1 //! Code to extract the universally quantified regions declared on a
2 //! function and the relationships between them. For example:
3 //!
4 //! ```
5 //! fn foo<'a, 'b, 'c: 'b>() { }
6 //! ```
7 //!
8 //! here we would return a map assigning each of `{'a, 'b, 'c}`
9 //! to an index, as well as the `FreeRegionMap` which can compute
10 //! relationships between them.
11 //!
12 //! The code in this file doesn't *do anything* with those results; it
13 //! just returns them for other code to use.
14
15 use either::Either;
16 use rustc_data_structures::fx::FxHashMap;
17 use rustc_errors::Diagnostic;
18 use rustc_hir as hir;
19 use rustc_hir::def_id::{DefId, LocalDefId};
20 use rustc_hir::lang_items::LangItem;
21 use rustc_hir::BodyOwnerKind;
22 use rustc_index::IndexVec;
23 use rustc_infer::infer::NllRegionVariableOrigin;
24 use rustc_middle::ty::fold::TypeFoldable;
25 use rustc_middle::ty::{self, InlineConstSubsts, InlineConstSubstsParts, RegionVid, Ty, TyCtxt};
26 use rustc_middle::ty::{InternalSubsts, SubstsRef};
27 use rustc_span::symbol::{kw, sym};
28 use rustc_span::Symbol;
29 use std::iter;
30
31 use crate::renumber::{BoundRegionInfo, RegionCtxt};
32 use crate::BorrowckInferCtxt;
33
34 #[derive(Debug)]
35 pub struct UniversalRegions<'tcx> {
36 indices: UniversalRegionIndices<'tcx>,
37
38 /// The vid assigned to `'static`
39 pub fr_static: RegionVid,
40
41 /// A special region vid created to represent the current MIR fn
42 /// body. It will outlive the entire CFG but it will not outlive
43 /// any other universal regions.
44 pub fr_fn_body: RegionVid,
45
46 /// We create region variables such that they are ordered by their
47 /// `RegionClassification`. The first block are globals, then
48 /// externals, then locals. So, things from:
49 /// - `FIRST_GLOBAL_INDEX..first_extern_index` are global,
50 /// - `first_extern_index..first_local_index` are external,
51 /// - `first_local_index..num_universals` are local.
52 first_extern_index: usize,
53
54 /// See `first_extern_index`.
55 first_local_index: usize,
56
57 /// The total number of universal region variables instantiated.
58 num_universals: usize,
59
60 /// The "defining" type for this function, with all universal
61 /// regions instantiated. For a closure or generator, this is the
62 /// closure type, but for a top-level function it's the `FnDef`.
63 pub defining_ty: DefiningTy<'tcx>,
64
65 /// The return type of this function, with all regions replaced by
66 /// their universal `RegionVid` equivalents.
67 ///
68 /// N.B., associated types in this type have not been normalized,
69 /// as the name suggests. =)
70 pub unnormalized_output_ty: Ty<'tcx>,
71
72 /// The fully liberated input types of this function, with all
73 /// regions replaced by their universal `RegionVid` equivalents.
74 ///
75 /// N.B., associated types in these types have not been normalized,
76 /// as the name suggests. =)
77 pub unnormalized_input_tys: &'tcx [Ty<'tcx>],
78
79 pub yield_ty: Option<Ty<'tcx>>,
80 }
81
82 /// The "defining type" for this MIR. The key feature of the "defining
83 /// type" is that it contains the information needed to derive all the
84 /// universal regions that are in scope as well as the types of the
85 /// inputs/output from the MIR. In general, early-bound universal
86 /// regions appear free in the defining type and late-bound regions
87 /// appear bound in the signature.
88 #[derive(Copy, Clone, Debug)]
89 pub enum DefiningTy<'tcx> {
90 /// The MIR is a closure. The signature is found via
91 /// `ClosureSubsts::closure_sig_ty`.
92 Closure(DefId, SubstsRef<'tcx>),
93
94 /// The MIR is a generator. The signature is that generators take
95 /// no parameters and return the result of
96 /// `ClosureSubsts::generator_return_ty`.
97 Generator(DefId, SubstsRef<'tcx>, hir::Movability),
98
99 /// The MIR is a fn item with the given `DefId` and substs. The signature
100 /// of the function can be bound then with the `fn_sig` query.
101 FnDef(DefId, SubstsRef<'tcx>),
102
103 /// The MIR represents some form of constant. The signature then
104 /// is that it has no inputs and a single return value, which is
105 /// the value of the constant.
106 Const(DefId, SubstsRef<'tcx>),
107
108 /// The MIR represents an inline const. The signature has no inputs and a
109 /// single return value found via `InlineConstSubsts::ty`.
110 InlineConst(DefId, SubstsRef<'tcx>),
111 }
112
113 impl<'tcx> DefiningTy<'tcx> {
114 /// Returns a list of all the upvar types for this MIR. If this is
115 /// not a closure or generator, there are no upvars, and hence it
116 /// will be an empty list. The order of types in this list will
117 /// match up with the upvar order in the HIR, typesystem, and MIR.
upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx118 pub fn upvar_tys(self) -> impl Iterator<Item = Ty<'tcx>> + 'tcx {
119 match self {
120 DefiningTy::Closure(_, substs) => Either::Left(substs.as_closure().upvar_tys()),
121 DefiningTy::Generator(_, substs, _) => {
122 Either::Right(Either::Left(substs.as_generator().upvar_tys()))
123 }
124 DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => {
125 Either::Right(Either::Right(iter::empty()))
126 }
127 }
128 }
129
130 /// Number of implicit inputs -- notably the "environment"
131 /// parameter for closures -- that appear in MIR but not in the
132 /// user's code.
implicit_inputs(self) -> usize133 pub fn implicit_inputs(self) -> usize {
134 match self {
135 DefiningTy::Closure(..) | DefiningTy::Generator(..) => 1,
136 DefiningTy::FnDef(..) | DefiningTy::Const(..) | DefiningTy::InlineConst(..) => 0,
137 }
138 }
139
is_fn_def(&self) -> bool140 pub fn is_fn_def(&self) -> bool {
141 matches!(*self, DefiningTy::FnDef(..))
142 }
143
is_const(&self) -> bool144 pub fn is_const(&self) -> bool {
145 matches!(*self, DefiningTy::Const(..) | DefiningTy::InlineConst(..))
146 }
147
def_id(&self) -> DefId148 pub fn def_id(&self) -> DefId {
149 match *self {
150 DefiningTy::Closure(def_id, ..)
151 | DefiningTy::Generator(def_id, ..)
152 | DefiningTy::FnDef(def_id, ..)
153 | DefiningTy::Const(def_id, ..)
154 | DefiningTy::InlineConst(def_id, ..) => def_id,
155 }
156 }
157 }
158
159 #[derive(Debug)]
160 struct UniversalRegionIndices<'tcx> {
161 /// For those regions that may appear in the parameter environment
162 /// ('static and early-bound regions), we maintain a map from the
163 /// `ty::Region` to the internal `RegionVid` we are using. This is
164 /// used because trait matching and type-checking will feed us
165 /// region constraints that reference those regions and we need to
166 /// be able to map them to our internal `RegionVid`. This is
167 /// basically equivalent to an `InternalSubsts`, except that it also
168 /// contains an entry for `ReStatic` -- it might be nice to just
169 /// use a substs, and then handle `ReStatic` another way.
170 indices: FxHashMap<ty::Region<'tcx>, RegionVid>,
171
172 /// The vid assigned to `'static`. Used only for diagnostics.
173 pub fr_static: RegionVid,
174 }
175
176 #[derive(Debug, PartialEq)]
177 pub enum RegionClassification {
178 /// A **global** region is one that can be named from
179 /// anywhere. There is only one, `'static`.
180 Global,
181
182 /// An **external** region is only relevant for
183 /// closures, generators, and inline consts. In that
184 /// case, it refers to regions that are free in the type
185 /// -- basically, something bound in the surrounding context.
186 ///
187 /// Consider this example:
188 ///
189 /// ```ignore (pseudo-rust)
190 /// fn foo<'a, 'b>(a: &'a u32, b: &'b u32, c: &'static u32) {
191 /// let closure = for<'x> |x: &'x u32| { .. };
192 /// // ^^^^^^^ pretend this were legal syntax
193 /// // for declaring a late-bound region in
194 /// // a closure signature
195 /// }
196 /// ```
197 ///
198 /// Here, the lifetimes `'a` and `'b` would be **external** to the
199 /// closure.
200 ///
201 /// If we are not analyzing a closure/generator/inline-const,
202 /// there are no external lifetimes.
203 External,
204
205 /// A **local** lifetime is one about which we know the full set
206 /// of relevant constraints (that is, relationships to other named
207 /// regions). For a closure, this includes any region bound in
208 /// the closure's signature. For a fn item, this includes all
209 /// regions other than global ones.
210 ///
211 /// Continuing with the example from `External`, if we were
212 /// analyzing the closure, then `'x` would be local (and `'a` and
213 /// `'b` are external). If we are analyzing the function item
214 /// `foo`, then `'a` and `'b` are local (and `'x` is not in
215 /// scope).
216 Local,
217 }
218
219 const FIRST_GLOBAL_INDEX: usize = 0;
220
221 impl<'tcx> UniversalRegions<'tcx> {
222 /// Creates a new and fully initialized `UniversalRegions` that
223 /// contains indices for all the free regions found in the given
224 /// MIR -- that is, all the regions that appear in the function's
225 /// signature. This will also compute the relationships that are
226 /// known between those regions.
new( infcx: &BorrowckInferCtxt<'_, 'tcx>, mir_def: LocalDefId, param_env: ty::ParamEnv<'tcx>, ) -> Self227 pub fn new(
228 infcx: &BorrowckInferCtxt<'_, 'tcx>,
229 mir_def: LocalDefId,
230 param_env: ty::ParamEnv<'tcx>,
231 ) -> Self {
232 UniversalRegionsBuilder { infcx, mir_def, param_env }.build()
233 }
234
235 /// Given a reference to a closure type, extracts all the values
236 /// from its free regions and returns a vector with them. This is
237 /// used when the closure's creator checks that the
238 /// `ClosureRegionRequirements` are met. The requirements from
239 /// `ClosureRegionRequirements` are expressed in terms of
240 /// `RegionVid` entries that map into the returned vector `V`: so
241 /// if the `ClosureRegionRequirements` contains something like
242 /// `'1: '2`, then the caller would impose the constraint that
243 /// `V[1]: V[2]`.
closure_mapping( tcx: TyCtxt<'tcx>, closure_substs: SubstsRef<'tcx>, expected_num_vars: usize, closure_def_id: LocalDefId, ) -> IndexVec<RegionVid, ty::Region<'tcx>>244 pub fn closure_mapping(
245 tcx: TyCtxt<'tcx>,
246 closure_substs: SubstsRef<'tcx>,
247 expected_num_vars: usize,
248 closure_def_id: LocalDefId,
249 ) -> IndexVec<RegionVid, ty::Region<'tcx>> {
250 let mut region_mapping = IndexVec::with_capacity(expected_num_vars);
251 region_mapping.push(tcx.lifetimes.re_static);
252 tcx.for_each_free_region(&closure_substs, |fr| {
253 region_mapping.push(fr);
254 });
255
256 for_each_late_bound_region_in_recursive_scope(tcx, tcx.local_parent(closure_def_id), |r| {
257 region_mapping.push(r);
258 });
259
260 assert_eq!(
261 region_mapping.len(),
262 expected_num_vars,
263 "index vec had unexpected number of variables"
264 );
265
266 region_mapping
267 }
268
269 /// Returns `true` if `r` is a member of this set of universal regions.
is_universal_region(&self, r: RegionVid) -> bool270 pub fn is_universal_region(&self, r: RegionVid) -> bool {
271 (FIRST_GLOBAL_INDEX..self.num_universals).contains(&r.index())
272 }
273
274 /// Classifies `r` as a universal region, returning `None` if this
275 /// is not a member of this set of universal regions.
region_classification(&self, r: RegionVid) -> Option<RegionClassification>276 pub fn region_classification(&self, r: RegionVid) -> Option<RegionClassification> {
277 let index = r.index();
278 if (FIRST_GLOBAL_INDEX..self.first_extern_index).contains(&index) {
279 Some(RegionClassification::Global)
280 } else if (self.first_extern_index..self.first_local_index).contains(&index) {
281 Some(RegionClassification::External)
282 } else if (self.first_local_index..self.num_universals).contains(&index) {
283 Some(RegionClassification::Local)
284 } else {
285 None
286 }
287 }
288
289 /// Returns an iterator over all the RegionVids corresponding to
290 /// universally quantified free regions.
universal_regions(&self) -> impl Iterator<Item = RegionVid>291 pub fn universal_regions(&self) -> impl Iterator<Item = RegionVid> {
292 (FIRST_GLOBAL_INDEX..self.num_universals).map(RegionVid::from_usize)
293 }
294
295 /// Returns `true` if `r` is classified as an local region.
is_local_free_region(&self, r: RegionVid) -> bool296 pub fn is_local_free_region(&self, r: RegionVid) -> bool {
297 self.region_classification(r) == Some(RegionClassification::Local)
298 }
299
300 /// Returns the number of universal regions created in any category.
len(&self) -> usize301 pub fn len(&self) -> usize {
302 self.num_universals
303 }
304
305 /// Returns the number of global plus external universal regions.
306 /// For closures, these are the regions that appear free in the
307 /// closure type (versus those bound in the closure
308 /// signature). They are therefore the regions between which the
309 /// closure may impose constraints that its creator must verify.
num_global_and_external_regions(&self) -> usize310 pub fn num_global_and_external_regions(&self) -> usize {
311 self.first_local_index
312 }
313
314 /// Gets an iterator over all the early-bound regions that have names.
315 /// Iteration order may be unstable, so this should only be used when
316 /// iteration order doesn't affect anything
317 #[allow(rustc::potential_query_instability)]
named_universal_regions<'s>( &'s self, ) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> + 's318 pub fn named_universal_regions<'s>(
319 &'s self,
320 ) -> impl Iterator<Item = (ty::Region<'tcx>, ty::RegionVid)> + 's {
321 self.indices.indices.iter().map(|(&r, &v)| (r, v))
322 }
323
324 /// See `UniversalRegionIndices::to_region_vid`.
to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid325 pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
326 self.indices.to_region_vid(r)
327 }
328
329 /// As part of the NLL unit tests, you can annotate a function with
330 /// `#[rustc_regions]`, and we will emit information about the region
331 /// inference context and -- in particular -- the external constraints
332 /// that this region imposes on others. The methods in this file
333 /// handle the part about dumping the inference context internal
334 /// state.
annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diagnostic)335 pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diagnostic) {
336 match self.defining_ty {
337 DefiningTy::Closure(def_id, substs) => {
338 err.note(format!(
339 "defining type: {} with closure substs {:#?}",
340 tcx.def_path_str_with_substs(def_id, substs),
341 &substs[tcx.generics_of(def_id).parent_count..],
342 ));
343
344 // FIXME: It'd be nice to print the late-bound regions
345 // here, but unfortunately these wind up stored into
346 // tests, and the resulting print-outs include def-ids
347 // and other things that are not stable across tests!
348 // So we just include the region-vid. Annoying.
349 for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
350 err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
351 });
352 }
353 DefiningTy::Generator(def_id, substs, _) => {
354 err.note(format!(
355 "defining type: {} with generator substs {:#?}",
356 tcx.def_path_str_with_substs(def_id, substs),
357 &substs[tcx.generics_of(def_id).parent_count..],
358 ));
359
360 // FIXME: As above, we'd like to print out the region
361 // `r` but doing so is not stable across architectures
362 // and so forth.
363 for_each_late_bound_region_in_recursive_scope(tcx, def_id.expect_local(), |r| {
364 err.note(format!("late-bound region is {:?}", self.to_region_vid(r)));
365 });
366 }
367 DefiningTy::FnDef(def_id, substs) => {
368 err.note(format!(
369 "defining type: {}",
370 tcx.def_path_str_with_substs(def_id, substs),
371 ));
372 }
373 DefiningTy::Const(def_id, substs) => {
374 err.note(format!(
375 "defining constant type: {}",
376 tcx.def_path_str_with_substs(def_id, substs),
377 ));
378 }
379 DefiningTy::InlineConst(def_id, substs) => {
380 err.note(format!(
381 "defining inline constant type: {}",
382 tcx.def_path_str_with_substs(def_id, substs),
383 ));
384 }
385 }
386 }
387 }
388
389 struct UniversalRegionsBuilder<'cx, 'tcx> {
390 infcx: &'cx BorrowckInferCtxt<'cx, 'tcx>,
391 mir_def: LocalDefId,
392 param_env: ty::ParamEnv<'tcx>,
393 }
394
395 const FR: NllRegionVariableOrigin = NllRegionVariableOrigin::FreeRegion;
396
397 impl<'cx, 'tcx> UniversalRegionsBuilder<'cx, 'tcx> {
build(self) -> UniversalRegions<'tcx>398 fn build(self) -> UniversalRegions<'tcx> {
399 debug!("build(mir_def={:?})", self.mir_def);
400
401 let param_env = self.param_env;
402 debug!("build: param_env={:?}", param_env);
403
404 assert_eq!(FIRST_GLOBAL_INDEX, self.infcx.num_region_vars());
405
406 // Create the "global" region that is always free in all contexts: 'static.
407 let fr_static =
408 self.infcx.next_nll_region_var(FR, || RegionCtxt::Free(kw::Static)).as_var();
409
410 // We've now added all the global regions. The next ones we
411 // add will be external.
412 let first_extern_index = self.infcx.num_region_vars();
413
414 let defining_ty = self.defining_ty();
415 debug!("build: defining_ty={:?}", defining_ty);
416
417 let mut indices = self.compute_indices(fr_static, defining_ty);
418 debug!("build: indices={:?}", indices);
419
420 let typeck_root_def_id = self.infcx.tcx.typeck_root_def_id(self.mir_def.to_def_id());
421
422 // If this is a 'root' body (not a closure/generator/inline const), then
423 // there are no extern regions, so the local regions start at the same
424 // position as the (empty) sub-list of extern regions
425 let first_local_index = if self.mir_def.to_def_id() == typeck_root_def_id {
426 first_extern_index
427 } else {
428 // If this is a closure, generator, or inline-const, then the late-bound regions from the enclosing
429 // function/closures are actually external regions to us. For example, here, 'a is not local
430 // to the closure c (although it is local to the fn foo):
431 // fn foo<'a>() {
432 // let c = || { let x: &'a u32 = ...; }
433 // }
434 for_each_late_bound_region_in_recursive_scope(
435 self.infcx.tcx,
436 self.infcx.tcx.local_parent(self.mir_def),
437 |r| {
438 debug!(?r);
439 if !indices.indices.contains_key(&r) {
440 let region_vid = {
441 let name = r.get_name_or_anon();
442 self.infcx.next_nll_region_var(FR, || {
443 RegionCtxt::LateBound(BoundRegionInfo::Name(name))
444 })
445 };
446
447 debug!(?region_vid);
448 indices.insert_late_bound_region(r, region_vid.as_var());
449 }
450 },
451 );
452
453 // Any regions created during the execution of `defining_ty` or during the above
454 // late-bound region replacement are all considered 'extern' regions
455 self.infcx.num_region_vars()
456 };
457
458 // "Liberate" the late-bound regions. These correspond to
459 // "local" free regions.
460
461 let bound_inputs_and_output = self.compute_inputs_and_output(&indices, defining_ty);
462
463 let inputs_and_output = self.infcx.replace_bound_regions_with_nll_infer_vars(
464 FR,
465 self.mir_def,
466 bound_inputs_and_output,
467 &mut indices,
468 );
469 // Converse of above, if this is a function/closure then the late-bound regions declared on its
470 // signature are local.
471 for_each_late_bound_region_in_item(self.infcx.tcx, self.mir_def, |r| {
472 debug!(?r);
473 if !indices.indices.contains_key(&r) {
474 let region_vid = {
475 let name = r.get_name_or_anon();
476 self.infcx.next_nll_region_var(FR, || {
477 RegionCtxt::LateBound(BoundRegionInfo::Name(name))
478 })
479 };
480
481 debug!(?region_vid);
482 indices.insert_late_bound_region(r, region_vid.as_var());
483 }
484 });
485
486 let (unnormalized_output_ty, mut unnormalized_input_tys) =
487 inputs_and_output.split_last().unwrap();
488
489 // C-variadic fns also have a `VaList` input that's not listed in the signature
490 // (as it's created inside the body itself, not passed in from outside).
491 if let DefiningTy::FnDef(def_id, _) = defining_ty {
492 if self.infcx.tcx.fn_sig(def_id).skip_binder().c_variadic() {
493 let va_list_did = self.infcx.tcx.require_lang_item(
494 LangItem::VaList,
495 Some(self.infcx.tcx.def_span(self.mir_def)),
496 );
497
498 let reg_vid = self
499 .infcx
500 .next_nll_region_var(FR, || RegionCtxt::Free(Symbol::intern("c-variadic")))
501 .as_var();
502
503 let region = ty::Region::new_var(self.infcx.tcx, reg_vid);
504 let va_list_ty =
505 self.infcx.tcx.type_of(va_list_did).subst(self.infcx.tcx, &[region.into()]);
506
507 unnormalized_input_tys = self.infcx.tcx.mk_type_list_from_iter(
508 unnormalized_input_tys.iter().copied().chain(iter::once(va_list_ty)),
509 );
510 }
511 }
512
513 let fr_fn_body = self
514 .infcx
515 .next_nll_region_var(FR, || RegionCtxt::Free(Symbol::intern("fn_body")))
516 .as_var();
517
518 let num_universals = self.infcx.num_region_vars();
519
520 debug!("build: global regions = {}..{}", FIRST_GLOBAL_INDEX, first_extern_index);
521 debug!("build: extern regions = {}..{}", first_extern_index, first_local_index);
522 debug!("build: local regions = {}..{}", first_local_index, num_universals);
523
524 let yield_ty = match defining_ty {
525 DefiningTy::Generator(_, substs, _) => Some(substs.as_generator().yield_ty()),
526 _ => None,
527 };
528
529 UniversalRegions {
530 indices,
531 fr_static,
532 fr_fn_body,
533 first_extern_index,
534 first_local_index,
535 num_universals,
536 defining_ty,
537 unnormalized_output_ty: *unnormalized_output_ty,
538 unnormalized_input_tys,
539 yield_ty,
540 }
541 }
542
543 /// Returns the "defining type" of the current MIR;
544 /// see `DefiningTy` for details.
defining_ty(&self) -> DefiningTy<'tcx>545 fn defining_ty(&self) -> DefiningTy<'tcx> {
546 let tcx = self.infcx.tcx;
547 let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());
548
549 match tcx.hir().body_owner_kind(self.mir_def) {
550 BodyOwnerKind::Closure | BodyOwnerKind::Fn => {
551 let defining_ty = tcx.type_of(self.mir_def).subst_identity();
552
553 debug!("defining_ty (pre-replacement): {:?}", defining_ty);
554
555 let defining_ty =
556 self.infcx.replace_free_regions_with_nll_infer_vars(FR, defining_ty);
557
558 match *defining_ty.kind() {
559 ty::Closure(def_id, substs) => DefiningTy::Closure(def_id, substs),
560 ty::Generator(def_id, substs, movability) => {
561 DefiningTy::Generator(def_id, substs, movability)
562 }
563 ty::FnDef(def_id, substs) => DefiningTy::FnDef(def_id, substs),
564 _ => span_bug!(
565 tcx.def_span(self.mir_def),
566 "expected defining type for `{:?}`: `{:?}`",
567 self.mir_def,
568 defining_ty
569 ),
570 }
571 }
572
573 BodyOwnerKind::Const | BodyOwnerKind::Static(..) => {
574 let identity_substs = InternalSubsts::identity_for_item(tcx, typeck_root_def_id);
575 if self.mir_def.to_def_id() == typeck_root_def_id {
576 let substs =
577 self.infcx.replace_free_regions_with_nll_infer_vars(FR, identity_substs);
578 DefiningTy::Const(self.mir_def.to_def_id(), substs)
579 } else {
580 // FIXME this line creates a dependency between borrowck and typeck.
581 //
582 // This is required for `AscribeUserType` canonical query, which will call
583 // `type_of(inline_const_def_id)`. That `type_of` would inject erased lifetimes
584 // into borrowck, which is ICE #78174.
585 //
586 // As a workaround, inline consts have an additional generic param (`ty`
587 // below), so that `type_of(inline_const_def_id).substs(substs)` uses the
588 // proper type with NLL infer vars.
589 let ty = tcx
590 .typeck(self.mir_def)
591 .node_type(tcx.local_def_id_to_hir_id(self.mir_def));
592 let substs = InlineConstSubsts::new(
593 tcx,
594 InlineConstSubstsParts { parent_substs: identity_substs, ty },
595 )
596 .substs;
597 let substs = self.infcx.replace_free_regions_with_nll_infer_vars(FR, substs);
598 DefiningTy::InlineConst(self.mir_def.to_def_id(), substs)
599 }
600 }
601 }
602 }
603
604 /// Builds a hashmap that maps from the universal regions that are
605 /// in scope (as a `ty::Region<'tcx>`) to their indices (as a
606 /// `RegionVid`). The map returned by this function contains only
607 /// the early-bound regions.
compute_indices( &self, fr_static: RegionVid, defining_ty: DefiningTy<'tcx>, ) -> UniversalRegionIndices<'tcx>608 fn compute_indices(
609 &self,
610 fr_static: RegionVid,
611 defining_ty: DefiningTy<'tcx>,
612 ) -> UniversalRegionIndices<'tcx> {
613 let tcx = self.infcx.tcx;
614 let typeck_root_def_id = tcx.typeck_root_def_id(self.mir_def.to_def_id());
615 let identity_substs = InternalSubsts::identity_for_item(tcx, typeck_root_def_id);
616 let fr_substs = match defining_ty {
617 DefiningTy::Closure(_, substs)
618 | DefiningTy::Generator(_, substs, _)
619 | DefiningTy::InlineConst(_, substs) => {
620 // In the case of closures, we rely on the fact that
621 // the first N elements in the ClosureSubsts are
622 // inherited from the `typeck_root_def_id`.
623 // Therefore, when we zip together (below) with
624 // `identity_substs`, we will get only those regions
625 // that correspond to early-bound regions declared on
626 // the `typeck_root_def_id`.
627 assert!(substs.len() >= identity_substs.len());
628 assert_eq!(substs.regions().count(), identity_substs.regions().count());
629 substs
630 }
631
632 DefiningTy::FnDef(_, substs) | DefiningTy::Const(_, substs) => substs,
633 };
634
635 let global_mapping = iter::once((tcx.lifetimes.re_static, fr_static));
636 let subst_mapping =
637 iter::zip(identity_substs.regions(), fr_substs.regions().map(|r| r.as_var()));
638
639 UniversalRegionIndices { indices: global_mapping.chain(subst_mapping).collect(), fr_static }
640 }
641
compute_inputs_and_output( &self, indices: &UniversalRegionIndices<'tcx>, defining_ty: DefiningTy<'tcx>, ) -> ty::Binder<'tcx, &'tcx ty::List<Ty<'tcx>>>642 fn compute_inputs_and_output(
643 &self,
644 indices: &UniversalRegionIndices<'tcx>,
645 defining_ty: DefiningTy<'tcx>,
646 ) -> ty::Binder<'tcx, &'tcx ty::List<Ty<'tcx>>> {
647 let tcx = self.infcx.tcx;
648 match defining_ty {
649 DefiningTy::Closure(def_id, substs) => {
650 assert_eq!(self.mir_def.to_def_id(), def_id);
651 let closure_sig = substs.as_closure().sig();
652 let inputs_and_output = closure_sig.inputs_and_output();
653 let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
654 inputs_and_output
655 .bound_vars()
656 .iter()
657 .chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
658 );
659 let br = ty::BoundRegion {
660 var: ty::BoundVar::from_usize(bound_vars.len() - 1),
661 kind: ty::BrEnv,
662 };
663 let env_region = ty::Region::new_late_bound(tcx, ty::INNERMOST, br);
664 let closure_ty = tcx.closure_env_ty(def_id, substs, env_region).unwrap();
665
666 // The "inputs" of the closure in the
667 // signature appear as a tuple. The MIR side
668 // flattens this tuple.
669 let (&output, tuplized_inputs) =
670 inputs_and_output.skip_binder().split_last().unwrap();
671 assert_eq!(tuplized_inputs.len(), 1, "multiple closure inputs");
672 let &ty::Tuple(inputs) = tuplized_inputs[0].kind() else {
673 bug!("closure inputs not a tuple: {:?}", tuplized_inputs[0]);
674 };
675
676 ty::Binder::bind_with_vars(
677 tcx.mk_type_list_from_iter(
678 iter::once(closure_ty).chain(inputs).chain(iter::once(output)),
679 ),
680 bound_vars,
681 )
682 }
683
684 DefiningTy::Generator(def_id, substs, movability) => {
685 assert_eq!(self.mir_def.to_def_id(), def_id);
686 let resume_ty = substs.as_generator().resume_ty();
687 let output = substs.as_generator().return_ty();
688 let generator_ty = Ty::new_generator(tcx, def_id, substs, movability);
689 let inputs_and_output =
690 self.infcx.tcx.mk_type_list(&[generator_ty, resume_ty, output]);
691 ty::Binder::dummy(inputs_and_output)
692 }
693
694 DefiningTy::FnDef(def_id, _) => {
695 let sig = tcx.fn_sig(def_id).subst_identity();
696 let sig = indices.fold_to_region_vids(tcx, sig);
697 sig.inputs_and_output()
698 }
699
700 DefiningTy::Const(def_id, _) => {
701 // For a constant body, there are no inputs, and one
702 // "output" (the type of the constant).
703 assert_eq!(self.mir_def.to_def_id(), def_id);
704 let ty = tcx.type_of(self.mir_def).subst_identity();
705 let ty = indices.fold_to_region_vids(tcx, ty);
706 ty::Binder::dummy(tcx.mk_type_list(&[ty]))
707 }
708
709 DefiningTy::InlineConst(def_id, substs) => {
710 assert_eq!(self.mir_def.to_def_id(), def_id);
711 let ty = substs.as_inline_const().ty();
712 ty::Binder::dummy(tcx.mk_type_list(&[ty]))
713 }
714 }
715 }
716 }
717
718 trait InferCtxtExt<'tcx> {
replace_free_regions_with_nll_infer_vars<T>( &self, origin: NllRegionVariableOrigin, value: T, ) -> T where T: TypeFoldable<TyCtxt<'tcx>>719 fn replace_free_regions_with_nll_infer_vars<T>(
720 &self,
721 origin: NllRegionVariableOrigin,
722 value: T,
723 ) -> T
724 where
725 T: TypeFoldable<TyCtxt<'tcx>>;
726
replace_bound_regions_with_nll_infer_vars<T>( &self, origin: NllRegionVariableOrigin, all_outlive_scope: LocalDefId, value: ty::Binder<'tcx, T>, indices: &mut UniversalRegionIndices<'tcx>, ) -> T where T: TypeFoldable<TyCtxt<'tcx>>727 fn replace_bound_regions_with_nll_infer_vars<T>(
728 &self,
729 origin: NllRegionVariableOrigin,
730 all_outlive_scope: LocalDefId,
731 value: ty::Binder<'tcx, T>,
732 indices: &mut UniversalRegionIndices<'tcx>,
733 ) -> T
734 where
735 T: TypeFoldable<TyCtxt<'tcx>>;
736
replace_late_bound_regions_with_nll_infer_vars_in_recursive_scope( &self, mir_def_id: LocalDefId, indices: &mut UniversalRegionIndices<'tcx>, )737 fn replace_late_bound_regions_with_nll_infer_vars_in_recursive_scope(
738 &self,
739 mir_def_id: LocalDefId,
740 indices: &mut UniversalRegionIndices<'tcx>,
741 );
742
replace_late_bound_regions_with_nll_infer_vars_in_item( &self, mir_def_id: LocalDefId, indices: &mut UniversalRegionIndices<'tcx>, )743 fn replace_late_bound_regions_with_nll_infer_vars_in_item(
744 &self,
745 mir_def_id: LocalDefId,
746 indices: &mut UniversalRegionIndices<'tcx>,
747 );
748 }
749
750 impl<'cx, 'tcx> InferCtxtExt<'tcx> for BorrowckInferCtxt<'cx, 'tcx> {
751 #[instrument(skip(self), level = "debug")]
replace_free_regions_with_nll_infer_vars<T>( &self, origin: NllRegionVariableOrigin, value: T, ) -> T where T: TypeFoldable<TyCtxt<'tcx>>,752 fn replace_free_regions_with_nll_infer_vars<T>(
753 &self,
754 origin: NllRegionVariableOrigin,
755 value: T,
756 ) -> T
757 where
758 T: TypeFoldable<TyCtxt<'tcx>>,
759 {
760 self.infcx.tcx.fold_regions(value, |region, _depth| {
761 let name = region.get_name_or_anon();
762 debug!(?region, ?name);
763
764 self.next_nll_region_var(origin, || RegionCtxt::Free(name))
765 })
766 }
767
768 #[instrument(level = "debug", skip(self, indices))]
replace_bound_regions_with_nll_infer_vars<T>( &self, origin: NllRegionVariableOrigin, all_outlive_scope: LocalDefId, value: ty::Binder<'tcx, T>, indices: &mut UniversalRegionIndices<'tcx>, ) -> T where T: TypeFoldable<TyCtxt<'tcx>>,769 fn replace_bound_regions_with_nll_infer_vars<T>(
770 &self,
771 origin: NllRegionVariableOrigin,
772 all_outlive_scope: LocalDefId,
773 value: ty::Binder<'tcx, T>,
774 indices: &mut UniversalRegionIndices<'tcx>,
775 ) -> T
776 where
777 T: TypeFoldable<TyCtxt<'tcx>>,
778 {
779 let (value, _map) = self.tcx.replace_late_bound_regions(value, |br| {
780 debug!(?br);
781 let liberated_region =
782 ty::Region::new_free(self.tcx, all_outlive_scope.to_def_id(), br.kind);
783 let region_vid = {
784 let name = match br.kind.get_name() {
785 Some(name) => name,
786 _ => sym::anon,
787 };
788
789 self.next_nll_region_var(origin, || RegionCtxt::Bound(BoundRegionInfo::Name(name)))
790 };
791
792 indices.insert_late_bound_region(liberated_region, region_vid.as_var());
793 debug!(?liberated_region, ?region_vid);
794 region_vid
795 });
796 value
797 }
798
799 /// Finds late-bound regions that do not appear in the parameter listing and adds them to the
800 /// indices vector. Typically, we identify late-bound regions as we process the inputs and
801 /// outputs of the closure/function. However, sometimes there are late-bound regions which do
802 /// not appear in the fn parameters but which are nonetheless in scope. The simplest case of
803 /// this are unused functions, like fn foo<'a>() { } (see e.g., #51351). Despite not being used,
804 /// users can still reference these regions (e.g., let x: &'a u32 = &22;), so we need to create
805 /// entries for them and store them in the indices map. This code iterates over the complete
806 /// set of late-bound regions and checks for any that we have not yet seen, adding them to the
807 /// inputs vector.
808 #[instrument(skip(self, indices))]
replace_late_bound_regions_with_nll_infer_vars_in_recursive_scope( &self, mir_def_id: LocalDefId, indices: &mut UniversalRegionIndices<'tcx>, )809 fn replace_late_bound_regions_with_nll_infer_vars_in_recursive_scope(
810 &self,
811 mir_def_id: LocalDefId,
812 indices: &mut UniversalRegionIndices<'tcx>,
813 ) {
814 for_each_late_bound_region_in_recursive_scope(self.tcx, mir_def_id, |r| {
815 debug!(?r);
816 if !indices.indices.contains_key(&r) {
817 let region_vid = {
818 let name = r.get_name_or_anon();
819 self.next_nll_region_var(FR, || {
820 RegionCtxt::LateBound(BoundRegionInfo::Name(name))
821 })
822 };
823
824 debug!(?region_vid);
825 indices.insert_late_bound_region(r, region_vid.as_var());
826 }
827 });
828 }
829
830 #[instrument(skip(self, indices))]
replace_late_bound_regions_with_nll_infer_vars_in_item( &self, mir_def_id: LocalDefId, indices: &mut UniversalRegionIndices<'tcx>, )831 fn replace_late_bound_regions_with_nll_infer_vars_in_item(
832 &self,
833 mir_def_id: LocalDefId,
834 indices: &mut UniversalRegionIndices<'tcx>,
835 ) {
836 for_each_late_bound_region_in_item(self.tcx, mir_def_id, |r| {
837 debug!(?r);
838 if !indices.indices.contains_key(&r) {
839 let region_vid = {
840 let name = r.get_name_or_anon();
841 self.next_nll_region_var(FR, || {
842 RegionCtxt::LateBound(BoundRegionInfo::Name(name))
843 })
844 };
845
846 indices.insert_late_bound_region(r, region_vid.as_var());
847 }
848 });
849 }
850 }
851
852 impl<'tcx> UniversalRegionIndices<'tcx> {
853 /// Initially, the `UniversalRegionIndices` map contains only the
854 /// early-bound regions in scope. Once that is all setup, we come
855 /// in later and instantiate the late-bound regions, and then we
856 /// insert the `ReFree` version of those into the map as
857 /// well. These are used for error reporting.
insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid)858 fn insert_late_bound_region(&mut self, r: ty::Region<'tcx>, vid: ty::RegionVid) {
859 debug!("insert_late_bound_region({:?}, {:?})", r, vid);
860 self.indices.insert(r, vid);
861 }
862
863 /// Converts `r` into a local inference variable: `r` can either
864 /// be a `ReVar` (i.e., already a reference to an inference
865 /// variable) or it can be `'static` or some early-bound
866 /// region. This is useful when taking the results from
867 /// type-checking and trait-matching, which may sometimes
868 /// reference those regions from the `ParamEnv`. It is also used
869 /// during initialization. Relies on the `indices` map having been
870 /// fully initialized.
to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid871 pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
872 if let ty::ReVar(..) = *r {
873 r.as_var()
874 } else if r.is_error() {
875 // We use the `'static` `RegionVid` because `ReError` doesn't actually exist in the
876 // `UniversalRegionIndices`. This is fine because 1) it is a fallback only used if
877 // errors are being emitted and 2) it leaves the happy path unaffected.
878 self.fr_static
879 } else {
880 *self
881 .indices
882 .get(&r)
883 .unwrap_or_else(|| bug!("cannot convert `{:?}` to a region vid", r))
884 }
885 }
886
887 /// Replaces all free regions in `value` with region vids, as
888 /// returned by `to_region_vid`.
fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T where T: TypeFoldable<TyCtxt<'tcx>>,889 pub fn fold_to_region_vids<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
890 where
891 T: TypeFoldable<TyCtxt<'tcx>>,
892 {
893 tcx.fold_regions(value, |region, _| ty::Region::new_var(tcx, self.to_region_vid(region)))
894 }
895 }
896
897 /// Iterates over the late-bound regions defined on `mir_def_id` and all of its
898 /// parents, up to the typeck root, and invokes `f` with the liberated form
899 /// of each one.
for_each_late_bound_region_in_recursive_scope<'tcx>( tcx: TyCtxt<'tcx>, mut mir_def_id: LocalDefId, mut f: impl FnMut(ty::Region<'tcx>), )900 fn for_each_late_bound_region_in_recursive_scope<'tcx>(
901 tcx: TyCtxt<'tcx>,
902 mut mir_def_id: LocalDefId,
903 mut f: impl FnMut(ty::Region<'tcx>),
904 ) {
905 let typeck_root_def_id = tcx.typeck_root_def_id(mir_def_id.to_def_id());
906
907 // Walk up the tree, collecting late-bound regions until we hit the typeck root
908 loop {
909 for_each_late_bound_region_in_item(tcx, mir_def_id, &mut f);
910
911 if mir_def_id.to_def_id() == typeck_root_def_id {
912 break;
913 } else {
914 mir_def_id = tcx.local_parent(mir_def_id);
915 }
916 }
917 }
918
919 /// Iterates over the late-bound regions defined on `mir_def_id` and all of its
920 /// parents, up to the typeck root, and invokes `f` with the liberated form
921 /// of each one.
for_each_late_bound_region_in_item<'tcx>( tcx: TyCtxt<'tcx>, mir_def_id: LocalDefId, mut f: impl FnMut(ty::Region<'tcx>), )922 fn for_each_late_bound_region_in_item<'tcx>(
923 tcx: TyCtxt<'tcx>,
924 mir_def_id: LocalDefId,
925 mut f: impl FnMut(ty::Region<'tcx>),
926 ) {
927 if !tcx.def_kind(mir_def_id).is_fn_like() {
928 return;
929 }
930
931 for bound_var in tcx.late_bound_vars(tcx.hir().local_def_id_to_hir_id(mir_def_id)) {
932 let ty::BoundVariableKind::Region(bound_region) = bound_var else { continue; };
933 let liberated_region = ty::Region::new_free(tcx, mir_def_id.to_def_id(), bound_region);
934 f(liberated_region);
935 }
936 }
937