer_reqs_cache_entry_init(cache, entry,
282 &buf->requirements.memory);
283 }
284
285 return VK_SUCCESS;
286 }
287
288 VkResult
vn_buffer_create(struct vn_device * dev,const VkBufferCreateInfo * create_info,const VkAllocationCallbacks * alloc,struct vn_buffer ** out_buf)289 vn_buffer_create(struct vn_device *dev,
290 const VkBufferCreateInfo *create_info,
291 const VkAllocationCallbacks *alloc,
292 struct vn_buffer **out_buf)
293 {
294 struct vn_buffer *buf = NULL;
295 VkResult result;
296
297 buf = vk_zalloc(alloc, sizeof(*buf), VN_DEFAULT_ALIGN,
298 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
299 if (!buf)
300 return VK_ERROR_OUT_OF_HOST_MEMORY;
301
302 vn_object_base_init(&buf->base, VK_OBJECT_TYPE_BUFFER, &dev->base);
303
304 result = vn_buffer_init(dev, create_info, buf);
305 if (result != VK_SUCCESS) {
306 vn_object_base_fini(&buf->base);
307 vk_free(alloc, buf);
308 return result;
309 }
310
311 *out_buf = buf;
312
313 return VK_SUCCESS;
314 }
315
316 struct vn_buffer_create_info {
317 VkBufferCreateInfo create;
318 VkExternalMemoryBufferCreateInfo external;
319 VkBufferOpaqueCaptureAddressCreateInfo capture;
320 };
321
322 static const VkBufferCreateInfo *
vn_buffer_fix_create_info(const VkBufferCreateInfo * create_info,const VkExternalMemoryHandleTypeFlagBits renderer_handle_type,struct vn_buffer_create_info * local_info)323 vn_buffer_fix_create_info(
324 const VkBufferCreateInfo *create_info,
325 const VkExternalMemoryHandleTypeFlagBits renderer_handle_type,
326 struct vn_buffer_create_info *local_info)
327 {
328 local_info->create = *create_info;
329 VkBaseOutStructure *cur = (void *)&local_info->create;
330
331 vk_foreach_struct_const(src, create_info->pNext) {
332 void *next = NULL;
333 switch (src->sType) {
334 case VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO:
335 memcpy(&local_info->external, src, sizeof(local_info->external));
336 local_info->external.handleTypes = renderer_handle_type;
337 next = &local_info->external;
338 break;
339 case VK_STRUCTURE_TYPE_BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO:
340 memcpy(&local_info->capture, src, sizeof(local_info->capture));
341 next = &local_info->capture;
342 break;
343 default:
344 break;
345 }
346
347 if (next) {
348 cur->pNext = next;
349 cur = next;
350 }
351 }
352
353 cur->pNext = NULL;
354
355 return &local_info->create;
356 }
357
358 VkResult
vn_CreateBuffer(VkDevice device,const VkBufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBuffer * pBuffer)359 vn_CreateBuffer(VkDevice device,
360 const VkBufferCreateInfo *pCreateInfo,
361 const VkAllocationCallbacks *pAllocator,
362 VkBuffer *pBuffer)
363 {
364 struct vn_device *dev = vn_device_from_handle(device);
365 const VkAllocationCallbacks *alloc =
366 pAllocator ? pAllocator : &dev->base.base.alloc;
367 const VkExternalMemoryHandleTypeFlagBits renderer_handle_type =
368 dev->physical_device->external_memory.renderer_handle_type;
369
370 struct vn_buffer_create_info local_info;
371 const VkExternalMemoryBufferCreateInfo *external_info =
372 vk_find_struct_const(pCreateInfo->pNext,
373 EXTERNAL_MEMORY_BUFFER_CREATE_INFO);
374 if (external_info && external_info->handleTypes &&
375 external_info->handleTypes != renderer_handle_type) {
376 pCreateInfo = vn_buffer_fix_create_info(
377 pCreateInfo, renderer_handle_type, &local_info);
378 }
379
380 struct vn_buffer *buf;
381 VkResult result = vn_buffer_create(dev, pCreateInfo, alloc, &buf);
382 if (result != VK_SUCCESS)
383 return vn_error(dev->instance, result);
384
385 if (external_info &&
386 external_info->handleTypes ==
387 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) {
388 /* AHB backed buffer layers on top of renderer external memory, so here
389 * we combine the queried type bits from both buffer memory requirement
390 * and renderer external memory properties.
391 */
392 buf->requirements.memory.memoryRequirements.memoryTypeBits &=
393 vn_buffer_get_ahb_memory_type_bits(dev);
394
395 assert(buf->requirements.memory.memoryRequirements.memoryTypeBits);
396 }
397
398 *pBuffer = vn_buffer_to_handle(buf);
399
400 return VK_SUCCESS;
401 }
402
403 void
vn_DestroyBuffer(VkDevice device,VkBuffer buffer,const VkAllocationCallbacks * pAllocator)404 vn_DestroyBuffer(VkDevice device,
405 VkBuffer buffer,
406 const VkAllocationCallbacks *pAllocator)
407 {
408 struct vn_device *dev = vn_device_from_handle(device);
409 struct vn_buffer *buf = vn_buffer_from_handle(buffer);
410 const VkAllocationCallbacks *alloc =
411 pAllocator ? pAllocator : &dev->base.base.alloc;
412
413 if (!buf)
414 return;
415
416 vn_async_vkDestroyBuffer(dev->primary_ring, device, buffer, NULL);
417
418 vn_object_base_fini(&buf->base);
419 vk_free(alloc, buf);
420 }
421
422 VkDeviceAddress
vn_GetBufferDeviceAddress(VkDevice device,const VkBufferDeviceAddressInfo * pInfo)423 vn_GetBufferDeviceAddress(VkDevice device,
424 const VkBufferDeviceAddressInfo *pInfo)
425 {
426 struct vn_device *dev = vn_device_from_handle(device);
427
428 return vn_call_vkGetBufferDeviceAddress(dev->primary_ring, device, pInfo);
429 }
430
431 uint64_t
vn_GetBufferOpaqueCaptureAddress(VkDevice device,const VkBufferDeviceAddressInfo * pInfo)432 vn_GetBufferOpaqueCaptureAddress(VkDevice device,
433 const VkBufferDeviceAddressInfo *pInfo)
434 {
435 struct vn_device *dev = vn_device_from_handle(device);
436
437 return vn_call_vkGetBufferOpaqueCaptureAddress(dev->primary_ring, device,
438 pInfo);
439 }
440
441 void
vn_GetBufferMemoryRequirements2(VkDevice device,const VkBufferMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)442 vn_GetBufferMemoryRequirements2(VkDevice device,
443 const VkBufferMemoryRequirementsInfo2 *pInfo,
444 VkMemoryRequirements2 *pMemoryRequirements)
445 {
446 const struct vn_buffer *buf = vn_buffer_from_handle(pInfo->buffer);
447
448 vn_copy_cached_memory_requirements(&buf->requirements,
449 pMemoryRequirements);
450 }
451
452 VkResult
vn_BindBufferMemory2(VkDevice device,uint32_t bindInfoCount,const VkBindBufferMemoryInfo * pBindInfos)453 vn_BindBufferMemory2(VkDevice device,
454 uint32_t bindInfoCount,
455 const VkBindBufferMemoryInfo *pBindInfos)
456 {
457 struct vn_device *dev = vn_device_from_handle(device);
458 vn_async_vkBindBufferMemory2(dev->primary_ring, device, bindInfoCount,
459 pBindInfos);
460
461 return VK_SUCCESS;
462 }
463
464 /* buffer view commands */
465
466 VkResult
vn_CreateBufferView(VkDevice device,const VkBufferViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBufferView * pView)467 vn_CreateBufferView(VkDevice device,
468 const VkBufferViewCreateInfo *pCreateInfo,
469 const VkAllocationCallbacks *pAllocator,
470 VkBufferView *pView)
471 {
472 struct vn_device *dev = vn_device_from_handle(device);
473 const VkAllocationCallbacks *alloc =
474 pAllocator ? pAllocator : &dev->base.base.alloc;
475
476 struct vn_buffer_view *view =
477 vk_zalloc(alloc, sizeof(*view), VN_DEFAULT_ALIGN,
478 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
479 if (!view)
480 return vn_error(dev->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
481
482 vn_object_base_init(&view->base, VK_OBJECT_TYPE_BUFFER_VIEW, &dev->base);
483
484 VkBufferView view_handle = vn_buffer_view_to_handle(view);
485 vn_async_vkCreateBufferView(dev->primary_ring, device, pCreateInfo, NULL,
486 &view_handle);
487
488 *pView = view_handle;
489
490 return VK_SUCCESS;
491 }
492
493 void
vn_DestroyBufferView(VkDevice device,VkBufferView bufferView,const VkAllocationCallbacks * pAllocator)494 vn_DestroyBufferView(VkDevice device,
495 VkBufferView bufferView,
496 const VkAllocationCallbacks *pAllocator)
497 {
498 struct vn_device *dev = vn_device_from_handle(device);
499 struct vn_buffer_view *view = vn_buffer_view_from_handle(bufferView);
500 const VkAllocationCallbacks *alloc =
501 pAllocator ? pAllocator : &dev->base.base.alloc;
502
503 if (!view)
504 return;
505
506 vn_async_vkDestroyBufferView(dev->primary_ring, device, bufferView, NULL);
507
508 vn_object_base_fini(&view->base);
509 vk_free(alloc, view);
510 }
511
512 void
vn_GetDeviceBufferMemoryRequirements(VkDevice device,const VkDeviceBufferMemoryRequirements * pInfo,VkMemoryRequirements2 * pMemoryRequirements)513 vn_GetDeviceBufferMemoryRequirements(
514 VkDevice device,
515 const VkDeviceBufferMemoryRequirements *pInfo,
516 VkMemoryRequirements2 *pMemoryRequirements)
517 {
518 struct vn_device *dev = vn_device_from_handle(device);
519 struct vn_buffer_reqs_cache *cache = &dev->buffer_reqs_cache;
520 struct vn_buffer_memory_requirements reqs = { 0 };
521
522 /* If cacheable and mem requirements found in cache, skip host call */
523 struct vn_buffer_reqs_cache_entry *entry =
524 vn_buffer_get_cached_memory_requirements(cache, pInfo->pCreateInfo,
525 &reqs);
526
527 /* Check size instead of entry->valid to be lock free */
528 if (reqs.memory.memoryRequirements.size) {
529 vn_copy_cached_memory_requirements(&reqs, pMemoryRequirements);
530 return;
531 }
532
533 /* Make the host call if not found in cache or not cacheable */
534 vn_call_vkGetDeviceBufferMemoryRequirements(dev->primary_ring, device,
535 pInfo, pMemoryRequirements);
536
537 /* If cacheable, store mem requirements from the host call */
538 if (entry)
539 vn_buffer_reqs_cache_entry_init(cache, entry, pMemoryRequirements);
540 }
541