• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Implementation derived from `weak` in Rust's
2 // library/std/src/sys/unix/weak.rs at revision
3 // fd0cb0cdc21dd9c06025277d772108f8d42cb25f.
4 
5 #![allow(unsafe_code)]
6 
7 //! Support for "weak linkage" to symbols on Unix
8 //!
9 //! Some I/O operations we do in libstd require newer versions of OSes but we
10 //! need to maintain binary compatibility with older releases for now. In order
11 //! to use the new functionality when available we use this module for
12 //! detection.
13 //!
14 //! One option to use here is weak linkage, but that is unfortunately only
15 //! really workable on Linux. Hence, use dlsym to get the symbol value at
16 //! runtime. This is also done for compatibility with older versions of glibc,
17 //! and to avoid creating dependencies on `GLIBC_PRIVATE` symbols. It assumes
18 //! that we've been dynamically linked to the library the symbol comes from,
19 //! but that is currently always the case for things like libpthread/libc.
20 //!
21 //! A long time ago this used weak linkage for the `__pthread_get_minstack`
22 //! symbol, but that caused Debian to detect an unnecessarily strict versioned
23 //! dependency on libc6 (#23628).
24 
25 // There are a variety of `#[cfg]`s controlling which targets are involved in
26 // each instance of `weak!` and `syscall!`. Rather than trying to unify all of
27 // that, we'll just allow that some unix targets don't use this module at all.
28 #![allow(dead_code, unused_macros)]
29 #![allow(clippy::doc_markdown)]
30 
31 use crate::ffi::CStr;
32 use core::ffi::c_void;
33 use core::ptr::null_mut;
34 use core::sync::atomic::{self, AtomicPtr, Ordering};
35 use core::{marker, mem};
36 
37 const NULL: *mut c_void = null_mut();
38 const INVALID: *mut c_void = 1 as *mut c_void;
39 
40 macro_rules! weak {
41     ($vis:vis fn $name:ident($($t:ty),*) -> $ret:ty) => (
42         #[allow(non_upper_case_globals)]
43         $vis static $name: $crate::backend::weak::Weak<unsafe extern fn($($t),*) -> $ret> =
44             $crate::backend::weak::Weak::new(concat!(stringify!($name), '\0'));
45     )
46 }
47 
48 pub(crate) struct Weak<F> {
49     name: &'static str,
50     addr: AtomicPtr<c_void>,
51     _marker: marker::PhantomData<F>,
52 }
53 
54 impl<F> Weak<F> {
new(name: &'static str) -> Self55     pub(crate) const fn new(name: &'static str) -> Self {
56         Self {
57             name,
58             addr: AtomicPtr::new(INVALID),
59             _marker: marker::PhantomData,
60         }
61     }
62 
get(&self) -> Option<F>63     pub(crate) fn get(&self) -> Option<F> {
64         assert_eq!(mem::size_of::<F>(), mem::size_of::<usize>());
65         unsafe {
66             // Relaxed is fine here because we fence before reading through the
67             // pointer (see the comment below).
68             match self.addr.load(Ordering::Relaxed) {
69                 INVALID => self.initialize(),
70                 NULL => None,
71                 addr => {
72                     let func = mem::transmute_copy::<*mut c_void, F>(&addr);
73                     // The caller is presumably going to read through this value
74                     // (by calling the function we've dlsymed). This means we'd
75                     // need to have loaded it with at least C11's consume
76                     // ordering in order to be guaranteed that the data we read
77                     // from the pointer isn't from before the pointer was
78                     // stored. Rust has no equivalent to memory_order_consume,
79                     // so we use an acquire fence (sorry, ARM).
80                     //
81                     // Now, in practice this likely isn't needed even on CPUs
82                     // where relaxed and consume mean different things. The
83                     // symbols we're loading are probably present (or not) at
84                     // init, and even if they aren't the runtime dynamic loader
85                     // is extremely likely have sufficient barriers internally
86                     // (possibly implicitly, for example the ones provided by
87                     // invoking `mprotect`).
88                     //
89                     // That said, none of that's *guaranteed*, and so we fence.
90                     atomic::fence(Ordering::Acquire);
91                     Some(func)
92                 }
93             }
94         }
95     }
96 
97     // Cold because it should only happen during first-time initialization.
98     #[cold]
initialize(&self) -> Option<F>99     unsafe fn initialize(&self) -> Option<F> {
100         let val = fetch(self.name);
101         // This synchronizes with the acquire fence in `get`.
102         self.addr.store(val, Ordering::Release);
103 
104         match val {
105             NULL => None,
106             addr => Some(mem::transmute_copy::<*mut c_void, F>(&addr)),
107         }
108     }
109 }
110 
fetch(name: &str) -> *mut c_void111 unsafe fn fetch(name: &str) -> *mut c_void {
112     let name = match CStr::from_bytes_with_nul(name.as_bytes()) {
113         Ok(c_str) => c_str,
114         Err(..) => return null_mut(),
115     };
116     libc::dlsym(libc::RTLD_DEFAULT, name.as_ptr().cast())
117 }
118 
119 #[cfg(not(any(target_os = "android", target_os = "linux")))]
120 macro_rules! syscall {
121     (fn $name:ident($($arg_name:ident: $t:ty),*) via $_sys_name:ident -> $ret:ty) => (
122         unsafe fn $name($($arg_name: $t),*) -> $ret {
123             weak! { fn $name($($t),*) -> $ret }
124 
125             if let Some(fun) = $name.get() {
126                 fun($($arg_name),*)
127             } else {
128                 libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
129                 -1
130             }
131         }
132     )
133 }
134 
135 #[cfg(any(target_os = "android", target_os = "linux"))]
136 macro_rules! syscall {
137     (fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
138         unsafe fn $name($($arg_name:$t),*) -> $ret {
139             // This looks like a hack, but concat_idents only accepts idents
140             // (not paths).
141             use libc::*;
142 
143             trait AsSyscallArg {
144                 type SyscallArgType;
145                 fn into_syscall_arg(self) -> Self::SyscallArgType;
146             }
147 
148             // Pass pointer types as pointers, to preserve provenance.
149             impl<T> AsSyscallArg for *mut T {
150                 type SyscallArgType = *mut T;
151                 fn into_syscall_arg(self) -> Self::SyscallArgType { self }
152             }
153             impl<T> AsSyscallArg for *const T {
154                 type SyscallArgType = *const T;
155                 fn into_syscall_arg(self) -> Self::SyscallArgType { self }
156             }
157 
158             // Pass `BorrowedFd` values as the integer value.
159             impl AsSyscallArg for $crate::fd::BorrowedFd<'_> {
160                 type SyscallArgType = c::c_long;
161                 fn into_syscall_arg(self) -> Self::SyscallArgType {
162                     $crate::fd::AsRawFd::as_raw_fd(&self) as _
163                 }
164             }
165 
166             // Coerce integer values into `c_long`.
167             impl AsSyscallArg for i32 {
168                 type SyscallArgType = c::c_long;
169                 fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ }
170             }
171             impl AsSyscallArg for u32 {
172                 type SyscallArgType = c::c_long;
173                 fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ }
174             }
175             impl AsSyscallArg for usize {
176                 type SyscallArgType = c::c_long;
177                 fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ }
178             }
179 
180             // `concat_idents is unstable, so we take an extra `sys_name`
181             // parameter and have our users do the concat for us for now.
182             /*
183             syscall(
184                 concat_idents!(SYS_, $name),
185                 $($arg_name.into_syscall_arg()),*
186             ) as $ret
187             */
188 
189             syscall($sys_name, $($arg_name.into_syscall_arg()),*) as $ret
190         }
191     )
192 }
193 
194 macro_rules! weakcall {
195     ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => (
196         $vis unsafe fn $name($($arg_name: $t),*) -> $ret {
197             weak! { fn $name($($t),*) -> $ret }
198 
199             // Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
200             // interposition, but if it's not found just fail.
201             if let Some(fun) = $name.get() {
202                 fun($($arg_name),*)
203             } else {
204                 libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
205                 -1
206             }
207         }
208     )
209 }
210 
211 /// A combination of `weakcall` and `syscall`. Use the libc function if it's
212 /// available, and fall back to `libc::syscall` otherwise.
213 macro_rules! weak_or_syscall {
214     ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
215         $vis unsafe fn $name($($arg_name: $t),*) -> $ret {
216             weak! { fn $name($($t),*) -> $ret }
217 
218             // Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
219             // interposition, but if it's not found just fail.
220             if let Some(fun) = $name.get() {
221                 fun($($arg_name),*)
222             } else {
223                 syscall! { fn $name($($arg_name: $t),*) via $sys_name -> $ret }
224                 $name($($arg_name),*)
225             }
226         }
227     )
228 }
229