• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #region Copyright notice and license
2 // Protocol Buffers - Google's data interchange format
3 // Copyright 2008 Google Inc.  All rights reserved.
4 //
5 // Use of this source code is governed by a BSD-style
6 // license that can be found in the LICENSE file or at
7 // https://developers.google.com/open-source/licenses/bsd
8 #endregion
9 
10 using Google.Protobuf.Collections;
11 using System;
12 using System.IO;
13 using System.Security;
14 
15 namespace Google.Protobuf
16 {
17     /// <summary>
18     /// Reads and decodes protocol message fields.
19     /// </summary>
20     /// <remarks>
21     /// <para>
22     /// This class is generally used by generated code to read appropriate
23     /// primitives from the stream. It effectively encapsulates the lowest
24     /// levels of protocol buffer format.
25     /// </para>
26     /// <para>
27     /// Repeated fields and map fields are not handled by this class; use <see cref="RepeatedField{T}"/>
28     /// and <see cref="MapField{TKey, TValue}"/> to serialize such fields.
29     /// </para>
30     /// </remarks>
31     [SecuritySafeCritical]
32     public sealed class CodedInputStream : IDisposable
33     {
34         /// <summary>
35         /// Whether to leave the underlying stream open when disposing of this stream.
36         /// This is always true when there's no stream.
37         /// </summary>
38         private readonly bool leaveOpen;
39 
40         /// <summary>
41         /// Buffer of data read from the stream or provided at construction time.
42         /// </summary>
43         private readonly byte[] buffer;
44 
45         /// <summary>
46         /// The stream to read further input from, or null if the byte array buffer was provided
47         /// directly on construction, with no further data available.
48         /// </summary>
49         private readonly Stream input;
50 
51         /// <summary>
52         /// The parser state is kept separately so that other parse implementations can reuse the same
53         /// parsing primitives.
54         /// </summary>
55         private ParserInternalState state;
56 
57         internal const int DefaultRecursionLimit = 100;
58         internal const int DefaultSizeLimit = Int32.MaxValue;
59         internal const int BufferSize = 4096;
60 
61         #region Construction
62         // Note that the checks are performed such that we don't end up checking obviously-valid things
63         // like non-null references for arrays we've just created.
64 
65         /// <summary>
66         /// Creates a new CodedInputStream reading data from the given byte array.
67         /// </summary>
CodedInputStream(byte[] buffer)68         public CodedInputStream(byte[] buffer) : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), 0, buffer.Length, true)
69         {
70         }
71 
72         /// <summary>
73         /// Creates a new <see cref="CodedInputStream"/> that reads from the given byte array slice.
74         /// </summary>
CodedInputStream(byte[] buffer, int offset, int length)75         public CodedInputStream(byte[] buffer, int offset, int length)
76             : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), offset, offset + length, true)
77         {
78             if (offset < 0 || offset > buffer.Length)
79             {
80                 throw new ArgumentOutOfRangeException("offset", "Offset must be within the buffer");
81             }
82             if (length < 0 || offset + length > buffer.Length)
83             {
84                 throw new ArgumentOutOfRangeException("length", "Length must be non-negative and within the buffer");
85             }
86         }
87 
88         /// <summary>
89         /// Creates a new <see cref="CodedInputStream"/> reading data from the given stream, which will be disposed
90         /// when the returned object is disposed.
91         /// </summary>
92         /// <param name="input">The stream to read from.</param>
CodedInputStream(Stream input)93         public CodedInputStream(Stream input) : this(input, false)
94         {
95         }
96 
97         /// <summary>
98         /// Creates a new <see cref="CodedInputStream"/> reading data from the given stream.
99         /// </summary>
100         /// <param name="input">The stream to read from.</param>
101         /// <param name="leaveOpen"><c>true</c> to leave <paramref name="input"/> open when the returned
102         /// <c cref="CodedInputStream"/> is disposed; <c>false</c> to dispose of the given stream when the
103         /// returned object is disposed.</param>
CodedInputStream(Stream input, bool leaveOpen)104         public CodedInputStream(Stream input, bool leaveOpen)
105             : this(ProtoPreconditions.CheckNotNull(input, "input"), new byte[BufferSize], 0, 0, leaveOpen)
106         {
107         }
108 
109         /// <summary>
110         /// Creates a new CodedInputStream reading data from the given
111         /// stream and buffer, using the default limits.
112         /// </summary>
CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, bool leaveOpen)113         internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, bool leaveOpen)
114         {
115             this.input = input;
116             this.buffer = buffer;
117             this.state.bufferPos = bufferPos;
118             this.state.bufferSize = bufferSize;
119             this.state.sizeLimit = DefaultSizeLimit;
120             this.state.recursionLimit = DefaultRecursionLimit;
121             SegmentedBufferHelper.Initialize(this, out this.state.segmentedBufferHelper);
122             this.leaveOpen = leaveOpen;
123 
124             this.state.currentLimit = int.MaxValue;
125         }
126 
127         /// <summary>
128         /// Creates a new CodedInputStream reading data from the given
129         /// stream and buffer, using the specified limits.
130         /// </summary>
131         /// <remarks>
132         /// This chains to the version with the default limits instead of vice versa to avoid
133         /// having to check that the default values are valid every time.
134         /// </remarks>
CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, int sizeLimit, int recursionLimit, bool leaveOpen)135         internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, int sizeLimit, int recursionLimit, bool leaveOpen)
136             : this(input, buffer, bufferPos, bufferSize, leaveOpen)
137         {
138             if (sizeLimit <= 0)
139             {
140                 throw new ArgumentOutOfRangeException("sizeLimit", "Size limit must be positive");
141             }
142             if (recursionLimit <= 0)
143             {
144                 throw new ArgumentOutOfRangeException("recursionLimit!", "Recursion limit must be positive");
145             }
146             this.state.sizeLimit = sizeLimit;
147             this.state.recursionLimit = recursionLimit;
148         }
149         #endregion
150 
151         /// <summary>
152         /// Creates a <see cref="CodedInputStream"/> with the specified size and recursion limits, reading
153         /// from an input stream.
154         /// </summary>
155         /// <remarks>
156         /// This method exists separately from the constructor to reduce the number of constructor overloads.
157         /// It is likely to be used considerably less frequently than the constructors, as the default limits
158         /// are suitable for most use cases.
159         /// </remarks>
160         /// <param name="input">The input stream to read from</param>
161         /// <param name="sizeLimit">The total limit of data to read from the stream.</param>
162         /// <param name="recursionLimit">The maximum recursion depth to allow while reading.</param>
163         /// <returns>A <c>CodedInputStream</c> reading from <paramref name="input"/> with the specified size
164         /// and recursion limits.</returns>
CreateWithLimits(Stream input, int sizeLimit, int recursionLimit)165         public static CodedInputStream CreateWithLimits(Stream input, int sizeLimit, int recursionLimit)
166         {
167             // Note: we may want an overload accepting leaveOpen
168             return new CodedInputStream(input, new byte[BufferSize], 0, 0, sizeLimit, recursionLimit, false);
169         }
170 
171         /// <summary>
172         /// Returns the current position in the input stream, or the position in the input buffer
173         /// </summary>
174         public long Position
175         {
176             get
177             {
178                 if (input != null)
179                 {
180                     return input.Position - ((state.bufferSize + state.bufferSizeAfterLimit) - state.bufferPos);
181                 }
182                 return state.bufferPos;
183             }
184         }
185 
186         /// <summary>
187         /// Returns the last tag read, or 0 if no tags have been read or we've read beyond
188         /// the end of the stream.
189         /// </summary>
190         internal uint LastTag { get { return state.lastTag; } }
191 
192         /// <summary>
193         /// Returns the size limit for this stream.
194         /// </summary>
195         /// <remarks>
196         /// This limit is applied when reading from the underlying stream, as a sanity check. It is
197         /// not applied when reading from a byte array data source without an underlying stream.
198         /// The default value is Int32.MaxValue.
199         /// </remarks>
200         /// <value>
201         /// The size limit.
202         /// </value>
203         public int SizeLimit { get { return state.sizeLimit; } }
204 
205         /// <summary>
206         /// Returns the recursion limit for this stream. This limit is applied whilst reading messages,
207         /// to avoid maliciously-recursive data.
208         /// </summary>
209         /// <remarks>
210         /// The default limit is 100.
211         /// </remarks>
212         /// <value>
213         /// The recursion limit for this stream.
214         /// </value>
215         public int RecursionLimit { get { return state.recursionLimit; } }
216 
217         /// <summary>
218         /// Internal-only property; when set to true, unknown fields will be discarded while parsing.
219         /// </summary>
220         internal bool DiscardUnknownFields
221         {
222             get { return state.DiscardUnknownFields; }
223             set { state.DiscardUnknownFields = value; }
224         }
225 
226         /// <summary>
227         /// Internal-only property; provides extension identifiers to compatible messages while parsing.
228         /// </summary>
229         internal ExtensionRegistry ExtensionRegistry
230         {
231             get { return state.ExtensionRegistry; }
232             set { state.ExtensionRegistry = value; }
233         }
234 
235         internal byte[] InternalBuffer => buffer;
236 
237         internal Stream InternalInputStream => input;
238 
239         internal ref ParserInternalState InternalState => ref state;
240 
241         /// <summary>
242         /// Disposes of this instance, potentially closing any underlying stream.
243         /// </summary>
244         /// <remarks>
245         /// As there is no flushing to perform here, disposing of a <see cref="CodedInputStream"/> which
246         /// was constructed with the <c>leaveOpen</c> option parameter set to <c>true</c> (or one which
247         /// was constructed to read from a byte array) has no effect.
248         /// </remarks>
Dispose()249         public void Dispose()
250         {
251             if (!leaveOpen)
252             {
253                 input.Dispose();
254             }
255         }
256 
257         #region Validation
258         /// <summary>
259         /// Verifies that the last call to ReadTag() returned tag 0 - in other words,
260         /// we've reached the end of the stream when we expected to.
261         /// </summary>
262         /// <exception cref="InvalidProtocolBufferException">The
263         /// tag read was not the one specified</exception>
CheckReadEndOfStreamTag()264         internal void CheckReadEndOfStreamTag()
265         {
266             ParsingPrimitivesMessages.CheckReadEndOfStreamTag(ref state);
267         }
268         #endregion
269 
270         #region Reading of tags etc
271 
272         /// <summary>
273         /// Peeks at the next field tag. This is like calling <see cref="ReadTag"/>, but the
274         /// tag is not consumed. (So a subsequent call to <see cref="ReadTag"/> will return the
275         /// same value.)
276         /// </summary>
PeekTag()277         public uint PeekTag()
278         {
279             var span = new ReadOnlySpan<byte>(buffer);
280             return ParsingPrimitives.PeekTag(ref span, ref state);
281         }
282 
283         /// <summary>
284         /// Reads a field tag, returning the tag of 0 for "end of stream".
285         /// </summary>
286         /// <remarks>
287         /// If this method returns 0, it doesn't necessarily mean the end of all
288         /// the data in this CodedInputStream; it may be the end of the logical stream
289         /// for an embedded message, for example.
290         /// </remarks>
291         /// <returns>The next field tag, or 0 for end of stream. (0 is never a valid tag.)</returns>
ReadTag()292         public uint ReadTag()
293         {
294             var span = new ReadOnlySpan<byte>(buffer);
295             return ParsingPrimitives.ParseTag(ref span, ref state);
296         }
297 
298         /// <summary>
299         /// Skips the data for the field with the tag we've just read.
300         /// This should be called directly after <see cref="ReadTag"/>, when
301         /// the caller wishes to skip an unknown field.
302         /// </summary>
303         /// <remarks>
304         /// This method throws <see cref="InvalidProtocolBufferException"/> if the last-read tag was an end-group tag.
305         /// If a caller wishes to skip a group, they should skip the whole group, by calling this method after reading the
306         /// start-group tag. This behavior allows callers to call this method on any field they don't understand, correctly
307         /// resulting in an error if an end-group tag has not been paired with an earlier start-group tag.
308         /// </remarks>
309         /// <exception cref="InvalidProtocolBufferException">The last tag was an end-group tag</exception>
310         /// <exception cref="InvalidOperationException">The last read operation read to the end of the logical stream</exception>
SkipLastField()311         public void SkipLastField()
312         {
313             var span = new ReadOnlySpan<byte>(buffer);
314             ParsingPrimitivesMessages.SkipLastField(ref span, ref state);
315         }
316 
317         /// <summary>
318         /// Skip a group.
319         /// </summary>
SkipGroup(uint startGroupTag)320         internal void SkipGroup(uint startGroupTag)
321         {
322             var span = new ReadOnlySpan<byte>(buffer);
323             ParsingPrimitivesMessages.SkipGroup(ref span, ref state, startGroupTag);
324         }
325 
326         /// <summary>
327         /// Reads a double field from the stream.
328         /// </summary>
ReadDouble()329         public double ReadDouble()
330         {
331             var span = new ReadOnlySpan<byte>(buffer);
332             return ParsingPrimitives.ParseDouble(ref span, ref state);
333         }
334 
335         /// <summary>
336         /// Reads a float field from the stream.
337         /// </summary>
ReadFloat()338         public float ReadFloat()
339         {
340             var span = new ReadOnlySpan<byte>(buffer);
341             return ParsingPrimitives.ParseFloat(ref span, ref state);
342         }
343 
344         /// <summary>
345         /// Reads a uint64 field from the stream.
346         /// </summary>
ReadUInt64()347         public ulong ReadUInt64()
348         {
349             return ReadRawVarint64();
350         }
351 
352         /// <summary>
353         /// Reads an int64 field from the stream.
354         /// </summary>
ReadInt64()355         public long ReadInt64()
356         {
357             return (long) ReadRawVarint64();
358         }
359 
360         /// <summary>
361         /// Reads an int32 field from the stream.
362         /// </summary>
ReadInt32()363         public int ReadInt32()
364         {
365             return (int) ReadRawVarint32();
366         }
367 
368         /// <summary>
369         /// Reads a fixed64 field from the stream.
370         /// </summary>
ReadFixed64()371         public ulong ReadFixed64()
372         {
373             return ReadRawLittleEndian64();
374         }
375 
376         /// <summary>
377         /// Reads a fixed32 field from the stream.
378         /// </summary>
ReadFixed32()379         public uint ReadFixed32()
380         {
381             return ReadRawLittleEndian32();
382         }
383 
384         /// <summary>
385         /// Reads a bool field from the stream.
386         /// </summary>
ReadBool()387         public bool ReadBool()
388         {
389             return ReadRawVarint64() != 0;
390         }
391 
392         /// <summary>
393         /// Reads a string field from the stream.
394         /// </summary>
ReadString()395         public string ReadString()
396         {
397             var span = new ReadOnlySpan<byte>(buffer);
398             return ParsingPrimitives.ReadString(ref span, ref state);
399         }
400 
401         /// <summary>
402         /// Reads an embedded message field value from the stream.
403         /// </summary>
ReadMessage(IMessage builder)404         public void ReadMessage(IMessage builder)
405         {
406             // TODO: if the message doesn't implement IBufferMessage (and thus does not provide the InternalMergeFrom method),
407             // what we're doing here works fine, but could be more efficient.
408             // What happens is that we first initialize a ParseContext from the current coded input stream only to parse the length of the message, at which point
409             // we will need to switch back again to CodedInputStream-based parsing (which involves copying and storing the state) to be able to
410             // invoke the legacy MergeFrom(CodedInputStream) method.
411             // For now, this inefficiency is fine, considering this is only a backward-compatibility scenario (and regenerating the code fixes it).
412             ParseContext.Initialize(buffer.AsSpan(), ref state, out ParseContext ctx);
413             try
414             {
415                 ParsingPrimitivesMessages.ReadMessage(ref ctx, builder);
416             }
417             finally
418             {
419                 ctx.CopyStateTo(this);
420             }
421         }
422 
423         /// <summary>
424         /// Reads an embedded group field from the stream.
425         /// </summary>
ReadGroup(IMessage builder)426         public void ReadGroup(IMessage builder)
427         {
428             ParseContext.Initialize(this, out ParseContext ctx);
429             try
430             {
431                 ParsingPrimitivesMessages.ReadGroup(ref ctx, builder);
432             }
433             finally
434             {
435                 ctx.CopyStateTo(this);
436             }
437         }
438 
439         /// <summary>
440         /// Reads a bytes field value from the stream.
441         /// </summary>
ReadBytes()442         public ByteString ReadBytes()
443         {
444             var span = new ReadOnlySpan<byte>(buffer);
445             return ParsingPrimitives.ReadBytes(ref span, ref state);
446         }
447 
448         /// <summary>
449         /// Reads a uint32 field value from the stream.
450         /// </summary>
ReadUInt32()451         public uint ReadUInt32()
452         {
453             return ReadRawVarint32();
454         }
455 
456         /// <summary>
457         /// Reads an enum field value from the stream.
458         /// </summary>
ReadEnum()459         public int ReadEnum()
460         {
461             // Currently just a pass-through, but it's nice to separate it logically from WriteInt32.
462             return (int) ReadRawVarint32();
463         }
464 
465         /// <summary>
466         /// Reads an sfixed32 field value from the stream.
467         /// </summary>
ReadSFixed32()468         public int ReadSFixed32()
469         {
470             return (int) ReadRawLittleEndian32();
471         }
472 
473         /// <summary>
474         /// Reads an sfixed64 field value from the stream.
475         /// </summary>
ReadSFixed64()476         public long ReadSFixed64()
477         {
478             return (long) ReadRawLittleEndian64();
479         }
480 
481         /// <summary>
482         /// Reads an sint32 field value from the stream.
483         /// </summary>
ReadSInt32()484         public int ReadSInt32()
485         {
486             return ParsingPrimitives.DecodeZigZag32(ReadRawVarint32());
487         }
488 
489         /// <summary>
490         /// Reads an sint64 field value from the stream.
491         /// </summary>
ReadSInt64()492         public long ReadSInt64()
493         {
494             return ParsingPrimitives.DecodeZigZag64(ReadRawVarint64());
495         }
496 
497         /// <summary>
498         /// Reads a length for length-delimited data.
499         /// </summary>
500         /// <remarks>
501         /// This is internally just reading a varint, but this method exists
502         /// to make the calling code clearer.
503         /// </remarks>
ReadLength()504         public int ReadLength()
505         {
506             var span = new ReadOnlySpan<byte>(buffer);
507             return ParsingPrimitives.ParseLength(ref span, ref state);
508         }
509 
510         /// <summary>
511         /// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>,
512         /// the tag is consumed and the method returns <c>true</c>; otherwise, the
513         /// stream is left in the original position and the method returns <c>false</c>.
514         /// </summary>
MaybeConsumeTag(uint tag)515         public bool MaybeConsumeTag(uint tag)
516         {
517             var span = new ReadOnlySpan<byte>(buffer);
518             return ParsingPrimitives.MaybeConsumeTag(ref span, ref state, tag);
519         }
520 
521 #endregion
522 
523         #region Underlying reading primitives
524 
525         /// <summary>
526         /// Reads a raw Varint from the stream.  If larger than 32 bits, discard the upper bits.
527         /// This method is optimised for the case where we've got lots of data in the buffer.
528         /// That means we can check the size just once, then just read directly from the buffer
529         /// without constant rechecking of the buffer length.
530         /// </summary>
ReadRawVarint32()531         internal uint ReadRawVarint32()
532         {
533             var span = new ReadOnlySpan<byte>(buffer);
534             return ParsingPrimitives.ParseRawVarint32(ref span, ref state);
535         }
536 
537         /// <summary>
538         /// Reads a varint from the input one byte at a time, so that it does not
539         /// read any bytes after the end of the varint. If you simply wrapped the
540         /// stream in a CodedInputStream and used ReadRawVarint32(Stream)
541         /// then you would probably end up reading past the end of the varint since
542         /// CodedInputStream buffers its input.
543         /// </summary>
544         /// <param name="input"></param>
545         /// <returns></returns>
ReadRawVarint32(Stream input)546         internal static uint ReadRawVarint32(Stream input)
547         {
548             return ParsingPrimitives.ReadRawVarint32(input);
549         }
550 
551         /// <summary>
552         /// Reads a raw varint from the stream.
553         /// </summary>
ReadRawVarint64()554         internal ulong ReadRawVarint64()
555         {
556             var span = new ReadOnlySpan<byte>(buffer);
557             return ParsingPrimitives.ParseRawVarint64(ref span, ref state);
558         }
559 
560         /// <summary>
561         /// Reads a 32-bit little-endian integer from the stream.
562         /// </summary>
ReadRawLittleEndian32()563         internal uint ReadRawLittleEndian32()
564         {
565             var span = new ReadOnlySpan<byte>(buffer);
566             return ParsingPrimitives.ParseRawLittleEndian32(ref span, ref state);
567         }
568 
569         /// <summary>
570         /// Reads a 64-bit little-endian integer from the stream.
571         /// </summary>
ReadRawLittleEndian64()572         internal ulong ReadRawLittleEndian64()
573         {
574             var span = new ReadOnlySpan<byte>(buffer);
575             return ParsingPrimitives.ParseRawLittleEndian64(ref span, ref state);
576         }
577         #endregion
578 
579         #region Internal reading and buffer management
580 
581         /// <summary>
582         /// Sets currentLimit to (current position) + byteLimit. This is called
583         /// when descending into a length-delimited embedded message. The previous
584         /// limit is returned.
585         /// </summary>
586         /// <returns>The old limit.</returns>
PushLimit(int byteLimit)587         internal int PushLimit(int byteLimit)
588         {
589             return SegmentedBufferHelper.PushLimit(ref state, byteLimit);
590         }
591 
592         /// <summary>
593         /// Discards the current limit, returning the previous limit.
594         /// </summary>
PopLimit(int oldLimit)595         internal void PopLimit(int oldLimit)
596         {
597             SegmentedBufferHelper.PopLimit(ref state, oldLimit);
598         }
599 
600         /// <summary>
601         /// Returns whether or not all the data before the limit has been read.
602         /// </summary>
603         /// <returns></returns>
604         internal bool ReachedLimit
605         {
606             get
607             {
608                 return SegmentedBufferHelper.IsReachedLimit(ref state);
609             }
610         }
611 
612         /// <summary>
613         /// Returns true if the stream has reached the end of the input. This is the
614         /// case if either the end of the underlying input source has been reached or
615         /// the stream has reached a limit created using PushLimit.
616         /// </summary>
617         public bool IsAtEnd
618         {
619             get
620             {
621                 var span = new ReadOnlySpan<byte>(buffer);
622                 return SegmentedBufferHelper.IsAtEnd(ref span, ref state);
623             }
624         }
625 
626         /// <summary>
627         /// Reads a fixed size of bytes from the input.
628         /// </summary>
629         /// <exception cref="InvalidProtocolBufferException">
630         /// the end of the stream or the current limit was reached
631         /// </exception>
ReadRawBytes(int size)632         internal byte[] ReadRawBytes(int size)
633         {
634             var span = new ReadOnlySpan<byte>(buffer);
635             return ParsingPrimitives.ReadRawBytes(ref span, ref state, size);
636         }
637 
638         /// <summary>
639         /// Reads a top-level message or a nested message after the limits for this message have been pushed.
640         /// (parser will proceed until the end of the current limit)
641         /// NOTE: this method needs to be public because it's invoked by the generated code - e.g. msg.MergeFrom(CodedInputStream input) method
642         /// </summary>
ReadRawMessage(IMessage message)643         public void ReadRawMessage(IMessage message)
644         {
645             ParseContext.Initialize(this, out ParseContext ctx);
646             try
647             {
648                 ParsingPrimitivesMessages.ReadRawMessage(ref ctx, message);
649             }
650             finally
651             {
652                 ctx.CopyStateTo(this);
653             }
654         }
655 #endregion
656     }
657 }
658