1 /*
2 * nghttp2 - HTTP/2 C Library
3 *
4 * Copyright (c) 2012 Tatsuhiro Tsujikawa
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining
7 * a copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sublicense, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be
15 * included in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
18 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
20 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
21 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
22 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
23 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25 #include "shrpx_client_handler.h"
26
27 #ifdef HAVE_UNISTD_H
28 # include <unistd.h>
29 #endif // HAVE_UNISTD_H
30 #ifdef HAVE_SYS_SOCKET_H
31 # include <sys/socket.h>
32 #endif // HAVE_SYS_SOCKET_H
33 #ifdef HAVE_NETDB_H
34 # include <netdb.h>
35 #endif // HAVE_NETDB_H
36
37 #include <cerrno>
38
39 #include "shrpx_upstream.h"
40 #include "shrpx_http2_upstream.h"
41 #include "shrpx_https_upstream.h"
42 #include "shrpx_config.h"
43 #include "shrpx_http_downstream_connection.h"
44 #include "shrpx_http2_downstream_connection.h"
45 #include "shrpx_tls.h"
46 #include "shrpx_worker.h"
47 #include "shrpx_downstream_connection_pool.h"
48 #include "shrpx_downstream.h"
49 #include "shrpx_http2_session.h"
50 #include "shrpx_connect_blocker.h"
51 #include "shrpx_api_downstream_connection.h"
52 #include "shrpx_health_monitor_downstream_connection.h"
53 #include "shrpx_null_downstream_connection.h"
54 #ifdef ENABLE_HTTP3
55 # include "shrpx_http3_upstream.h"
56 #endif // ENABLE_HTTP3
57 #include "shrpx_log.h"
58 #include "util.h"
59 #include "template.h"
60 #include "tls.h"
61
62 using namespace nghttp2;
63
64 namespace shrpx {
65
66 namespace {
timeoutcb(struct ev_loop * loop,ev_timer * w,int revents)67 void timeoutcb(struct ev_loop *loop, ev_timer *w, int revents) {
68 auto conn = static_cast<Connection *>(w->data);
69 auto handler = static_cast<ClientHandler *>(conn->data);
70
71 if (LOG_ENABLED(INFO)) {
72 CLOG(INFO, handler) << "Time out";
73 }
74
75 delete handler;
76 }
77 } // namespace
78
79 namespace {
shutdowncb(struct ev_loop * loop,ev_timer * w,int revents)80 void shutdowncb(struct ev_loop *loop, ev_timer *w, int revents) {
81 auto handler = static_cast<ClientHandler *>(w->data);
82
83 if (LOG_ENABLED(INFO)) {
84 CLOG(INFO, handler) << "Close connection due to TLS renegotiation";
85 }
86
87 delete handler;
88 }
89 } // namespace
90
91 namespace {
readcb(struct ev_loop * loop,ev_io * w,int revents)92 void readcb(struct ev_loop *loop, ev_io *w, int revents) {
93 auto conn = static_cast<Connection *>(w->data);
94 auto handler = static_cast<ClientHandler *>(conn->data);
95
96 if (handler->do_read() != 0) {
97 delete handler;
98 return;
99 }
100 }
101 } // namespace
102
103 namespace {
writecb(struct ev_loop * loop,ev_io * w,int revents)104 void writecb(struct ev_loop *loop, ev_io *w, int revents) {
105 auto conn = static_cast<Connection *>(w->data);
106 auto handler = static_cast<ClientHandler *>(conn->data);
107
108 if (handler->do_write() != 0) {
109 delete handler;
110 return;
111 }
112 }
113 } // namespace
114
noop()115 int ClientHandler::noop() { return 0; }
116
read_clear()117 int ClientHandler::read_clear() {
118 auto should_break = false;
119 rb_.ensure_chunk();
120 for (;;) {
121 if (rb_.rleft() && on_read() != 0) {
122 return -1;
123 }
124 if (rb_.rleft() == 0) {
125 rb_.reset();
126 } else if (rb_.wleft() == 0) {
127 conn_.rlimit.stopw();
128 return 0;
129 }
130
131 if (!ev_is_active(&conn_.rev) || should_break) {
132 return 0;
133 }
134
135 auto nread = conn_.read_clear(rb_.last(), rb_.wleft());
136
137 if (nread == 0) {
138 if (rb_.rleft() == 0) {
139 rb_.release_chunk();
140 }
141 return 0;
142 }
143
144 if (nread < 0) {
145 return -1;
146 }
147
148 rb_.write(nread);
149 should_break = true;
150 }
151 }
152
write_clear()153 int ClientHandler::write_clear() {
154 std::array<iovec, 2> iov;
155
156 for (;;) {
157 if (on_write() != 0) {
158 return -1;
159 }
160
161 auto iovcnt = upstream_->response_riovec(iov.data(), iov.size());
162 if (iovcnt == 0) {
163 break;
164 }
165
166 auto nwrite = conn_.writev_clear(iov.data(), iovcnt);
167 if (nwrite < 0) {
168 return -1;
169 }
170
171 if (nwrite == 0) {
172 return 0;
173 }
174
175 upstream_->response_drain(nwrite);
176 }
177
178 conn_.wlimit.stopw();
179 ev_timer_stop(conn_.loop, &conn_.wt);
180
181 return 0;
182 }
183
proxy_protocol_peek_clear()184 int ClientHandler::proxy_protocol_peek_clear() {
185 rb_.ensure_chunk();
186
187 assert(rb_.rleft() == 0);
188
189 auto nread = conn_.peek_clear(rb_.last(), rb_.wleft());
190 if (nread < 0) {
191 return -1;
192 }
193 if (nread == 0) {
194 return 0;
195 }
196
197 if (LOG_ENABLED(INFO)) {
198 CLOG(INFO, this) << "PROXY-protocol: Peek " << nread
199 << " bytes from socket";
200 }
201
202 rb_.write(nread);
203
204 if (on_read() != 0) {
205 return -1;
206 }
207
208 rb_.reset();
209
210 return 0;
211 }
212
tls_handshake()213 int ClientHandler::tls_handshake() {
214 ev_timer_again(conn_.loop, &conn_.rt);
215
216 ERR_clear_error();
217
218 auto rv = conn_.tls_handshake();
219
220 if (rv == SHRPX_ERR_INPROGRESS) {
221 return 0;
222 }
223
224 if (rv < 0) {
225 return -1;
226 }
227
228 if (LOG_ENABLED(INFO)) {
229 CLOG(INFO, this) << "SSL/TLS handshake completed";
230 }
231
232 if (validate_next_proto() != 0) {
233 return -1;
234 }
235
236 read_ = &ClientHandler::read_tls;
237 write_ = &ClientHandler::write_tls;
238
239 return 0;
240 }
241
read_tls()242 int ClientHandler::read_tls() {
243 auto should_break = false;
244
245 ERR_clear_error();
246
247 rb_.ensure_chunk();
248
249 for (;;) {
250 // we should process buffered data first before we read EOF.
251 if (rb_.rleft() && on_read() != 0) {
252 return -1;
253 }
254 if (rb_.rleft() == 0) {
255 rb_.reset();
256 } else if (rb_.wleft() == 0) {
257 conn_.rlimit.stopw();
258 return 0;
259 }
260
261 if (!ev_is_active(&conn_.rev) || should_break) {
262 return 0;
263 }
264
265 auto nread = conn_.read_tls(rb_.last(), rb_.wleft());
266
267 if (nread == 0) {
268 if (rb_.rleft() == 0) {
269 rb_.release_chunk();
270 }
271 return 0;
272 }
273
274 if (nread < 0) {
275 return -1;
276 }
277
278 rb_.write(nread);
279 should_break = true;
280 }
281 }
282
write_tls()283 int ClientHandler::write_tls() {
284 struct iovec iov;
285
286 ERR_clear_error();
287
288 if (on_write() != 0) {
289 return -1;
290 }
291
292 auto iovcnt = upstream_->response_riovec(&iov, 1);
293 if (iovcnt == 0) {
294 conn_.start_tls_write_idle();
295
296 conn_.wlimit.stopw();
297 ev_timer_stop(conn_.loop, &conn_.wt);
298
299 return 0;
300 }
301
302 for (;;) {
303 auto nwrite = conn_.write_tls(iov.iov_base, iov.iov_len);
304 if (nwrite < 0) {
305 return -1;
306 }
307
308 if (nwrite == 0) {
309 return 0;
310 }
311
312 upstream_->response_drain(nwrite);
313
314 iovcnt = upstream_->response_riovec(&iov, 1);
315 if (iovcnt == 0) {
316 return 0;
317 }
318 }
319 }
320
321 #ifdef ENABLE_HTTP3
read_quic(const UpstreamAddr * faddr,const Address & remote_addr,const Address & local_addr,const ngtcp2_pkt_info & pi,std::span<const uint8_t> data)322 int ClientHandler::read_quic(const UpstreamAddr *faddr,
323 const Address &remote_addr,
324 const Address &local_addr,
325 const ngtcp2_pkt_info &pi,
326 std::span<const uint8_t> data) {
327 auto upstream = static_cast<Http3Upstream *>(upstream_.get());
328
329 return upstream->on_read(faddr, remote_addr, local_addr, pi, data);
330 }
331
write_quic()332 int ClientHandler::write_quic() { return upstream_->on_write(); }
333 #endif // ENABLE_HTTP3
334
upstream_noop()335 int ClientHandler::upstream_noop() { return 0; }
336
upstream_read()337 int ClientHandler::upstream_read() {
338 assert(upstream_);
339 if (upstream_->on_read() != 0) {
340 return -1;
341 }
342 return 0;
343 }
344
upstream_write()345 int ClientHandler::upstream_write() {
346 assert(upstream_);
347 if (upstream_->on_write() != 0) {
348 return -1;
349 }
350
351 if (get_should_close_after_write() && upstream_->response_empty()) {
352 return -1;
353 }
354
355 return 0;
356 }
357
upstream_http2_connhd_read()358 int ClientHandler::upstream_http2_connhd_read() {
359 auto nread = std::min(left_connhd_len_, rb_.rleft());
360 if (memcmp(&NGHTTP2_CLIENT_MAGIC[NGHTTP2_CLIENT_MAGIC_LEN - left_connhd_len_],
361 rb_.pos(), nread) != 0) {
362 // There is no downgrade path here. Just drop the connection.
363 if (LOG_ENABLED(INFO)) {
364 CLOG(INFO, this) << "invalid client connection header";
365 }
366
367 return -1;
368 }
369
370 left_connhd_len_ -= nread;
371 rb_.drain(nread);
372 conn_.rlimit.startw();
373
374 if (left_connhd_len_ == 0) {
375 on_read_ = &ClientHandler::upstream_read;
376 // Run on_read to process data left in buffer since they are not
377 // notified further
378 if (on_read() != 0) {
379 return -1;
380 }
381 return 0;
382 }
383
384 return 0;
385 }
386
upstream_http1_connhd_read()387 int ClientHandler::upstream_http1_connhd_read() {
388 auto nread = std::min(left_connhd_len_, rb_.rleft());
389 if (memcmp(&NGHTTP2_CLIENT_MAGIC[NGHTTP2_CLIENT_MAGIC_LEN - left_connhd_len_],
390 rb_.pos(), nread) != 0) {
391 if (LOG_ENABLED(INFO)) {
392 CLOG(INFO, this) << "This is HTTP/1.1 connection, "
393 << "but may be upgraded to HTTP/2 later.";
394 }
395
396 // Reset header length for later HTTP/2 upgrade
397 left_connhd_len_ = NGHTTP2_CLIENT_MAGIC_LEN;
398 on_read_ = &ClientHandler::upstream_read;
399 on_write_ = &ClientHandler::upstream_write;
400
401 if (on_read() != 0) {
402 return -1;
403 }
404
405 return 0;
406 }
407
408 left_connhd_len_ -= nread;
409 rb_.drain(nread);
410 conn_.rlimit.startw();
411
412 if (left_connhd_len_ == 0) {
413 if (LOG_ENABLED(INFO)) {
414 CLOG(INFO, this) << "direct HTTP/2 connection";
415 }
416
417 direct_http2_upgrade();
418 on_read_ = &ClientHandler::upstream_read;
419 on_write_ = &ClientHandler::upstream_write;
420
421 // Run on_read to process data left in buffer since they are not
422 // notified further
423 if (on_read() != 0) {
424 return -1;
425 }
426
427 return 0;
428 }
429
430 return 0;
431 }
432
ClientHandler(Worker * worker,int fd,SSL * ssl,const StringRef & ipaddr,const StringRef & port,int family,const UpstreamAddr * faddr)433 ClientHandler::ClientHandler(Worker *worker, int fd, SSL *ssl,
434 const StringRef &ipaddr, const StringRef &port,
435 int family, const UpstreamAddr *faddr)
436 : // We use balloc_ for TLS session ID (64), ipaddr (IPv6) (39),
437 // port (5), forwarded-for (IPv6) (41), alpn (5), proxyproto
438 // ipaddr (15), proxyproto port (5), sni (32, estimated). we
439 // need terminal NULL byte for each. We also require 8 bytes
440 // header for each allocation. We align at 16 bytes boundary,
441 // so the required space is 64 + 48 + 16 + 48 + 16 + 16 + 16 +
442 // 32 + 8 + 8 * 8 = 328.
443 balloc_(512, 512),
444 rb_(worker->get_mcpool()),
445 conn_(worker->get_loop(), fd, ssl, worker->get_mcpool(),
446 get_config()->conn.upstream.timeout.write,
447 get_config()->conn.upstream.timeout.idle,
448 get_config()->conn.upstream.ratelimit.write,
449 get_config()->conn.upstream.ratelimit.read, writecb, readcb,
450 timeoutcb, this, get_config()->tls.dyn_rec.warmup_threshold,
451 get_config()->tls.dyn_rec.idle_timeout,
452 faddr->quic ? Proto::HTTP3 : Proto::NONE),
453 ipaddr_(make_string_ref(balloc_, ipaddr)),
454 port_(make_string_ref(balloc_, port)),
455 faddr_(faddr),
456 worker_(worker),
457 left_connhd_len_(NGHTTP2_CLIENT_MAGIC_LEN),
458 affinity_hash_(0),
459 should_close_after_write_(false),
460 affinity_hash_computed_(false) {
461 ++worker_->get_worker_stat()->num_connections;
462
463 ev_timer_init(&reneg_shutdown_timer_, shutdowncb, 0., 0.);
464
465 reneg_shutdown_timer_.data = this;
466
467 if (!faddr->quic) {
468 conn_.rlimit.startw();
469 }
470 ev_timer_again(conn_.loop, &conn_.rt);
471
472 auto config = get_config();
473
474 if (!faddr->quic) {
475 if (faddr_->accept_proxy_protocol ||
476 config->conn.upstream.accept_proxy_protocol) {
477 read_ = &ClientHandler::proxy_protocol_peek_clear;
478 write_ = &ClientHandler::noop;
479 on_read_ = &ClientHandler::proxy_protocol_read;
480 on_write_ = &ClientHandler::upstream_noop;
481 } else {
482 setup_upstream_io_callback();
483 }
484 }
485
486 auto &fwdconf = config->http.forwarded;
487
488 if (fwdconf.params & FORWARDED_FOR) {
489 if (fwdconf.for_node_type == ForwardedNode::OBFUSCATED) {
490 // 1 for '_'
491 auto len = SHRPX_OBFUSCATED_NODE_LENGTH + 1;
492 // 1 for terminating NUL.
493 auto buf = make_byte_ref(balloc_, len + 1);
494 auto p = std::begin(buf);
495 *p++ = '_';
496 p = util::random_alpha_digit(p, p + SHRPX_OBFUSCATED_NODE_LENGTH,
497 worker_->get_randgen());
498 *p = '\0';
499
500 forwarded_for_ = StringRef{std::span{std::begin(buf), p}};
501 } else {
502 init_forwarded_for(family, ipaddr_);
503 }
504 }
505 }
506
init_forwarded_for(int family,const StringRef & ipaddr)507 void ClientHandler::init_forwarded_for(int family, const StringRef &ipaddr) {
508 if (family == AF_INET6) {
509 // 2 for '[' and ']'
510 auto len = 2 + ipaddr.size();
511 // 1 for terminating NUL.
512 auto buf = make_byte_ref(balloc_, len + 1);
513 auto p = std::begin(buf);
514 *p++ = '[';
515 p = std::copy(std::begin(ipaddr), std::end(ipaddr), p);
516 *p++ = ']';
517 *p = '\0';
518
519 forwarded_for_ = StringRef{std::span{std::begin(buf), p}};
520 } else {
521 // family == AF_INET or family == AF_UNIX
522 forwarded_for_ = ipaddr;
523 }
524 }
525
setup_upstream_io_callback()526 void ClientHandler::setup_upstream_io_callback() {
527 if (conn_.tls.ssl) {
528 conn_.prepare_server_handshake();
529 read_ = write_ = &ClientHandler::tls_handshake;
530 on_read_ = &ClientHandler::upstream_noop;
531 on_write_ = &ClientHandler::upstream_write;
532 } else {
533 // For non-TLS version, first create HttpsUpstream. It may be
534 // upgraded to HTTP/2 through HTTP Upgrade or direct HTTP/2
535 // connection.
536 upstream_ = std::make_unique<HttpsUpstream>(this);
537 alpn_ = "http/1.1"_sr;
538 read_ = &ClientHandler::read_clear;
539 write_ = &ClientHandler::write_clear;
540 on_read_ = &ClientHandler::upstream_http1_connhd_read;
541 on_write_ = &ClientHandler::upstream_noop;
542 }
543 }
544
545 #ifdef ENABLE_HTTP3
setup_http3_upstream(std::unique_ptr<Http3Upstream> && upstream)546 void ClientHandler::setup_http3_upstream(
547 std::unique_ptr<Http3Upstream> &&upstream) {
548 upstream_ = std::move(upstream);
549 write_ = &ClientHandler::write_quic;
550
551 auto config = get_config();
552
553 reset_upstream_read_timeout(config->conn.upstream.timeout.http3_idle);
554 }
555 #endif // ENABLE_HTTP3
556
~ClientHandler()557 ClientHandler::~ClientHandler() {
558 if (LOG_ENABLED(INFO)) {
559 CLOG(INFO, this) << "Deleting";
560 }
561
562 if (upstream_) {
563 upstream_->on_handler_delete();
564 }
565
566 auto worker_stat = worker_->get_worker_stat();
567 --worker_stat->num_connections;
568
569 if (worker_stat->num_connections == 0) {
570 worker_->schedule_clear_mcpool();
571 }
572
573 ev_timer_stop(conn_.loop, &reneg_shutdown_timer_);
574
575 // TODO If backend is http/2, and it is in CONNECTED state, signal
576 // it and make it loopbreak when output is zero.
577 if (worker_->get_graceful_shutdown() && worker_stat->num_connections == 0 &&
578 worker_stat->num_close_waits == 0) {
579 ev_break(conn_.loop);
580 }
581
582 if (LOG_ENABLED(INFO)) {
583 CLOG(INFO, this) << "Deleted";
584 }
585 }
586
get_upstream()587 Upstream *ClientHandler::get_upstream() { return upstream_.get(); }
588
get_loop() const589 struct ev_loop *ClientHandler::get_loop() const { return conn_.loop; }
590
reset_upstream_read_timeout(ev_tstamp t)591 void ClientHandler::reset_upstream_read_timeout(ev_tstamp t) {
592 conn_.rt.repeat = t;
593
594 ev_timer_again(conn_.loop, &conn_.rt);
595 }
596
reset_upstream_write_timeout(ev_tstamp t)597 void ClientHandler::reset_upstream_write_timeout(ev_tstamp t) {
598 conn_.wt.repeat = t;
599
600 ev_timer_again(conn_.loop, &conn_.wt);
601 }
602
repeat_read_timer()603 void ClientHandler::repeat_read_timer() {
604 ev_timer_again(conn_.loop, &conn_.rt);
605 }
606
stop_read_timer()607 void ClientHandler::stop_read_timer() { ev_timer_stop(conn_.loop, &conn_.rt); }
608
validate_next_proto()609 int ClientHandler::validate_next_proto() {
610 const unsigned char *next_proto = nullptr;
611 unsigned int next_proto_len = 0;
612
613 // First set callback for catch all cases
614 on_read_ = &ClientHandler::upstream_read;
615
616 SSL_get0_alpn_selected(conn_.tls.ssl, &next_proto, &next_proto_len);
617
618 StringRef proto;
619
620 if (next_proto) {
621 proto = StringRef{next_proto, next_proto_len};
622
623 if (LOG_ENABLED(INFO)) {
624 CLOG(INFO, this) << "The negotiated next protocol: " << proto;
625 }
626 } else {
627 if (LOG_ENABLED(INFO)) {
628 CLOG(INFO, this) << "No protocol negotiated. Fallback to HTTP/1.1";
629 }
630
631 proto = "http/1.1"_sr;
632 }
633
634 if (!tls::in_proto_list(get_config()->tls.alpn_list, proto)) {
635 if (LOG_ENABLED(INFO)) {
636 CLOG(INFO, this) << "The negotiated protocol is not supported: " << proto;
637 }
638 return -1;
639 }
640
641 if (util::check_h2_is_selected(proto)) {
642 on_read_ = &ClientHandler::upstream_http2_connhd_read;
643
644 auto http2_upstream = std::make_unique<Http2Upstream>(this);
645
646 upstream_ = std::move(http2_upstream);
647 alpn_ = make_string_ref(balloc_, proto);
648
649 // At this point, input buffer is already filled with some bytes.
650 // The read callback is not called until new data come. So consume
651 // input buffer here.
652 if (on_read() != 0) {
653 return -1;
654 }
655
656 return 0;
657 }
658
659 if (proto == "http/1.1"_sr) {
660 upstream_ = std::make_unique<HttpsUpstream>(this);
661 alpn_ = "http/1.1"_sr;
662
663 // At this point, input buffer is already filled with some bytes.
664 // The read callback is not called until new data come. So consume
665 // input buffer here.
666 if (on_read() != 0) {
667 return -1;
668 }
669
670 return 0;
671 }
672 if (LOG_ENABLED(INFO)) {
673 CLOG(INFO, this) << "The negotiated protocol is not supported";
674 }
675 return -1;
676 }
677
do_read()678 int ClientHandler::do_read() { return read_(*this); }
do_write()679 int ClientHandler::do_write() { return write_(*this); }
680
on_read()681 int ClientHandler::on_read() {
682 if (rb_.chunk_avail()) {
683 auto rv = on_read_(*this);
684 if (rv != 0) {
685 return rv;
686 }
687 }
688 conn_.handle_tls_pending_read();
689 return 0;
690 }
on_write()691 int ClientHandler::on_write() { return on_write_(*this); }
692
get_ipaddr() const693 const StringRef &ClientHandler::get_ipaddr() const { return ipaddr_; }
694
get_should_close_after_write() const695 bool ClientHandler::get_should_close_after_write() const {
696 return should_close_after_write_;
697 }
698
set_should_close_after_write(bool f)699 void ClientHandler::set_should_close_after_write(bool f) {
700 should_close_after_write_ = f;
701 }
702
pool_downstream_connection(std::unique_ptr<DownstreamConnection> dconn)703 void ClientHandler::pool_downstream_connection(
704 std::unique_ptr<DownstreamConnection> dconn) {
705 if (!dconn->poolable()) {
706 return;
707 }
708
709 dconn->set_client_handler(nullptr);
710
711 auto &group = dconn->get_downstream_addr_group();
712
713 if (LOG_ENABLED(INFO)) {
714 CLOG(INFO, this) << "Pooling downstream connection DCONN:" << dconn.get()
715 << " in group " << group;
716 }
717
718 auto addr = dconn->get_addr();
719 auto &dconn_pool = addr->dconn_pool;
720 dconn_pool->add_downstream_connection(std::move(dconn));
721 }
722
723 namespace {
724 // Computes 32bits hash for session affinity for IP address |ip|.
compute_affinity_from_ip(const StringRef & ip)725 uint32_t compute_affinity_from_ip(const StringRef &ip) {
726 int rv;
727 std::array<uint8_t, 32> buf;
728
729 rv = util::sha256(buf.data(), ip);
730 if (rv != 0) {
731 // Not sure when sha256 failed. Just fall back to another
732 // function.
733 return util::hash32(ip);
734 }
735
736 return (static_cast<uint32_t>(buf[0]) << 24) |
737 (static_cast<uint32_t>(buf[1]) << 16) |
738 (static_cast<uint32_t>(buf[2]) << 8) | static_cast<uint32_t>(buf[3]);
739 }
740 } // namespace
741
get_http2_session(const std::shared_ptr<DownstreamAddrGroup> & group,DownstreamAddr * addr)742 Http2Session *ClientHandler::get_http2_session(
743 const std::shared_ptr<DownstreamAddrGroup> &group, DownstreamAddr *addr) {
744 auto &shared_addr = group->shared_addr;
745
746 if (LOG_ENABLED(INFO)) {
747 CLOG(INFO, this) << "Selected DownstreamAddr=" << addr
748 << ", index=" << (addr - shared_addr->addrs.data());
749 }
750
751 for (auto session = addr->http2_extra_freelist.head; session;) {
752 auto next = session->dlnext;
753
754 if (session->max_concurrency_reached(0)) {
755 if (LOG_ENABLED(INFO)) {
756 CLOG(INFO, this)
757 << "Maximum streams have been reached for Http2Session(" << session
758 << "). Skip it";
759 }
760
761 session->remove_from_freelist();
762 session = next;
763
764 continue;
765 }
766
767 if (LOG_ENABLED(INFO)) {
768 CLOG(INFO, this) << "Use Http2Session " << session
769 << " from http2_extra_freelist";
770 }
771
772 if (session->max_concurrency_reached(1)) {
773 if (LOG_ENABLED(INFO)) {
774 CLOG(INFO, this) << "Maximum streams are reached for Http2Session("
775 << session << ").";
776 }
777
778 session->remove_from_freelist();
779 }
780 return session;
781 }
782
783 auto session = new Http2Session(conn_.loop, worker_->get_cl_ssl_ctx(),
784 worker_, group, addr);
785
786 if (LOG_ENABLED(INFO)) {
787 CLOG(INFO, this) << "Create new Http2Session " << session;
788 }
789
790 session->add_to_extra_freelist();
791
792 return session;
793 }
794
get_affinity_cookie(Downstream * downstream,const StringRef & cookie_name)795 uint32_t ClientHandler::get_affinity_cookie(Downstream *downstream,
796 const StringRef &cookie_name) {
797 auto h = downstream->find_affinity_cookie(cookie_name);
798 if (h) {
799 return h;
800 }
801
802 auto d = std::uniform_int_distribution<uint32_t>(1);
803 auto rh = d(worker_->get_randgen());
804 h = util::hash32(StringRef{reinterpret_cast<char *>(&rh), sizeof(rh)});
805
806 downstream->renew_affinity_cookie(h);
807
808 return h;
809 }
810
811 namespace {
reschedule_addr(std::priority_queue<DownstreamAddrEntry,std::vector<DownstreamAddrEntry>,DownstreamAddrEntryGreater> & pq,DownstreamAddr * addr)812 void reschedule_addr(
813 std::priority_queue<DownstreamAddrEntry, std::vector<DownstreamAddrEntry>,
814 DownstreamAddrEntryGreater> &pq,
815 DownstreamAddr *addr) {
816 auto penalty = MAX_DOWNSTREAM_ADDR_WEIGHT + addr->pending_penalty;
817 addr->cycle += penalty / addr->weight;
818 addr->pending_penalty = penalty % addr->weight;
819
820 pq.push(DownstreamAddrEntry{addr, addr->seq, addr->cycle});
821 addr->queued = true;
822 }
823 } // namespace
824
825 namespace {
reschedule_wg(std::priority_queue<WeightGroupEntry,std::vector<WeightGroupEntry>,WeightGroupEntryGreater> & pq,WeightGroup * wg)826 void reschedule_wg(
827 std::priority_queue<WeightGroupEntry, std::vector<WeightGroupEntry>,
828 WeightGroupEntryGreater> &pq,
829 WeightGroup *wg) {
830 auto penalty = MAX_DOWNSTREAM_ADDR_WEIGHT + wg->pending_penalty;
831 wg->cycle += penalty / wg->weight;
832 wg->pending_penalty = penalty % wg->weight;
833
834 pq.push(WeightGroupEntry{wg, wg->seq, wg->cycle});
835 wg->queued = true;
836 }
837 } // namespace
838
get_downstream_addr(int & err,DownstreamAddrGroup * group,Downstream * downstream)839 DownstreamAddr *ClientHandler::get_downstream_addr(int &err,
840 DownstreamAddrGroup *group,
841 Downstream *downstream) {
842 err = 0;
843
844 switch (faddr_->alt_mode) {
845 case UpstreamAltMode::API:
846 case UpstreamAltMode::HEALTHMON:
847 assert(0);
848 default:
849 break;
850 }
851
852 auto &shared_addr = group->shared_addr;
853
854 if (shared_addr->affinity.type != SessionAffinity::NONE) {
855 uint32_t hash;
856 switch (shared_addr->affinity.type) {
857 case SessionAffinity::IP:
858 if (!affinity_hash_computed_) {
859 affinity_hash_ = compute_affinity_from_ip(ipaddr_);
860 affinity_hash_computed_ = true;
861 }
862 hash = affinity_hash_;
863 break;
864 case SessionAffinity::COOKIE:
865 if (shared_addr->affinity.cookie.stickiness ==
866 SessionAffinityCookieStickiness::STRICT) {
867 return get_downstream_addr_strict_affinity(err, shared_addr,
868 downstream);
869 }
870
871 hash = get_affinity_cookie(downstream, shared_addr->affinity.cookie.name);
872 break;
873 default:
874 assert(0);
875 }
876
877 const auto &affinity_hash = shared_addr->affinity_hash;
878
879 auto it = std::lower_bound(
880 std::begin(affinity_hash), std::end(affinity_hash), hash,
881 [](const AffinityHash &lhs, uint32_t rhs) { return lhs.hash < rhs; });
882
883 if (it == std::end(affinity_hash)) {
884 it = std::begin(affinity_hash);
885 }
886
887 auto aff_idx =
888 static_cast<size_t>(std::distance(std::begin(affinity_hash), it));
889 auto idx = (*it).idx;
890 auto addr = &shared_addr->addrs[idx];
891
892 if (addr->connect_blocker->blocked()) {
893 size_t i;
894 for (i = aff_idx + 1; i != aff_idx; ++i) {
895 if (i == shared_addr->affinity_hash.size()) {
896 i = 0;
897 }
898 addr = &shared_addr->addrs[shared_addr->affinity_hash[i].idx];
899 if (addr->connect_blocker->blocked()) {
900 continue;
901 }
902 break;
903 }
904 if (i == aff_idx) {
905 err = -1;
906 return nullptr;
907 }
908 }
909
910 return addr;
911 }
912
913 auto &wgpq = shared_addr->pq;
914
915 for (;;) {
916 if (wgpq.empty()) {
917 CLOG(INFO, this) << "No working downstream address found";
918 err = -1;
919 return nullptr;
920 }
921
922 auto wg = wgpq.top().wg;
923 wgpq.pop();
924 wg->queued = false;
925
926 for (;;) {
927 if (wg->pq.empty()) {
928 break;
929 }
930
931 auto addr = wg->pq.top().addr;
932 wg->pq.pop();
933 addr->queued = false;
934
935 if (addr->connect_blocker->blocked()) {
936 continue;
937 }
938
939 reschedule_addr(wg->pq, addr);
940 reschedule_wg(wgpq, wg);
941
942 return addr;
943 }
944 }
945 }
946
get_downstream_addr_strict_affinity(int & err,const std::shared_ptr<SharedDownstreamAddr> & shared_addr,Downstream * downstream)947 DownstreamAddr *ClientHandler::get_downstream_addr_strict_affinity(
948 int &err, const std::shared_ptr<SharedDownstreamAddr> &shared_addr,
949 Downstream *downstream) {
950 const auto &affinity_hash = shared_addr->affinity_hash;
951
952 auto h = downstream->find_affinity_cookie(shared_addr->affinity.cookie.name);
953 if (h) {
954 auto it = shared_addr->affinity_hash_map.find(h);
955 if (it != std::end(shared_addr->affinity_hash_map)) {
956 auto addr = &shared_addr->addrs[(*it).second];
957 if (!addr->connect_blocker->blocked()) {
958 return addr;
959 }
960 }
961 } else {
962 auto d = std::uniform_int_distribution<uint32_t>(1);
963 auto rh = d(worker_->get_randgen());
964 h = util::hash32(StringRef{reinterpret_cast<char *>(&rh), sizeof(rh)});
965 }
966
967 // Client is not bound to a particular backend, or the bound backend
968 // is not found, or is blocked. Find new backend using h. Using
969 // existing h allows us to find new server in a deterministic way.
970 // It is preferable because multiple concurrent requests with the
971 // stale cookie might be in-flight.
972 auto it = std::lower_bound(
973 std::begin(affinity_hash), std::end(affinity_hash), h,
974 [](const AffinityHash &lhs, uint32_t rhs) { return lhs.hash < rhs; });
975
976 if (it == std::end(affinity_hash)) {
977 it = std::begin(affinity_hash);
978 }
979
980 auto aff_idx =
981 static_cast<size_t>(std::distance(std::begin(affinity_hash), it));
982 auto idx = (*it).idx;
983 auto addr = &shared_addr->addrs[idx];
984
985 if (addr->connect_blocker->blocked()) {
986 size_t i;
987 for (i = aff_idx + 1; i != aff_idx; ++i) {
988 if (i == shared_addr->affinity_hash.size()) {
989 i = 0;
990 }
991 addr = &shared_addr->addrs[shared_addr->affinity_hash[i].idx];
992 if (addr->connect_blocker->blocked()) {
993 continue;
994 }
995 break;
996 }
997 if (i == aff_idx) {
998 err = -1;
999 return nullptr;
1000 }
1001 }
1002
1003 downstream->renew_affinity_cookie(addr->affinity_hash);
1004
1005 return addr;
1006 }
1007
1008 std::unique_ptr<DownstreamConnection>
get_downstream_connection(int & err,Downstream * downstream)1009 ClientHandler::get_downstream_connection(int &err, Downstream *downstream) {
1010 size_t group_idx;
1011 auto &downstreamconf = *worker_->get_downstream_config();
1012 auto &routerconf = downstreamconf.router;
1013
1014 auto catch_all = downstreamconf.addr_group_catch_all;
1015 auto &groups = worker_->get_downstream_addr_groups();
1016
1017 auto &req = downstream->request();
1018
1019 err = 0;
1020
1021 switch (faddr_->alt_mode) {
1022 case UpstreamAltMode::API: {
1023 auto dconn = std::make_unique<APIDownstreamConnection>(worker_);
1024 dconn->set_client_handler(this);
1025 return dconn;
1026 }
1027 case UpstreamAltMode::HEALTHMON: {
1028 auto dconn = std::make_unique<HealthMonitorDownstreamConnection>();
1029 dconn->set_client_handler(this);
1030 return dconn;
1031 }
1032 default:
1033 break;
1034 }
1035
1036 auto &balloc = downstream->get_block_allocator();
1037
1038 StringRef authority, path;
1039
1040 if (req.forwarded_once) {
1041 if (groups.size() != 1) {
1042 authority = req.orig_authority;
1043 path = req.orig_path;
1044 }
1045 } else {
1046 if (faddr_->sni_fwd) {
1047 authority = sni_;
1048 } else if (!req.authority.empty()) {
1049 authority = req.authority;
1050 } else {
1051 auto h = req.fs.header(http2::HD_HOST);
1052 if (h) {
1053 authority = h->value;
1054 }
1055 }
1056
1057 // CONNECT method does not have path. But we requires path in
1058 // host-path mapping. As workaround, we assume that path is
1059 // "/".
1060 if (!req.regular_connect_method()) {
1061 path = req.path;
1062 }
1063
1064 // Cache the authority and path used for the first-time backend
1065 // selection because per-pattern mruby script can change them.
1066 req.orig_authority = authority;
1067 req.orig_path = path;
1068 req.forwarded_once = true;
1069 }
1070
1071 // Fast path. If we have one group, it must be catch-all group.
1072 if (groups.size() == 1) {
1073 group_idx = 0;
1074 } else {
1075 group_idx = match_downstream_addr_group(routerconf, authority, path, groups,
1076 catch_all, balloc);
1077 }
1078
1079 if (LOG_ENABLED(INFO)) {
1080 CLOG(INFO, this) << "Downstream address group_idx: " << group_idx;
1081 }
1082
1083 if (groups[group_idx]->shared_addr->redirect_if_not_tls && !conn_.tls.ssl) {
1084 if (LOG_ENABLED(INFO)) {
1085 CLOG(INFO, this) << "Downstream address group " << group_idx
1086 << " requires frontend TLS connection.";
1087 }
1088 err = SHRPX_ERR_TLS_REQUIRED;
1089 return nullptr;
1090 }
1091
1092 auto &group = groups[group_idx];
1093
1094 if (group->shared_addr->dnf) {
1095 auto dconn = std::make_unique<NullDownstreamConnection>(group);
1096 dconn->set_client_handler(this);
1097 return dconn;
1098 }
1099
1100 auto addr = get_downstream_addr(err, group.get(), downstream);
1101 if (addr == nullptr) {
1102 return nullptr;
1103 }
1104
1105 if (addr->proto == Proto::HTTP1) {
1106 auto dconn = addr->dconn_pool->pop_downstream_connection();
1107 if (dconn) {
1108 dconn->set_client_handler(this);
1109 return dconn;
1110 }
1111
1112 if (worker_->get_connect_blocker()->blocked()) {
1113 if (LOG_ENABLED(INFO)) {
1114 DCLOG(INFO, this)
1115 << "Worker wide backend connection was blocked temporarily";
1116 }
1117 return nullptr;
1118 }
1119
1120 if (LOG_ENABLED(INFO)) {
1121 CLOG(INFO, this) << "Downstream connection pool is empty."
1122 << " Create new one";
1123 }
1124
1125 dconn = std::make_unique<HttpDownstreamConnection>(group, addr, conn_.loop,
1126 worker_);
1127 dconn->set_client_handler(this);
1128 return dconn;
1129 }
1130
1131 if (LOG_ENABLED(INFO)) {
1132 CLOG(INFO, this) << "Downstream connection pool is empty."
1133 << " Create new one";
1134 }
1135
1136 auto http2session = get_http2_session(group, addr);
1137 auto dconn = std::make_unique<Http2DownstreamConnection>(http2session);
1138 dconn->set_client_handler(this);
1139 return dconn;
1140 }
1141
get_mcpool()1142 MemchunkPool *ClientHandler::get_mcpool() { return worker_->get_mcpool(); }
1143
get_ssl() const1144 SSL *ClientHandler::get_ssl() const { return conn_.tls.ssl; }
1145
direct_http2_upgrade()1146 void ClientHandler::direct_http2_upgrade() {
1147 upstream_ = std::make_unique<Http2Upstream>(this);
1148 alpn_ = NGHTTP2_CLEARTEXT_PROTO_VERSION_ID ""_sr;
1149 on_read_ = &ClientHandler::upstream_read;
1150 write_ = &ClientHandler::write_clear;
1151 }
1152
perform_http2_upgrade(HttpsUpstream * http)1153 int ClientHandler::perform_http2_upgrade(HttpsUpstream *http) {
1154 auto upstream = std::make_unique<Http2Upstream>(this);
1155
1156 auto output = upstream->get_response_buf();
1157
1158 // We might have written non-final header in response_buf, in this
1159 // case, response_state is still INITIAL. If this non-final header
1160 // and upgrade header fit in output buffer, do upgrade. Otherwise,
1161 // to avoid to send this non-final header as response body in HTTP/2
1162 // upstream, fail upgrade.
1163 auto downstream = http->get_downstream();
1164 auto input = downstream->get_response_buf();
1165
1166 if (upstream->upgrade_upstream(http) != 0) {
1167 return -1;
1168 }
1169 // http pointer is now owned by upstream.
1170 upstream_.release();
1171 // TODO We might get other version id in HTTP2-settings, if we
1172 // support aliasing for h2, but we just use library default for now.
1173 alpn_ = NGHTTP2_CLEARTEXT_PROTO_VERSION_ID ""_sr;
1174 on_read_ = &ClientHandler::upstream_http2_connhd_read;
1175 write_ = &ClientHandler::write_clear;
1176
1177 input->remove(*output, input->rleft());
1178
1179 constexpr auto res = "HTTP/1.1 101 Switching Protocols\r\n"
1180 "Connection: Upgrade\r\n"
1181 "Upgrade: " NGHTTP2_CLEARTEXT_PROTO_VERSION_ID "\r\n"
1182 "\r\n"_sr;
1183
1184 output->append(res);
1185 upstream_ = std::move(upstream);
1186
1187 signal_write();
1188 return 0;
1189 }
1190
get_http2_upgrade_allowed() const1191 bool ClientHandler::get_http2_upgrade_allowed() const { return !conn_.tls.ssl; }
1192
get_upstream_scheme() const1193 StringRef ClientHandler::get_upstream_scheme() const {
1194 if (conn_.tls.ssl) {
1195 return "https"_sr;
1196 } else {
1197 return "http"_sr;
1198 }
1199 }
1200
start_immediate_shutdown()1201 void ClientHandler::start_immediate_shutdown() {
1202 ev_timer_start(conn_.loop, &reneg_shutdown_timer_);
1203 }
1204
write_accesslog(Downstream * downstream)1205 void ClientHandler::write_accesslog(Downstream *downstream) {
1206 auto &req = downstream->request();
1207
1208 auto config = get_config();
1209
1210 if (!req.tstamp) {
1211 auto lgconf = log_config();
1212 lgconf->update_tstamp(std::chrono::system_clock::now());
1213 req.tstamp = lgconf->tstamp;
1214 }
1215
1216 upstream_accesslog(
1217 config->logging.access.format,
1218 LogSpec{
1219 downstream,
1220 ipaddr_,
1221 alpn_,
1222 sni_,
1223 conn_.tls.ssl,
1224 std::chrono::high_resolution_clock::now(), // request_end_time
1225 port_,
1226 faddr_->port,
1227 config->pid,
1228 });
1229 }
1230
get_rb()1231 ClientHandler::ReadBuf *ClientHandler::get_rb() { return &rb_; }
1232
signal_write()1233 void ClientHandler::signal_write() { conn_.wlimit.startw(); }
1234
get_rlimit()1235 RateLimit *ClientHandler::get_rlimit() { return &conn_.rlimit; }
get_wlimit()1236 RateLimit *ClientHandler::get_wlimit() { return &conn_.wlimit; }
1237
get_wev()1238 ev_io *ClientHandler::get_wev() { return &conn_.wev; }
1239
get_worker() const1240 Worker *ClientHandler::get_worker() const { return worker_; }
1241
1242 namespace {
parse_proxy_line_port(const uint8_t * first,const uint8_t * last)1243 ssize_t parse_proxy_line_port(const uint8_t *first, const uint8_t *last) {
1244 auto p = first;
1245 int32_t port = 0;
1246
1247 if (p == last) {
1248 return -1;
1249 }
1250
1251 if (*p == '0') {
1252 if (p + 1 != last && util::is_digit(*(p + 1))) {
1253 return -1;
1254 }
1255 return 1;
1256 }
1257
1258 for (; p != last && util::is_digit(*p); ++p) {
1259 port *= 10;
1260 port += *p - '0';
1261
1262 if (port > 65535) {
1263 return -1;
1264 }
1265 }
1266
1267 return p - first;
1268 }
1269 } // namespace
1270
on_proxy_protocol_finish()1271 int ClientHandler::on_proxy_protocol_finish() {
1272 auto len = rb_.pos() - rb_.begin();
1273
1274 assert(len);
1275
1276 if (LOG_ENABLED(INFO)) {
1277 CLOG(INFO, this) << "PROXY-protocol: Draining " << len
1278 << " bytes from socket";
1279 }
1280
1281 rb_.reset();
1282
1283 if (conn_.read_nolim_clear(rb_.pos(), len) < 0) {
1284 return -1;
1285 }
1286
1287 rb_.reset();
1288
1289 setup_upstream_io_callback();
1290
1291 return 0;
1292 }
1293
1294 namespace {
1295 // PROXY-protocol v2 header signature
1296 constexpr uint8_t PROXY_PROTO_V2_SIG[] =
1297 "\x0D\x0A\x0D\x0A\x00\x0D\x0A\x51\x55\x49\x54\x0A";
1298
1299 // PROXY-protocol v2 header length
1300 constexpr size_t PROXY_PROTO_V2_HDLEN =
1301 str_size(PROXY_PROTO_V2_SIG) + /* ver_cmd(1) + fam(1) + len(2) = */ 4;
1302 } // namespace
1303
1304 // http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
proxy_protocol_read()1305 int ClientHandler::proxy_protocol_read() {
1306 if (LOG_ENABLED(INFO)) {
1307 CLOG(INFO, this) << "PROXY-protocol: Started";
1308 }
1309
1310 auto first = rb_.pos();
1311
1312 if (rb_.rleft() >= PROXY_PROTO_V2_HDLEN &&
1313 (*(first + str_size(PROXY_PROTO_V2_SIG)) & 0xf0) == 0x20) {
1314 if (LOG_ENABLED(INFO)) {
1315 CLOG(INFO, this) << "PROXY-protocol: Detected v2 header signature";
1316 }
1317 return proxy_protocol_v2_read();
1318 }
1319
1320 // NULL character really destroys functions which expects NULL
1321 // terminated string. We won't expect it in PROXY protocol line, so
1322 // find it here.
1323 auto chrs = std::to_array({'\n', '\0'});
1324
1325 constexpr size_t MAX_PROXY_LINELEN = 107;
1326
1327 auto bufend = rb_.pos() + std::min(MAX_PROXY_LINELEN, rb_.rleft());
1328
1329 auto end =
1330 std::find_first_of(rb_.pos(), bufend, std::begin(chrs), std::end(chrs));
1331
1332 if (end == bufend || *end == '\0' || end == rb_.pos() || *(end - 1) != '\r') {
1333 if (LOG_ENABLED(INFO)) {
1334 CLOG(INFO, this) << "PROXY-protocol-v1: No ending CR LF sequence found";
1335 }
1336 return -1;
1337 }
1338
1339 --end;
1340
1341 constexpr auto HEADER = "PROXY "_sr;
1342
1343 if (static_cast<size_t>(end - rb_.pos()) < HEADER.size()) {
1344 if (LOG_ENABLED(INFO)) {
1345 CLOG(INFO, this) << "PROXY-protocol-v1: PROXY version 1 ID not found";
1346 }
1347 return -1;
1348 }
1349
1350 if (HEADER != StringRef{rb_.pos(), HEADER.size()}) {
1351 if (LOG_ENABLED(INFO)) {
1352 CLOG(INFO, this) << "PROXY-protocol-v1: Bad PROXY protocol version 1 ID";
1353 }
1354 return -1;
1355 }
1356
1357 rb_.drain(HEADER.size());
1358
1359 int family;
1360
1361 if (rb_.pos()[0] == 'T') {
1362 if (end - rb_.pos() < 5) {
1363 if (LOG_ENABLED(INFO)) {
1364 CLOG(INFO, this) << "PROXY-protocol-v1: INET protocol family not found";
1365 }
1366 return -1;
1367 }
1368
1369 if (rb_.pos()[1] != 'C' || rb_.pos()[2] != 'P') {
1370 if (LOG_ENABLED(INFO)) {
1371 CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
1372 }
1373 return -1;
1374 }
1375
1376 switch (rb_.pos()[3]) {
1377 case '4':
1378 family = AF_INET;
1379 break;
1380 case '6':
1381 family = AF_INET6;
1382 break;
1383 default:
1384 if (LOG_ENABLED(INFO)) {
1385 CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
1386 }
1387 return -1;
1388 }
1389
1390 rb_.drain(5);
1391 } else {
1392 if (end - rb_.pos() < 7) {
1393 if (LOG_ENABLED(INFO)) {
1394 CLOG(INFO, this) << "PROXY-protocol-v1: INET protocol family not found";
1395 }
1396 return -1;
1397 }
1398 if ("UNKNOWN"_sr != StringRef{rb_.pos(), 7}) {
1399 if (LOG_ENABLED(INFO)) {
1400 CLOG(INFO, this) << "PROXY-protocol-v1: Unknown INET protocol family";
1401 }
1402 return -1;
1403 }
1404
1405 rb_.drain(end + 2 - rb_.pos());
1406
1407 return on_proxy_protocol_finish();
1408 }
1409
1410 // source address
1411 auto token_end = std::find(rb_.pos(), end, ' ');
1412 if (token_end == end) {
1413 if (LOG_ENABLED(INFO)) {
1414 CLOG(INFO, this) << "PROXY-protocol-v1: Source address not found";
1415 }
1416 return -1;
1417 }
1418
1419 *token_end = '\0';
1420 if (!util::numeric_host(reinterpret_cast<const char *>(rb_.pos()), family)) {
1421 if (LOG_ENABLED(INFO)) {
1422 CLOG(INFO, this) << "PROXY-protocol-v1: Invalid source address";
1423 }
1424 return -1;
1425 }
1426
1427 auto src_addr = rb_.pos();
1428 auto src_addrlen = token_end - rb_.pos();
1429
1430 rb_.drain(token_end - rb_.pos() + 1);
1431
1432 // destination address
1433 token_end = std::find(rb_.pos(), end, ' ');
1434 if (token_end == end) {
1435 if (LOG_ENABLED(INFO)) {
1436 CLOG(INFO, this) << "PROXY-protocol-v1: Destination address not found";
1437 }
1438 return -1;
1439 }
1440
1441 *token_end = '\0';
1442 if (!util::numeric_host(reinterpret_cast<const char *>(rb_.pos()), family)) {
1443 if (LOG_ENABLED(INFO)) {
1444 CLOG(INFO, this) << "PROXY-protocol-v1: Invalid destination address";
1445 }
1446 return -1;
1447 }
1448
1449 // Currently we don't use destination address
1450
1451 rb_.drain(token_end - rb_.pos() + 1);
1452
1453 // source port
1454 auto n = parse_proxy_line_port(rb_.pos(), end);
1455 if (n <= 0 || *(rb_.pos() + n) != ' ') {
1456 if (LOG_ENABLED(INFO)) {
1457 CLOG(INFO, this) << "PROXY-protocol-v1: Invalid source port";
1458 }
1459 return -1;
1460 }
1461
1462 rb_.pos()[n] = '\0';
1463 auto src_port = rb_.pos();
1464 auto src_portlen = n;
1465
1466 rb_.drain(n + 1);
1467
1468 // destination port
1469 n = parse_proxy_line_port(rb_.pos(), end);
1470 if (n <= 0 || rb_.pos() + n != end) {
1471 if (LOG_ENABLED(INFO)) {
1472 CLOG(INFO, this) << "PROXY-protocol-v1: Invalid destination port";
1473 }
1474 return -1;
1475 }
1476
1477 // Currently we don't use destination port
1478
1479 rb_.drain(end + 2 - rb_.pos());
1480
1481 ipaddr_ = make_string_ref(
1482 balloc_, StringRef{src_addr, static_cast<size_t>(src_addrlen)});
1483 port_ = make_string_ref(
1484 balloc_, StringRef{src_port, static_cast<size_t>(src_portlen)});
1485
1486 if (LOG_ENABLED(INFO)) {
1487 CLOG(INFO, this) << "PROXY-protocol-v1: Finished, " << (rb_.pos() - first)
1488 << " bytes read";
1489 }
1490
1491 auto config = get_config();
1492 auto &fwdconf = config->http.forwarded;
1493
1494 if ((fwdconf.params & FORWARDED_FOR) &&
1495 fwdconf.for_node_type == ForwardedNode::IP) {
1496 init_forwarded_for(family, ipaddr_);
1497 }
1498
1499 return on_proxy_protocol_finish();
1500 }
1501
proxy_protocol_v2_read()1502 int ClientHandler::proxy_protocol_v2_read() {
1503 // Assume that first str_size(PROXY_PROTO_V2_SIG) octets match v2
1504 // protocol signature and followed by the bytes which indicates v2.
1505 assert(rb_.rleft() >= PROXY_PROTO_V2_HDLEN);
1506
1507 auto p = rb_.pos() + str_size(PROXY_PROTO_V2_SIG);
1508
1509 assert(((*p) & 0xf0) == 0x20);
1510
1511 enum { LOCAL, PROXY } cmd;
1512
1513 auto cmd_bits = (*p++) & 0xf;
1514 switch (cmd_bits) {
1515 case 0x0:
1516 cmd = LOCAL;
1517 break;
1518 case 0x01:
1519 cmd = PROXY;
1520 break;
1521 default:
1522 if (LOG_ENABLED(INFO)) {
1523 CLOG(INFO, this) << "PROXY-protocol-v2: Unknown command " << log::hex
1524 << cmd_bits;
1525 }
1526 return -1;
1527 }
1528
1529 auto fam = *p++;
1530 uint16_t len;
1531 memcpy(&len, p, sizeof(len));
1532 len = ntohs(len);
1533
1534 p += sizeof(len);
1535
1536 if (LOG_ENABLED(INFO)) {
1537 CLOG(INFO, this) << "PROXY-protocol-v2: Detected family=" << log::hex << fam
1538 << ", len=" << log::dec << len;
1539 }
1540
1541 if (rb_.last() - p < len) {
1542 if (LOG_ENABLED(INFO)) {
1543 CLOG(INFO, this)
1544 << "PROXY-protocol-v2: Prematurely truncated header block; require "
1545 << len << " bytes, " << rb_.last() - p << " bytes left";
1546 }
1547 return -1;
1548 }
1549
1550 int family;
1551 std::array<char, std::max(INET_ADDRSTRLEN, INET6_ADDRSTRLEN)> src_addr,
1552 dst_addr;
1553 size_t addrlen;
1554
1555 switch (fam) {
1556 case 0x11:
1557 case 0x12:
1558 if (len < 12) {
1559 if (LOG_ENABLED(INFO)) {
1560 CLOG(INFO, this) << "PROXY-protocol-v2: Too short AF_INET addresses";
1561 }
1562 return -1;
1563 }
1564 family = AF_INET;
1565 addrlen = 4;
1566 break;
1567 case 0x21:
1568 case 0x22:
1569 if (len < 36) {
1570 if (LOG_ENABLED(INFO)) {
1571 CLOG(INFO, this) << "PROXY-protocol-v2: Too short AF_INET6 addresses";
1572 }
1573 return -1;
1574 }
1575 family = AF_INET6;
1576 addrlen = 16;
1577 break;
1578 case 0x31:
1579 case 0x32:
1580 if (len < 216) {
1581 if (LOG_ENABLED(INFO)) {
1582 CLOG(INFO, this) << "PROXY-protocol-v2: Too short AF_UNIX addresses";
1583 }
1584 return -1;
1585 }
1586 // fall through
1587 case 0x00: {
1588 // UNSPEC and UNIX are just ignored.
1589 if (LOG_ENABLED(INFO)) {
1590 CLOG(INFO, this) << "PROXY-protocol-v2: Ignore combination of address "
1591 "family and protocol "
1592 << log::hex << fam;
1593 }
1594 rb_.drain(PROXY_PROTO_V2_HDLEN + len);
1595 return on_proxy_protocol_finish();
1596 }
1597 default:
1598 if (LOG_ENABLED(INFO)) {
1599 CLOG(INFO, this) << "PROXY-protocol-v2: Unknown combination of address "
1600 "family and protocol "
1601 << log::hex << fam;
1602 }
1603 return -1;
1604 }
1605
1606 if (cmd != PROXY) {
1607 if (LOG_ENABLED(INFO)) {
1608 CLOG(INFO, this) << "PROXY-protocol-v2: Ignore non-PROXY command";
1609 }
1610 rb_.drain(PROXY_PROTO_V2_HDLEN + len);
1611 return on_proxy_protocol_finish();
1612 }
1613
1614 if (inet_ntop(family, p, src_addr.data(), src_addr.size()) == nullptr) {
1615 if (LOG_ENABLED(INFO)) {
1616 CLOG(INFO, this) << "PROXY-protocol-v2: Unable to parse source address";
1617 }
1618 return -1;
1619 }
1620
1621 p += addrlen;
1622
1623 if (inet_ntop(family, p, dst_addr.data(), dst_addr.size()) == nullptr) {
1624 if (LOG_ENABLED(INFO)) {
1625 CLOG(INFO, this)
1626 << "PROXY-protocol-v2: Unable to parse destination address";
1627 }
1628 return -1;
1629 }
1630
1631 p += addrlen;
1632
1633 uint16_t src_port;
1634
1635 memcpy(&src_port, p, sizeof(src_port));
1636 src_port = ntohs(src_port);
1637
1638 // We don't use destination port.
1639 p += 4;
1640
1641 ipaddr_ = make_string_ref(balloc_, StringRef{src_addr.data()});
1642 port_ = util::make_string_ref_uint(balloc_, src_port);
1643
1644 if (LOG_ENABLED(INFO)) {
1645 CLOG(INFO, this) << "PROXY-protocol-v2: Finished reading proxy addresses, "
1646 << p - rb_.pos() << " bytes read, "
1647 << PROXY_PROTO_V2_HDLEN + len - (p - rb_.pos())
1648 << " bytes left";
1649 }
1650
1651 auto config = get_config();
1652 auto &fwdconf = config->http.forwarded;
1653
1654 if ((fwdconf.params & FORWARDED_FOR) &&
1655 fwdconf.for_node_type == ForwardedNode::IP) {
1656 init_forwarded_for(family, ipaddr_);
1657 }
1658
1659 rb_.drain(PROXY_PROTO_V2_HDLEN + len);
1660 return on_proxy_protocol_finish();
1661 }
1662
get_forwarded_by() const1663 StringRef ClientHandler::get_forwarded_by() const {
1664 auto &fwdconf = get_config()->http.forwarded;
1665
1666 if (fwdconf.by_node_type == ForwardedNode::OBFUSCATED) {
1667 return fwdconf.by_obfuscated;
1668 }
1669
1670 return faddr_->hostport;
1671 }
1672
get_forwarded_for() const1673 StringRef ClientHandler::get_forwarded_for() const { return forwarded_for_; }
1674
get_upstream_addr() const1675 const UpstreamAddr *ClientHandler::get_upstream_addr() const { return faddr_; }
1676
get_connection()1677 Connection *ClientHandler::get_connection() { return &conn_; }
1678
set_tls_sni(const StringRef & sni)1679 void ClientHandler::set_tls_sni(const StringRef &sni) {
1680 sni_ = make_string_ref(balloc_, sni);
1681 }
1682
get_tls_sni() const1683 StringRef ClientHandler::get_tls_sni() const { return sni_; }
1684
get_alpn() const1685 StringRef ClientHandler::get_alpn() const { return alpn_; }
1686
get_block_allocator()1687 BlockAllocator &ClientHandler::get_block_allocator() { return balloc_; }
1688
set_alpn_from_conn()1689 void ClientHandler::set_alpn_from_conn() {
1690 const unsigned char *alpn;
1691 unsigned int alpnlen;
1692
1693 SSL_get0_alpn_selected(conn_.tls.ssl, &alpn, &alpnlen);
1694
1695 alpn_ = make_string_ref(balloc_, StringRef{alpn, alpnlen});
1696 }
1697
1698 } // namespace shrpx
1699