1 /*
2 * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <stdio.h>
14 #include "internal/cryptlib.h"
15 #include "bn_local.h"
16
17 #ifndef OPENSSL_NO_EC2M
18 # include <openssl/ec.h>
19
20 /*
21 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
22 * fail.
23 */
24 # define MAX_ITERATIONS 50
25
26 # define SQR_nibble(w) ((((w) & 8) << 3) \
27 | (((w) & 4) << 2) \
28 | (((w) & 2) << 1) \
29 | ((w) & 1))
30
31
32 /* Platform-specific macros to accelerate squaring. */
33 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
34 # define SQR1(w) \
35 SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
36 SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
37 SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
38 SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32)
39 # define SQR0(w) \
40 SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
41 SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
42 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
43 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
44 # endif
45 # ifdef THIRTY_TWO_BIT
46 # define SQR1(w) \
47 SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
48 SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16)
49 # define SQR0(w) \
50 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
51 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
52 # endif
53
54 # if !defined(OPENSSL_BN_ASM_GF2m)
55 /*
56 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
57 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
58 * the variables have the right amount of space allocated.
59 */
60 # ifdef THIRTY_TWO_BIT
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)61 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
62 const BN_ULONG b)
63 {
64 register BN_ULONG h, l, s;
65 BN_ULONG tab[8], top2b = a >> 30;
66 register BN_ULONG a1, a2, a4;
67
68 a1 = a & (0x3FFFFFFF);
69 a2 = a1 << 1;
70 a4 = a2 << 1;
71
72 tab[0] = 0;
73 tab[1] = a1;
74 tab[2] = a2;
75 tab[3] = a1 ^ a2;
76 tab[4] = a4;
77 tab[5] = a1 ^ a4;
78 tab[6] = a2 ^ a4;
79 tab[7] = a1 ^ a2 ^ a4;
80
81 s = tab[b & 0x7];
82 l = s;
83 s = tab[b >> 3 & 0x7];
84 l ^= s << 3;
85 h = s >> 29;
86 s = tab[b >> 6 & 0x7];
87 l ^= s << 6;
88 h ^= s >> 26;
89 s = tab[b >> 9 & 0x7];
90 l ^= s << 9;
91 h ^= s >> 23;
92 s = tab[b >> 12 & 0x7];
93 l ^= s << 12;
94 h ^= s >> 20;
95 s = tab[b >> 15 & 0x7];
96 l ^= s << 15;
97 h ^= s >> 17;
98 s = tab[b >> 18 & 0x7];
99 l ^= s << 18;
100 h ^= s >> 14;
101 s = tab[b >> 21 & 0x7];
102 l ^= s << 21;
103 h ^= s >> 11;
104 s = tab[b >> 24 & 0x7];
105 l ^= s << 24;
106 h ^= s >> 8;
107 s = tab[b >> 27 & 0x7];
108 l ^= s << 27;
109 h ^= s >> 5;
110 s = tab[b >> 30];
111 l ^= s << 30;
112 h ^= s >> 2;
113
114 /* compensate for the top two bits of a */
115
116 if (top2b & 01) {
117 l ^= b << 30;
118 h ^= b >> 2;
119 }
120 if (top2b & 02) {
121 l ^= b << 31;
122 h ^= b >> 1;
123 }
124
125 *r1 = h;
126 *r0 = l;
127 }
128 # endif
129 # if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
bn_GF2m_mul_1x1(BN_ULONG * r1,BN_ULONG * r0,const BN_ULONG a,const BN_ULONG b)130 static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
131 const BN_ULONG b)
132 {
133 register BN_ULONG h, l, s;
134 BN_ULONG tab[16], top3b = a >> 61;
135 register BN_ULONG a1, a2, a4, a8;
136
137 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
138 a2 = a1 << 1;
139 a4 = a2 << 1;
140 a8 = a4 << 1;
141
142 tab[0] = 0;
143 tab[1] = a1;
144 tab[2] = a2;
145 tab[3] = a1 ^ a2;
146 tab[4] = a4;
147 tab[5] = a1 ^ a4;
148 tab[6] = a2 ^ a4;
149 tab[7] = a1 ^ a2 ^ a4;
150 tab[8] = a8;
151 tab[9] = a1 ^ a8;
152 tab[10] = a2 ^ a8;
153 tab[11] = a1 ^ a2 ^ a8;
154 tab[12] = a4 ^ a8;
155 tab[13] = a1 ^ a4 ^ a8;
156 tab[14] = a2 ^ a4 ^ a8;
157 tab[15] = a1 ^ a2 ^ a4 ^ a8;
158
159 s = tab[b & 0xF];
160 l = s;
161 s = tab[b >> 4 & 0xF];
162 l ^= s << 4;
163 h = s >> 60;
164 s = tab[b >> 8 & 0xF];
165 l ^= s << 8;
166 h ^= s >> 56;
167 s = tab[b >> 12 & 0xF];
168 l ^= s << 12;
169 h ^= s >> 52;
170 s = tab[b >> 16 & 0xF];
171 l ^= s << 16;
172 h ^= s >> 48;
173 s = tab[b >> 20 & 0xF];
174 l ^= s << 20;
175 h ^= s >> 44;
176 s = tab[b >> 24 & 0xF];
177 l ^= s << 24;
178 h ^= s >> 40;
179 s = tab[b >> 28 & 0xF];
180 l ^= s << 28;
181 h ^= s >> 36;
182 s = tab[b >> 32 & 0xF];
183 l ^= s << 32;
184 h ^= s >> 32;
185 s = tab[b >> 36 & 0xF];
186 l ^= s << 36;
187 h ^= s >> 28;
188 s = tab[b >> 40 & 0xF];
189 l ^= s << 40;
190 h ^= s >> 24;
191 s = tab[b >> 44 & 0xF];
192 l ^= s << 44;
193 h ^= s >> 20;
194 s = tab[b >> 48 & 0xF];
195 l ^= s << 48;
196 h ^= s >> 16;
197 s = tab[b >> 52 & 0xF];
198 l ^= s << 52;
199 h ^= s >> 12;
200 s = tab[b >> 56 & 0xF];
201 l ^= s << 56;
202 h ^= s >> 8;
203 s = tab[b >> 60];
204 l ^= s << 60;
205 h ^= s >> 4;
206
207 /* compensate for the top three bits of a */
208
209 if (top3b & 01) {
210 l ^= b << 61;
211 h ^= b >> 3;
212 }
213 if (top3b & 02) {
214 l ^= b << 62;
215 h ^= b >> 2;
216 }
217 if (top3b & 04) {
218 l ^= b << 63;
219 h ^= b >> 1;
220 }
221
222 *r1 = h;
223 *r0 = l;
224 }
225 # endif
226
227 /*
228 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
229 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
230 * ensure that the variables have the right amount of space allocated.
231 */
bn_GF2m_mul_2x2(BN_ULONG * r,const BN_ULONG a1,const BN_ULONG a0,const BN_ULONG b1,const BN_ULONG b0)232 static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
233 const BN_ULONG b1, const BN_ULONG b0)
234 {
235 BN_ULONG m1, m0;
236 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
237 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
238 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
239 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
240 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
241 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
242 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
243 }
244 # else
245 void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
246 BN_ULONG b0);
247 # endif
248
249 /*
250 * Add polynomials a and b and store result in r; r could be a or b, a and b
251 * could be equal; r is the bitwise XOR of a and b.
252 */
BN_GF2m_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b)253 int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
254 {
255 int i;
256 const BIGNUM *at, *bt;
257
258 bn_check_top(a);
259 bn_check_top(b);
260
261 if (a->top < b->top) {
262 at = b;
263 bt = a;
264 } else {
265 at = a;
266 bt = b;
267 }
268
269 if (bn_wexpand(r, at->top) == NULL)
270 return 0;
271
272 for (i = 0; i < bt->top; i++) {
273 r->d[i] = at->d[i] ^ bt->d[i];
274 }
275 for (; i < at->top; i++) {
276 r->d[i] = at->d[i];
277 }
278
279 r->top = at->top;
280 bn_correct_top(r);
281
282 return 1;
283 }
284
285 /*-
286 * Some functions allow for representation of the irreducible polynomials
287 * as an int[], say p. The irreducible f(t) is then of the form:
288 * t^p[0] + t^p[1] + ... + t^p[k]
289 * where m = p[0] > p[1] > ... > p[k] = 0.
290 */
291
292 /* Performs modular reduction of a and store result in r. r could be a. */
BN_GF2m_mod_arr(BIGNUM * r,const BIGNUM * a,const int p[])293 int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
294 {
295 int j, k;
296 int n, dN, d0, d1;
297 BN_ULONG zz, *z;
298
299 bn_check_top(a);
300
301 if (p[0] == 0) {
302 /* reduction mod 1 => return 0 */
303 BN_zero(r);
304 return 1;
305 }
306
307 /*
308 * Since the algorithm does reduction in the r value, if a != r, copy the
309 * contents of a into r so we can do reduction in r.
310 */
311 if (a != r) {
312 if (!bn_wexpand(r, a->top))
313 return 0;
314 for (j = 0; j < a->top; j++) {
315 r->d[j] = a->d[j];
316 }
317 r->top = a->top;
318 }
319 z = r->d;
320
321 /* start reduction */
322 dN = p[0] / BN_BITS2;
323 for (j = r->top - 1; j > dN;) {
324 zz = z[j];
325 if (z[j] == 0) {
326 j--;
327 continue;
328 }
329 z[j] = 0;
330
331 for (k = 1; p[k] != 0; k++) {
332 /* reducing component t^p[k] */
333 n = p[0] - p[k];
334 d0 = n % BN_BITS2;
335 d1 = BN_BITS2 - d0;
336 n /= BN_BITS2;
337 z[j - n] ^= (zz >> d0);
338 if (d0)
339 z[j - n - 1] ^= (zz << d1);
340 }
341
342 /* reducing component t^0 */
343 n = dN;
344 d0 = p[0] % BN_BITS2;
345 d1 = BN_BITS2 - d0;
346 z[j - n] ^= (zz >> d0);
347 if (d0)
348 z[j - n - 1] ^= (zz << d1);
349 }
350
351 /* final round of reduction */
352 while (j == dN) {
353
354 d0 = p[0] % BN_BITS2;
355 zz = z[dN] >> d0;
356 if (zz == 0)
357 break;
358 d1 = BN_BITS2 - d0;
359
360 /* clear up the top d1 bits */
361 if (d0)
362 z[dN] = (z[dN] << d1) >> d1;
363 else
364 z[dN] = 0;
365 z[0] ^= zz; /* reduction t^0 component */
366
367 for (k = 1; p[k] != 0; k++) {
368 BN_ULONG tmp_ulong;
369
370 /* reducing component t^p[k] */
371 n = p[k] / BN_BITS2;
372 d0 = p[k] % BN_BITS2;
373 d1 = BN_BITS2 - d0;
374 z[n] ^= (zz << d0);
375 if (d0 && (tmp_ulong = zz >> d1))
376 z[n + 1] ^= tmp_ulong;
377 }
378
379 }
380
381 bn_correct_top(r);
382 return 1;
383 }
384
385 /*
386 * Performs modular reduction of a by p and store result in r. r could be a.
387 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
388 * function is only provided for convenience; for best performance, use the
389 * BN_GF2m_mod_arr function.
390 */
BN_GF2m_mod(BIGNUM * r,const BIGNUM * a,const BIGNUM * p)391 int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
392 {
393 int ret = 0;
394 int arr[6];
395 bn_check_top(a);
396 bn_check_top(p);
397 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
398 if (!ret || ret > (int)OSSL_NELEM(arr)) {
399 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
400 return 0;
401 }
402 ret = BN_GF2m_mod_arr(r, a, arr);
403 bn_check_top(r);
404 return ret;
405 }
406
407 /*
408 * Compute the product of two polynomials a and b, reduce modulo p, and store
409 * the result in r. r could be a or b; a could be b.
410 */
BN_GF2m_mod_mul_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)411 int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
412 const int p[], BN_CTX *ctx)
413 {
414 int zlen, i, j, k, ret = 0;
415 BIGNUM *s;
416 BN_ULONG x1, x0, y1, y0, zz[4];
417
418 bn_check_top(a);
419 bn_check_top(b);
420
421 if (a == b) {
422 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
423 }
424
425 BN_CTX_start(ctx);
426 if ((s = BN_CTX_get(ctx)) == NULL)
427 goto err;
428
429 zlen = a->top + b->top + 4;
430 if (!bn_wexpand(s, zlen))
431 goto err;
432 s->top = zlen;
433
434 for (i = 0; i < zlen; i++)
435 s->d[i] = 0;
436
437 for (j = 0; j < b->top; j += 2) {
438 y0 = b->d[j];
439 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
440 for (i = 0; i < a->top; i += 2) {
441 x0 = a->d[i];
442 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
443 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
444 for (k = 0; k < 4; k++)
445 s->d[i + j + k] ^= zz[k];
446 }
447 }
448
449 bn_correct_top(s);
450 if (BN_GF2m_mod_arr(r, s, p))
451 ret = 1;
452 bn_check_top(r);
453
454 err:
455 BN_CTX_end(ctx);
456 return ret;
457 }
458
459 /*
460 * Compute the product of two polynomials a and b, reduce modulo p, and store
461 * the result in r. r could be a or b; a could equal b. This function calls
462 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
463 * only provided for convenience; for best performance, use the
464 * BN_GF2m_mod_mul_arr function.
465 */
BN_GF2m_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)466 int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
467 const BIGNUM *p, BN_CTX *ctx)
468 {
469 int ret = 0;
470 const int max = BN_num_bits(p) + 1;
471 int *arr;
472
473 bn_check_top(a);
474 bn_check_top(b);
475 bn_check_top(p);
476
477 arr = OPENSSL_malloc(sizeof(*arr) * max);
478 if (arr == NULL) {
479 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
480 return 0;
481 }
482 ret = BN_GF2m_poly2arr(p, arr, max);
483 if (!ret || ret > max) {
484 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
485 goto err;
486 }
487 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
488 bn_check_top(r);
489 err:
490 OPENSSL_free(arr);
491 return ret;
492 }
493
494 /* Square a, reduce the result mod p, and store it in a. r could be a. */
BN_GF2m_mod_sqr_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)495 int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
496 BN_CTX *ctx)
497 {
498 int i, ret = 0;
499 BIGNUM *s;
500
501 bn_check_top(a);
502 BN_CTX_start(ctx);
503 if ((s = BN_CTX_get(ctx)) == NULL)
504 goto err;
505 if (!bn_wexpand(s, 2 * a->top))
506 goto err;
507
508 for (i = a->top - 1; i >= 0; i--) {
509 s->d[2 * i + 1] = SQR1(a->d[i]);
510 s->d[2 * i] = SQR0(a->d[i]);
511 }
512
513 s->top = 2 * a->top;
514 bn_correct_top(s);
515 if (!BN_GF2m_mod_arr(r, s, p))
516 goto err;
517 bn_check_top(r);
518 ret = 1;
519 err:
520 BN_CTX_end(ctx);
521 return ret;
522 }
523
524 /*
525 * Square a, reduce the result mod p, and store it in a. r could be a. This
526 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
527 * wrapper function is only provided for convenience; for best performance,
528 * use the BN_GF2m_mod_sqr_arr function.
529 */
BN_GF2m_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)530 int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
531 {
532 int ret = 0;
533 const int max = BN_num_bits(p) + 1;
534 int *arr;
535
536 bn_check_top(a);
537 bn_check_top(p);
538
539 arr = OPENSSL_malloc(sizeof(*arr) * max);
540 if (arr == NULL) {
541 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
542 return 0;
543 }
544 ret = BN_GF2m_poly2arr(p, arr, max);
545 if (!ret || ret > max) {
546 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
547 goto err;
548 }
549 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
550 bn_check_top(r);
551 err:
552 OPENSSL_free(arr);
553 return ret;
554 }
555
556 /*
557 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
558 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
559 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
560 * Curve Cryptography Over Binary Fields".
561 */
BN_GF2m_mod_inv_vartime(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)562 static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
563 const BIGNUM *p, BN_CTX *ctx)
564 {
565 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
566 int ret = 0;
567
568 bn_check_top(a);
569 bn_check_top(p);
570
571 BN_CTX_start(ctx);
572
573 b = BN_CTX_get(ctx);
574 c = BN_CTX_get(ctx);
575 u = BN_CTX_get(ctx);
576 v = BN_CTX_get(ctx);
577 if (v == NULL)
578 goto err;
579
580 if (!BN_GF2m_mod(u, a, p))
581 goto err;
582 if (BN_is_zero(u))
583 goto err;
584
585 if (!BN_copy(v, p))
586 goto err;
587 # if 0
588 if (!BN_one(b))
589 goto err;
590
591 while (1) {
592 while (!BN_is_odd(u)) {
593 if (BN_is_zero(u))
594 goto err;
595 if (!BN_rshift1(u, u))
596 goto err;
597 if (BN_is_odd(b)) {
598 if (!BN_GF2m_add(b, b, p))
599 goto err;
600 }
601 if (!BN_rshift1(b, b))
602 goto err;
603 }
604
605 if (BN_abs_is_word(u, 1))
606 break;
607
608 if (BN_num_bits(u) < BN_num_bits(v)) {
609 tmp = u;
610 u = v;
611 v = tmp;
612 tmp = b;
613 b = c;
614 c = tmp;
615 }
616
617 if (!BN_GF2m_add(u, u, v))
618 goto err;
619 if (!BN_GF2m_add(b, b, c))
620 goto err;
621 }
622 # else
623 {
624 int i;
625 int ubits = BN_num_bits(u);
626 int vbits = BN_num_bits(v); /* v is copy of p */
627 int top = p->top;
628 BN_ULONG *udp, *bdp, *vdp, *cdp;
629
630 if (!bn_wexpand(u, top))
631 goto err;
632 udp = u->d;
633 for (i = u->top; i < top; i++)
634 udp[i] = 0;
635 u->top = top;
636 if (!bn_wexpand(b, top))
637 goto err;
638 bdp = b->d;
639 bdp[0] = 1;
640 for (i = 1; i < top; i++)
641 bdp[i] = 0;
642 b->top = top;
643 if (!bn_wexpand(c, top))
644 goto err;
645 cdp = c->d;
646 for (i = 0; i < top; i++)
647 cdp[i] = 0;
648 c->top = top;
649 vdp = v->d; /* It pays off to "cache" *->d pointers,
650 * because it allows optimizer to be more
651 * aggressive. But we don't have to "cache"
652 * p->d, because *p is declared 'const'... */
653 while (1) {
654 while (ubits && !(udp[0] & 1)) {
655 BN_ULONG u0, u1, b0, b1, mask;
656
657 u0 = udp[0];
658 b0 = bdp[0];
659 mask = (BN_ULONG)0 - (b0 & 1);
660 b0 ^= p->d[0] & mask;
661 for (i = 0; i < top - 1; i++) {
662 u1 = udp[i + 1];
663 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
664 u0 = u1;
665 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
666 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
667 b0 = b1;
668 }
669 udp[i] = u0 >> 1;
670 bdp[i] = b0 >> 1;
671 ubits--;
672 }
673
674 if (ubits <= BN_BITS2) {
675 if (udp[0] == 0) /* poly was reducible */
676 goto err;
677 if (udp[0] == 1)
678 break;
679 }
680
681 if (ubits < vbits) {
682 i = ubits;
683 ubits = vbits;
684 vbits = i;
685 tmp = u;
686 u = v;
687 v = tmp;
688 tmp = b;
689 b = c;
690 c = tmp;
691 udp = vdp;
692 vdp = v->d;
693 bdp = cdp;
694 cdp = c->d;
695 }
696 for (i = 0; i < top; i++) {
697 udp[i] ^= vdp[i];
698 bdp[i] ^= cdp[i];
699 }
700 if (ubits == vbits) {
701 BN_ULONG ul;
702 int utop = (ubits - 1) / BN_BITS2;
703
704 while ((ul = udp[utop]) == 0 && utop)
705 utop--;
706 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
707 }
708 }
709 bn_correct_top(b);
710 }
711 # endif
712
713 if (!BN_copy(r, b))
714 goto err;
715 bn_check_top(r);
716 ret = 1;
717
718 err:
719 # ifdef BN_DEBUG
720 /* BN_CTX_end would complain about the expanded form */
721 bn_correct_top(c);
722 bn_correct_top(u);
723 bn_correct_top(v);
724 # endif
725 BN_CTX_end(ctx);
726 return ret;
727 }
728
729 /*-
730 * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
731 * This is not constant time.
732 * But it does eliminate first order deduction on the input.
733 */
BN_GF2m_mod_inv(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)734 int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
735 {
736 BIGNUM *b = NULL;
737 int ret = 0;
738
739 BN_CTX_start(ctx);
740 if ((b = BN_CTX_get(ctx)) == NULL)
741 goto err;
742
743 /* generate blinding value */
744 do {
745 if (!BN_priv_rand_ex(b, BN_num_bits(p) - 1,
746 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
747 goto err;
748 } while (BN_is_zero(b));
749
750 /* r := a * b */
751 if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
752 goto err;
753
754 /* r := 1/(a * b) */
755 if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
756 goto err;
757
758 /* r := b/(a * b) = 1/a */
759 if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
760 goto err;
761
762 ret = 1;
763
764 err:
765 BN_CTX_end(ctx);
766 return ret;
767 }
768
769 /*
770 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
771 * This function calls down to the BN_GF2m_mod_inv implementation; this
772 * wrapper function is only provided for convenience; for best performance,
773 * use the BN_GF2m_mod_inv function.
774 */
BN_GF2m_mod_inv_arr(BIGNUM * r,const BIGNUM * xx,const int p[],BN_CTX * ctx)775 int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
776 BN_CTX *ctx)
777 {
778 BIGNUM *field;
779 int ret = 0;
780
781 bn_check_top(xx);
782 BN_CTX_start(ctx);
783 if ((field = BN_CTX_get(ctx)) == NULL)
784 goto err;
785 if (!BN_GF2m_arr2poly(p, field))
786 goto err;
787
788 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
789 bn_check_top(r);
790
791 err:
792 BN_CTX_end(ctx);
793 return ret;
794 }
795
796 /*
797 * Divide y by x, reduce modulo p, and store the result in r. r could be x
798 * or y, x could equal y.
799 */
BN_GF2m_mod_div(BIGNUM * r,const BIGNUM * y,const BIGNUM * x,const BIGNUM * p,BN_CTX * ctx)800 int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
801 const BIGNUM *p, BN_CTX *ctx)
802 {
803 BIGNUM *xinv = NULL;
804 int ret = 0;
805
806 bn_check_top(y);
807 bn_check_top(x);
808 bn_check_top(p);
809
810 BN_CTX_start(ctx);
811 xinv = BN_CTX_get(ctx);
812 if (xinv == NULL)
813 goto err;
814
815 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
816 goto err;
817 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
818 goto err;
819 bn_check_top(r);
820 ret = 1;
821
822 err:
823 BN_CTX_end(ctx);
824 return ret;
825 }
826
827 /*
828 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
829 * * or yy, xx could equal yy. This function calls down to the
830 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
831 * convenience; for best performance, use the BN_GF2m_mod_div function.
832 */
BN_GF2m_mod_div_arr(BIGNUM * r,const BIGNUM * yy,const BIGNUM * xx,const int p[],BN_CTX * ctx)833 int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
834 const int p[], BN_CTX *ctx)
835 {
836 BIGNUM *field;
837 int ret = 0;
838
839 bn_check_top(yy);
840 bn_check_top(xx);
841
842 BN_CTX_start(ctx);
843 if ((field = BN_CTX_get(ctx)) == NULL)
844 goto err;
845 if (!BN_GF2m_arr2poly(p, field))
846 goto err;
847
848 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
849 bn_check_top(r);
850
851 err:
852 BN_CTX_end(ctx);
853 return ret;
854 }
855
856 /*
857 * Compute the bth power of a, reduce modulo p, and store the result in r. r
858 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
859 * P1363.
860 */
BN_GF2m_mod_exp_arr(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const int p[],BN_CTX * ctx)861 int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
862 const int p[], BN_CTX *ctx)
863 {
864 int ret = 0, i, n;
865 BIGNUM *u;
866
867 bn_check_top(a);
868 bn_check_top(b);
869
870 if (BN_is_zero(b))
871 return BN_one(r);
872
873 if (BN_abs_is_word(b, 1))
874 return (BN_copy(r, a) != NULL);
875
876 BN_CTX_start(ctx);
877 if ((u = BN_CTX_get(ctx)) == NULL)
878 goto err;
879
880 if (!BN_GF2m_mod_arr(u, a, p))
881 goto err;
882
883 n = BN_num_bits(b) - 1;
884 for (i = n - 1; i >= 0; i--) {
885 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
886 goto err;
887 if (BN_is_bit_set(b, i)) {
888 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
889 goto err;
890 }
891 }
892 if (!BN_copy(r, u))
893 goto err;
894 bn_check_top(r);
895 ret = 1;
896 err:
897 BN_CTX_end(ctx);
898 return ret;
899 }
900
901 /*
902 * Compute the bth power of a, reduce modulo p, and store the result in r. r
903 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
904 * implementation; this wrapper function is only provided for convenience;
905 * for best performance, use the BN_GF2m_mod_exp_arr function.
906 */
BN_GF2m_mod_exp(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * p,BN_CTX * ctx)907 int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
908 const BIGNUM *p, BN_CTX *ctx)
909 {
910 int ret = 0;
911 const int max = BN_num_bits(p) + 1;
912 int *arr;
913
914 bn_check_top(a);
915 bn_check_top(b);
916 bn_check_top(p);
917
918 arr = OPENSSL_malloc(sizeof(*arr) * max);
919 if (arr == NULL) {
920 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
921 return 0;
922 }
923 ret = BN_GF2m_poly2arr(p, arr, max);
924 if (!ret || ret > max) {
925 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
926 goto err;
927 }
928 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
929 bn_check_top(r);
930 err:
931 OPENSSL_free(arr);
932 return ret;
933 }
934
935 /*
936 * Compute the square root of a, reduce modulo p, and store the result in r.
937 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
938 */
BN_GF2m_mod_sqrt_arr(BIGNUM * r,const BIGNUM * a,const int p[],BN_CTX * ctx)939 int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
940 BN_CTX *ctx)
941 {
942 int ret = 0;
943 BIGNUM *u;
944
945 bn_check_top(a);
946
947 if (p[0] == 0) {
948 /* reduction mod 1 => return 0 */
949 BN_zero(r);
950 return 1;
951 }
952
953 BN_CTX_start(ctx);
954 if ((u = BN_CTX_get(ctx)) == NULL)
955 goto err;
956
957 if (!BN_set_bit(u, p[0] - 1))
958 goto err;
959 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
960 bn_check_top(r);
961
962 err:
963 BN_CTX_end(ctx);
964 return ret;
965 }
966
967 /*
968 * Compute the square root of a, reduce modulo p, and store the result in r.
969 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
970 * implementation; this wrapper function is only provided for convenience;
971 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
972 */
BN_GF2m_mod_sqrt(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)973 int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
974 {
975 int ret = 0;
976 const int max = BN_num_bits(p) + 1;
977 int *arr;
978
979 bn_check_top(a);
980 bn_check_top(p);
981
982 arr = OPENSSL_malloc(sizeof(*arr) * max);
983 if (arr == NULL) {
984 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
985 return 0;
986 }
987 ret = BN_GF2m_poly2arr(p, arr, max);
988 if (!ret || ret > max) {
989 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
990 goto err;
991 }
992 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
993 bn_check_top(r);
994 err:
995 OPENSSL_free(arr);
996 return ret;
997 }
998
999 /*
1000 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1001 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
1002 */
BN_GF2m_mod_solve_quad_arr(BIGNUM * r,const BIGNUM * a_,const int p[],BN_CTX * ctx)1003 int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1004 BN_CTX *ctx)
1005 {
1006 int ret = 0, count = 0, j;
1007 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1008
1009 bn_check_top(a_);
1010
1011 if (p[0] == 0) {
1012 /* reduction mod 1 => return 0 */
1013 BN_zero(r);
1014 return 1;
1015 }
1016
1017 BN_CTX_start(ctx);
1018 a = BN_CTX_get(ctx);
1019 z = BN_CTX_get(ctx);
1020 w = BN_CTX_get(ctx);
1021 if (w == NULL)
1022 goto err;
1023
1024 if (!BN_GF2m_mod_arr(a, a_, p))
1025 goto err;
1026
1027 if (BN_is_zero(a)) {
1028 BN_zero(r);
1029 ret = 1;
1030 goto err;
1031 }
1032
1033 if (p[0] & 0x1) { /* m is odd */
1034 /* compute half-trace of a */
1035 if (!BN_copy(z, a))
1036 goto err;
1037 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1038 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1039 goto err;
1040 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1041 goto err;
1042 if (!BN_GF2m_add(z, z, a))
1043 goto err;
1044 }
1045
1046 } else { /* m is even */
1047
1048 rho = BN_CTX_get(ctx);
1049 w2 = BN_CTX_get(ctx);
1050 tmp = BN_CTX_get(ctx);
1051 if (tmp == NULL)
1052 goto err;
1053 do {
1054 if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
1055 0, ctx))
1056 goto err;
1057 if (!BN_GF2m_mod_arr(rho, rho, p))
1058 goto err;
1059 BN_zero(z);
1060 if (!BN_copy(w, rho))
1061 goto err;
1062 for (j = 1; j <= p[0] - 1; j++) {
1063 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1064 goto err;
1065 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1066 goto err;
1067 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1068 goto err;
1069 if (!BN_GF2m_add(z, z, tmp))
1070 goto err;
1071 if (!BN_GF2m_add(w, w2, rho))
1072 goto err;
1073 }
1074 count++;
1075 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1076 if (BN_is_zero(w)) {
1077 ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
1078 goto err;
1079 }
1080 }
1081
1082 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1083 goto err;
1084 if (!BN_GF2m_add(w, z, w))
1085 goto err;
1086 if (BN_GF2m_cmp(w, a)) {
1087 ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
1088 goto err;
1089 }
1090
1091 if (!BN_copy(r, z))
1092 goto err;
1093 bn_check_top(r);
1094
1095 ret = 1;
1096
1097 err:
1098 BN_CTX_end(ctx);
1099 return ret;
1100 }
1101
1102 /*
1103 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1104 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1105 * implementation; this wrapper function is only provided for convenience;
1106 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1107 */
BN_GF2m_mod_solve_quad(BIGNUM * r,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)1108 int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1109 BN_CTX *ctx)
1110 {
1111 int ret = 0;
1112 const int max = BN_num_bits(p) + 1;
1113 int *arr;
1114
1115 bn_check_top(a);
1116 bn_check_top(p);
1117
1118 arr = OPENSSL_malloc(sizeof(*arr) * max);
1119 if (arr == NULL) {
1120 ERR_raise(ERR_LIB_BN, ERR_R_MALLOC_FAILURE);
1121 goto err;
1122 }
1123 ret = BN_GF2m_poly2arr(p, arr, max);
1124 if (!ret || ret > max) {
1125 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
1126 goto err;
1127 }
1128 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1129 bn_check_top(r);
1130 err:
1131 OPENSSL_free(arr);
1132 return ret;
1133 }
1134
1135 /*
1136 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1137 * x^i) into an array of integers corresponding to the bits with non-zero
1138 * coefficient. The array is intended to be suitable for use with
1139 * `BN_GF2m_mod_arr()`, and so the constant term of the polynomial must not be
1140 * zero. This translates to a requirement that the input BIGNUM `a` is odd.
1141 *
1142 * Given sufficient room, the array is terminated with -1. Up to max elements
1143 * of the array will be filled.
1144 *
1145 * The return value is total number of array elements that would be filled if
1146 * array was large enough, including the terminating `-1`. It is `0` when `a`
1147 * is not odd or the constant term is zero contrary to requirement.
1148 *
1149 * The return value is also `0` when the leading exponent exceeds
1150 * `OPENSSL_ECC_MAX_FIELD_BITS`, this guards against CPU exhaustion attacks,
1151 */
BN_GF2m_poly2arr(const BIGNUM * a,int p[],int max)1152 int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1153 {
1154 int i, j, k = 0;
1155 BN_ULONG mask;
1156
1157 if (!BN_is_odd(a))
1158 return 0;
1159
1160 for (i = a->top - 1; i >= 0; i--) {
1161 if (!a->d[i])
1162 /* skip word if a->d[i] == 0 */
1163 continue;
1164 mask = BN_TBIT;
1165 for (j = BN_BITS2 - 1; j >= 0; j--) {
1166 if (a->d[i] & mask) {
1167 if (k < max)
1168 p[k] = BN_BITS2 * i + j;
1169 k++;
1170 }
1171 mask >>= 1;
1172 }
1173 }
1174
1175 if (k > 0 && p[0] > OPENSSL_ECC_MAX_FIELD_BITS)
1176 return 0;
1177
1178 if (k < max)
1179 p[k] = -1;
1180
1181 return k + 1;
1182 }
1183
1184 /*
1185 * Convert the coefficient array representation of a polynomial to a
1186 * bit-string. The array must be terminated by -1.
1187 */
BN_GF2m_arr2poly(const int p[],BIGNUM * a)1188 int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1189 {
1190 int i;
1191
1192 bn_check_top(a);
1193 BN_zero(a);
1194 for (i = 0; p[i] != -1; i++) {
1195 if (BN_set_bit(a, p[i]) == 0)
1196 return 0;
1197 }
1198 bn_check_top(a);
1199
1200 return 1;
1201 }
1202
1203 #endif
1204