• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QR Code generator library (C)
3  *
4  * Copyright (c) Project Nayuki. (MIT License)
5  * https://www.nayuki.io/page/qr-code-generator-library
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy of
8  * this software and associated documentation files (the "Software"), to deal in
9  * the Software without restriction, including without limitation the rights to
10  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11  * the Software, and to permit persons to whom the Software is furnished to do so,
12  * subject to the following conditions:
13  * - The above copyright notice and this permission notice shall be included in
14  *   all copies or substantial portions of the Software.
15  * - The Software is provided "as is", without warranty of any kind, express or
16  *   implied, including but not limited to the warranties of merchantability,
17  *   fitness for a particular purpose and noninfringement. In no event shall the
18  *   authors or copyright holders be liable for any claim, damages or other
19  *   liability, whether in an action of contract, tort or otherwise, arising from,
20  *   out of or in connection with the Software or the use or other dealings in the
21  *   Software.
22  */
23 
24 #include <limits.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include "qrcodegen.h"
28 
29 #ifndef QRCODEGEN_TEST
30 	#define testable static  // Keep functions private
31 #else
32 	#define testable  // Expose private functions
33 #endif
34 
35 /*---- Forward declarations for private functions ----*/
36 
37 // Regarding all public and private functions defined in this source file:
38 // - They require all pointer/array arguments to be not null unless the array length is zero.
39 // - They only read input scalar/array arguments, write to output pointer/array
40 //   arguments, and return scalar values; they are "pure" functions.
41 // - They don't read mutable global variables or write to any global variables.
42 // - They don't perform I/O, read the clock, print to console, etc.
43 // - They allocate a small and constant amount of stack memory.
44 // - They don't allocate or free any memory on the heap.
45 // - They don't recurse or mutually recurse. All the code
46 //   could be inlined into the top-level public functions.
47 // - They run in at most quadratic time with respect to input arguments.
48 //   Most functions run in linear time, and some in constant time.
49 //   There are no unbounded loops or non-obvious termination conditions.
50 // - They are completely thread-safe if the caller does not give the
51 //   same writable buffer to concurrent calls to these functions.
52 
53 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen);
54 
55 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]);
56 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl);
57 testable int getNumRawDataModules(int ver);
58 
59 testable void reedSolomonComputeDivisor(int degree, uint8_t result[]);
60 testable void reedSolomonComputeRemainder(const uint8_t data[], int dataLen,
61 	const uint8_t generator[], int degree, uint8_t result[]);
62 testable uint8_t reedSolomonMultiply(uint8_t x, uint8_t y);
63 
64 testable void initializeFunctionModules(int version, uint8_t qrcode[]);
65 static void drawLightFunctionModules(uint8_t qrcode[], int version);
66 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]);
67 testable int getAlignmentPatternPositions(int version, uint8_t result[7]);
68 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]);
69 
70 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]);
71 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask);
72 static long getPenaltyScore(const uint8_t qrcode[]);
73 static int finderPenaltyCountPatterns(const int runHistory[7], int qrsize);
74 static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, int runHistory[7], int qrsize);
75 static void finderPenaltyAddHistory(int currentRunLength, int runHistory[7], int qrsize);
76 
77 testable bool getModuleBounded(const uint8_t qrcode[], int x, int y);
78 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isDark);
79 testable void setModuleUnbounded(uint8_t qrcode[], int x, int y, bool isDark);
80 static bool getBit(int x, int i);
81 
82 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars);
83 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version);
84 static int numCharCountBits(enum qrcodegen_Mode mode, int version);
85 
86 /*---- Private tables of constants ----*/
87 
88 // The set of all legal characters in alphanumeric mode, where each character
89 // value maps to the index in the string. For checking text and encoding segments.
90 static const char *ALPHANUMERIC_CHARSET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
abs(int n)91 static  int abs(int n)
92 {
93 	if (n < 0) {
94 		return -n;
95 	}
96 	return n;
97 }
98 
labs(long n)99 static  long labs(long n)
100 {
101 	if (n < 0) {
102 		return -n;
103 	}
104 	return n;
105 }
106 // For generating error correction codes.
107 testable const int8_t ECC_CODEWORDS_PER_BLOCK[4][41] = {
108 	// Version: (note that index 0 is for padding, and is set to an illegal value)
109 	//0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
110 	{-1,  7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // Low
111 	{-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28},  // Medium
112 	{-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // Quartile
113 	{-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30},  // High
114 };
115 
116 #define qrcodegen_REED_SOLOMON_DEGREE_MAX 30  // Based on the table above
117 
118 // For generating error correction codes.
119 testable const int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41] = {
120 	// Version: (note that index 0 is for padding, and is set to an illegal value)
121 	//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40    Error correction level
122 	{-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4,  4,  4,  4,  4,  6,  6,  6,  6,  7,  8,  8,  9,  9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25},  // Low
123 	{-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5,  5,  8,  9,  9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49},  // Medium
124 	{-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8,  8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68},  // Quartile
125 	{-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81},  // High
126 };
127 
128 // For automatic mask pattern selection.
129 static const int PENALTY_N1 =  3;
130 static const int PENALTY_N2 =  3;
131 static const int PENALTY_N3 = 40;
132 static const int PENALTY_N4 = 10;
133 
134 #ifdef INT16_MAX
135 #undef INT16_MAX
136 #endif
137 #ifdef SIZE_MAX
138 #undef SIZE_MAX
139 #endif
140 #define INT16_MAX       0x7fff
141 #define SIZE_MAX        65535
142 /*---- High-level QR Code encoding functions ----*/
143 
144 // Public function - see documentation comment in header file.
qrcodegen_encodeText(const char * text,uint8_t tempBuffer[],uint8_t qrcode[],enum qrcodegen_Ecc ecl,int minVersion,int maxVersion,enum qrcodegen_Mask mask,bool boostEcl)145 bool qrcodegen_encodeText(const char *text, uint8_t tempBuffer[], uint8_t qrcode[],
146 		enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) {
147 
148 	size_t textLen = strlen(text);
149 	if (textLen == 0)
150 		return qrcodegen_encodeSegmentsAdvanced(NULL, 0, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
151 	size_t bufLen = (size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(maxVersion);
152 
153 	struct qrcodegen_Segment seg;
154 	if (qrcodegen_isNumeric(text)) {
155 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_NUMERIC, textLen) > bufLen)
156 			goto fail;
157 		seg = qrcodegen_makeNumeric(text, tempBuffer);
158 	} else if (qrcodegen_isAlphanumeric(text)) {
159 		if (qrcodegen_calcSegmentBufferSize(qrcodegen_Mode_ALPHANUMERIC, textLen) > bufLen)
160 			goto fail;
161 		seg = qrcodegen_makeAlphanumeric(text, tempBuffer);
162 	} else {
163 		if (textLen > bufLen)
164 			goto fail;
165 		size_t i;
166 		for (i = 0; i < textLen; i++)
167 			tempBuffer[i] = (uint8_t)text[i];
168 		seg.mode = qrcodegen_Mode_BYTE;
169 		seg.bitLength = calcSegmentBitLength(seg.mode, textLen);
170 		if (seg.bitLength == -1)
171 			goto fail;
172 		seg.numChars = (int)textLen;
173 		seg.data = tempBuffer;
174 	}
175 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, tempBuffer, qrcode);
176 
177 fail:
178 	qrcode[0] = 0;  // Set size to invalid value for safety
179 	return false;
180 }
181 
182 // Public function - see documentation comment in header file.
qrcodegen_encodeBinary(uint8_t dataAndTemp[],size_t dataLen,uint8_t qrcode[],enum qrcodegen_Ecc ecl,int minVersion,int maxVersion,enum qrcodegen_Mask mask,bool boostEcl)183 bool qrcodegen_encodeBinary(uint8_t dataAndTemp[], size_t dataLen, uint8_t qrcode[],
184 		enum qrcodegen_Ecc ecl, int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl) {
185 
186 	struct qrcodegen_Segment seg;
187 	seg.mode = qrcodegen_Mode_BYTE;
188 	seg.bitLength = calcSegmentBitLength(seg.mode, dataLen);
189 	if (seg.bitLength == -1) {
190 		qrcode[0] = 0;  // Set size to invalid value for safety
191 		return false;
192 	}
193 	seg.numChars = (int)dataLen;
194 	seg.data = dataAndTemp;
195 	return qrcodegen_encodeSegmentsAdvanced(&seg, 1, ecl, minVersion, maxVersion, mask, boostEcl, dataAndTemp, qrcode);
196 }
197 
198 // Appends the given number of low-order bits of the given value to the given byte-based
199 // bit buffer, increasing the bit length. Requires 0 <= numBits <= 16 and val < 2^numBits.
appendBitsToBuffer(unsigned int val,int numBits,uint8_t buffer[],int * bitLen)200 testable void appendBitsToBuffer(unsigned int val, int numBits, uint8_t buffer[], int *bitLen) {
201 	if(!(0 <= numBits && numBits <= 16 && (unsigned long)val >> numBits == 0))
202 		return;
203 	int i;
204 	for (i = numBits - 1; i >= 0; i--, (*bitLen)++)
205 		buffer[*bitLen >> 3] |= ((val >> i) & 1) << (7 - (*bitLen & 7));
206 }
207 
208 /*---- Low-level QR Code encoding functions ----*/
209 
210 // Public function - see documentation comment in header file.
qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[],size_t len,enum qrcodegen_Ecc ecl,uint8_t tempBuffer[],uint8_t qrcode[])211 bool qrcodegen_encodeSegments(const struct qrcodegen_Segment segs[], size_t len,
212 		enum qrcodegen_Ecc ecl, uint8_t tempBuffer[], uint8_t qrcode[]) {
213 	return qrcodegen_encodeSegmentsAdvanced(segs, len, ecl,
214 		qrcodegen_VERSION_MIN, qrcodegen_VERSION_MAX, qrcodegen_Mask_AUTO, true, tempBuffer, qrcode);
215 }
216 
217 // Public function - see documentation comment in header file.
qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[],size_t len,enum qrcodegen_Ecc ecl,int minVersion,int maxVersion,enum qrcodegen_Mask mask,bool boostEcl,uint8_t tempBuffer[],uint8_t qrcode[])218 bool qrcodegen_encodeSegmentsAdvanced(const struct qrcodegen_Segment segs[], size_t len, enum qrcodegen_Ecc ecl,
219 		int minVersion, int maxVersion, enum qrcodegen_Mask mask, bool boostEcl, uint8_t tempBuffer[], uint8_t qrcode[]) {
220 	if (!(segs != NULL || len == 0))
221 		return false;
222 	if (!(qrcodegen_VERSION_MIN <= minVersion && minVersion <= maxVersion && maxVersion <= qrcodegen_VERSION_MAX))
223 		return false;
224 	if (!(0 <= (int)ecl && (int)ecl <= 3 && -1 <= (int)mask && (int)mask <= 7))
225 		return false;
226 	// Find the minimal version number to use
227 	int version, dataUsedBits;
228 	for (version = minVersion; ; version++) {
229 		int dataCapacityBits = getNumDataCodewords(version, ecl) * 8;  // Number of data bits available
230 		dataUsedBits = getTotalBits(segs, len, version);
231 		if (dataUsedBits != -1 && dataUsedBits <= dataCapacityBits)
232 			break;  // This version number is found to be suitable
233 		if (version >= maxVersion) {  // All versions in the range could not fit the given data
234 			qrcode[0] = 0;  // Set size to invalid value for safety
235 			return false;
236 		}
237 	}
238 	if (dataUsedBits == -1) {
239 		return false;
240 	}
241 	// Increase the error correction level while the data still fits in the current version number
242 	int i, j;
243 	for (i = (int)qrcodegen_Ecc_MEDIUM; i <= (int)qrcodegen_Ecc_HIGH; i++) {  // From low to high
244 		if (boostEcl && dataUsedBits <= getNumDataCodewords(version, (enum qrcodegen_Ecc)i) * 8)
245 			ecl = (enum qrcodegen_Ecc)i;
246 	}
247 
248 	// Concatenate all segments to create the data bit string
249 	memset(qrcode, 0, (size_t)qrcodegen_BUFFER_LEN_FOR_VERSION(version) * sizeof(qrcode[0]));
250 	int bitLen = 0;
251 	size_t k;
252 	for (k = 0; k < len; k++) {
253 		const struct qrcodegen_Segment *seg = &segs[k];
254 		appendBitsToBuffer((unsigned int)seg->mode, 4, qrcode, &bitLen);
255 		appendBitsToBuffer((unsigned int)seg->numChars, numCharCountBits(seg->mode, version), qrcode, &bitLen);
256 		for (j = 0; j < seg->bitLength; j++) {
257 			int bit = (seg->data[j >> 3] >> (7 - (j & 7))) & 1;
258 			appendBitsToBuffer((unsigned int)bit, 1, qrcode, &bitLen);
259 		}
260 	}
261 	if (bitLen != dataUsedBits) {
262 		return false;
263 	}
264 	// Add terminator and pad up to a byte if applicable
265 	int dataCapacityBits = getNumDataCodewords(version, ecl) * 8;
266 	if (bitLen > dataCapacityBits) {
267 		return false;
268 	}
269 	int terminatorBits = dataCapacityBits - bitLen;
270 	if (terminatorBits > 4)
271 		terminatorBits = 4;
272 	appendBitsToBuffer(0, terminatorBits, qrcode, &bitLen);
273 	appendBitsToBuffer(0, (8 - bitLen % 8) % 8, qrcode, &bitLen);
274 	if (bitLen % 8 != 0) {
275 		return false;
276 	}
277 	// Pad with alternating bytes until data capacity is reached
278 	uint8_t padByte;
279 	for (padByte = 0xEC; bitLen < dataCapacityBits; padByte ^= 0xEC ^ 0x11) {
280 		appendBitsToBuffer(padByte, 8, qrcode, &bitLen);
281 	}
282 	// Compute ECC, draw modules
283 	addEccAndInterleave(qrcode, version, ecl, tempBuffer);
284 	initializeFunctionModules(version, qrcode);
285 	drawCodewords(tempBuffer, getNumRawDataModules(version) / 8, qrcode);
286 	drawLightFunctionModules(qrcode, version);
287 	initializeFunctionModules(version, tempBuffer);
288 
289 	// Do masking
290 	if (mask == qrcodegen_Mask_AUTO) {  // Automatically choose best mask
291 		long minPenalty = LONG_MAX;
292 		for (i = 0; i < 8; i++) {
293 			enum qrcodegen_Mask msk = (enum qrcodegen_Mask)i;
294 			applyMask(tempBuffer, qrcode, msk);
295 			drawFormatBits(ecl, msk, qrcode);
296 			long penalty = getPenaltyScore(qrcode);
297 			if (penalty < minPenalty) {
298 				mask = msk;
299 				minPenalty = penalty;
300 			}
301 			applyMask(tempBuffer, qrcode, msk);  // Undoes the mask due to XOR
302 		}
303 	}
304 	if (!(0 <= (int)mask && (int)mask <= 7))
305 		return false;
306 	applyMask(tempBuffer, qrcode, mask);  // Apply the final choice of mask
307 	drawFormatBits(ecl, mask, qrcode);  // Overwrite old format bits
308 	return true;
309 }
310 
311 /*---- Error correction code generation functions ----*/
312 
313 // Appends error correction bytes to each block of the given data array, then interleaves
314 // bytes from the blocks and stores them in the result array. data[0 : dataLen] contains
315 // the input data. data[dataLen : rawCodewords] is used as a temporary work area and will
316 // be clobbered by this function. The final answer is stored in result[0 : rawCodewords].
addEccAndInterleave(uint8_t data[],int version,enum qrcodegen_Ecc ecl,uint8_t result[])317 testable void addEccAndInterleave(uint8_t data[], int version, enum qrcodegen_Ecc ecl, uint8_t result[]) {
318 	// Calculate parameter numbers
319 	if (!(0 <= (int)ecl && (int)ecl < 4 && qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX)) {
320 		return;
321 	}
322 	int numBlocks = NUM_ERROR_CORRECTION_BLOCKS[(int)ecl][version];
323 	int blockEccLen = ECC_CODEWORDS_PER_BLOCK  [(int)ecl][version];
324 	int rawCodewords = getNumRawDataModules(version) / 8;
325 	int dataLen = getNumDataCodewords(version, ecl);
326 	int numShortBlocks = numBlocks - rawCodewords % numBlocks;
327 	int shortBlockDataLen = rawCodewords / numBlocks - blockEccLen;
328 
329 	// Split data into blocks, calculate ECC, and interleave
330 	// (not concatenate) the bytes into a single sequence
331 	uint8_t rsdiv[qrcodegen_REED_SOLOMON_DEGREE_MAX];
332 	reedSolomonComputeDivisor(blockEccLen, rsdiv);
333 	const uint8_t *dat = data;
334 	int i, j, k;
335 	for (i = 0; i < numBlocks; i++) {
336 		int datLen = shortBlockDataLen + (i < numShortBlocks ? 0 : 1);
337 		uint8_t *ecc = &data[dataLen];  // Temporary storage
338 		reedSolomonComputeRemainder(dat, datLen, rsdiv, blockEccLen, ecc);
339 		for (j = 0, k = i; j < datLen; j++, k += numBlocks) {  // Copy data
340 			if (j == shortBlockDataLen)
341 				k -= numShortBlocks;
342 			result[k] = dat[j];
343 		}
344 		for (j = 0, k = dataLen + i; j < blockEccLen; j++, k += numBlocks)  // Copy ECC
345 			result[k] = ecc[j];
346 		dat += datLen;
347 	}
348 }
349 
350 // Returns the number of 8-bit codewords that can be used for storing data (not ECC),
351 // for the given version number and error correction level. The result is in the range [9, 2956].
getNumDataCodewords(int version,enum qrcodegen_Ecc ecl)352 testable int getNumDataCodewords(int version, enum qrcodegen_Ecc ecl) {
353 	int v = version, e = (int)ecl;
354 	if (!(0 <= e && e < 4)) {
355 		return 0;
356 	}
357 	return getNumRawDataModules(v) / 8
358 		- ECC_CODEWORDS_PER_BLOCK    [e][v]
359 		* NUM_ERROR_CORRECTION_BLOCKS[e][v];
360 }
361 
362 
363 // Returns the number of data bits that can be stored in a QR Code of the given version number, after
364 // all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
365 // The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
getNumRawDataModules(int ver)366 testable int getNumRawDataModules(int ver) {
367 	if (!(qrcodegen_VERSION_MIN <= ver && ver <= qrcodegen_VERSION_MAX)) {
368 		return 0;
369 	}
370 	int result = (16 * ver + 128) * ver + 64;
371 	if (ver >= 2) {
372 		int numAlign = ver / 7 + 2;
373 		result -= (25 * numAlign - 10) * numAlign - 55;
374 		if (ver >= 7)
375 			result -= 36;
376 	}
377 	if (!(208 <= result && result <= 29648)) {
378 		return 0;
379 	}
380 	return result;
381 }
382 
383 /*---- Reed-Solomon ECC generator functions ----*/
384 
385 // Computes a Reed-Solomon ECC generator polynomial for the given degree, storing in result[0 : degree].
386 // This could be implemented as a lookup table over all possible parameter values, instead of as an algorithm.
reedSolomonComputeDivisor(int degree,uint8_t result[])387 testable void reedSolomonComputeDivisor(int degree, uint8_t result[]) {
388 	if (!(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX)) {
389 		return;
390 	}
391 	// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
392 	// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array {255, 8, 93}.
393 	memset(result, 0, (size_t)degree * sizeof(result[0]));
394 	result[degree - 1] = 1;  // Start off with the monomial x^0
395 	// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
396 	// drop the highest monomial term which is always 1x^degree.
397 	// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
398 	uint8_t root = 1;
399 	int i, j;
400 	for (i = 0; i < degree; i++) {
401 		// Multiply the current product by (x - r^i)
402 		for (j = 0; j < degree; j++) {
403 			result[j] = reedSolomonMultiply(result[j], root);
404 			if (j + 1 < degree)
405 				result[j] ^= result[j + 1];
406 		}
407 		root = reedSolomonMultiply(root, 0x02);
408 	}
409 }
410 
411 // Computes the Reed-Solomon error correction codeword for the given data and divisor polynomials.
412 // The remainder when data[0 : dataLen] is divided by divisor[0 : degree] is stored in result[0 : degree].
413 // All polynomials are in big endian, and the generator has an implicit leading 1 term.
reedSolomonComputeRemainder(const uint8_t data[],int dataLen,const uint8_t generator[],int degree,uint8_t result[])414 testable void reedSolomonComputeRemainder(const uint8_t data[], int dataLen,
415 		const uint8_t generator[], int degree, uint8_t result[]) {
416 	if (!(1 <= degree && degree <= qrcodegen_REED_SOLOMON_DEGREE_MAX)) {
417 		return;
418 	}
419 	memset(result, 0, (size_t)degree * sizeof(result[0]));
420 	int i, j;
421 	for (i = 0; i < dataLen; i++) {  // Polynomial division
422 		uint8_t factor = data[i] ^ result[0];
423 		memmove(&result[0], &result[1], (size_t)(degree - 1) * sizeof(result[0]));
424 		result[degree - 1] = 0;
425 		for (j = 0; j < degree; j++)
426 			result[j] ^= reedSolomonMultiply(generator[j], factor);
427 	}
428 }
429 
430 #undef qrcodegen_REED_SOLOMON_DEGREE_MAX
431 
432 // Returns the product of the two given field elements modulo GF(2^8/0x11D).
433 // All inputs are valid. This could be implemented as a 256*256 lookup table.
reedSolomonMultiply(uint8_t x,uint8_t y)434 testable uint8_t reedSolomonMultiply(uint8_t x, uint8_t y) {
435 	// Russian peasant multiplication
436 	uint8_t z = 0;
437 	int i;
438 	for (i = 7; i >= 0; i--) {
439 		z = (uint8_t)((z << 1) ^ ((z >> 7) * 0x11D));
440 		z ^= ((y >> i) & 1) * x;
441 	}
442 	return z;
443 }
444 
445 /*---- Drawing function modules ----*/
446 
447 // Clears the given QR Code grid with light modules for the given
448 // version's size, then marks every function module as dark.
initializeFunctionModules(int version,uint8_t qrcode[])449 testable void initializeFunctionModules(int version, uint8_t qrcode[]) {
450 	// Initialize QR Code
451 	int qrsize = version * 4 + 17;
452 	memset(qrcode, 0, (size_t)((qrsize * qrsize + 7) / 8 + 1) * sizeof(qrcode[0]));
453 	qrcode[0] = (uint8_t)qrsize;
454 
455 	// Fill horizontal and vertical timing patterns
456 	fillRectangle(6, 0, 1, qrsize, qrcode);
457 	fillRectangle(0, 6, qrsize, 1, qrcode);
458 
459 	// Fill 3 finder patterns (all corners except bottom right) and format bits
460 	fillRectangle(0, 0, 9, 9, qrcode);
461 	fillRectangle(qrsize - 8, 0, 8, 9, qrcode);
462 	fillRectangle(0, qrsize - 8, 9, 8, qrcode);
463 
464 	// Fill numerous alignment patterns
465 	uint8_t alignPatPos[7];
466 	int numAlign = getAlignmentPatternPositions(version, alignPatPos);
467 	int i, j;
468 	for (i = 0; i < numAlign; i++) {
469 		for (j = 0; j < numAlign; j++) {
470 			// Don't draw on the three finder corners
471 			if (!((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0)))
472 				fillRectangle(alignPatPos[i] - 2, alignPatPos[j] - 2, 5, 5, qrcode);
473 		}
474 	}
475 
476 	// Fill version blocks
477 	if (version >= 7) {
478 		fillRectangle(qrsize - 11, 0, 3, 6, qrcode);
479 		fillRectangle(0, qrsize - 11, 6, 3, qrcode);
480 	}
481 }
482 
483 
484 // Draws light function modules and possibly some dark modules onto the given QR Code, without changing
485 // non-function modules. This does not draw the format bits. This requires all function modules to be previously
486 // marked dark (namely by initializeFunctionModules()), because this may skip redrawing dark function modules.
drawLightFunctionModules(uint8_t qrcode[],int version)487 static void drawLightFunctionModules(uint8_t qrcode[], int version) {
488 	// Draw horizontal and vertical timing patterns
489 	int qrsize = qrcodegen_getSize(qrcode);
490 	int i, j, dx, dy;
491 	for (i = 7; i < qrsize - 7; i += 2) {
492 		setModuleBounded(qrcode, 6, i, false);
493 		setModuleBounded(qrcode, i, 6, false);
494 	}
495 
496 	// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
497 	for (dy = -4; dy <= 4; dy++) {
498 		for (dx = -4; dx <= 4; dx++) {
499 			int dist = abs(dx);
500 			if (abs(dy) > dist) {
501 				dist = abs(dy);
502 			}
503 			if (dist == 2 || dist == 4) {
504 				setModuleUnbounded(qrcode, 3 + dx, 3 + dy, false);
505 				setModuleUnbounded(qrcode, qrsize - 4 + dx, 3 + dy, false);
506 				setModuleUnbounded(qrcode, 3 + dx, qrsize - 4 + dy, false);
507 			}
508 		}
509 	}
510 
511 	// Draw numerous alignment patterns
512 	uint8_t alignPatPos[7];
513 	int numAlign = getAlignmentPatternPositions(version, alignPatPos);
514 	for (i = 0; i < numAlign; i++) {
515 		for (j = 0; j < numAlign; j++) {
516 			if ((i == 0 && j == 0) || (i == 0 && j == numAlign - 1) || (i == numAlign - 1 && j == 0))
517 				continue;  // Don't draw on the three finder corners
518 			for (dy = -1; dy <= 1; dy++) {
519 				for (dx = -1; dx <= 1; dx++)
520 					setModuleBounded(qrcode, alignPatPos[i] + dx, alignPatPos[j] + dy, dx == 0 && dy == 0);
521 			}
522 		}
523 	}
524 
525 	// Draw version blocks
526 	if (version >= 7) {
527 		// Calculate error correction code and pack bits
528 		int rem = version;  // version is uint6, in the range [7, 40]
529 		for (i = 0; i < 12; i++)
530 			rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
531 		long bits = (long)version << 12 | rem;  // uint18
532 		if (!(bits >> 18 == 0)) {
533 		    return;
534 		}
535 		// Draw two copies
536 		for (i = 0; i < 6; i++) {
537 			for (j = 0; j < 3; j++) {
538 				int k = qrsize - 11 + j;
539 				setModuleBounded(qrcode, k, i, (bits & 1) != 0);
540 				setModuleBounded(qrcode, i, k, (bits & 1) != 0);
541 				bits >>= 1;
542 			}
543 		}
544 	}
545 }
546 
547 
548 // Draws two copies of the format bits (with its own error correction code) based
549 // on the given mask and error correction level. This always draws all modules of
550 // the format bits, unlike drawLightFunctionModules() which might skip dark modules.
drawFormatBits(enum qrcodegen_Ecc ecl,enum qrcodegen_Mask mask,uint8_t qrcode[])551 static void drawFormatBits(enum qrcodegen_Ecc ecl, enum qrcodegen_Mask mask, uint8_t qrcode[]) {
552 	// Calculate error correction code and pack bits
553 	if (!(0 <= (int)mask && (int)mask <= 7)) {
554 		return;
555 	}
556 	static const int table[] = {1, 0, 3, 2};
557 	int data = table[(int)ecl] << 3 | (int)mask;  // errCorrLvl is uint2, mask is uint3
558 	int rem = data;
559 	int i;
560 	for (i = 0; i < 10; i++)
561 		rem = (rem << 1) ^ ((rem >> 9) * 0x537);
562 	int bits = (data << 10 | rem) ^ 0x5412;  // uint15
563 	if (!(bits >> 15 == 0)) {
564 		return;
565 	}
566 	// Draw first copy
567 	for (i = 0; i <= 5; i++)
568 		setModuleBounded(qrcode, 8, i, getBit(bits, i));
569 	setModuleBounded(qrcode, 8, 7, getBit(bits, 6));
570 	setModuleBounded(qrcode, 8, 8, getBit(bits, 7));
571 	setModuleBounded(qrcode, 7, 8, getBit(bits, 8));
572 	for (i = 9; i < 15; i++)
573 		setModuleBounded(qrcode, 14 - i, 8, getBit(bits, i));
574 
575 	// Draw second copy
576 	int qrsize = qrcodegen_getSize(qrcode);
577 	for (i = 0; i < 8; i++)
578 		setModuleBounded(qrcode, qrsize - 1 - i, 8, getBit(bits, i));
579 	for (i = 8; i < 15; i++)
580 		setModuleBounded(qrcode, 8, qrsize - 15 + i, getBit(bits, i));
581 	setModuleBounded(qrcode, 8, qrsize - 8, true);  // Always dark
582 }
583 
584 // Calculates and stores an ascending list of positions of alignment patterns
585 // for this version number, returning the length of the list (in the range [0,7]).
586 // Each position is in the range [0,177), and are used on both the x and y axes.
587 // This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
getAlignmentPatternPositions(int version,uint8_t result[7])588 testable int getAlignmentPatternPositions(int version, uint8_t result[7]) {
589 	if (version == 1)
590 		return 0;
591 	int numAlign = version / 7 + 2;
592 	int step = (version == 32) ? 26 :
593 		(version*4 + numAlign*2 + 1) / (numAlign*2 - 2) * 2;
594 	int i, pos;
595 	for (i = numAlign - 1, pos = version * 4 + 10; i >= 1; i--, pos -= step)
596 		result[i] = (uint8_t)pos;
597 	result[0] = 6;
598 	return numAlign;
599 }
600 
601 
602 // Sets every module in the range [left : left + width] * [top : top + height] to dark.
fillRectangle(int left,int top,int width,int height,uint8_t qrcode[])603 static void fillRectangle(int left, int top, int width, int height, uint8_t qrcode[]) {
604 	int dy, dx;
605 	for (dy = 0; dy < height; dy++) {
606 		for (dx = 0; dx < width; dx++)
607 			setModuleBounded(qrcode, left + dx, top + dy, true);
608 	}
609 }
610 
611 /*---- Drawing data modules and masking ----*/
612 
613 // Draws the raw codewords (including data and ECC) onto the given QR Code. This requires the initial state of
drawCodewords(const uint8_t data[],int dataLen,uint8_t qrcode[])614 static void drawCodewords(const uint8_t data[], int dataLen, uint8_t qrcode[]) {
615 	int qrsize = qrcodegen_getSize(qrcode);
616 	int i = 0;  // Bit index into the data
617 	// Do the funny zigzag scan
618 	int right, vert, j;
619 	for (right = qrsize - 1; right >= 1; right -= 2) {  // Index of right column in each column pair
620 		if (right == 6)
621 			right = 5;
622 		for (vert = 0; vert < qrsize; vert++) {  // Vertical counter
623 			for (j = 0; j < 2; j++) {
624 				int x = right - j;  // Actual x coordinate
625 				bool upward = ((right + 1) & 2) == 0;
626 				int y = upward ? qrsize - 1 - vert : vert;  // Actual y coordinate
627 				if (!getModuleBounded(qrcode, x, y) && i < dataLen * 8) {
628 					bool dark = getBit(data[i >> 3], 7 - (i & 7));
629 					setModuleBounded(qrcode, x, y, dark);
630 					i++;
631 				}
632 				// If this QR Code has any remainder bits (0 to 7), they were assigned as
633 				// 0/false/light by the constructor and are left unchanged by this method
634 			}
635 		}
636 	}
637 	if (!(i == dataLen * 8)) {
638 		return;
639 	}
640 }
641 
642 
643 // XORs the codeword modules in this QR Code with the given mask pattern
644 // and given pattern of function modules. The codeword bits must be drawn
645 // before masking. Due to the arithmetic of XOR, calling applyMask() with
646 // the same mask value a second time will undo the mask. A final well-formed
647 // QR Code needs exactly one (not zero, two, etc.) mask applied.
applyMask(const uint8_t functionModules[],uint8_t qrcode[],enum qrcodegen_Mask mask)648 static void applyMask(const uint8_t functionModules[], uint8_t qrcode[], enum qrcodegen_Mask mask) {
649 	if (!(0 <= (int)mask && (int)mask <= 7)) {    // Disallows qrcodegen_Mask_AUTO
650 		return;
651 	}
652 	int qrsize = qrcodegen_getSize(qrcode);
653 	int x, y;
654 	for (y = 0; y < qrsize; y++) {
655 		for (x = 0; x < qrsize; x++) {
656 			if (getModuleBounded(functionModules, x, y))
657 				continue;
658 			bool invert;
659 			switch ((int)mask) {
660 				case 0:  invert = (x + y) % 2 == 0;                    break;
661 				case 1:  invert = y % 2 == 0;                          break;
662 				case 2:  invert = x % 3 == 0;                          break;
663 				case 3:  invert = (x + y) % 3 == 0;                    break;
664 				case 4:  invert = (x / 3 + y / 2) % 2 == 0;            break;
665 				case 5:  invert = x * y % 2 + x * y % 3 == 0;          break;
666 				case 6:  invert = (x * y % 2 + x * y % 3) % 2 == 0;    break;
667 				case 7:  invert = ((x + y) % 2 + x * y % 3) % 2 == 0;  break;
668 				default:  return;
669 			}
670 			bool val = getModuleBounded(qrcode, x, y);
671 			setModuleBounded(qrcode, x, y, val ^ invert);
672 		}
673 	}
674 }
675 
676 // Calculates and returns the penalty score based on state of the given QR Code's current modules.
677 // This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
getPenaltyScore(const uint8_t qrcode[])678 static long getPenaltyScore(const uint8_t qrcode[]) {
679 	int qrsize = qrcodegen_getSize(qrcode);
680 	long result = 0;
681 	// Adjacent modules in row having same color, and finder-like patterns
682 	int x, y;
683 	for (y = 0; y < qrsize; y++) {
684 		bool runColor = false;
685 		int runX = 0;
686 		int runHistory[7] = {0};
687 		for (x = 0; x < qrsize; x++) {
688 			if (getModuleBounded(qrcode, x, y) == runColor) {
689 				runX++;
690 				if (runX == 5)
691 					result += PENALTY_N1;
692 				else if (runX > 5)
693 					result++;
694 			} else {
695 				finderPenaltyAddHistory(runX, runHistory, qrsize);
696 				if (!runColor)
697 					result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
698 				runColor = getModuleBounded(qrcode, x, y);
699 				runX = 1;
700 			}
701 		}
702 		result += finderPenaltyTerminateAndCount(runColor, runX, runHistory, qrsize) * PENALTY_N3;
703 	}
704 	// Adjacent modules in column having same color, and finder-like patterns
705 	for (x = 0; x < qrsize; x++) {
706 		bool runColor = false;
707 		int runY = 0;
708 		int runHistory[7] = {0};
709 		for (y = 0; y < qrsize; y++) {
710 			if (getModuleBounded(qrcode, x, y) == runColor) {
711 				runY++;
712 				if (runY == 5)
713 					result += PENALTY_N1;
714 				else if (runY > 5)
715 					result++;
716 			} else {
717 				finderPenaltyAddHistory(runY, runHistory, qrsize);
718 				if (!runColor)
719 					result += finderPenaltyCountPatterns(runHistory, qrsize) * PENALTY_N3;
720 				runColor = getModuleBounded(qrcode, x, y);
721 				runY = 1;
722 			}
723 		}
724 		result += finderPenaltyTerminateAndCount(runColor, runY, runHistory, qrsize) * PENALTY_N3;
725 	}
726 
727 	// 2*2 blocks of modules having same color
728 	for (y = 0; y < qrsize - 1; y++) {
729 		for (x = 0; x < qrsize - 1; x++) {
730 			bool  color = getModuleBounded(qrcode, x, y);
731 			if (  color == getModuleBounded(qrcode, x + 1, y) &&
732 			      color == getModuleBounded(qrcode, x, y + 1) &&
733 			      color == getModuleBounded(qrcode, x + 1, y + 1))
734 				result += PENALTY_N2;
735 		}
736 	}
737 
738 	// Balance of dark and light modules
739 	int dark = 0;
740 	for (y = 0; y < qrsize; y++) {
741 		for (x = 0; x < qrsize; x++) {
742 			if (getModuleBounded(qrcode, x, y))
743 				dark++;
744 		}
745 	}
746 	int total = qrsize * qrsize;  // Note that size is odd, so dark/total != 1/2
747 	// Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)%
748 	int k = (int)((labs(dark * 20L - total * 10L) + total - 1) / total) - 1;
749 	if (0 <= k && k <= 9) {
750 		return 0;
751 	}
752 	result += k * PENALTY_N4;
753 	if (0 <= result && result <= 2568888L) { // Non-tight upper bound based on default values of PENALTY_N1, ..., N4
754 		return 0;
755 	}
756 	return result;
757 }
758 
759 // Can only be called immediately after a light run is added, and
760 // returns either 0, 1, or 2. A helper function for getPenaltyScore().
finderPenaltyCountPatterns(const int runHistory[7],int qrsize)761 static int finderPenaltyCountPatterns(const int runHistory[7], int qrsize) {
762 	int n = runHistory[1];
763 	if (!(n <= qrsize * 3)) {
764 		return -1;
765 	}
766 	(void)qrsize;
767 	bool core = n > 0 && runHistory[2] == n && runHistory[3] == n * 3 && runHistory[4] == n && runHistory[5] == n;
768 	// The maximum QR Code size is 177, hence the dark run length n <= 177.
769 	// Arithmetic is promoted to int, so n*4 will not overflow.
770 	return (core && runHistory[0] >= n * 4 && runHistory[6] >= n ? 1 : 0) +
771 		   (core && runHistory[6] >= n * 4 && runHistory[0] >= n ? 1 : 0);
772 }
773 
774 // Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
finderPenaltyTerminateAndCount(bool currentRunColor,int currentRunLength,int runHistory[7],int qrsize)775 static int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, int runHistory[7], int qrsize) {
776 	if (currentRunColor) {  // Terminate dark run
777 		finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
778 		currentRunLength = 0;
779 	}
780 	currentRunLength += qrsize;  // Add light border to final run
781 	finderPenaltyAddHistory(currentRunLength, runHistory, qrsize);
782 	return finderPenaltyCountPatterns(runHistory, qrsize);
783 }
784 
785 // Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
finderPenaltyAddHistory(int currentRunLength,int runHistory[7],int qrsize)786 static void finderPenaltyAddHistory(int currentRunLength, int runHistory[7], int qrsize) {
787 	if (runHistory[0] == 0)
788 		currentRunLength += qrsize;  // Add light border to initial run
789 	memmove(&runHistory[1], &runHistory[0], 6 * sizeof(runHistory[0]));
790 	runHistory[0] = currentRunLength;
791 }
792 
793 /*---- Basic QR Code information ----*/
794 // Public function - see documentation comment in header file.
qrcodegen_getSize(const uint8_t qrcode[])795 int qrcodegen_getSize(const uint8_t qrcode[]) {
796 	if(!(qrcode != NULL)) {
797 		return 0;
798 	}
799 	int result = qrcode[0];
800 	if(!((qrcodegen_VERSION_MIN * 4 + 17) <= result &&
801 		result <= (qrcodegen_VERSION_MAX * 4 + 17))) {
802 		return 0;
803 	}
804 	return result;
805 }
806 
807 // Public function - see documentation comment in header file.
qrcodegen_getModule(const uint8_t qrcode[],int x,int y)808 bool qrcodegen_getModule(const uint8_t qrcode[], int x, int y) {
809 	if(!(qrcode != NULL)) {
810 		return false;
811 	}
812 	int qrsize = qrcode[0];
813 	return (0 <= x && x < qrsize && 0 <= y && y < qrsize) && getModuleBounded(qrcode, x, y);
814 }
815 
816 
817 // Returns the color of the module at the given coordinates, which must be in bounds.
getModuleBounded(const uint8_t qrcode[],int x,int y)818 testable bool getModuleBounded(const uint8_t qrcode[], int x, int y) {
819 	int qrsize = qrcode[0];
820 	if (!(21 <= qrsize && qrsize <= 177 &&
821 		0 <= x && x < qrsize && 0 <= y && y < qrsize)) {
822 		return false;
823 	}
824 	int index = y * qrsize + x;
825 	return getBit(qrcode[(index >> 3) + 1], index & 7);
826 }
827 
828 
829 // Sets the color of the module at the given coordinates, which must be in bounds.
setModuleBounded(uint8_t qrcode[],int x,int y,bool isDark)830 testable void setModuleBounded(uint8_t qrcode[], int x, int y, bool isDark) {
831 	int qrsize = qrcode[0];
832 	if (!(21 <= qrsize && qrsize <= 177 &&
833 		0 <= x && x < qrsize && 0 <= y && y < qrsize)) {
834 		return;
835 	}
836 	int index = y * qrsize + x;
837 	int bitIndex = index & 7;
838 	int byteIndex = (index >> 3) + 1;
839 	if (isDark) {
840 		qrcode[byteIndex] |= 1 << bitIndex;
841 	}
842 	else
843 		qrcode[byteIndex] &= (1 << bitIndex) ^ 0xFF;
844 }
845 
846 
847 // Sets the color of the module at the given coordinates, doing nothing if out of bounds.
setModuleUnbounded(uint8_t qrcode[],int x,int y,bool isDark)848 testable void setModuleUnbounded(uint8_t qrcode[], int x, int y, bool isDark) {
849 	int qrsize = qrcode[0];
850 	if (0 <= x && x < qrsize && 0 <= y && y < qrsize)
851 		setModuleBounded(qrcode, x, y, isDark);
852 }
853 
854 // Public function - see documentation comment in header file.
qrcodegen_isAlphanumeric(const char * text)855 bool qrcodegen_isAlphanumeric(const char *text) {
856 	if (text == NULL) {
857 		return false;
858 	}
859 	for (; *text != '\0'; text++) {
860 		if (strchr(ALPHANUMERIC_CHARSET, *text) == NULL)
861 			return false;
862 	}
863 	return true;
864 }
865 
866 // Returns true iff the i'th bit of x is set to 1. Requires x >= 0 and 0 <= i <= 14.
getBit(int x,int i)867 static bool getBit(int x, int i) {
868 	return ((x >> i) & 1) != 0;
869 }
870 
871 /*---- Segment handling ----*/
872 
873 // Public function - see documentation comment in header file.
qrcodegen_isNumeric(const char * text)874 bool qrcodegen_isNumeric(const char *text) {
875 	if (text == NULL) {
876 		return false;
877 	}
878 	for (; *text != '\0'; text++) {
879 		if (*text < '0' || *text > '9')
880 			return false;
881 	}
882 	return true;
883 }
884 
885 // Public function - see documentation comment in header file.
qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode,size_t numChars)886 size_t qrcodegen_calcSegmentBufferSize(enum qrcodegen_Mode mode, size_t numChars) {
887 	int temp = calcSegmentBitLength(mode, numChars);
888 	if (temp == -1) {
889 		return SIZE_MAX;
890 	}
891 	if (!(0 <= temp && temp <= INT16_MAX)) {
892 		return SIZE_MAX;
893 	}
894 	return ((size_t)temp + 7) / 8;
895 }
896 
897 // Returns the number of data bits needed to represent a segment
898 // containing the given number of characters using the given mode. Notes:
899 // - Returns -1 on failure, i.e. numChars > INT16_MAX or
900 //   the number of needed bits exceeds INT16_MAX (i.e. 32767).
901 // - Otherwise, all valid results are in the range [0, INT16_MAX].
902 // - For byte mode, numChars measures the number of bytes, not Unicode code points.
903 // - For ECI mode, numChars must be 0, and the worst-case number of bits is returned.
904 //   An actual ECI segment can have shorter data. For non-ECI modes, the result is exact.
calcSegmentBitLength(enum qrcodegen_Mode mode,size_t numChars)905 testable int calcSegmentBitLength(enum qrcodegen_Mode mode, size_t numChars) {
906 	// All calculations are designed to avoid overflow on all platforms
907 	if (numChars > (unsigned int)INT16_MAX)
908 		return -1;
909 	long result = (long)numChars;
910 	if (mode == qrcodegen_Mode_NUMERIC)
911 		result = (result * 10 + 2) / 3;  // ceil(10/3 * n)
912 	else if (mode == qrcodegen_Mode_ALPHANUMERIC)
913 		result = (result * 11 + 1) / 2;  // ceil(11/2 * n)
914 	else if (mode == qrcodegen_Mode_BYTE)
915 		result *= 8;
916 	else if (mode == qrcodegen_Mode_KANJI)
917 		result *= 13;
918 	else if (mode == qrcodegen_Mode_ECI && numChars == 0)
919 		result = 3 * 8;
920 	else {  // Invalid argument
921 		return -1;
922 	}
923 	if (result < 0) {
924 		return -1;
925 	}
926 	if (result > INT16_MAX)
927 		return -1;
928 	return (int)result;
929 }
930 
931 // Public function - see documentation comment in header file.
qrcodegen_makeBytes(const uint8_t data[],size_t len,uint8_t buf[])932 struct qrcodegen_Segment qrcodegen_makeBytes(const uint8_t data[], size_t len, uint8_t buf[]) {
933 	struct qrcodegen_Segment result;
934 	result.mode = qrcodegen_Mode_BYTE;
935 	result.bitLength = calcSegmentBitLength(result.mode, len);
936 	result.numChars = (int)len;
937 	if (len > 0)
938 		memcpy(buf, data, len * sizeof(buf[0]));
939 	result.data = buf;
940 	return result;
941 }
942 
943 // Public function - see documentation comment in header file.
qrcodegen_makeNumeric(const char * digits,uint8_t buf[])944 struct qrcodegen_Segment qrcodegen_makeNumeric(const char *digits, uint8_t buf[]) {
945 	struct qrcodegen_Segment result;
946 	size_t len = strlen(digits);
947 	result.mode = qrcodegen_Mode_NUMERIC;
948 	int bitLen = calcSegmentBitLength(result.mode, len);
949 	result.numChars = (int)len;
950 	if (bitLen > 0)
951 		memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0]));
952 	result.bitLength = 0;
953 
954 	unsigned int accumData = 0;
955 	int accumCount = 0;
956 	for (; *digits != '\0'; digits++) {
957 		char c = *digits;
958 		accumData = accumData * 10 + (unsigned int)(c - '0');
959 		accumCount++;
960 		if (accumCount == 3) {
961 			appendBitsToBuffer(accumData, 10, buf, &result.bitLength);
962 			accumData = 0;
963 			accumCount = 0;
964 		}
965 	}
966 	if (accumCount > 0)  // 1 or 2 digits remaining
967 		appendBitsToBuffer(accumData, accumCount * 3 + 1, buf, &result.bitLength);
968 	result.data = buf;
969 	return result;
970 }
971 
972 // Public function - see documentation comment in header file.
qrcodegen_makeAlphanumeric(const char * text,uint8_t buf[])973 struct qrcodegen_Segment qrcodegen_makeAlphanumeric(const char *text, uint8_t buf[]) {
974 	struct qrcodegen_Segment result;
975 	size_t len = strlen(text);
976 	result.mode = qrcodegen_Mode_ALPHANUMERIC;
977 	int bitLen = calcSegmentBitLength(result.mode, len);
978 	result.numChars = (int)len;
979 	if (bitLen > 0)
980 		memset(buf, 0, ((size_t)bitLen + 7) / 8 * sizeof(buf[0]));
981 	result.bitLength = 0;
982 
983 	unsigned int accumData = 0;
984 	int accumCount = 0;
985 	for (; *text != '\0'; text++) {
986 		const char *temp = (char *)strchr(ALPHANUMERIC_CHARSET, *text);
987 		accumData = accumData * 45 + (unsigned int)(temp - ALPHANUMERIC_CHARSET);
988 		accumCount++;
989 		if (accumCount == 2) {
990 			appendBitsToBuffer(accumData, 11, buf, &result.bitLength);
991 			accumData = 0;
992 			accumCount = 0;
993 		}
994 	}
995 	if (accumCount > 0)  // 1 character remaining
996 		appendBitsToBuffer(accumData, 6, buf, &result.bitLength);
997 	result.data = buf;
998 	return result;
999 }
1000 
1001 // Public function - see documentation comment in header file.
qrcodegen_makeEci(long assignVal,uint8_t buf[])1002 struct qrcodegen_Segment qrcodegen_makeEci(long assignVal, uint8_t buf[]) {
1003 	struct qrcodegen_Segment result;
1004 	result.mode = qrcodegen_Mode_ECI;
1005 	result.numChars = 0;
1006 	result.bitLength = 0;
1007 	if (assignVal < 0)
1008 		return result;
1009 	else if (assignVal < (1 << 7)) {
1010 		memset(buf, 0, 1 * sizeof(buf[0]));
1011 		appendBitsToBuffer((unsigned int)assignVal, 8, buf, &result.bitLength);
1012 	} else if (assignVal < (1 << 14)) {
1013 		memset(buf, 0, 2 * sizeof(buf[0]));
1014 		appendBitsToBuffer(2, 2, buf, &result.bitLength);
1015 		appendBitsToBuffer((unsigned int)assignVal, 14, buf, &result.bitLength);
1016 	} else if (assignVal < 1000000L) {
1017 		memset(buf, 0, 3 * sizeof(buf[0]));
1018 		appendBitsToBuffer(6, 3, buf, &result.bitLength);
1019 		appendBitsToBuffer((unsigned int)(assignVal >> 10), 11, buf, &result.bitLength);
1020 		appendBitsToBuffer((unsigned int)(assignVal & 0x3FF), 10, buf, &result.bitLength);
1021 	} else
1022 		return result;
1023 	result.data = buf;
1024 	return result;
1025 }
1026 
1027 // Calculates the number of bits needed to encode the given segments at the given version.
1028 // Returns a non-negative number if successful. Otherwise returns -1 if a segment has too
1029 // many characters to fit its length field, or the total bits exceeds INT16_MAX.
getTotalBits(const struct qrcodegen_Segment segs[],size_t len,int version)1030 testable int getTotalBits(const struct qrcodegen_Segment segs[], size_t len, int version) {
1031 	if (!(segs != NULL || len == 0)) {
1032 		return -1;
1033 	}
1034 	long result = 0;
1035 	size_t i;
1036 	for (i = 0; i < len; i++) {
1037 		int numChars  = segs[i].numChars;
1038 		int bitLength = segs[i].bitLength;
1039 		if (!(0 <= numChars  && numChars  <= INT16_MAX)) {
1040 			return -1;
1041 		}
1042 		if (!(0 <= bitLength && bitLength <= INT16_MAX)) {
1043 			return -1;
1044 		}
1045 		int ccbits = numCharCountBits(segs[i].mode, version);
1046 		if (!(0 <= ccbits && ccbits <= 16)) {
1047 			return -1;
1048 		}
1049 		if (numChars >= (1L << ccbits))
1050 			return -1;  // The segment's length doesn't fit the field's bit width
1051 		result += 4L + ccbits + bitLength;
1052 		if (result > INT16_MAX)
1053 			return -1;  // The sum might overflow an int type
1054 	}
1055 	if (!(0 <= result && result <= INT16_MAX)) {
1056 		return -1;
1057 	}
1058 	return (int)result;
1059 }
1060 
1061 // Returns the bit width of the character count field for a segment in the given mode
1062 // in a QR Code at the given version number. The result is in the range [0, 16].
numCharCountBits(enum qrcodegen_Mode mode,int version)1063 static int numCharCountBits(enum qrcodegen_Mode mode, int version) {
1064 	if (!(qrcodegen_VERSION_MIN <= version && version <= qrcodegen_VERSION_MAX)) {
1065 		return -1;
1066 	}
1067 	int i = (version + 7) / 17;
1068 	switch (mode) {
1069 		case qrcodegen_Mode_NUMERIC     : { static const int temp[] = {10, 12, 14}; return temp[i]; }
1070 		case qrcodegen_Mode_ALPHANUMERIC: { static const int temp[] = { 9, 11, 13}; return temp[i]; }
1071 		case qrcodegen_Mode_BYTE        : { static const int temp[] = { 8, 16, 16}; return temp[i]; }
1072 		case qrcodegen_Mode_KANJI       : { static const int temp[] = { 8, 10, 12}; return temp[i]; }
1073 		case qrcodegen_Mode_ECI         : return 0;
1074 		default:  return(false);  return -1;  // Dummy value
1075 	}
1076 }
1077