• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1{
2  "NodeAttrMap": {
3    "AvgPool3DD": {
4      "ksize": "kernel_size",
5      "pads": "pad_list",
6      "data_format": "format"
7    },
8    "AvgPool3DGradD": {
9      "orig_input_shape": "origin_input_shape",
10      "ksize": "kernel_size",
11      "pads": "pad_list",
12      "data_format": "format"
13    },
14    "AvgPoolGradD": {
15      "orig_input_shape": "x_origin",
16      "ksize": "kernel_size",
17      "padding": "pad_mode",
18      "data_format": "format"
19    },
20    "AvgPoolGrad": {
21      "orig_input_shape": "x_origin",
22      "ksize": "kernel_size",
23      "padding": "pad_mode",
24      "data_format": "format"
25    },
26    "AccumulateNV2": {
27      "N": "n"
28    },
29    "AddN": {
30      "N": "n"
31    },
32    "Conv2D": {
33      "strides": "stride",
34      "pads": "pad_list",
35      "dilations": "dilation",
36      "data_format": "format"
37    },
38    "Dilation2D": {
39      "strides": "stride"
40    },
41    "Conv3DTransposeD": {
42      "pads": "pad_list",
43      "data_format": "format"
44    },
45    "Conv3D": {
46      "pads": "pad_list",
47      "data_format": "format"
48    },
49    "Conv3DBackpropInputD": {
50      "pads": "pad_list",
51      "data_format": "format"
52    },
53    "Conv3DBackpropFilterD": {
54      "pads": "pad_list",
55      "data_format": "format"
56    },
57    "Conv2DTransposeD": {
58      "input_size": "input_sizes",
59      "strides": "stride",
60      "pads": "pad_list",
61      "dilations": "dilation",
62      "data_format": "format"
63    },
64    "MaxPoolWithArgmax": {
65      "ksize": "kernel_size",
66      "padding": "pad_mode"
67    },
68    "MaxPoolWithArgmaxV2": {
69      "ksize": "kernel_size",
70      "dtype": "argmax_type"
71    },
72    "SoftmaxGradExt": {
73      "axes": "axis",
74      "keep_dims": "keepdims"
75    },
76    "Conv2DBackpropFilterD": {
77      "filter_size": "filter_sizes",
78      "strides": "stride",
79      "pads": "pad_list",
80      "dilations": "dilation",
81      "data_format": "format"
82    },
83    "Conv2DBackpropInputD": {
84      "input_size": "input_sizes",
85      "strides": "stride",
86      "pads": "pad_list",
87      "dilations": "dilation",
88      "data_format": "format"
89    },
90    "Conv2DBackpropFilter": {
91      "strides": "stride",
92      "pads": "pad_list",
93      "dilations": "dilation",
94      "data_format": "format"
95    },
96    "Conv2DBackpropInput": {
97      "strides": "stride",
98      "pads": "pad_list",
99      "dilations": "dilation",
100      "data_format": "format"
101    },
102    "ConcatD": {
103      "concat_dim": "axis"
104    },
105    "DepthwiseConv2D": {
106      "strides": "stride",
107      "dilations": "dilation",
108      "pads": "pad_list",
109      "data_format": "format",
110      "offfset_x": "offset_a"
111    },
112    "ExtractVolumePatches": {
113      "ksizes": "kernel_size"
114    },
115    "Eye": {
116      "num_rows": "n",
117      "num_columns": "m",
118      "dtype": "t"
119    },
120    "L2Normalize": {
121      "eps": "epsilon"
122    },
123    "L2NormalizeGrad": {
124      "dim": "axis",
125      "eps": "epsilon"
126    },
127    "MaxPoolGradWithArgmax": {
128      "ksize": "kernel_size",
129      "padding": "pad_mode"
130    },
131    "MaxPoolWithArgmaxV2": {
132      "ksize": "kernel_size"
133    },
134    "MaxPoolGradWithArgmaxV2": {
135      "ksize": "kernel_size"
136    },
137    "BiasAddGrad": {
138      "data_format": "format"
139    },
140    "FusedDbnDw": {
141      "filter_size": "filter_sizes",
142      "strides": "stride",
143      "pads": "pad_list",
144      "dilations": "dilation",
145      "data_format": "format"
146    },
147    "MaxPool": {
148      "ksize": "kernel_size",
149      "padding": "pad_mode",
150      "data_format": "format"
151    },
152    "ReduceMeanD": {
153      "axes": "axis"
154    },
155    "ReduceSumD": {
156      "axes": "axis"
157    },
158    "ReduceAnyD": {
159      "axes": "axis"
160    },
161    "ReduceMaxD": {
162      "axes": "axis"
163    },
164    "ReduceMinD": {
165      "axes": "axis"
166    },
167    "ReduceAllD": {
168      "axes": "axis"
169    },
170    "ReduceProdD": {
171      "axes": "axis"
172    },
173    "ReduceStd": {
174      "dim": "axis",
175      "keepdim": "keep_dims"
176    },
177    "SoftmaxV2": {
178      "axes": "axis"
179    },
180    "LogSoftmaxV2": {
181      "axes": "axis"
182    },
183    "ArgMaxD": {
184      "dimension": "axis"
185    },
186    "BatchMatMul": {
187      "adj_x1": "transpose_x1",
188      "adj_x2": "transpose_x2"
189    },
190    "BatchMatMulV2": {
191      "adj_x1": "transpose_x1",
192      "adj_x2": "transpose_x2"
193    },
194    "BatchNormal": {
195      "data_format": "format"
196    },
197    "ArgMaxWithValue": {
198      "dimension": "axis"
199    },
200    "SplitD": {
201      "split_dim": "axis",
202      "num_split": "output_num"
203    },
204    "BiasAdd": {
205      "data_format": "format"
206    },
207    "SliceD": {
208      "offsets": "begin"
209    },
210    "MaxPoolGrad": {
211      "ksize": "kernel_size",
212      "padding": "pad_mode",
213      "data_format": "format"
214    },
215    "MaxPool3D": {
216      "ksize": "kernel_size",
217      "padding": "pad_mode",
218      "pads": "pad_list",
219      "data_format": "format"
220    },
221    "MaxPool3DGrad": {
222      "ksize": "kernel_size",
223      "padding": "pad_mode",
224      "pads": "pad_list",
225      "data_format": "format"
226    },
227    "MaxPoolGradGrad": {
228      "ksize": "kernel_size",
229      "padding": "pad_mode",
230      "data_format": "format"
231    },
232    "AvgPool": {
233      "ksize": "kernel_size",
234      "padding": "pad_mode",
235      "data_format": "format"
236    },
237    "BatchNorm": {
238      "data_format": "format"
239    },
240    "BatchNormGrad": {
241      "data_format": "format"
242    },
243    "ArgMin": {
244      "dimension": "axis"
245    },
246    "ArgMinD": {
247      "dimension": "axis"
248    },
249    "LpNorm": {
250      "axes": "axis",
251      "keepdim": "keep_dims"
252    },
253    "SmoothL1LossV2": {
254      "sigma": "beta"
255    },
256    "Roll": {
257      "shifts": "shift",
258      "dims": "axis"
259    },
260    "SmoothL1LossGradV2": {
261      "sigma": "beta"
262    },
263    "Centralization": {
264      "axes": "axis"
265    },
266    "MaxPool3DGradGradD": {
267      "ksize": "kernel_size",
268      "pads": "pad_list",
269      "data_format": "format"
270    },
271    "DepthToSpace": {
272      "data_format": "format"
273    }
274  },
275  "AttrDefaultValue": {
276    "Eye": {
277      "batch_shape": "[]"
278    },
279    "Log": {
280      "base": "-1.0",
281      "scale": "1.0",
282      "shift": "0.0"
283    },
284    "ScatterNdUpdate": {
285      "use_locking": "false"
286    },
287    "OneHotD": {
288      "axis": "-1"
289    },
290    "Iou": {
291      "mode": "iou",
292      "eps": "1.0"
293    },
294    "GatherV2D": {
295      "axis": "-1"
296    },
297    "MaxPoolGrad": {
298      "data_format": "NHWC"
299    },
300    "ResizeNearestNeighborV2D": {
301      "align_corners": "false",
302      "half_pixel_centers": "false"
303    },
304    "ResizeNearestNeighborV2GradD": {
305      "align_corners": "false",
306      "half_pixel_centers": "false"
307    },
308    "MaxPool3D": {
309      "pads": "0,0,0",
310      "dilation": "1,1,1",
311      "ceil_mode": "0"
312    },
313    "BasicLSTMCellCStateGradV2": {
314      "gate_order": "ijfo"
315    }
316  },
317  "InputOrders": {
318    "LogSoftmaxGrad": [
319      1,
320      0
321    ],
322    "LayerNormGrad": [
323      1,
324      0,
325      2,
326      3,
327      4
328    ],
329    "LayerNormBetaGammaBackprop": [
330      1,
331      0,
332      2,
333      3
334    ],
335    "LayerNormXBackprop": [
336      1,
337      0,
338      2,
339      3,
340      4
341    ],
342    "LayerNormXBackpropV2": [
343      1,
344      0,
345      2,
346      3,
347      4
348    ],
349    "ApplyCenteredRMSPropD": [
350      0,
351      1,
352      2,
353      3,
354      5,
355      6,
356      7,
357      8,
358      4
359    ],
360    "Conv2DBackpropInputD": [
361      1,
362      0
363    ],
364    "Conv2DBackpropFilterD": [
365      1,
366      0
367    ],
368    "MinimumGrad": [
369      2,
370      0,
371      1
372    ],
373    "MaximumGrad": [
374      2,
375      0,
376      1
377    ],
378    "StridedSliceGrad": [
379      1,
380      2,
381      3,
382      4,
383      0
384    ],
385    "Conv2DBackpropInput": [
386      2,
387      1,
388      0
389    ],
390    "Conv2DBackpropFilter": [
391      1,
392      2,
393      0
394    ],
395    "FusionOp_Conv2DBackpropInputD_AddN_ReluGradV2": [
396      1,
397      0,
398      2,
399      3
400    ],
401    "FusionOp_Conv2DBackpropInputD_Add_ReluGradV2": [
402      1,
403      0,
404      2,
405      3
406    ],
407    "FusionOp_Conv2DBackpropInputD_ReluGradV2": [
408      1,
409      0,
410      2
411    ],
412    "FusionOp_Conv2DBackpropInputD_Relu": [
413      1,
414      0,
415      2
416    ],
417    "FusionOp_Conv2DBackpropInputD_LeakyRelu": [
418      1,
419      0,
420      2
421    ],
422    "FusionOp_Conv2DBackpropInputD_PRelu": [
423      1,
424      0,
425      2
426    ],
427    "FusionOp_Conv2DBackpropInputD_Add": [
428      1,
429      0,
430      2
431    ]
432  },
433  "SkipDynamicCompileStatic": [
434    "LayerNorm",
435    "SoftmaxV2",
436    "PRelu",
437    "Trunc",
438    "AccumulateNV2",
439    "ReduceMeanD",
440    "SquareSumV1",
441    "SplitVD",
442    "BiasAddGrad",
443    "SoftmaxCrossEntropyWithLogits",
444    "BNTrainingReduceGrad",
445    "BNTrainingReduce",
446    "BNTrainingUpdateGrad",
447    "BNTrainingUpdate"
448  ],
449  "SkipNodesComments": {
450    "Im2col": "not support int8, uint8, float16 in op json, need add pass",
451    "BroadcastTo": "The name is occupied",
452    "DynamicBroadcastTo ": "The name is occupied",
453    "BatchToSpaceD ": "attr type is listInt, not listListInt",
454    "BatchToSpaceNDD ": "attr type is listInt, not listListInt",
455    "SpaceToBatchD ": "attr type is listInt, not listListInt",
456    "SpaceToBatchNDD ": "attr type is listInt, not listListInt",
457    "DynamicGRUV2": "input4 is None, GE will change to hidden op by pass",
458    "DynamicRNN ": "input4 is None, GE will change to hidden op by pass",
459    "KLDivLossGrad": " Accuracy issues",
460    "ScatterNdUpdate": " not support int8 in op json",
461    "ScatterNdAdd": "not support int8 in op json",
462    "UnsortedSegmentSum ": " check support failed when shape is -2",
463    "ConcatOffset": "Hadn't adapted tbe implementation",
464    "MirrorPad ": "Hadn't adapted tbe implementation",
465    "InplaceIndexAdd": "check support failed if var has only one dimension",
466    "Expand": "Hadn't adapted tbe implementation",
467    "ExpandD": "Hadn't adapted tbe implementation",
468    "Cross ": "Hadn't adapted tbe implementation",
469    "LinSpaceD": "Hadn't adapted tbe implementation",
470    "Cast ": "Accuracy issues",
471    "AvgPool3DGradD": "second device format is facz_3d, but in json, the key is ndhwc",
472    "DataFormatDimMap ": "attr order swap",
473    "DepthwiseConv2D": "Accuracy issues(second format is error in python)",
474    "ACos": "dynamic impl error",
475    "TransData ": "performance and accuracy",
476    "ScatterNdD ": "Accuracy issues",
477    "Trace": "Hadn't adapted tbe implementation",
478    "AssignAdd": "Frac_nz in pangu not support",
479    "Range": "not support dynamic shape with tiling failed",
480    "AtomicAddrClean": "need to clean addr larger than 2G, int32 is not enough",
481    "MemSet": "need to clean addr larger than 2G, int32 is not enough",
482    "TensorMove": "not support uint32 in op json",
483    "SparseReshape": "not support tbe, loss transpose and input is not const, use AI CPU instead",
484    "PadV3": "Accuracy issues in AiCore, use AiCPU instead",
485    "PadV3Grad": "not support float in AiCore",
486    "BNInferGrad": "Currently, the input whose format is NCH is not supported in AiCore.",
487    "AvgPool": "not support strides > 63.",
488    "GatherNd": "Can't call check_supported function.",
489    "Eye": "Failed to access aicore's Eye. The attr `dtype` require special treatment like Cast, and the default value of the attr `batch_shape` can't be processed appropriately.",
490    "BNInfer" : "unknownshape_format increase new format 'NCHW', will affect kernel select",
491    "BNTrainingReduceGrad": "dynamic impl failed",
492    "BNTrainingReduce": "dynamic impl failed",
493    "BNTrainingUpdateGrad": "dynamic impl failed",
494    "BNTrainingUpdate": "dynamic impl failed",
495    "NonZero": "Implementation errors with float and bool types in AiCore, use AiCPU instead."
496  },
497  "SkipNodes": [
498    "Im2col",
499    "BroadcastTo",
500    "DynamicBroadcastTo",
501    "BatchToSpaceD",
502    "BatchToSpaceNDD",
503    "SpaceToBatchD",
504    "SpaceToBatchNDD",
505    "DynamicGRUV2",
506    "DynamicRNN",
507    "KLDivLossGrad",
508    "ScatterNdUpdate",
509    "ScatterNdAdd",
510    "ConcatOffset",
511    "MirrorPad",
512    "InplaceIndexAdd",
513    "Expand",
514    "ExpandD",
515    "Cross",
516    "LinSpaceD",
517    "Cast",
518    "AvgPool3DGradD",
519    "DataFormatDimMap",
520    "DepthwiseConv2D",
521    "Trace",
522    "ACos",
523    "TransData",
524    "ScatterNdD",
525    "AssignAdd",
526    "Range",
527    "AtomicAddrClean",
528    "MemSet",
529    "Assign",
530    "TensorMove",
531    "SparseReshape",
532    "PadV3",
533    "PadV3Grad",
534    "BNInferGrad",
535    "AvgPool",
536    "GatherNd",
537    "Eye",
538    "BNInfer",
539    "NonZero"
540  ],
541  "FallbackOps": {
542    "DeformableOffsets": [
543      1,
544      2
545    ]
546  }
547}