1 #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
2 #![feature(associated_type_defaults)]
3 #![feature(rustc_private)]
4 #![feature(try_blocks)]
5 #![feature(let_chains)]
6 #![recursion_limit = "256"]
7 #![deny(rustc::untranslatable_diagnostic)]
8 #![deny(rustc::diagnostic_outside_of_impl)]
9
10 #[macro_use]
11 extern crate tracing;
12
13 mod errors;
14
15 use rustc_ast::MacroDef;
16 use rustc_attr as attr;
17 use rustc_data_structures::fx::FxHashSet;
18 use rustc_data_structures::intern::Interned;
19 use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
20 use rustc_fluent_macro::fluent_messages;
21 use rustc_hir as hir;
22 use rustc_hir::def::{DefKind, Res};
23 use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
24 use rustc_hir::intravisit::{self, Visitor};
25 use rustc_hir::{AssocItemKind, ForeignItemKind, HirIdSet, ItemId, Node, PatKind};
26 use rustc_middle::bug;
27 use rustc_middle::hir::nested_filter;
28 use rustc_middle::middle::privacy::{EffectiveVisibilities, EffectiveVisibility, Level};
29 use rustc_middle::query::Providers;
30 use rustc_middle::span_bug;
31 use rustc_middle::ty::subst::InternalSubsts;
32 use rustc_middle::ty::{self, Const, GenericParamDefKind};
33 use rustc_middle::ty::{TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor};
34 use rustc_session::lint;
35 use rustc_span::hygiene::Transparency;
36 use rustc_span::symbol::{kw, sym, Ident};
37 use rustc_span::Span;
38
39 use std::marker::PhantomData;
40 use std::ops::ControlFlow;
41 use std::{fmt, mem};
42
43 use errors::{
44 FieldIsPrivate, FieldIsPrivateLabel, FromPrivateDependencyInPublicInterface, InPublicInterface,
45 InPublicInterfaceTraits, ItemIsPrivate, PrivateInPublicLint, PrivateInterfacesOrBoundsLint,
46 ReportEffectiveVisibility, UnnameableTypesLint, UnnamedItemIsPrivate,
47 };
48
49 fluent_messages! { "../messages.ftl" }
50
51 ////////////////////////////////////////////////////////////////////////////////
52 /// Generic infrastructure used to implement specific visitors below.
53 ////////////////////////////////////////////////////////////////////////////////
54
55 struct LazyDefPathStr<'tcx> {
56 def_id: DefId,
57 tcx: TyCtxt<'tcx>,
58 }
59
60 impl<'tcx> fmt::Display for LazyDefPathStr<'tcx> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result61 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
62 write!(f, "{}", self.tcx.def_path_str(self.def_id))
63 }
64 }
65
66 /// Implemented to visit all `DefId`s in a type.
67 /// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them.
68 /// The idea is to visit "all components of a type", as documented in
69 /// <https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type>.
70 /// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings.
71 /// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s
72 /// manually. Second, it doesn't visit some type components like signatures of fn types, or traits
73 /// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`.
74 trait DefIdVisitor<'tcx> {
75 type BreakTy = ();
76 const SHALLOW: bool = false;
77 const SKIP_ASSOC_TYS: bool = false;
78
tcx(&self) -> TyCtxt<'tcx>79 fn tcx(&self) -> TyCtxt<'tcx>;
visit_def_id( &mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display, ) -> ControlFlow<Self::BreakTy>80 fn visit_def_id(
81 &mut self,
82 def_id: DefId,
83 kind: &str,
84 descr: &dyn fmt::Display,
85 ) -> ControlFlow<Self::BreakTy>;
86
87 /// Not overridden, but used to actually visit types and traits.
skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self>88 fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> {
89 DefIdVisitorSkeleton {
90 def_id_visitor: self,
91 visited_opaque_tys: Default::default(),
92 dummy: Default::default(),
93 }
94 }
visit( &mut self, ty_fragment: impl TypeVisitable<TyCtxt<'tcx>>, ) -> ControlFlow<Self::BreakTy>95 fn visit(
96 &mut self,
97 ty_fragment: impl TypeVisitable<TyCtxt<'tcx>>,
98 ) -> ControlFlow<Self::BreakTy> {
99 ty_fragment.visit_with(&mut self.skeleton())
100 }
visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<Self::BreakTy>101 fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<Self::BreakTy> {
102 self.skeleton().visit_trait(trait_ref)
103 }
visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<Self::BreakTy>104 fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<Self::BreakTy> {
105 self.skeleton().visit_projection_ty(projection)
106 }
visit_predicates( &mut self, predicates: ty::GenericPredicates<'tcx>, ) -> ControlFlow<Self::BreakTy>107 fn visit_predicates(
108 &mut self,
109 predicates: ty::GenericPredicates<'tcx>,
110 ) -> ControlFlow<Self::BreakTy> {
111 self.skeleton().visit_clauses(predicates.predicates)
112 }
visit_clauses( &mut self, clauses: &[(ty::Clause<'tcx>, Span)], ) -> ControlFlow<Self::BreakTy>113 fn visit_clauses(
114 &mut self,
115 clauses: &[(ty::Clause<'tcx>, Span)],
116 ) -> ControlFlow<Self::BreakTy> {
117 self.skeleton().visit_clauses(clauses)
118 }
119 }
120
121 struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> {
122 def_id_visitor: &'v mut V,
123 visited_opaque_tys: FxHashSet<DefId>,
124 dummy: PhantomData<TyCtxt<'tcx>>,
125 }
126
127 impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V>
128 where
129 V: DefIdVisitor<'tcx> + ?Sized,
130 {
visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<V::BreakTy>131 fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<V::BreakTy> {
132 let TraitRef { def_id, substs, .. } = trait_ref;
133 self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path())?;
134 if V::SHALLOW { ControlFlow::Continue(()) } else { substs.visit_with(self) }
135 }
136
visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<V::BreakTy>137 fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<V::BreakTy> {
138 let tcx = self.def_id_visitor.tcx();
139 let (trait_ref, assoc_substs) = if tcx.def_kind(projection.def_id)
140 != DefKind::ImplTraitPlaceholder
141 {
142 projection.trait_ref_and_own_substs(tcx)
143 } else {
144 // HACK(RPITIT): Remove this when RPITITs are lowered to regular assoc tys
145 let def_id = tcx.impl_trait_in_trait_parent_fn(projection.def_id);
146 let trait_generics = tcx.generics_of(def_id);
147 (
148 ty::TraitRef::new(tcx, def_id, projection.substs.truncate_to(tcx, trait_generics)),
149 &projection.substs[trait_generics.count()..],
150 )
151 };
152 self.visit_trait(trait_ref)?;
153 if V::SHALLOW {
154 ControlFlow::Continue(())
155 } else {
156 assoc_substs.iter().try_for_each(|subst| subst.visit_with(self))
157 }
158 }
159
visit_clause(&mut self, clause: ty::Clause<'tcx>) -> ControlFlow<V::BreakTy>160 fn visit_clause(&mut self, clause: ty::Clause<'tcx>) -> ControlFlow<V::BreakTy> {
161 match clause.kind().skip_binder() {
162 ty::ClauseKind::Trait(ty::TraitPredicate { trait_ref, constness: _, polarity: _ }) => {
163 self.visit_trait(trait_ref)
164 }
165 ty::ClauseKind::Projection(ty::ProjectionPredicate { projection_ty, term }) => {
166 term.visit_with(self)?;
167 self.visit_projection_ty(projection_ty)
168 }
169 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _region)) => ty.visit_with(self),
170 ty::ClauseKind::RegionOutlives(..) => ControlFlow::Continue(()),
171 ty::ClauseKind::ConstArgHasType(ct, ty) => {
172 ct.visit_with(self)?;
173 ty.visit_with(self)
174 }
175 ty::ClauseKind::ConstEvaluatable(ct) => ct.visit_with(self),
176 ty::ClauseKind::WellFormed(arg) => arg.visit_with(self),
177 }
178 }
179
visit_clauses(&mut self, clauses: &[(ty::Clause<'tcx>, Span)]) -> ControlFlow<V::BreakTy>180 fn visit_clauses(&mut self, clauses: &[(ty::Clause<'tcx>, Span)]) -> ControlFlow<V::BreakTy> {
181 clauses.into_iter().try_for_each(|&(clause, _span)| self.visit_clause(clause))
182 }
183 }
184
185 impl<'tcx, V> TypeVisitor<TyCtxt<'tcx>> for DefIdVisitorSkeleton<'_, 'tcx, V>
186 where
187 V: DefIdVisitor<'tcx> + ?Sized,
188 {
189 type BreakTy = V::BreakTy;
190
visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<V::BreakTy>191 fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<V::BreakTy> {
192 let tcx = self.def_id_visitor.tcx();
193 // InternalSubsts are not visited here because they are visited below
194 // in `super_visit_with`.
195 match *ty.kind() {
196 ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), ..)
197 | ty::Foreign(def_id)
198 | ty::FnDef(def_id, ..)
199 | ty::Closure(def_id, ..)
200 | ty::Generator(def_id, ..) => {
201 self.def_id_visitor.visit_def_id(def_id, "type", &ty)?;
202 if V::SHALLOW {
203 return ControlFlow::Continue(());
204 }
205 // Default type visitor doesn't visit signatures of fn types.
206 // Something like `fn() -> Priv {my_func}` is considered a private type even if
207 // `my_func` is public, so we need to visit signatures.
208 if let ty::FnDef(..) = ty.kind() {
209 // FIXME: this should probably use `substs` from `FnDef`
210 tcx.fn_sig(def_id).subst_identity().visit_with(self)?;
211 }
212 // Inherent static methods don't have self type in substs.
213 // Something like `fn() {my_method}` type of the method
214 // `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type,
215 // so we need to visit the self type additionally.
216 if let Some(assoc_item) = tcx.opt_associated_item(def_id) {
217 if let Some(impl_def_id) = assoc_item.impl_container(tcx) {
218 tcx.type_of(impl_def_id).subst_identity().visit_with(self)?;
219 }
220 }
221 }
222 ty::Alias(ty::Weak, alias) => {
223 self.def_id_visitor.visit_def_id(alias.def_id, "type alias", &ty);
224 }
225 ty::Alias(ty::Projection, proj) => {
226 if V::SKIP_ASSOC_TYS {
227 // Visitors searching for minimal visibility/reachability want to
228 // conservatively approximate associated types like `<Type as Trait>::Alias`
229 // as visible/reachable even if both `Type` and `Trait` are private.
230 // Ideally, associated types should be substituted in the same way as
231 // free type aliases, but this isn't done yet.
232 return ControlFlow::Continue(());
233 }
234 // This will also visit substs if necessary, so we don't need to recurse.
235 return self.visit_projection_ty(proj);
236 }
237 ty::Alias(ty::Inherent, data) => {
238 if V::SKIP_ASSOC_TYS {
239 // Visitors searching for minimal visibility/reachability want to
240 // conservatively approximate associated types like `Type::Alias`
241 // as visible/reachable even if `Type` is private.
242 // Ideally, associated types should be substituted in the same way as
243 // free type aliases, but this isn't done yet.
244 return ControlFlow::Continue(());
245 }
246
247 self.def_id_visitor.visit_def_id(
248 data.def_id,
249 "associated type",
250 &LazyDefPathStr { def_id: data.def_id, tcx },
251 )?;
252
253 // This will also visit substs if necessary, so we don't need to recurse.
254 return if V::SHALLOW {
255 ControlFlow::Continue(())
256 } else {
257 data.substs.iter().try_for_each(|subst| subst.visit_with(self))
258 };
259 }
260 ty::Dynamic(predicates, ..) => {
261 // All traits in the list are considered the "primary" part of the type
262 // and are visited by shallow visitors.
263 for predicate in predicates {
264 let trait_ref = match predicate.skip_binder() {
265 ty::ExistentialPredicate::Trait(trait_ref) => trait_ref,
266 ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx),
267 ty::ExistentialPredicate::AutoTrait(def_id) => {
268 ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() }
269 }
270 };
271 let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref;
272 self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref)?;
273 }
274 }
275 ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) => {
276 // Skip repeated `Opaque`s to avoid infinite recursion.
277 if self.visited_opaque_tys.insert(def_id) {
278 // The intent is to treat `impl Trait1 + Trait2` identically to
279 // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself
280 // (it either has no visibility, or its visibility is insignificant, like
281 // visibilities of type aliases) and recurse into bounds instead to go
282 // through the trait list (default type visitor doesn't visit those traits).
283 // All traits in the list are considered the "primary" part of the type
284 // and are visited by shallow visitors.
285 self.visit_clauses(tcx.explicit_item_bounds(def_id).skip_binder())?;
286 }
287 }
288 // These types don't have their own def-ids (but may have subcomponents
289 // with def-ids that should be visited recursively).
290 ty::Bool
291 | ty::Char
292 | ty::Int(..)
293 | ty::Uint(..)
294 | ty::Float(..)
295 | ty::Str
296 | ty::Never
297 | ty::Array(..)
298 | ty::Slice(..)
299 | ty::Tuple(..)
300 | ty::RawPtr(..)
301 | ty::Ref(..)
302 | ty::FnPtr(..)
303 | ty::Param(..)
304 | ty::Bound(..)
305 | ty::Error(_)
306 | ty::GeneratorWitness(..)
307 | ty::GeneratorWitnessMIR(..) => {}
308 ty::Placeholder(..) | ty::Infer(..) => {
309 bug!("unexpected type: {:?}", ty)
310 }
311 }
312
313 if V::SHALLOW { ControlFlow::Continue(()) } else { ty.super_visit_with(self) }
314 }
315
visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy>316 fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> {
317 let tcx = self.def_id_visitor.tcx();
318 tcx.expand_abstract_consts(c).super_visit_with(self)
319 }
320 }
321
min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility322 fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility {
323 if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
324 }
325
326 ////////////////////////////////////////////////////////////////////////////////
327 /// Visitor used to determine impl visibility and reachability.
328 ////////////////////////////////////////////////////////////////////////////////
329
330 struct FindMin<'a, 'tcx, VL: VisibilityLike, const SHALLOW: bool> {
331 tcx: TyCtxt<'tcx>,
332 effective_visibilities: &'a EffectiveVisibilities,
333 min: VL,
334 }
335
336 impl<'a, 'tcx, VL: VisibilityLike, const SHALLOW: bool> DefIdVisitor<'tcx>
337 for FindMin<'a, 'tcx, VL, SHALLOW>
338 {
339 const SHALLOW: bool = SHALLOW;
340 const SKIP_ASSOC_TYS: bool = true;
tcx(&self) -> TyCtxt<'tcx>341 fn tcx(&self) -> TyCtxt<'tcx> {
342 self.tcx
343 }
visit_def_id( &mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display, ) -> ControlFlow<Self::BreakTy>344 fn visit_def_id(
345 &mut self,
346 def_id: DefId,
347 _kind: &str,
348 _descr: &dyn fmt::Display,
349 ) -> ControlFlow<Self::BreakTy> {
350 if let Some(def_id) = def_id.as_local() {
351 self.min = VL::new_min(self, def_id);
352 }
353 ControlFlow::Continue(())
354 }
355 }
356
357 trait VisibilityLike: Sized {
358 const MAX: Self;
new_min<const SHALLOW: bool>( find: &FindMin<'_, '_, Self, SHALLOW>, def_id: LocalDefId, ) -> Self359 fn new_min<const SHALLOW: bool>(
360 find: &FindMin<'_, '_, Self, SHALLOW>,
361 def_id: LocalDefId,
362 ) -> Self;
363
364 // Returns an over-approximation (`SKIP_ASSOC_TYS` = true) of visibility due to
365 // associated types for which we can't determine visibility precisely.
of_impl<const SHALLOW: bool>( def_id: LocalDefId, tcx: TyCtxt<'_>, effective_visibilities: &EffectiveVisibilities, ) -> Self366 fn of_impl<const SHALLOW: bool>(
367 def_id: LocalDefId,
368 tcx: TyCtxt<'_>,
369 effective_visibilities: &EffectiveVisibilities,
370 ) -> Self {
371 let mut find = FindMin::<_, SHALLOW> { tcx, effective_visibilities, min: Self::MAX };
372 find.visit(tcx.type_of(def_id).subst_identity());
373 if let Some(trait_ref) = tcx.impl_trait_ref(def_id) {
374 find.visit_trait(trait_ref.subst_identity());
375 }
376 find.min
377 }
378 }
379 impl VisibilityLike for ty::Visibility {
380 const MAX: Self = ty::Visibility::Public;
new_min<const SHALLOW: bool>( find: &FindMin<'_, '_, Self, SHALLOW>, def_id: LocalDefId, ) -> Self381 fn new_min<const SHALLOW: bool>(
382 find: &FindMin<'_, '_, Self, SHALLOW>,
383 def_id: LocalDefId,
384 ) -> Self {
385 min(find.tcx.local_visibility(def_id), find.min, find.tcx)
386 }
387 }
388
389 impl VisibilityLike for EffectiveVisibility {
390 const MAX: Self = EffectiveVisibility::from_vis(ty::Visibility::Public);
new_min<const SHALLOW: bool>( find: &FindMin<'_, '_, Self, SHALLOW>, def_id: LocalDefId, ) -> Self391 fn new_min<const SHALLOW: bool>(
392 find: &FindMin<'_, '_, Self, SHALLOW>,
393 def_id: LocalDefId,
394 ) -> Self {
395 let effective_vis =
396 find.effective_visibilities.effective_vis(def_id).copied().unwrap_or_else(|| {
397 let private_vis =
398 ty::Visibility::Restricted(find.tcx.parent_module_from_def_id(def_id));
399 EffectiveVisibility::from_vis(private_vis)
400 });
401
402 effective_vis.min(find.min, find.tcx)
403 }
404 }
405
406 ////////////////////////////////////////////////////////////////////////////////
407 /// The embargo visitor, used to determine the exports of the AST.
408 ////////////////////////////////////////////////////////////////////////////////
409
410 struct EmbargoVisitor<'tcx> {
411 tcx: TyCtxt<'tcx>,
412
413 /// Effective visibilities for reachable nodes.
414 effective_visibilities: EffectiveVisibilities,
415 /// A set of pairs corresponding to modules, where the first module is
416 /// reachable via a macro that's defined in the second module. This cannot
417 /// be represented as reachable because it can't handle the following case:
418 ///
419 /// pub mod n { // Should be `Public`
420 /// pub(crate) mod p { // Should *not* be accessible
421 /// pub fn f() -> i32 { 12 } // Must be `Reachable`
422 /// }
423 /// }
424 /// pub macro m() {
425 /// n::p::f()
426 /// }
427 macro_reachable: FxHashSet<(LocalDefId, LocalDefId)>,
428 /// Preliminary pass for marking all underlying types of `impl Trait`s as reachable.
429 impl_trait_pass: bool,
430 /// Has something changed in the level map?
431 changed: bool,
432 }
433
434 struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> {
435 effective_vis: EffectiveVisibility,
436 item_def_id: LocalDefId,
437 ev: &'a mut EmbargoVisitor<'tcx>,
438 level: Level,
439 }
440
441 impl<'tcx> EmbargoVisitor<'tcx> {
get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility>442 fn get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility> {
443 self.effective_visibilities.effective_vis(def_id).copied()
444 }
445
446 // Updates node effective visibility.
update( &mut self, def_id: LocalDefId, inherited_effective_vis: EffectiveVisibility, level: Level, )447 fn update(
448 &mut self,
449 def_id: LocalDefId,
450 inherited_effective_vis: EffectiveVisibility,
451 level: Level,
452 ) {
453 let nominal_vis = self.tcx.local_visibility(def_id);
454 self.update_eff_vis(def_id, inherited_effective_vis, Some(nominal_vis), level);
455 }
456
update_eff_vis( &mut self, def_id: LocalDefId, inherited_effective_vis: EffectiveVisibility, max_vis: Option<ty::Visibility>, level: Level, )457 fn update_eff_vis(
458 &mut self,
459 def_id: LocalDefId,
460 inherited_effective_vis: EffectiveVisibility,
461 max_vis: Option<ty::Visibility>,
462 level: Level,
463 ) {
464 let private_vis = ty::Visibility::Restricted(self.tcx.parent_module_from_def_id(def_id));
465 if max_vis != Some(private_vis) {
466 self.changed |= self.effective_visibilities.update(
467 def_id,
468 max_vis,
469 || private_vis,
470 inherited_effective_vis,
471 level,
472 self.tcx,
473 );
474 }
475 }
476
reach( &mut self, def_id: LocalDefId, effective_vis: EffectiveVisibility, ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx>477 fn reach(
478 &mut self,
479 def_id: LocalDefId,
480 effective_vis: EffectiveVisibility,
481 ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
482 ReachEverythingInTheInterfaceVisitor {
483 effective_vis,
484 item_def_id: def_id,
485 ev: self,
486 level: Level::Reachable,
487 }
488 }
489
reach_through_impl_trait( &mut self, def_id: LocalDefId, effective_vis: EffectiveVisibility, ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx>490 fn reach_through_impl_trait(
491 &mut self,
492 def_id: LocalDefId,
493 effective_vis: EffectiveVisibility,
494 ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
495 ReachEverythingInTheInterfaceVisitor {
496 effective_vis,
497 item_def_id: def_id,
498 ev: self,
499 level: Level::ReachableThroughImplTrait,
500 }
501 }
502
503 // We have to make sure that the items that macros might reference
504 // are reachable, since they might be exported transitively.
update_reachability_from_macro( &mut self, local_def_id: LocalDefId, md: &MacroDef, macro_ev: EffectiveVisibility, )505 fn update_reachability_from_macro(
506 &mut self,
507 local_def_id: LocalDefId,
508 md: &MacroDef,
509 macro_ev: EffectiveVisibility,
510 ) {
511 // Non-opaque macros cannot make other items more accessible than they already are.
512 let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
513 let attrs = self.tcx.hir().attrs(hir_id);
514 if attr::find_transparency(attrs, md.macro_rules).0 != Transparency::Opaque {
515 return;
516 }
517
518 let macro_module_def_id = self.tcx.local_parent(local_def_id);
519 if self.tcx.opt_def_kind(macro_module_def_id) != Some(DefKind::Mod) {
520 // The macro's parent doesn't correspond to a `mod`, return early (#63164, #65252).
521 return;
522 }
523
524 if self.effective_visibilities.public_at_level(local_def_id).is_none() {
525 return;
526 }
527
528 // Since we are starting from an externally visible module,
529 // all the parents in the loop below are also guaranteed to be modules.
530 let mut module_def_id = macro_module_def_id;
531 loop {
532 let changed_reachability =
533 self.update_macro_reachable(module_def_id, macro_module_def_id, macro_ev);
534 if changed_reachability || module_def_id == CRATE_DEF_ID {
535 break;
536 }
537 module_def_id = self.tcx.local_parent(module_def_id);
538 }
539 }
540
541 /// Updates the item as being reachable through a macro defined in the given
542 /// module. Returns `true` if the level has changed.
update_macro_reachable( &mut self, module_def_id: LocalDefId, defining_mod: LocalDefId, macro_ev: EffectiveVisibility, ) -> bool543 fn update_macro_reachable(
544 &mut self,
545 module_def_id: LocalDefId,
546 defining_mod: LocalDefId,
547 macro_ev: EffectiveVisibility,
548 ) -> bool {
549 if self.macro_reachable.insert((module_def_id, defining_mod)) {
550 self.update_macro_reachable_mod(module_def_id, defining_mod, macro_ev);
551 true
552 } else {
553 false
554 }
555 }
556
update_macro_reachable_mod( &mut self, module_def_id: LocalDefId, defining_mod: LocalDefId, macro_ev: EffectiveVisibility, )557 fn update_macro_reachable_mod(
558 &mut self,
559 module_def_id: LocalDefId,
560 defining_mod: LocalDefId,
561 macro_ev: EffectiveVisibility,
562 ) {
563 let module = self.tcx.hir().get_module(module_def_id).0;
564 for item_id in module.item_ids {
565 let def_kind = self.tcx.def_kind(item_id.owner_id);
566 let vis = self.tcx.local_visibility(item_id.owner_id.def_id);
567 self.update_macro_reachable_def(
568 item_id.owner_id.def_id,
569 def_kind,
570 vis,
571 defining_mod,
572 macro_ev,
573 );
574 }
575 for child in self.tcx.module_children_local(module_def_id) {
576 // FIXME: Use module children for the logic above too.
577 if !child.reexport_chain.is_empty()
578 && child.vis.is_accessible_from(defining_mod, self.tcx)
579 && let Res::Def(def_kind, def_id) = child.res
580 && let Some(def_id) = def_id.as_local() {
581 let vis = self.tcx.local_visibility(def_id);
582 self.update_macro_reachable_def(def_id, def_kind, vis, defining_mod, macro_ev);
583 }
584 }
585 }
586
update_macro_reachable_def( &mut self, def_id: LocalDefId, def_kind: DefKind, vis: ty::Visibility, module: LocalDefId, macro_ev: EffectiveVisibility, )587 fn update_macro_reachable_def(
588 &mut self,
589 def_id: LocalDefId,
590 def_kind: DefKind,
591 vis: ty::Visibility,
592 module: LocalDefId,
593 macro_ev: EffectiveVisibility,
594 ) {
595 self.update(def_id, macro_ev, Level::Reachable);
596 match def_kind {
597 // No type privacy, so can be directly marked as reachable.
598 DefKind::Const | DefKind::Static(_) | DefKind::TraitAlias | DefKind::TyAlias => {
599 if vis.is_accessible_from(module, self.tcx) {
600 self.update(def_id, macro_ev, Level::Reachable);
601 }
602 }
603
604 // Hygiene isn't really implemented for `macro_rules!` macros at the
605 // moment. Accordingly, marking them as reachable is unwise. `macro` macros
606 // have normal hygiene, so we can treat them like other items without type
607 // privacy and mark them reachable.
608 DefKind::Macro(_) => {
609 let item = self.tcx.hir().expect_item(def_id);
610 if let hir::ItemKind::Macro(MacroDef { macro_rules: false, .. }, _) = item.kind {
611 if vis.is_accessible_from(module, self.tcx) {
612 self.update(def_id, macro_ev, Level::Reachable);
613 }
614 }
615 }
616
617 // We can't use a module name as the final segment of a path, except
618 // in use statements. Since re-export checking doesn't consider
619 // hygiene these don't need to be marked reachable. The contents of
620 // the module, however may be reachable.
621 DefKind::Mod => {
622 if vis.is_accessible_from(module, self.tcx) {
623 self.update_macro_reachable(def_id, module, macro_ev);
624 }
625 }
626
627 DefKind::Struct | DefKind::Union => {
628 // While structs and unions have type privacy, their fields do not.
629 let item = self.tcx.hir().expect_item(def_id);
630 if let hir::ItemKind::Struct(ref struct_def, _)
631 | hir::ItemKind::Union(ref struct_def, _) = item.kind
632 {
633 for field in struct_def.fields() {
634 let field_vis = self.tcx.local_visibility(field.def_id);
635 if field_vis.is_accessible_from(module, self.tcx) {
636 self.reach(field.def_id, macro_ev).ty();
637 }
638 }
639 } else {
640 bug!("item {:?} with DefKind {:?}", item, def_kind);
641 }
642 }
643
644 // These have type privacy, so are not reachable unless they're
645 // public, or are not namespaced at all.
646 DefKind::AssocConst
647 | DefKind::AssocTy
648 | DefKind::ConstParam
649 | DefKind::Ctor(_, _)
650 | DefKind::Enum
651 | DefKind::ForeignTy
652 | DefKind::Fn
653 | DefKind::OpaqueTy
654 | DefKind::ImplTraitPlaceholder
655 | DefKind::AssocFn
656 | DefKind::Trait
657 | DefKind::TyParam
658 | DefKind::Variant
659 | DefKind::LifetimeParam
660 | DefKind::ExternCrate
661 | DefKind::Use
662 | DefKind::ForeignMod
663 | DefKind::AnonConst
664 | DefKind::InlineConst
665 | DefKind::Field
666 | DefKind::GlobalAsm
667 | DefKind::Impl { .. }
668 | DefKind::Closure
669 | DefKind::Generator => (),
670 }
671 }
672 }
673
674 impl<'tcx> Visitor<'tcx> for EmbargoVisitor<'tcx> {
visit_item(&mut self, item: &'tcx hir::Item<'tcx>)675 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
676 if self.impl_trait_pass
677 && let hir::ItemKind::OpaqueTy(ref opaque) = item.kind
678 && !opaque.in_trait {
679 // FIXME: This is some serious pessimization intended to workaround deficiencies
680 // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time
681 // reachable if they are returned via `impl Trait`, even from private functions.
682 let pub_ev = EffectiveVisibility::from_vis(ty::Visibility::Public);
683 self.reach_through_impl_trait(item.owner_id.def_id, pub_ev)
684 .generics()
685 .predicates()
686 .ty();
687 return;
688 }
689
690 // Update levels of nested things and mark all items
691 // in interfaces of reachable items as reachable.
692 let item_ev = self.get(item.owner_id.def_id);
693 match item.kind {
694 // The interface is empty, and no nested items.
695 hir::ItemKind::Use(..)
696 | hir::ItemKind::ExternCrate(..)
697 | hir::ItemKind::GlobalAsm(..) => {}
698 // The interface is empty, and all nested items are processed by `visit_item`.
699 hir::ItemKind::Mod(..) | hir::ItemKind::OpaqueTy(..) => {}
700 hir::ItemKind::Macro(ref macro_def, _) => {
701 if let Some(item_ev) = item_ev {
702 self.update_reachability_from_macro(item.owner_id.def_id, macro_def, item_ev);
703 }
704 }
705 hir::ItemKind::Const(..)
706 | hir::ItemKind::Static(..)
707 | hir::ItemKind::Fn(..)
708 | hir::ItemKind::TyAlias(..) => {
709 if let Some(item_ev) = item_ev {
710 self.reach(item.owner_id.def_id, item_ev).generics().predicates().ty();
711 }
712 }
713 hir::ItemKind::Trait(.., trait_item_refs) => {
714 if let Some(item_ev) = item_ev {
715 self.reach(item.owner_id.def_id, item_ev).generics().predicates();
716
717 for trait_item_ref in trait_item_refs {
718 self.update(trait_item_ref.id.owner_id.def_id, item_ev, Level::Reachable);
719
720 let tcx = self.tcx;
721 let mut reach = self.reach(trait_item_ref.id.owner_id.def_id, item_ev);
722 reach.generics().predicates();
723
724 if trait_item_ref.kind == AssocItemKind::Type
725 && !tcx.defaultness(trait_item_ref.id.owner_id).has_value()
726 {
727 // No type to visit.
728 } else {
729 reach.ty();
730 }
731 }
732 }
733 }
734 hir::ItemKind::TraitAlias(..) => {
735 if let Some(item_ev) = item_ev {
736 self.reach(item.owner_id.def_id, item_ev).generics().predicates();
737 }
738 }
739 hir::ItemKind::Impl(ref impl_) => {
740 // Type inference is very smart sometimes. It can make an impl reachable even some
741 // components of its type or trait are unreachable. E.g. methods of
742 // `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }`
743 // can be usable from other crates (#57264). So we skip substs when calculating
744 // reachability and consider an impl reachable if its "shallow" type and trait are
745 // reachable.
746 //
747 // The assumption we make here is that type-inference won't let you use an impl
748 // without knowing both "shallow" version of its self type and "shallow" version of
749 // its trait if it exists (which require reaching the `DefId`s in them).
750 let item_ev = EffectiveVisibility::of_impl::<true>(
751 item.owner_id.def_id,
752 self.tcx,
753 &self.effective_visibilities,
754 );
755
756 self.update_eff_vis(item.owner_id.def_id, item_ev, None, Level::Direct);
757
758 self.reach(item.owner_id.def_id, item_ev).generics().predicates().ty().trait_ref();
759
760 for impl_item_ref in impl_.items {
761 let def_id = impl_item_ref.id.owner_id.def_id;
762 let max_vis =
763 impl_.of_trait.is_none().then(|| self.tcx.local_visibility(def_id));
764 self.update_eff_vis(def_id, item_ev, max_vis, Level::Direct);
765
766 if let Some(impl_item_ev) = self.get(def_id) {
767 self.reach(def_id, impl_item_ev).generics().predicates().ty();
768 }
769 }
770 }
771 hir::ItemKind::Enum(ref def, _) => {
772 if let Some(item_ev) = item_ev {
773 self.reach(item.owner_id.def_id, item_ev).generics().predicates();
774 }
775 for variant in def.variants {
776 if let Some(item_ev) = item_ev {
777 self.update(variant.def_id, item_ev, Level::Reachable);
778 }
779
780 if let Some(variant_ev) = self.get(variant.def_id) {
781 if let Some(ctor_def_id) = variant.data.ctor_def_id() {
782 self.update(ctor_def_id, variant_ev, Level::Reachable);
783 }
784 for field in variant.data.fields() {
785 self.update(field.def_id, variant_ev, Level::Reachable);
786 self.reach(field.def_id, variant_ev).ty();
787 }
788 // Corner case: if the variant is reachable, but its
789 // enum is not, make the enum reachable as well.
790 self.reach(item.owner_id.def_id, variant_ev).ty();
791 }
792 if let Some(ctor_def_id) = variant.data.ctor_def_id() {
793 if let Some(ctor_ev) = self.get(ctor_def_id) {
794 self.reach(item.owner_id.def_id, ctor_ev).ty();
795 }
796 }
797 }
798 }
799 hir::ItemKind::ForeignMod { items, .. } => {
800 for foreign_item in items {
801 if let Some(foreign_item_ev) = self.get(foreign_item.id.owner_id.def_id) {
802 self.reach(foreign_item.id.owner_id.def_id, foreign_item_ev)
803 .generics()
804 .predicates()
805 .ty();
806 }
807 }
808 }
809 hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
810 if let Some(item_ev) = item_ev {
811 self.reach(item.owner_id.def_id, item_ev).generics().predicates();
812 for field in struct_def.fields() {
813 self.update(field.def_id, item_ev, Level::Reachable);
814 if let Some(field_ev) = self.get(field.def_id) {
815 self.reach(field.def_id, field_ev).ty();
816 }
817 }
818 }
819 if let Some(ctor_def_id) = struct_def.ctor_def_id() {
820 if let Some(item_ev) = item_ev {
821 self.update(ctor_def_id, item_ev, Level::Reachable);
822 }
823 if let Some(ctor_ev) = self.get(ctor_def_id) {
824 self.reach(item.owner_id.def_id, ctor_ev).ty();
825 }
826 }
827 }
828 }
829 }
830 }
831
832 impl ReachEverythingInTheInterfaceVisitor<'_, '_> {
generics(&mut self) -> &mut Self833 fn generics(&mut self) -> &mut Self {
834 for param in &self.ev.tcx.generics_of(self.item_def_id).params {
835 match param.kind {
836 GenericParamDefKind::Lifetime => {}
837 GenericParamDefKind::Type { has_default, .. } => {
838 if has_default {
839 self.visit(self.ev.tcx.type_of(param.def_id).subst_identity());
840 }
841 }
842 GenericParamDefKind::Const { has_default } => {
843 self.visit(self.ev.tcx.type_of(param.def_id).subst_identity());
844 if has_default {
845 self.visit(self.ev.tcx.const_param_default(param.def_id).subst_identity());
846 }
847 }
848 }
849 }
850 self
851 }
852
predicates(&mut self) -> &mut Self853 fn predicates(&mut self) -> &mut Self {
854 self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id));
855 self
856 }
857
ty(&mut self) -> &mut Self858 fn ty(&mut self) -> &mut Self {
859 self.visit(self.ev.tcx.type_of(self.item_def_id).subst_identity());
860 self
861 }
862
trait_ref(&mut self) -> &mut Self863 fn trait_ref(&mut self) -> &mut Self {
864 if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
865 self.visit_trait(trait_ref.subst_identity());
866 }
867 self
868 }
869 }
870
871 impl<'tcx> DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
tcx(&self) -> TyCtxt<'tcx>872 fn tcx(&self) -> TyCtxt<'tcx> {
873 self.ev.tcx
874 }
visit_def_id( &mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display, ) -> ControlFlow<Self::BreakTy>875 fn visit_def_id(
876 &mut self,
877 def_id: DefId,
878 _kind: &str,
879 _descr: &dyn fmt::Display,
880 ) -> ControlFlow<Self::BreakTy> {
881 if let Some(def_id) = def_id.as_local() {
882 // All effective visibilities except `reachable_through_impl_trait` are limited to
883 // nominal visibility. If any type or trait is leaked farther than that, it will
884 // produce type privacy errors on any use, so we don't consider it leaked.
885 let max_vis = (self.level != Level::ReachableThroughImplTrait)
886 .then(|| self.ev.tcx.local_visibility(def_id));
887 self.ev.update_eff_vis(def_id, self.effective_vis, max_vis, self.level);
888 }
889 ControlFlow::Continue(())
890 }
891 }
892
893 ////////////////////////////////////////////////////////////////////////////////
894 /// Visitor, used for EffectiveVisibilities table checking
895 ////////////////////////////////////////////////////////////////////////////////
896 pub struct TestReachabilityVisitor<'tcx, 'a> {
897 tcx: TyCtxt<'tcx>,
898 effective_visibilities: &'a EffectiveVisibilities,
899 }
900
vis_to_string<'tcx>(def_id: LocalDefId, vis: ty::Visibility, tcx: TyCtxt<'tcx>) -> String901 fn vis_to_string<'tcx>(def_id: LocalDefId, vis: ty::Visibility, tcx: TyCtxt<'tcx>) -> String {
902 match vis {
903 ty::Visibility::Restricted(restricted_id) => {
904 if restricted_id.is_top_level_module() {
905 "pub(crate)".to_string()
906 } else if restricted_id == tcx.parent_module_from_def_id(def_id) {
907 "pub(self)".to_string()
908 } else {
909 format!("pub({})", tcx.item_name(restricted_id.to_def_id()))
910 }
911 }
912 ty::Visibility::Public => "pub".to_string(),
913 }
914 }
915
916 impl<'tcx, 'a> TestReachabilityVisitor<'tcx, 'a> {
effective_visibility_diagnostic(&mut self, def_id: LocalDefId)917 fn effective_visibility_diagnostic(&mut self, def_id: LocalDefId) {
918 if self.tcx.has_attr(def_id, sym::rustc_effective_visibility) {
919 let mut error_msg = String::new();
920 let span = self.tcx.def_span(def_id.to_def_id());
921 if let Some(effective_vis) = self.effective_visibilities.effective_vis(def_id) {
922 for level in Level::all_levels() {
923 let vis_str = vis_to_string(def_id, *effective_vis.at_level(level), self.tcx);
924 if level != Level::Direct {
925 error_msg.push_str(", ");
926 }
927 error_msg.push_str(&format!("{level:?}: {vis_str}"));
928 }
929 } else {
930 error_msg.push_str("not in the table");
931 }
932 self.tcx.sess.emit_err(ReportEffectiveVisibility { span, descr: error_msg });
933 }
934 }
935 }
936
937 impl<'tcx, 'a> Visitor<'tcx> for TestReachabilityVisitor<'tcx, 'a> {
visit_item(&mut self, item: &'tcx hir::Item<'tcx>)938 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
939 self.effective_visibility_diagnostic(item.owner_id.def_id);
940
941 match item.kind {
942 hir::ItemKind::Enum(ref def, _) => {
943 for variant in def.variants.iter() {
944 self.effective_visibility_diagnostic(variant.def_id);
945 if let Some(ctor_def_id) = variant.data.ctor_def_id() {
946 self.effective_visibility_diagnostic(ctor_def_id);
947 }
948 for field in variant.data.fields() {
949 self.effective_visibility_diagnostic(field.def_id);
950 }
951 }
952 }
953 hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => {
954 if let Some(ctor_def_id) = def.ctor_def_id() {
955 self.effective_visibility_diagnostic(ctor_def_id);
956 }
957 for field in def.fields() {
958 self.effective_visibility_diagnostic(field.def_id);
959 }
960 }
961 _ => {}
962 }
963 }
964
visit_trait_item(&mut self, item: &'tcx hir::TraitItem<'tcx>)965 fn visit_trait_item(&mut self, item: &'tcx hir::TraitItem<'tcx>) {
966 self.effective_visibility_diagnostic(item.owner_id.def_id);
967 }
visit_impl_item(&mut self, item: &'tcx hir::ImplItem<'tcx>)968 fn visit_impl_item(&mut self, item: &'tcx hir::ImplItem<'tcx>) {
969 self.effective_visibility_diagnostic(item.owner_id.def_id);
970 }
visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>)971 fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
972 self.effective_visibility_diagnostic(item.owner_id.def_id);
973 }
974 }
975
976 //////////////////////////////////////////////////////////////////////////////////////
977 /// Name privacy visitor, checks privacy and reports violations.
978 /// Most of name privacy checks are performed during the main resolution phase,
979 /// or later in type checking when field accesses and associated items are resolved.
980 /// This pass performs remaining checks for fields in struct expressions and patterns.
981 //////////////////////////////////////////////////////////////////////////////////////
982
983 struct NamePrivacyVisitor<'tcx> {
984 tcx: TyCtxt<'tcx>,
985 maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
986 current_item: LocalDefId,
987 }
988
989 impl<'tcx> NamePrivacyVisitor<'tcx> {
990 /// Gets the type-checking results for the current body.
991 /// As this will ICE if called outside bodies, only call when working with
992 /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
993 #[track_caller]
typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx>994 fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
995 self.maybe_typeck_results
996 .expect("`NamePrivacyVisitor::typeck_results` called outside of body")
997 }
998
999 // Checks that a field in a struct constructor (expression or pattern) is accessible.
check_field( &mut self, use_ctxt: Span, span: Span, def: ty::AdtDef<'tcx>, field: &'tcx ty::FieldDef, in_update_syntax: bool, )1000 fn check_field(
1001 &mut self,
1002 use_ctxt: Span, // syntax context of the field name at the use site
1003 span: Span, // span of the field pattern, e.g., `x: 0`
1004 def: ty::AdtDef<'tcx>, // definition of the struct or enum
1005 field: &'tcx ty::FieldDef,
1006 in_update_syntax: bool,
1007 ) {
1008 if def.is_enum() {
1009 return;
1010 }
1011
1012 // definition of the field
1013 let ident = Ident::new(kw::Empty, use_ctxt);
1014 let hir_id = self.tcx.hir().local_def_id_to_hir_id(self.current_item);
1015 let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did(), hir_id).1;
1016 if !field.vis.is_accessible_from(def_id, self.tcx) {
1017 self.tcx.sess.emit_err(FieldIsPrivate {
1018 span,
1019 field_name: field.name,
1020 variant_descr: def.variant_descr(),
1021 def_path_str: self.tcx.def_path_str(def.did()),
1022 label: if in_update_syntax {
1023 FieldIsPrivateLabel::IsUpdateSyntax { span, field_name: field.name }
1024 } else {
1025 FieldIsPrivateLabel::Other { span }
1026 },
1027 });
1028 }
1029 }
1030 }
1031
1032 impl<'tcx> Visitor<'tcx> for NamePrivacyVisitor<'tcx> {
1033 type NestedFilter = nested_filter::All;
1034
1035 /// We want to visit items in the context of their containing
1036 /// module and so forth, so supply a crate for doing a deep walk.
nested_visit_map(&mut self) -> Self::Map1037 fn nested_visit_map(&mut self) -> Self::Map {
1038 self.tcx.hir()
1039 }
1040
visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId)1041 fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
1042 // Don't visit nested modules, since we run a separate visitor walk
1043 // for each module in `effective_visibilities`
1044 }
1045
visit_nested_body(&mut self, body: hir::BodyId)1046 fn visit_nested_body(&mut self, body: hir::BodyId) {
1047 let old_maybe_typeck_results =
1048 self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
1049 let body = self.tcx.hir().body(body);
1050 self.visit_body(body);
1051 self.maybe_typeck_results = old_maybe_typeck_results;
1052 }
1053
visit_item(&mut self, item: &'tcx hir::Item<'tcx>)1054 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1055 let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id);
1056 intravisit::walk_item(self, item);
1057 self.current_item = orig_current_item;
1058 }
1059
visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>)1060 fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
1061 if let hir::ExprKind::Struct(qpath, fields, ref base) = expr.kind {
1062 let res = self.typeck_results().qpath_res(qpath, expr.hir_id);
1063 let adt = self.typeck_results().expr_ty(expr).ty_adt_def().unwrap();
1064 let variant = adt.variant_of_res(res);
1065 if let Some(base) = *base {
1066 // If the expression uses FRU we need to make sure all the unmentioned fields
1067 // are checked for privacy (RFC 736). Rather than computing the set of
1068 // unmentioned fields, just check them all.
1069 for (vf_index, variant_field) in variant.fields.iter_enumerated() {
1070 let field = fields
1071 .iter()
1072 .find(|f| self.typeck_results().field_index(f.hir_id) == vf_index);
1073 let (use_ctxt, span) = match field {
1074 Some(field) => (field.ident.span, field.span),
1075 None => (base.span, base.span),
1076 };
1077 self.check_field(use_ctxt, span, adt, variant_field, true);
1078 }
1079 } else {
1080 for field in fields {
1081 let use_ctxt = field.ident.span;
1082 let index = self.typeck_results().field_index(field.hir_id);
1083 self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
1084 }
1085 }
1086 }
1087
1088 intravisit::walk_expr(self, expr);
1089 }
1090
visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>)1091 fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) {
1092 if let PatKind::Struct(ref qpath, fields, _) = pat.kind {
1093 let res = self.typeck_results().qpath_res(qpath, pat.hir_id);
1094 let adt = self.typeck_results().pat_ty(pat).ty_adt_def().unwrap();
1095 let variant = adt.variant_of_res(res);
1096 for field in fields {
1097 let use_ctxt = field.ident.span;
1098 let index = self.typeck_results().field_index(field.hir_id);
1099 self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false);
1100 }
1101 }
1102
1103 intravisit::walk_pat(self, pat);
1104 }
1105 }
1106
1107 ////////////////////////////////////////////////////////////////////////////////////////////
1108 /// Type privacy visitor, checks types for privacy and reports violations.
1109 /// Both explicitly written types and inferred types of expressions and patterns are checked.
1110 /// Checks are performed on "semantic" types regardless of names and their hygiene.
1111 ////////////////////////////////////////////////////////////////////////////////////////////
1112
1113 struct TypePrivacyVisitor<'tcx> {
1114 tcx: TyCtxt<'tcx>,
1115 maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
1116 current_item: LocalDefId,
1117 span: Span,
1118 }
1119
1120 impl<'tcx> TypePrivacyVisitor<'tcx> {
1121 /// Gets the type-checking results for the current body.
1122 /// As this will ICE if called outside bodies, only call when working with
1123 /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
1124 #[track_caller]
typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx>1125 fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
1126 self.maybe_typeck_results
1127 .expect("`TypePrivacyVisitor::typeck_results` called outside of body")
1128 }
1129
item_is_accessible(&self, did: DefId) -> bool1130 fn item_is_accessible(&self, did: DefId) -> bool {
1131 self.tcx.visibility(did).is_accessible_from(self.current_item, self.tcx)
1132 }
1133
1134 // Take node-id of an expression or pattern and check its type for privacy.
check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool1135 fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool {
1136 self.span = span;
1137 let typeck_results = self.typeck_results();
1138 let result: ControlFlow<()> = try {
1139 self.visit(typeck_results.node_type(id))?;
1140 self.visit(typeck_results.node_substs(id))?;
1141 if let Some(adjustments) = typeck_results.adjustments().get(id) {
1142 adjustments.iter().try_for_each(|adjustment| self.visit(adjustment.target))?;
1143 }
1144 };
1145 result.is_break()
1146 }
1147
check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool1148 fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1149 let is_error = !self.item_is_accessible(def_id);
1150 if is_error {
1151 self.tcx.sess.emit_err(ItemIsPrivate { span: self.span, kind, descr: descr.into() });
1152 }
1153 is_error
1154 }
1155 }
1156
1157 impl<'tcx> Visitor<'tcx> for TypePrivacyVisitor<'tcx> {
1158 type NestedFilter = nested_filter::All;
1159
1160 /// We want to visit items in the context of their containing
1161 /// module and so forth, so supply a crate for doing a deep walk.
nested_visit_map(&mut self) -> Self::Map1162 fn nested_visit_map(&mut self) -> Self::Map {
1163 self.tcx.hir()
1164 }
1165
visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId)1166 fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) {
1167 // Don't visit nested modules, since we run a separate visitor walk
1168 // for each module in `effective_visibilities`
1169 }
1170
visit_nested_body(&mut self, body: hir::BodyId)1171 fn visit_nested_body(&mut self, body: hir::BodyId) {
1172 let old_maybe_typeck_results =
1173 self.maybe_typeck_results.replace(self.tcx.typeck_body(body));
1174 let body = self.tcx.hir().body(body);
1175 self.visit_body(body);
1176 self.maybe_typeck_results = old_maybe_typeck_results;
1177 }
1178
visit_generic_arg(&mut self, generic_arg: &'tcx hir::GenericArg<'tcx>)1179 fn visit_generic_arg(&mut self, generic_arg: &'tcx hir::GenericArg<'tcx>) {
1180 match generic_arg {
1181 hir::GenericArg::Type(t) => self.visit_ty(t),
1182 hir::GenericArg::Infer(inf) => self.visit_infer(inf),
1183 hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {}
1184 }
1185 }
1186
visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>)1187 fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) {
1188 self.span = hir_ty.span;
1189 if let Some(typeck_results) = self.maybe_typeck_results {
1190 // Types in bodies.
1191 if self.visit(typeck_results.node_type(hir_ty.hir_id)).is_break() {
1192 return;
1193 }
1194 } else {
1195 // Types in signatures.
1196 // FIXME: This is very ineffective. Ideally each HIR type should be converted
1197 // into a semantic type only once and the result should be cached somehow.
1198 if self.visit(rustc_hir_analysis::hir_ty_to_ty(self.tcx, hir_ty)).is_break() {
1199 return;
1200 }
1201 }
1202
1203 intravisit::walk_ty(self, hir_ty);
1204 }
1205
visit_infer(&mut self, inf: &'tcx hir::InferArg)1206 fn visit_infer(&mut self, inf: &'tcx hir::InferArg) {
1207 self.span = inf.span;
1208 if let Some(typeck_results) = self.maybe_typeck_results {
1209 if let Some(ty) = typeck_results.node_type_opt(inf.hir_id) {
1210 if self.visit(ty).is_break() {
1211 return;
1212 }
1213 } else {
1214 // We don't do anything for const infers here.
1215 }
1216 } else {
1217 bug!("visit_infer without typeck_results");
1218 }
1219 intravisit::walk_inf(self, inf);
1220 }
1221
visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef<'tcx>)1222 fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef<'tcx>) {
1223 self.span = trait_ref.path.span;
1224 if self.maybe_typeck_results.is_none() {
1225 // Avoid calling `hir_trait_to_predicates` in bodies, it will ICE.
1226 // The traits' privacy in bodies is already checked as a part of trait object types.
1227 let bounds = rustc_hir_analysis::hir_trait_to_predicates(
1228 self.tcx,
1229 trait_ref,
1230 // NOTE: This isn't really right, but the actual type doesn't matter here. It's
1231 // just required by `ty::TraitRef`.
1232 self.tcx.types.never,
1233 );
1234
1235 for (clause, _) in bounds.clauses() {
1236 match clause.kind().skip_binder() {
1237 ty::ClauseKind::Trait(trait_predicate) => {
1238 if self.visit_trait(trait_predicate.trait_ref).is_break() {
1239 return;
1240 }
1241 }
1242 ty::ClauseKind::Projection(proj_predicate) => {
1243 let term = self.visit(proj_predicate.term);
1244 if term.is_break()
1245 || self.visit_projection_ty(proj_predicate.projection_ty).is_break()
1246 {
1247 return;
1248 }
1249 }
1250 _ => {}
1251 }
1252 }
1253 }
1254
1255 intravisit::walk_trait_ref(self, trait_ref);
1256 }
1257
1258 // Check types of expressions
visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>)1259 fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
1260 if self.check_expr_pat_type(expr.hir_id, expr.span) {
1261 // Do not check nested expressions if the error already happened.
1262 return;
1263 }
1264 match expr.kind {
1265 hir::ExprKind::Assign(_, rhs, _) | hir::ExprKind::Match(rhs, ..) => {
1266 // Do not report duplicate errors for `x = y` and `match x { ... }`.
1267 if self.check_expr_pat_type(rhs.hir_id, rhs.span) {
1268 return;
1269 }
1270 }
1271 hir::ExprKind::MethodCall(segment, ..) => {
1272 // Method calls have to be checked specially.
1273 self.span = segment.ident.span;
1274 if let Some(def_id) = self.typeck_results().type_dependent_def_id(expr.hir_id) {
1275 if self.visit(self.tcx.type_of(def_id).subst_identity()).is_break() {
1276 return;
1277 }
1278 } else {
1279 self.tcx
1280 .sess
1281 .delay_span_bug(expr.span, "no type-dependent def for method call");
1282 }
1283 }
1284 _ => {}
1285 }
1286
1287 intravisit::walk_expr(self, expr);
1288 }
1289
1290 // Prohibit access to associated items with insufficient nominal visibility.
1291 //
1292 // Additionally, until better reachability analysis for macros 2.0 is available,
1293 // we prohibit access to private statics from other crates, this allows to give
1294 // more code internal visibility at link time. (Access to private functions
1295 // is already prohibited by type privacy for function types.)
visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span)1296 fn visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span) {
1297 let def = match qpath {
1298 hir::QPath::Resolved(_, path) => match path.res {
1299 Res::Def(kind, def_id) => Some((kind, def_id)),
1300 _ => None,
1301 },
1302 hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => self
1303 .maybe_typeck_results
1304 .and_then(|typeck_results| typeck_results.type_dependent_def(id)),
1305 };
1306 let def = def.filter(|(kind, _)| {
1307 matches!(
1308 kind,
1309 DefKind::AssocFn | DefKind::AssocConst | DefKind::AssocTy | DefKind::Static(_)
1310 )
1311 });
1312 if let Some((kind, def_id)) = def {
1313 let is_local_static =
1314 if let DefKind::Static(_) = kind { def_id.is_local() } else { false };
1315 if !self.item_is_accessible(def_id) && !is_local_static {
1316 let name = match *qpath {
1317 hir::QPath::LangItem(it, ..) => {
1318 self.tcx.lang_items().get(it).map(|did| self.tcx.def_path_str(did))
1319 }
1320 hir::QPath::Resolved(_, path) => Some(self.tcx.def_path_str(path.res.def_id())),
1321 hir::QPath::TypeRelative(_, segment) => Some(segment.ident.to_string()),
1322 };
1323 let kind = self.tcx.def_descr(def_id);
1324 let sess = self.tcx.sess;
1325 let _ = match name {
1326 Some(name) => {
1327 sess.emit_err(ItemIsPrivate { span, kind, descr: (&name).into() })
1328 }
1329 None => sess.emit_err(UnnamedItemIsPrivate { span, kind }),
1330 };
1331 return;
1332 }
1333 }
1334
1335 intravisit::walk_qpath(self, qpath, id);
1336 }
1337
1338 // Check types of patterns.
visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>)1339 fn visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>) {
1340 if self.check_expr_pat_type(pattern.hir_id, pattern.span) {
1341 // Do not check nested patterns if the error already happened.
1342 return;
1343 }
1344
1345 intravisit::walk_pat(self, pattern);
1346 }
1347
visit_local(&mut self, local: &'tcx hir::Local<'tcx>)1348 fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) {
1349 if let Some(init) = local.init {
1350 if self.check_expr_pat_type(init.hir_id, init.span) {
1351 // Do not report duplicate errors for `let x = y`.
1352 return;
1353 }
1354 }
1355
1356 intravisit::walk_local(self, local);
1357 }
1358
1359 // Check types in item interfaces.
visit_item(&mut self, item: &'tcx hir::Item<'tcx>)1360 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1361 let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id);
1362 let old_maybe_typeck_results = self.maybe_typeck_results.take();
1363 intravisit::walk_item(self, item);
1364 self.maybe_typeck_results = old_maybe_typeck_results;
1365 self.current_item = orig_current_item;
1366 }
1367 }
1368
1369 impl<'tcx> DefIdVisitor<'tcx> for TypePrivacyVisitor<'tcx> {
tcx(&self) -> TyCtxt<'tcx>1370 fn tcx(&self) -> TyCtxt<'tcx> {
1371 self.tcx
1372 }
visit_def_id( &mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display, ) -> ControlFlow<Self::BreakTy>1373 fn visit_def_id(
1374 &mut self,
1375 def_id: DefId,
1376 kind: &str,
1377 descr: &dyn fmt::Display,
1378 ) -> ControlFlow<Self::BreakTy> {
1379 if self.check_def_id(def_id, kind, descr) {
1380 ControlFlow::Break(())
1381 } else {
1382 ControlFlow::Continue(())
1383 }
1384 }
1385 }
1386
1387 ///////////////////////////////////////////////////////////////////////////////
1388 /// Obsolete visitors for checking for private items in public interfaces.
1389 /// These visitors are supposed to be kept in frozen state and produce an
1390 /// "old error node set". For backward compatibility the new visitor reports
1391 /// warnings instead of hard errors when the erroneous node is not in this old set.
1392 ///////////////////////////////////////////////////////////////////////////////
1393
1394 struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1395 tcx: TyCtxt<'tcx>,
1396 effective_visibilities: &'a EffectiveVisibilities,
1397 in_variant: bool,
1398 // Set of errors produced by this obsolete visitor.
1399 old_error_set: HirIdSet,
1400 }
1401
1402 struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
1403 inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>,
1404 /// Whether the type refers to private types.
1405 contains_private: bool,
1406 /// Whether we've recurred at all (i.e., if we're pointing at the
1407 /// first type on which `visit_ty` was called).
1408 at_outer_type: bool,
1409 /// Whether that first type is a public path.
1410 outer_type_is_public_path: bool,
1411 }
1412
1413 impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
path_is_private_type(&self, path: &hir::Path<'_>) -> bool1414 fn path_is_private_type(&self, path: &hir::Path<'_>) -> bool {
1415 let did = match path.res {
1416 Res::PrimTy(..) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::Err => {
1417 return false;
1418 }
1419 res => res.def_id(),
1420 };
1421
1422 // A path can only be private if:
1423 // it's in this crate...
1424 if let Some(did) = did.as_local() {
1425 // .. and it corresponds to a private type in the AST (this returns
1426 // `None` for type parameters).
1427 match self.tcx.hir().find(self.tcx.hir().local_def_id_to_hir_id(did)) {
1428 Some(Node::Item(_)) => !self.tcx.visibility(did).is_public(),
1429 Some(_) | None => false,
1430 }
1431 } else {
1432 false
1433 }
1434 }
1435
trait_is_public(&self, trait_id: LocalDefId) -> bool1436 fn trait_is_public(&self, trait_id: LocalDefId) -> bool {
1437 // FIXME: this would preferably be using `exported_items`, but all
1438 // traits are exported currently (see `EmbargoVisitor.exported_trait`).
1439 self.effective_visibilities.is_directly_public(trait_id)
1440 }
1441
check_generic_bound(&mut self, bound: &hir::GenericBound<'_>)1442 fn check_generic_bound(&mut self, bound: &hir::GenericBound<'_>) {
1443 if let hir::GenericBound::Trait(ref trait_ref, _) = *bound {
1444 if self.path_is_private_type(trait_ref.trait_ref.path) {
1445 self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id);
1446 }
1447 }
1448 }
1449
item_is_public(&self, def_id: LocalDefId) -> bool1450 fn item_is_public(&self, def_id: LocalDefId) -> bool {
1451 self.effective_visibilities.is_reachable(def_id) || self.tcx.visibility(def_id).is_public()
1452 }
1453 }
1454
1455 impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> {
visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>)1456 fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) {
1457 match generic_arg {
1458 hir::GenericArg::Type(t) => self.visit_ty(t),
1459 hir::GenericArg::Infer(inf) => self.visit_ty(&inf.to_ty()),
1460 hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {}
1461 }
1462 }
1463
visit_ty(&mut self, ty: &hir::Ty<'_>)1464 fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
1465 if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = ty.kind {
1466 if self.inner.path_is_private_type(path) {
1467 self.contains_private = true;
1468 // Found what we're looking for, so let's stop working.
1469 return;
1470 }
1471 }
1472 if let hir::TyKind::Path(_) = ty.kind {
1473 if self.at_outer_type {
1474 self.outer_type_is_public_path = true;
1475 }
1476 }
1477 self.at_outer_type = false;
1478 intravisit::walk_ty(self, ty)
1479 }
1480
1481 // Don't want to recurse into `[, .. expr]`.
visit_expr(&mut self, _: &hir::Expr<'_>)1482 fn visit_expr(&mut self, _: &hir::Expr<'_>) {}
1483 }
1484
1485 impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> {
1486 type NestedFilter = nested_filter::All;
1487
1488 /// We want to visit items in the context of their containing
1489 /// module and so forth, so supply a crate for doing a deep walk.
nested_visit_map(&mut self) -> Self::Map1490 fn nested_visit_map(&mut self) -> Self::Map {
1491 self.tcx.hir()
1492 }
1493
visit_item(&mut self, item: &'tcx hir::Item<'tcx>)1494 fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
1495 match item.kind {
1496 // Contents of a private mod can be re-exported, so we need
1497 // to check internals.
1498 hir::ItemKind::Mod(_) => {}
1499
1500 // An `extern {}` doesn't introduce a new privacy
1501 // namespace (the contents have their own privacies).
1502 hir::ItemKind::ForeignMod { .. } => {}
1503
1504 hir::ItemKind::Trait(.., bounds, _) => {
1505 if !self.trait_is_public(item.owner_id.def_id) {
1506 return;
1507 }
1508
1509 for bound in bounds.iter() {
1510 self.check_generic_bound(bound)
1511 }
1512 }
1513
1514 // Impls need some special handling to try to offer useful
1515 // error messages without (too many) false positives
1516 // (i.e., we could just return here to not check them at
1517 // all, or some worse estimation of whether an impl is
1518 // publicly visible).
1519 hir::ItemKind::Impl(ref impl_) => {
1520 // `impl [... for] Private` is never visible.
1521 let self_contains_private;
1522 // `impl [... for] Public<...>`, but not `impl [... for]
1523 // Vec<Public>` or `(Public,)`, etc.
1524 let self_is_public_path;
1525
1526 // Check the properties of the `Self` type:
1527 {
1528 let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor {
1529 inner: self,
1530 contains_private: false,
1531 at_outer_type: true,
1532 outer_type_is_public_path: false,
1533 };
1534 visitor.visit_ty(impl_.self_ty);
1535 self_contains_private = visitor.contains_private;
1536 self_is_public_path = visitor.outer_type_is_public_path;
1537 }
1538
1539 // Miscellaneous info about the impl:
1540
1541 // `true` iff this is `impl Private for ...`.
1542 let not_private_trait = impl_.of_trait.as_ref().map_or(
1543 true, // no trait counts as public trait
1544 |tr| {
1545 if let Some(def_id) = tr.path.res.def_id().as_local() {
1546 self.trait_is_public(def_id)
1547 } else {
1548 true // external traits must be public
1549 }
1550 },
1551 );
1552
1553 // `true` iff this is a trait impl or at least one method is public.
1554 //
1555 // `impl Public { $( fn ...() {} )* }` is not visible.
1556 //
1557 // This is required over just using the methods' privacy
1558 // directly because we might have `impl<T: Foo<Private>> ...`,
1559 // and we shouldn't warn about the generics if all the methods
1560 // are private (because `T` won't be visible externally).
1561 let trait_or_some_public_method = impl_.of_trait.is_some()
1562 || impl_.items.iter().any(|impl_item_ref| {
1563 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1564 match impl_item.kind {
1565 hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) => self
1566 .effective_visibilities
1567 .is_reachable(impl_item_ref.id.owner_id.def_id),
1568 hir::ImplItemKind::Type(_) => false,
1569 }
1570 });
1571
1572 if !self_contains_private && not_private_trait && trait_or_some_public_method {
1573 intravisit::walk_generics(self, &impl_.generics);
1574
1575 match impl_.of_trait {
1576 None => {
1577 for impl_item_ref in impl_.items {
1578 // This is where we choose whether to walk down
1579 // further into the impl to check its items. We
1580 // should only walk into public items so that we
1581 // don't erroneously report errors for private
1582 // types in private items.
1583 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1584 match impl_item.kind {
1585 hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..)
1586 if self.item_is_public(impl_item.owner_id.def_id) =>
1587 {
1588 intravisit::walk_impl_item(self, impl_item)
1589 }
1590 hir::ImplItemKind::Type(..) => {
1591 intravisit::walk_impl_item(self, impl_item)
1592 }
1593 _ => {}
1594 }
1595 }
1596 }
1597 Some(ref tr) => {
1598 // Any private types in a trait impl fall into three
1599 // categories.
1600 // 1. mentioned in the trait definition
1601 // 2. mentioned in the type params/generics
1602 // 3. mentioned in the associated types of the impl
1603 //
1604 // Those in 1. can only occur if the trait is in
1605 // this crate and will have been warned about on the
1606 // trait definition (there's no need to warn twice
1607 // so we don't check the methods).
1608 //
1609 // Those in 2. are warned via walk_generics and this
1610 // call here.
1611 intravisit::walk_path(self, tr.path);
1612
1613 // Those in 3. are warned with this call.
1614 for impl_item_ref in impl_.items {
1615 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1616 if let hir::ImplItemKind::Type(ty) = impl_item.kind {
1617 self.visit_ty(ty);
1618 }
1619 }
1620 }
1621 }
1622 } else if impl_.of_trait.is_none() && self_is_public_path {
1623 // `impl Public<Private> { ... }`. Any public static
1624 // methods will be visible as `Public::foo`.
1625 let mut found_pub_static = false;
1626 for impl_item_ref in impl_.items {
1627 if self
1628 .effective_visibilities
1629 .is_reachable(impl_item_ref.id.owner_id.def_id)
1630 || self.tcx.visibility(impl_item_ref.id.owner_id).is_public()
1631 {
1632 let impl_item = self.tcx.hir().impl_item(impl_item_ref.id);
1633 match impl_item_ref.kind {
1634 AssocItemKind::Const => {
1635 found_pub_static = true;
1636 intravisit::walk_impl_item(self, impl_item);
1637 }
1638 AssocItemKind::Fn { has_self: false } => {
1639 found_pub_static = true;
1640 intravisit::walk_impl_item(self, impl_item);
1641 }
1642 _ => {}
1643 }
1644 }
1645 }
1646 if found_pub_static {
1647 intravisit::walk_generics(self, &impl_.generics)
1648 }
1649 }
1650 return;
1651 }
1652
1653 // `type ... = ...;` can contain private types, because
1654 // we're introducing a new name.
1655 hir::ItemKind::TyAlias(..) => return,
1656
1657 // Not at all public, so we don't care.
1658 _ if !self.item_is_public(item.owner_id.def_id) => {
1659 return;
1660 }
1661
1662 _ => {}
1663 }
1664
1665 // We've carefully constructed it so that if we're here, then
1666 // any `visit_ty`'s will be called on things that are in
1667 // public signatures, i.e., things that we're interested in for
1668 // this visitor.
1669 intravisit::walk_item(self, item);
1670 }
1671
visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>)1672 fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
1673 for predicate in generics.predicates {
1674 match predicate {
1675 hir::WherePredicate::BoundPredicate(bound_pred) => {
1676 for bound in bound_pred.bounds.iter() {
1677 self.check_generic_bound(bound)
1678 }
1679 }
1680 hir::WherePredicate::RegionPredicate(_) => {}
1681 hir::WherePredicate::EqPredicate(eq_pred) => {
1682 self.visit_ty(eq_pred.rhs_ty);
1683 }
1684 }
1685 }
1686 }
1687
visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>)1688 fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
1689 if self.effective_visibilities.is_reachable(item.owner_id.def_id) {
1690 intravisit::walk_foreign_item(self, item)
1691 }
1692 }
1693
visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>)1694 fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) {
1695 if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = t.kind {
1696 if self.path_is_private_type(path) {
1697 self.old_error_set.insert(t.hir_id);
1698 }
1699 }
1700 intravisit::walk_ty(self, t)
1701 }
1702
visit_variant(&mut self, v: &'tcx hir::Variant<'tcx>)1703 fn visit_variant(&mut self, v: &'tcx hir::Variant<'tcx>) {
1704 if self.effective_visibilities.is_reachable(v.def_id) {
1705 self.in_variant = true;
1706 intravisit::walk_variant(self, v);
1707 self.in_variant = false;
1708 }
1709 }
1710
visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>)1711 fn visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>) {
1712 let vis = self.tcx.visibility(s.def_id);
1713 if vis.is_public() || self.in_variant {
1714 intravisit::walk_field_def(self, s);
1715 }
1716 }
1717
1718 // We don't need to introspect into these at all: an
1719 // expression/block context can't possibly contain exported things.
1720 // (Making them no-ops stops us from traversing the whole AST without
1721 // having to be super careful about our `walk_...` calls above.)
visit_block(&mut self, _: &'tcx hir::Block<'tcx>)1722 fn visit_block(&mut self, _: &'tcx hir::Block<'tcx>) {}
visit_expr(&mut self, _: &'tcx hir::Expr<'tcx>)1723 fn visit_expr(&mut self, _: &'tcx hir::Expr<'tcx>) {}
1724 }
1725
1726 ///////////////////////////////////////////////////////////////////////////////
1727 /// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and
1728 /// finds any private components in it.
1729 /// PrivateItemsInPublicInterfacesVisitor ensures there are no private types
1730 /// and traits in public interfaces.
1731 ///////////////////////////////////////////////////////////////////////////////
1732
1733 struct SearchInterfaceForPrivateItemsVisitor<'tcx> {
1734 tcx: TyCtxt<'tcx>,
1735 item_def_id: LocalDefId,
1736 /// The visitor checks that each component type is at least this visible.
1737 required_visibility: ty::Visibility,
1738 required_effective_vis: Option<EffectiveVisibility>,
1739 has_old_errors: bool,
1740 in_assoc_ty: bool,
1741 in_primary_interface: bool,
1742 }
1743
1744 impl SearchInterfaceForPrivateItemsVisitor<'_> {
generics(&mut self) -> &mut Self1745 fn generics(&mut self) -> &mut Self {
1746 self.in_primary_interface = true;
1747 for param in &self.tcx.generics_of(self.item_def_id).params {
1748 match param.kind {
1749 GenericParamDefKind::Lifetime => {}
1750 GenericParamDefKind::Type { has_default, .. } => {
1751 if has_default {
1752 self.visit(self.tcx.type_of(param.def_id).subst_identity());
1753 }
1754 }
1755 // FIXME(generic_const_exprs): May want to look inside const here
1756 GenericParamDefKind::Const { .. } => {
1757 self.visit(self.tcx.type_of(param.def_id).subst_identity());
1758 }
1759 }
1760 }
1761 self
1762 }
1763
predicates(&mut self) -> &mut Self1764 fn predicates(&mut self) -> &mut Self {
1765 self.in_primary_interface = false;
1766 // N.B., we use `explicit_predicates_of` and not `predicates_of`
1767 // because we don't want to report privacy errors due to where
1768 // clauses that the compiler inferred. We only want to
1769 // consider the ones that the user wrote. This is important
1770 // for the inferred outlives rules; see
1771 // `tests/ui/rfc-2093-infer-outlives/privacy.rs`.
1772 self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id));
1773 self
1774 }
1775
bounds(&mut self) -> &mut Self1776 fn bounds(&mut self) -> &mut Self {
1777 self.in_primary_interface = false;
1778 self.visit_clauses(self.tcx.explicit_item_bounds(self.item_def_id).skip_binder());
1779 self
1780 }
1781
ty(&mut self) -> &mut Self1782 fn ty(&mut self) -> &mut Self {
1783 self.in_primary_interface = true;
1784 self.visit(self.tcx.type_of(self.item_def_id).subst_identity());
1785 self
1786 }
1787
check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool1788 fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool {
1789 if self.leaks_private_dep(def_id) {
1790 self.tcx.emit_spanned_lint(
1791 lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES,
1792 self.tcx.hir().local_def_id_to_hir_id(self.item_def_id),
1793 self.tcx.def_span(self.item_def_id.to_def_id()),
1794 FromPrivateDependencyInPublicInterface {
1795 kind,
1796 descr: descr.into(),
1797 krate: self.tcx.crate_name(def_id.krate),
1798 },
1799 );
1800 }
1801
1802 let Some(local_def_id) = def_id.as_local() else {
1803 return false;
1804 };
1805
1806 let vis = self.tcx.local_visibility(local_def_id);
1807 let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
1808 let span = self.tcx.def_span(self.item_def_id.to_def_id());
1809 let vis_span = self.tcx.def_span(def_id);
1810 if !vis.is_at_least(self.required_visibility, self.tcx) {
1811 let vis_descr = match vis {
1812 ty::Visibility::Public => "public",
1813 ty::Visibility::Restricted(vis_def_id) => {
1814 if vis_def_id == self.tcx.parent_module(hir_id) {
1815 "private"
1816 } else if vis_def_id.is_top_level_module() {
1817 "crate-private"
1818 } else {
1819 "restricted"
1820 }
1821 }
1822 };
1823
1824 if self.has_old_errors
1825 || self.in_assoc_ty
1826 || self.tcx.resolutions(()).has_pub_restricted
1827 {
1828 if kind == "trait" {
1829 self.tcx.sess.emit_err(InPublicInterfaceTraits {
1830 span,
1831 vis_descr,
1832 kind,
1833 descr: descr.into(),
1834 vis_span,
1835 });
1836 } else {
1837 self.tcx.sess.emit_err(InPublicInterface {
1838 span,
1839 vis_descr,
1840 kind,
1841 descr: descr.into(),
1842 vis_span,
1843 });
1844 }
1845 } else {
1846 self.tcx.emit_spanned_lint(
1847 lint::builtin::PRIVATE_IN_PUBLIC,
1848 hir_id,
1849 span,
1850 PrivateInPublicLint { vis_descr, kind, descr: descr.into() },
1851 );
1852 }
1853 }
1854
1855 let Some(effective_vis) = self.required_effective_vis else {
1856 return false;
1857 };
1858
1859 let reachable_at_vis = *effective_vis.at_level(Level::Reachable);
1860
1861 if !vis.is_at_least(reachable_at_vis, self.tcx) {
1862 let lint = if self.in_primary_interface {
1863 lint::builtin::PRIVATE_INTERFACES
1864 } else {
1865 lint::builtin::PRIVATE_BOUNDS
1866 };
1867 self.tcx.emit_spanned_lint(
1868 lint,
1869 hir_id,
1870 span,
1871 PrivateInterfacesOrBoundsLint {
1872 item_span: span,
1873 item_kind: self.tcx.def_descr(self.item_def_id.to_def_id()),
1874 item_descr: (&LazyDefPathStr {
1875 def_id: self.item_def_id.to_def_id(),
1876 tcx: self.tcx,
1877 })
1878 .into(),
1879 item_vis_descr: &vis_to_string(self.item_def_id, reachable_at_vis, self.tcx),
1880 ty_span: vis_span,
1881 ty_kind: kind,
1882 ty_descr: descr.into(),
1883 ty_vis_descr: &vis_to_string(local_def_id, vis, self.tcx),
1884 },
1885 );
1886 }
1887
1888 false
1889 }
1890
1891 /// An item is 'leaked' from a private dependency if all
1892 /// of the following are true:
1893 /// 1. It's contained within a public type
1894 /// 2. It comes from a private crate
leaks_private_dep(&self, item_id: DefId) -> bool1895 fn leaks_private_dep(&self, item_id: DefId) -> bool {
1896 let ret = self.required_visibility.is_public() && self.tcx.is_private_dep(item_id.krate);
1897
1898 debug!("leaks_private_dep(item_id={:?})={}", item_id, ret);
1899 ret
1900 }
1901 }
1902
1903 impl<'tcx> DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> {
tcx(&self) -> TyCtxt<'tcx>1904 fn tcx(&self) -> TyCtxt<'tcx> {
1905 self.tcx
1906 }
visit_def_id( &mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display, ) -> ControlFlow<Self::BreakTy>1907 fn visit_def_id(
1908 &mut self,
1909 def_id: DefId,
1910 kind: &str,
1911 descr: &dyn fmt::Display,
1912 ) -> ControlFlow<Self::BreakTy> {
1913 if self.check_def_id(def_id, kind, descr) {
1914 ControlFlow::Break(())
1915 } else {
1916 ControlFlow::Continue(())
1917 }
1918 }
1919 }
1920
1921 struct PrivateItemsInPublicInterfacesChecker<'tcx, 'a> {
1922 tcx: TyCtxt<'tcx>,
1923 old_error_set_ancestry: HirIdSet,
1924 effective_visibilities: &'a EffectiveVisibilities,
1925 }
1926
1927 impl<'tcx> PrivateItemsInPublicInterfacesChecker<'tcx, '_> {
check( &self, def_id: LocalDefId, required_visibility: ty::Visibility, required_effective_vis: Option<EffectiveVisibility>, ) -> SearchInterfaceForPrivateItemsVisitor<'tcx>1928 fn check(
1929 &self,
1930 def_id: LocalDefId,
1931 required_visibility: ty::Visibility,
1932 required_effective_vis: Option<EffectiveVisibility>,
1933 ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> {
1934 SearchInterfaceForPrivateItemsVisitor {
1935 tcx: self.tcx,
1936 item_def_id: def_id,
1937 required_visibility,
1938 required_effective_vis,
1939 has_old_errors: self
1940 .old_error_set_ancestry
1941 .contains(&self.tcx.hir().local_def_id_to_hir_id(def_id)),
1942 in_assoc_ty: false,
1943 in_primary_interface: true,
1944 }
1945 }
1946
check_unnameable(&self, def_id: LocalDefId, effective_vis: Option<EffectiveVisibility>)1947 fn check_unnameable(&self, def_id: LocalDefId, effective_vis: Option<EffectiveVisibility>) {
1948 let Some(effective_vis) = effective_vis else {
1949 return;
1950 };
1951
1952 let reexported_at_vis = effective_vis.at_level(Level::Reexported);
1953 let reachable_at_vis = effective_vis.at_level(Level::Reachable);
1954
1955 if reexported_at_vis != reachable_at_vis {
1956 let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
1957 let span = self.tcx.def_span(def_id.to_def_id());
1958 self.tcx.emit_spanned_lint(
1959 lint::builtin::UNNAMEABLE_TYPES,
1960 hir_id,
1961 span,
1962 UnnameableTypesLint {
1963 span,
1964 kind: self.tcx.def_descr(def_id.to_def_id()),
1965 descr: (&LazyDefPathStr { def_id: def_id.to_def_id(), tcx: self.tcx }).into(),
1966 reachable_vis: &vis_to_string(def_id, *reachable_at_vis, self.tcx),
1967 reexported_vis: &vis_to_string(def_id, *reexported_at_vis, self.tcx),
1968 },
1969 );
1970 }
1971 }
1972
check_assoc_item( &self, def_id: LocalDefId, assoc_item_kind: AssocItemKind, vis: ty::Visibility, effective_vis: Option<EffectiveVisibility>, )1973 fn check_assoc_item(
1974 &self,
1975 def_id: LocalDefId,
1976 assoc_item_kind: AssocItemKind,
1977 vis: ty::Visibility,
1978 effective_vis: Option<EffectiveVisibility>,
1979 ) {
1980 let mut check = self.check(def_id, vis, effective_vis);
1981
1982 let (check_ty, is_assoc_ty) = match assoc_item_kind {
1983 AssocItemKind::Const | AssocItemKind::Fn { .. } => (true, false),
1984 AssocItemKind::Type => (self.tcx.defaultness(def_id).has_value(), true),
1985 };
1986
1987 if is_assoc_ty {
1988 self.check_unnameable(def_id, self.get(def_id));
1989 }
1990
1991 check.in_assoc_ty = is_assoc_ty;
1992 check.generics().predicates();
1993 if check_ty {
1994 check.ty();
1995 }
1996 }
1997
get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility>1998 fn get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility> {
1999 self.effective_visibilities.effective_vis(def_id).copied()
2000 }
2001
check_item(&mut self, id: ItemId)2002 pub fn check_item(&mut self, id: ItemId) {
2003 let tcx = self.tcx;
2004 let def_id = id.owner_id.def_id;
2005 let item_visibility = tcx.local_visibility(def_id);
2006 let effective_vis = self.get(def_id);
2007 let def_kind = tcx.def_kind(def_id);
2008
2009 match def_kind {
2010 DefKind::Const | DefKind::Static(_) | DefKind::Fn | DefKind::TyAlias => {
2011 if let DefKind::TyAlias = def_kind {
2012 self.check_unnameable(def_id, effective_vis);
2013 }
2014 self.check(def_id, item_visibility, effective_vis).generics().predicates().ty();
2015 }
2016 DefKind::OpaqueTy => {
2017 // `ty()` for opaque types is the underlying type,
2018 // it's not a part of interface, so we skip it.
2019 self.check(def_id, item_visibility, effective_vis).generics().bounds();
2020 }
2021 DefKind::Trait => {
2022 let item = tcx.hir().item(id);
2023 if let hir::ItemKind::Trait(.., trait_item_refs) = item.kind {
2024 self.check_unnameable(item.owner_id.def_id, effective_vis);
2025
2026 self.check(item.owner_id.def_id, item_visibility, effective_vis)
2027 .generics()
2028 .predicates();
2029
2030 for trait_item_ref in trait_item_refs {
2031 self.check_assoc_item(
2032 trait_item_ref.id.owner_id.def_id,
2033 trait_item_ref.kind,
2034 item_visibility,
2035 effective_vis,
2036 );
2037
2038 if let AssocItemKind::Type = trait_item_ref.kind {
2039 self.check(
2040 trait_item_ref.id.owner_id.def_id,
2041 item_visibility,
2042 effective_vis,
2043 )
2044 .bounds();
2045 }
2046 }
2047 }
2048 }
2049 DefKind::TraitAlias => {
2050 self.check(def_id, item_visibility, effective_vis).generics().predicates();
2051 }
2052 DefKind::Enum => {
2053 let item = tcx.hir().item(id);
2054 if let hir::ItemKind::Enum(ref def, _) = item.kind {
2055 self.check_unnameable(item.owner_id.def_id, effective_vis);
2056
2057 self.check(item.owner_id.def_id, item_visibility, effective_vis)
2058 .generics()
2059 .predicates();
2060
2061 for variant in def.variants {
2062 for field in variant.data.fields() {
2063 self.check(field.def_id, item_visibility, effective_vis).ty();
2064 }
2065 }
2066 }
2067 }
2068 // Subitems of foreign modules have their own publicity.
2069 DefKind::ForeignMod => {
2070 let item = tcx.hir().item(id);
2071 if let hir::ItemKind::ForeignMod { items, .. } = item.kind {
2072 for foreign_item in items {
2073 let foreign_item = tcx.hir().foreign_item(foreign_item.id);
2074
2075 let ev = self.get(foreign_item.owner_id.def_id);
2076 let vis = tcx.local_visibility(foreign_item.owner_id.def_id);
2077
2078 if let ForeignItemKind::Type = foreign_item.kind {
2079 self.check_unnameable(foreign_item.owner_id.def_id, ev);
2080 }
2081
2082 self.check(foreign_item.owner_id.def_id, vis, ev)
2083 .generics()
2084 .predicates()
2085 .ty();
2086 }
2087 }
2088 }
2089 // Subitems of structs and unions have their own publicity.
2090 DefKind::Struct | DefKind::Union => {
2091 let item = tcx.hir().item(id);
2092 if let hir::ItemKind::Struct(ref struct_def, _)
2093 | hir::ItemKind::Union(ref struct_def, _) = item.kind
2094 {
2095 self.check_unnameable(item.owner_id.def_id, effective_vis);
2096 self.check(item.owner_id.def_id, item_visibility, effective_vis)
2097 .generics()
2098 .predicates();
2099
2100 for field in struct_def.fields() {
2101 let field_visibility = tcx.local_visibility(field.def_id);
2102 let field_ev = self.get(field.def_id);
2103
2104 self.check(
2105 field.def_id,
2106 min(item_visibility, field_visibility, tcx),
2107 field_ev,
2108 )
2109 .ty();
2110 }
2111 }
2112 }
2113 // An inherent impl is public when its type is public
2114 // Subitems of inherent impls have their own publicity.
2115 // A trait impl is public when both its type and its trait are public
2116 // Subitems of trait impls have inherited publicity.
2117 DefKind::Impl { .. } => {
2118 let item = tcx.hir().item(id);
2119 if let hir::ItemKind::Impl(ref impl_) = item.kind {
2120 let impl_vis = ty::Visibility::of_impl::<false>(
2121 item.owner_id.def_id,
2122 tcx,
2123 &Default::default(),
2124 );
2125
2126 // We are using the non-shallow version here, unlike when building the
2127 // effective visisibilities table to avoid large number of false positives.
2128 // For example in
2129 //
2130 // impl From<Priv> for Pub {
2131 // fn from(_: Priv) -> Pub {...}
2132 // }
2133 //
2134 // lints shouldn't be emmited even if `from` effective visibility
2135 // is larger than `Priv` nominal visibility and if `Priv` can leak
2136 // in some scenarios due to type inference.
2137 let impl_ev = EffectiveVisibility::of_impl::<false>(
2138 item.owner_id.def_id,
2139 tcx,
2140 self.effective_visibilities,
2141 );
2142
2143 // check that private components do not appear in the generics or predicates of inherent impls
2144 // this check is intentionally NOT performed for impls of traits, per #90586
2145 if impl_.of_trait.is_none() {
2146 self.check(item.owner_id.def_id, impl_vis, Some(impl_ev))
2147 .generics()
2148 .predicates();
2149 }
2150 for impl_item_ref in impl_.items {
2151 let impl_item_vis = if impl_.of_trait.is_none() {
2152 min(
2153 tcx.local_visibility(impl_item_ref.id.owner_id.def_id),
2154 impl_vis,
2155 tcx,
2156 )
2157 } else {
2158 impl_vis
2159 };
2160
2161 let impl_item_ev = if impl_.of_trait.is_none() {
2162 self.get(impl_item_ref.id.owner_id.def_id)
2163 .map(|ev| ev.min(impl_ev, self.tcx))
2164 } else {
2165 Some(impl_ev)
2166 };
2167
2168 self.check_assoc_item(
2169 impl_item_ref.id.owner_id.def_id,
2170 impl_item_ref.kind,
2171 impl_item_vis,
2172 impl_item_ev,
2173 );
2174 }
2175 }
2176 }
2177 _ => {}
2178 }
2179 }
2180 }
2181
provide(providers: &mut Providers)2182 pub fn provide(providers: &mut Providers) {
2183 *providers = Providers {
2184 visibility,
2185 effective_visibilities,
2186 check_private_in_public,
2187 check_mod_privacy,
2188 ..*providers
2189 };
2190 }
2191
visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility<DefId>2192 fn visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility<DefId> {
2193 local_visibility(tcx, def_id).to_def_id()
2194 }
2195
local_visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility2196 fn local_visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility {
2197 match tcx.resolutions(()).visibilities.get(&def_id) {
2198 Some(vis) => *vis,
2199 None => {
2200 let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
2201 match tcx.hir().get(hir_id) {
2202 // Unique types created for closures participate in type privacy checking.
2203 // They have visibilities inherited from the module they are defined in.
2204 Node::Expr(hir::Expr { kind: hir::ExprKind::Closure{..}, .. })
2205 // - AST lowering creates dummy `use` items which don't
2206 // get their entries in the resolver's visibility table.
2207 // - AST lowering also creates opaque type items with inherited visibilities.
2208 // Visibility on them should have no effect, but to avoid the visibility
2209 // query failing on some items, we provide it for opaque types as well.
2210 | Node::Item(hir::Item {
2211 kind: hir::ItemKind::Use(_, hir::UseKind::ListStem)
2212 | hir::ItemKind::OpaqueTy(..),
2213 ..
2214 }) => ty::Visibility::Restricted(tcx.parent_module(hir_id)),
2215 // Visibilities of trait impl items are inherited from their traits
2216 // and are not filled in resolve.
2217 Node::ImplItem(impl_item) => {
2218 match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(hir_id).def_id) {
2219 Node::Item(hir::Item {
2220 kind: hir::ItemKind::Impl(hir::Impl { of_trait: Some(tr), .. }),
2221 ..
2222 }) => tr.path.res.opt_def_id().map_or_else(
2223 || {
2224 tcx.sess.delay_span_bug(tr.path.span, "trait without a def-id");
2225 ty::Visibility::Public
2226 },
2227 |def_id| tcx.visibility(def_id).expect_local(),
2228 ),
2229 _ => span_bug!(impl_item.span, "the parent is not a trait impl"),
2230 }
2231 }
2232 _ => span_bug!(
2233 tcx.def_span(def_id),
2234 "visibility table unexpectedly missing a def-id: {:?}",
2235 def_id,
2236 ),
2237 }
2238 }
2239 }
2240 }
2241
check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalDefId)2242 fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
2243 // Check privacy of names not checked in previous compilation stages.
2244 let mut visitor =
2245 NamePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id };
2246 let (module, span, hir_id) = tcx.hir().get_module(module_def_id);
2247
2248 intravisit::walk_mod(&mut visitor, module, hir_id);
2249
2250 // Check privacy of explicitly written types and traits as well as
2251 // inferred types of expressions and patterns.
2252 let mut visitor =
2253 TypePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id, span };
2254 intravisit::walk_mod(&mut visitor, module, hir_id);
2255 }
2256
effective_visibilities(tcx: TyCtxt<'_>, (): ()) -> &EffectiveVisibilities2257 fn effective_visibilities(tcx: TyCtxt<'_>, (): ()) -> &EffectiveVisibilities {
2258 // Build up a set of all exported items in the AST. This is a set of all
2259 // items which are reachable from external crates based on visibility.
2260 let mut visitor = EmbargoVisitor {
2261 tcx,
2262 effective_visibilities: tcx.resolutions(()).effective_visibilities.clone(),
2263 macro_reachable: Default::default(),
2264 // HACK(jynelson): trying to infer the type of `impl Trait` breaks `async-std` (and
2265 // `pub async fn` in general). Since rustdoc never needs to do codegen and doesn't
2266 // care about link-time reachability, keep them unreachable (issue #75100).
2267 impl_trait_pass: !tcx.sess.opts.actually_rustdoc,
2268 changed: false,
2269 };
2270
2271 visitor.effective_visibilities.check_invariants(tcx);
2272 if visitor.impl_trait_pass {
2273 // Underlying types of `impl Trait`s are marked as reachable unconditionally,
2274 // so this pass doesn't need to be a part of the fixed point iteration below.
2275 tcx.hir().visit_all_item_likes_in_crate(&mut visitor);
2276 visitor.impl_trait_pass = false;
2277 visitor.changed = false;
2278 }
2279
2280 loop {
2281 tcx.hir().visit_all_item_likes_in_crate(&mut visitor);
2282 if visitor.changed {
2283 visitor.changed = false;
2284 } else {
2285 break;
2286 }
2287 }
2288 visitor.effective_visibilities.check_invariants(tcx);
2289
2290 let mut check_visitor =
2291 TestReachabilityVisitor { tcx, effective_visibilities: &visitor.effective_visibilities };
2292 check_visitor.effective_visibility_diagnostic(CRATE_DEF_ID);
2293 tcx.hir().visit_all_item_likes_in_crate(&mut check_visitor);
2294
2295 tcx.arena.alloc(visitor.effective_visibilities)
2296 }
2297
check_private_in_public(tcx: TyCtxt<'_>, (): ())2298 fn check_private_in_public(tcx: TyCtxt<'_>, (): ()) {
2299 let effective_visibilities = tcx.effective_visibilities(());
2300
2301 let mut visitor = ObsoleteVisiblePrivateTypesVisitor {
2302 tcx,
2303 effective_visibilities,
2304 in_variant: false,
2305 old_error_set: Default::default(),
2306 };
2307 tcx.hir().walk_toplevel_module(&mut visitor);
2308
2309 let mut old_error_set_ancestry = HirIdSet::default();
2310 for mut id in visitor.old_error_set.iter().copied() {
2311 loop {
2312 if !old_error_set_ancestry.insert(id) {
2313 break;
2314 }
2315 let parent = tcx.hir().parent_id(id);
2316 if parent == id {
2317 break;
2318 }
2319 id = parent;
2320 }
2321 }
2322
2323 // Check for private types and traits in public interfaces.
2324 let mut checker = PrivateItemsInPublicInterfacesChecker {
2325 tcx,
2326 old_error_set_ancestry,
2327 effective_visibilities,
2328 };
2329
2330 for id in tcx.hir().items() {
2331 checker.check_item(id);
2332 }
2333 }
2334