1 /*
2 * This file is part of the openHiTLS project.
3 *
4 * openHiTLS is licensed under the Mulan PSL v2.
5 * You can use this software according to the terms and conditions of the Mulan PSL v2.
6 * You may obtain a copy of Mulan PSL v2 at:
7 *
8 * http://license.coscl.org.cn/MulanPSL2
9 *
10 * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11 * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12 * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13 * See the Mulan PSL v2 for more details.
14 */
15
16 /**
17 * An implementation of sha1 that has 70% less in rom but lower performance.
18 */
19 #include "hitls_build.h"
20 #if defined(HITLS_CRYPTO_SHA512) && defined(HITLS_CRYPTO_SHA512_SMALL_MEM)
21
22 #include "crypt_sha2.h"
23 #include "crypt_utils.h"
24 #include "sha2_core.h"
25
26 #ifndef U64
27 #define U64(v) (uint64_t)(v)
28 #endif
29
30 // define in rfc 4634
31 static const uint64_t K512[80] = {
32 // Round 0-15
33 U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd), U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
34 U64(0x3956c25bf348b538), U64(0x59f111f1b605d019), U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
35 U64(0xd807aa98a3030242), U64(0x12835b0145706fbe), U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
36 U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1), U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
37 // Round 16-31
38 U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3), U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
39 U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483), U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
40 U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210), U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
41 U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725), U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
42 // Round 32-47
43 U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926), U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
44 U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8), U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
45 U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001), U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
46 U64(0xd192e819d6ef5218), U64(0xd69906245565a910), U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
47 // Round 48-63
48 U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53), U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
49 U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb), U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
50 U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60), U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
51 U64(0x90befffa23631e28), U64(0xa4506cebde82bde9), U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
52 // Round 64-79
53 U64(0xca273eceea26619c), U64(0xd186b8c721c0c207), U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
54 U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6), U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
55 U64(0x28db77f523047d84), U64(0x32caab7b40c72493), U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
56 U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a), U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
57 };
58
59 #undef ROUND00_15
60 #undef ROUND16_79
61
62 #define SHA512_CH(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
63 #define SHA512_MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
64 #define SHA512_BSIG0(x) (ROTR64(x, 28) ^ ROTR64(x, 34) ^ ROTR64(x, 39))
65 #define SHA512_BSIG1(x) (ROTR64(x, 14) ^ ROTR64(x, 18) ^ ROTR64(x, 41))
66 #define SHA512_SSIG0(x) (ROTR64(x, 1) ^ ROTR64(x, 8) ^ ((x) >> 7))
67 #define SHA512_SSIG1(x) (ROTR64(x, 19) ^ ROTR64(x, 61) ^ ((x) >> 6))
68
69 // Prepare the message schedule W
Sha512ExtendMessage(uint64_t * w,uint32_t t)70 static inline void Sha512ExtendMessage(uint64_t *w, uint32_t t)
71 {
72 w[t & 0xF] += SHA512_SSIG1(w[(t - 2) & 0xF]) + w[(t - 7) & 0xF] + SHA512_SSIG0(w[(t - 15) & 0xF]);
73 }
74
75 // Perform the main hash computation
Sha512Compress(uint64_t * state,uint64_t w,uint64_t k)76 static inline void Sha512Compress(uint64_t *state, uint64_t w, uint64_t k)
77 {
78 uint64_t t1 = state[7] + SHA512_BSIG1(state[4]) + SHA512_CH(state[4], state[5], state[6]) + k + w;
79 uint64_t t2 = SHA512_BSIG0(state[0]) + SHA512_MAJ(state[0], state[1], state[2]);
80
81 state[7] = state[6]; // h = g
82 state[6] = state[5]; // g = f
83 state[5] = state[4]; // f = e
84 state[4] = state[3] + t1; // e = d + T1
85 state[3] = state[2]; // d = c
86 state[2] = state[1]; // c = b
87 state[1] = state[0]; // b = a
88 state[0] = t1 + t2; // a = T1 + T2
89 }
90
SHA512CompressMultiBlocks(uint64_t hash[8],const uint8_t * bl,uint32_t bcnt)91 void SHA512CompressMultiBlocks(uint64_t hash[8], const uint8_t *bl, uint32_t bcnt)
92 {
93 uint32_t t;
94 uint64_t state[8];
95 uint64_t w[16];
96 const uint8_t *block = bl;
97 uint32_t blockn = bcnt;
98
99 while (blockn > 0) {
100 // Initialize the working variables
101 for (t = 0; t < 8; t++) {
102 state[t] = hash[t];
103 }
104
105 // Handle the first 16 rounds
106 for (t = 0; t < 16; t++) {
107 w[t] = Uint64FromBeBytes(block + t * 8);
108 Sha512Compress(state, w[t], K512[t]);
109 }
110
111 // 16th - 79th round of operation, corresponding to steps 1 and 3 in rfc6234 6.4
112 for (t = 16; t < 80; t++) {
113 Sha512ExtendMessage(w, t);
114 Sha512Compress(state, w[t & 0xF], K512[t]);
115 }
116
117 // RFC6234 STEP 4: Compute the intermediate hash value H(i)
118 for (t = 0; t < 8; t++) {
119 hash[t] += state[t];
120 }
121
122 block += CRYPT_SHA2_512_BLOCKSIZE;
123 blockn--;
124 }
125 }
126 #endif // HITLS_CRYPTO_SHA512 && HITLS_CRYPTO_SHA512_SMALL_MEM
127