• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #[doc = include_str!("panic.md")]
2 #[macro_export]
3 #[rustc_builtin_macro(core_panic)]
4 #[allow_internal_unstable(edition_panic)]
5 #[stable(feature = "core", since = "1.6.0")]
6 #[rustc_diagnostic_item = "core_panic_macro"]
7 macro_rules! panic {
8     // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9     // depending on the edition of the caller.
10     ($($arg:tt)*) => {
11         /* compiler built-in */
12     };
13 }
14 
15 /// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16 ///
17 /// On panic, this macro will print the values of the expressions with their
18 /// debug representations.
19 ///
20 /// Like [`assert!`], this macro has a second form, where a custom
21 /// panic message can be provided.
22 ///
23 /// # Examples
24 ///
25 /// ```
26 /// let a = 3;
27 /// let b = 1 + 2;
28 /// assert_eq!(a, b);
29 ///
30 /// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
31 /// ```
32 #[macro_export]
33 #[stable(feature = "rust1", since = "1.0.0")]
34 #[cfg_attr(not(test), rustc_diagnostic_item = "assert_eq_macro")]
35 #[allow_internal_unstable(core_panic)]
36 macro_rules! assert_eq {
37     ($left:expr, $right:expr $(,)?) => {
38         match (&$left, &$right) {
39             (left_val, right_val) => {
40                 if !(*left_val == *right_val) {
41                     let kind = $crate::panicking::AssertKind::Eq;
42                     // The reborrows below are intentional. Without them, the stack slot for the
43                     // borrow is initialized even before the values are compared, leading to a
44                     // noticeable slow down.
45                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
46                 }
47             }
48         }
49     };
50     ($left:expr, $right:expr, $($arg:tt)+) => {
51         match (&$left, &$right) {
52             (left_val, right_val) => {
53                 if !(*left_val == *right_val) {
54                     let kind = $crate::panicking::AssertKind::Eq;
55                     // The reborrows below are intentional. Without them, the stack slot for the
56                     // borrow is initialized even before the values are compared, leading to a
57                     // noticeable slow down.
58                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
59                 }
60             }
61         }
62     };
63 }
64 
65 /// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
66 ///
67 /// On panic, this macro will print the values of the expressions with their
68 /// debug representations.
69 ///
70 /// Like [`assert!`], this macro has a second form, where a custom
71 /// panic message can be provided.
72 ///
73 /// # Examples
74 ///
75 /// ```
76 /// let a = 3;
77 /// let b = 2;
78 /// assert_ne!(a, b);
79 ///
80 /// assert_ne!(a, b, "we are testing that the values are not equal");
81 /// ```
82 #[macro_export]
83 #[stable(feature = "assert_ne", since = "1.13.0")]
84 #[cfg_attr(not(test), rustc_diagnostic_item = "assert_ne_macro")]
85 #[allow_internal_unstable(core_panic)]
86 macro_rules! assert_ne {
87     ($left:expr, $right:expr $(,)?) => {
88         match (&$left, &$right) {
89             (left_val, right_val) => {
90                 if *left_val == *right_val {
91                     let kind = $crate::panicking::AssertKind::Ne;
92                     // The reborrows below are intentional. Without them, the stack slot for the
93                     // borrow is initialized even before the values are compared, leading to a
94                     // noticeable slow down.
95                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
96                 }
97             }
98         }
99     };
100     ($left:expr, $right:expr, $($arg:tt)+) => {
101         match (&($left), &($right)) {
102             (left_val, right_val) => {
103                 if *left_val == *right_val {
104                     let kind = $crate::panicking::AssertKind::Ne;
105                     // The reborrows below are intentional. Without them, the stack slot for the
106                     // borrow is initialized even before the values are compared, leading to a
107                     // noticeable slow down.
108                     $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
109                 }
110             }
111         }
112     };
113 }
114 
115 /// Asserts that an expression matches any of the given patterns.
116 ///
117 /// Like in a `match` expression, the pattern can be optionally followed by `if`
118 /// and a guard expression that has access to names bound by the pattern.
119 ///
120 /// On panic, this macro will print the value of the expression with its
121 /// debug representation.
122 ///
123 /// Like [`assert!`], this macro has a second form, where a custom
124 /// panic message can be provided.
125 ///
126 /// # Examples
127 ///
128 /// ```
129 /// #![feature(assert_matches)]
130 ///
131 /// use std::assert_matches::assert_matches;
132 ///
133 /// let a = 1u32.checked_add(2);
134 /// let b = 1u32.checked_sub(2);
135 /// assert_matches!(a, Some(_));
136 /// assert_matches!(b, None);
137 ///
138 /// let c = Ok("abc".to_string());
139 /// assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
140 /// ```
141 #[unstable(feature = "assert_matches", issue = "82775")]
142 #[allow_internal_unstable(core_panic)]
143 #[rustc_macro_transparency = "semitransparent"]
144 pub macro assert_matches {
145     ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
146         match $left {
147             $( $pattern )|+ $( if $guard )? => {}
148             ref left_val => {
149                 $crate::panicking::assert_matches_failed(
150                     left_val,
151                     $crate::stringify!($($pattern)|+ $(if $guard)?),
152                     $crate::option::Option::None
153                 );
154             }
155         }
156     },
157     ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
158         match $left {
159             $( $pattern )|+ $( if $guard )? => {}
160             ref left_val => {
161                 $crate::panicking::assert_matches_failed(
162                     left_val,
163                     $crate::stringify!($($pattern)|+ $(if $guard)?),
164                     $crate::option::Option::Some($crate::format_args!($($arg)+))
165                 );
166             }
167         }
168     },
169 }
170 
171 /// Asserts that a boolean expression is `true` at runtime.
172 ///
173 /// This will invoke the [`panic!`] macro if the provided expression cannot be
174 /// evaluated to `true` at runtime.
175 ///
176 /// Like [`assert!`], this macro also has a second version, where a custom panic
177 /// message can be provided.
178 ///
179 /// # Uses
180 ///
181 /// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
182 /// optimized builds by default. An optimized build will not execute
183 /// `debug_assert!` statements unless `-C debug-assertions` is passed to the
184 /// compiler. This makes `debug_assert!` useful for checks that are too
185 /// expensive to be present in a release build but may be helpful during
186 /// development. The result of expanding `debug_assert!` is always type checked.
187 ///
188 /// An unchecked assertion allows a program in an inconsistent state to keep
189 /// running, which might have unexpected consequences but does not introduce
190 /// unsafety as long as this only happens in safe code. The performance cost
191 /// of assertions, however, is not measurable in general. Replacing [`assert!`]
192 /// with `debug_assert!` is thus only encouraged after thorough profiling, and
193 /// more importantly, only in safe code!
194 ///
195 /// # Examples
196 ///
197 /// ```
198 /// // the panic message for these assertions is the stringified value of the
199 /// // expression given.
200 /// debug_assert!(true);
201 ///
202 /// fn some_expensive_computation() -> bool { true } // a very simple function
203 /// debug_assert!(some_expensive_computation());
204 ///
205 /// // assert with a custom message
206 /// let x = true;
207 /// debug_assert!(x, "x wasn't true!");
208 ///
209 /// let a = 3; let b = 27;
210 /// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
211 /// ```
212 #[macro_export]
213 #[stable(feature = "rust1", since = "1.0.0")]
214 #[rustc_diagnostic_item = "debug_assert_macro"]
215 #[allow_internal_unstable(edition_panic)]
216 macro_rules! debug_assert {
217     ($($arg:tt)*) => {
218         if $crate::cfg!(debug_assertions) {
219             $crate::assert!($($arg)*);
220         }
221     };
222 }
223 
224 /// Asserts that two expressions are equal to each other.
225 ///
226 /// On panic, this macro will print the values of the expressions with their
227 /// debug representations.
228 ///
229 /// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
230 /// optimized builds by default. An optimized build will not execute
231 /// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
232 /// compiler. This makes `debug_assert_eq!` useful for checks that are too
233 /// expensive to be present in a release build but may be helpful during
234 /// development. The result of expanding `debug_assert_eq!` is always type checked.
235 ///
236 /// # Examples
237 ///
238 /// ```
239 /// let a = 3;
240 /// let b = 1 + 2;
241 /// debug_assert_eq!(a, b);
242 /// ```
243 #[macro_export]
244 #[stable(feature = "rust1", since = "1.0.0")]
245 #[cfg_attr(not(test), rustc_diagnostic_item = "debug_assert_eq_macro")]
246 macro_rules! debug_assert_eq {
247     ($($arg:tt)*) => {
248         if $crate::cfg!(debug_assertions) {
249             $crate::assert_eq!($($arg)*);
250         }
251     };
252 }
253 
254 /// Asserts that two expressions are not equal to each other.
255 ///
256 /// On panic, this macro will print the values of the expressions with their
257 /// debug representations.
258 ///
259 /// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
260 /// optimized builds by default. An optimized build will not execute
261 /// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
262 /// compiler. This makes `debug_assert_ne!` useful for checks that are too
263 /// expensive to be present in a release build but may be helpful during
264 /// development. The result of expanding `debug_assert_ne!` is always type checked.
265 ///
266 /// # Examples
267 ///
268 /// ```
269 /// let a = 3;
270 /// let b = 2;
271 /// debug_assert_ne!(a, b);
272 /// ```
273 #[macro_export]
274 #[stable(feature = "assert_ne", since = "1.13.0")]
275 #[cfg_attr(not(test), rustc_diagnostic_item = "debug_assert_ne_macro")]
276 macro_rules! debug_assert_ne {
277     ($($arg:tt)*) => {
278         if $crate::cfg!(debug_assertions) {
279             $crate::assert_ne!($($arg)*);
280         }
281     };
282 }
283 
284 /// Asserts that an expression matches any of the given patterns.
285 ///
286 /// Like in a `match` expression, the pattern can be optionally followed by `if`
287 /// and a guard expression that has access to names bound by the pattern.
288 ///
289 /// On panic, this macro will print the value of the expression with its
290 /// debug representation.
291 ///
292 /// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only
293 /// enabled in non optimized builds by default. An optimized build will not
294 /// execute `debug_assert_matches!` statements unless `-C debug-assertions` is
295 /// passed to the compiler. This makes `debug_assert_matches!` useful for
296 /// checks that are too expensive to be present in a release build but may be
297 /// helpful during development. The result of expanding `debug_assert_matches!`
298 /// is always type checked.
299 ///
300 /// # Examples
301 ///
302 /// ```
303 /// #![feature(assert_matches)]
304 ///
305 /// use std::assert_matches::debug_assert_matches;
306 ///
307 /// let a = 1u32.checked_add(2);
308 /// let b = 1u32.checked_sub(2);
309 /// debug_assert_matches!(a, Some(_));
310 /// debug_assert_matches!(b, None);
311 ///
312 /// let c = Ok("abc".to_string());
313 /// debug_assert_matches!(c, Ok(x) | Err(x) if x.len() < 100);
314 /// ```
315 #[macro_export]
316 #[unstable(feature = "assert_matches", issue = "82775")]
317 #[allow_internal_unstable(assert_matches)]
318 #[rustc_macro_transparency = "semitransparent"]
319 pub macro debug_assert_matches($($arg:tt)*) {
320     if $crate::cfg!(debug_assertions) {
321         $crate::assert_matches::assert_matches!($($arg)*);
322     }
323 }
324 
325 /// Returns whether the given expression matches any of the given patterns.
326 ///
327 /// Like in a `match` expression, the pattern can be optionally followed by `if`
328 /// and a guard expression that has access to names bound by the pattern.
329 ///
330 /// # Examples
331 ///
332 /// ```
333 /// let foo = 'f';
334 /// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
335 ///
336 /// let bar = Some(4);
337 /// assert!(matches!(bar, Some(x) if x > 2));
338 /// ```
339 #[macro_export]
340 #[stable(feature = "matches_macro", since = "1.42.0")]
341 #[cfg_attr(not(test), rustc_diagnostic_item = "matches_macro")]
342 macro_rules! matches {
343     ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
344         match $expression {
345             $pattern $(if $guard)? => true,
346             _ => false
347         }
348     };
349 }
350 
351 /// Unwraps a result or propagates its error.
352 ///
353 /// The [`?` operator][propagating-errors] was added to replace `try!`
354 /// and should be used instead. Furthermore, `try` is a reserved word
355 /// in Rust 2018, so if you must use it, you will need to use the
356 /// [raw-identifier syntax][ris]: `r#try`.
357 ///
358 /// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
359 /// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
360 ///
361 /// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
362 /// expression has the value of the wrapped value.
363 ///
364 /// In case of the `Err` variant, it retrieves the inner error. `try!` then
365 /// performs conversion using `From`. This provides automatic conversion
366 /// between specialized errors and more general ones. The resulting
367 /// error is then immediately returned.
368 ///
369 /// Because of the early return, `try!` can only be used in functions that
370 /// return [`Result`].
371 ///
372 /// # Examples
373 ///
374 /// ```
375 /// use std::io;
376 /// use std::fs::File;
377 /// use std::io::prelude::*;
378 ///
379 /// enum MyError {
380 ///     FileWriteError
381 /// }
382 ///
383 /// impl From<io::Error> for MyError {
384 ///     fn from(e: io::Error) -> MyError {
385 ///         MyError::FileWriteError
386 ///     }
387 /// }
388 ///
389 /// // The preferred method of quick returning Errors
390 /// fn write_to_file_question() -> Result<(), MyError> {
391 ///     let mut file = File::create("my_best_friends.txt")?;
392 ///     file.write_all(b"This is a list of my best friends.")?;
393 ///     Ok(())
394 /// }
395 ///
396 /// // The previous method of quick returning Errors
397 /// fn write_to_file_using_try() -> Result<(), MyError> {
398 ///     let mut file = r#try!(File::create("my_best_friends.txt"));
399 ///     r#try!(file.write_all(b"This is a list of my best friends."));
400 ///     Ok(())
401 /// }
402 ///
403 /// // This is equivalent to:
404 /// fn write_to_file_using_match() -> Result<(), MyError> {
405 ///     let mut file = r#try!(File::create("my_best_friends.txt"));
406 ///     match file.write_all(b"This is a list of my best friends.") {
407 ///         Ok(v) => v,
408 ///         Err(e) => return Err(From::from(e)),
409 ///     }
410 ///     Ok(())
411 /// }
412 /// ```
413 #[macro_export]
414 #[stable(feature = "rust1", since = "1.0.0")]
415 #[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
416 #[doc(alias = "?")]
417 macro_rules! r#try {
418     ($expr:expr $(,)?) => {
419         match $expr {
420             $crate::result::Result::Ok(val) => val,
421             $crate::result::Result::Err(err) => {
422                 return $crate::result::Result::Err($crate::convert::From::from(err));
423             }
424         }
425     };
426 }
427 
428 /// Writes formatted data into a buffer.
429 ///
430 /// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
431 /// formatted according to the specified format string and the result will be passed to the writer.
432 /// The writer may be any value with a `write_fmt` method; generally this comes from an
433 /// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
434 /// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
435 /// [`io::Result`].
436 ///
437 /// See [`std::fmt`] for more information on the format string syntax.
438 ///
439 /// [`std::fmt`]: ../std/fmt/index.html
440 /// [`fmt::Write`]: crate::fmt::Write
441 /// [`io::Write`]: ../std/io/trait.Write.html
442 /// [`fmt::Result`]: crate::fmt::Result
443 /// [`io::Result`]: ../std/io/type.Result.html
444 ///
445 /// # Examples
446 ///
447 /// ```
448 /// use std::io::Write;
449 ///
450 /// fn main() -> std::io::Result<()> {
451 ///     let mut w = Vec::new();
452 ///     write!(&mut w, "test")?;
453 ///     write!(&mut w, "formatted {}", "arguments")?;
454 ///
455 ///     assert_eq!(w, b"testformatted arguments");
456 ///     Ok(())
457 /// }
458 /// ```
459 ///
460 /// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
461 /// implementing either, as objects do not typically implement both. However, the module must
462 /// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
463 /// them:
464 ///
465 /// ```
466 /// use std::fmt::Write as _;
467 /// use std::io::Write as _;
468 ///
469 /// fn main() -> Result<(), Box<dyn std::error::Error>> {
470 ///     let mut s = String::new();
471 ///     let mut v = Vec::new();
472 ///
473 ///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
474 ///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
475 ///     assert_eq!(v, b"s = \"abc 123\"");
476 ///     Ok(())
477 /// }
478 /// ```
479 ///
480 /// If you also need the trait names themselves, such as to implement one or both on your types,
481 /// import the containing module and then name them with a prefix:
482 ///
483 /// ```
484 /// # #![allow(unused_imports)]
485 /// use std::fmt::{self, Write as _};
486 /// use std::io::{self, Write as _};
487 ///
488 /// struct Example;
489 ///
490 /// impl fmt::Write for Example {
491 ///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
492 ///          unimplemented!();
493 ///     }
494 /// }
495 /// ```
496 ///
497 /// Note: This macro can be used in `no_std` setups as well.
498 /// In a `no_std` setup you are responsible for the implementation details of the components.
499 ///
500 /// ```no_run
501 /// use core::fmt::Write;
502 ///
503 /// struct Example;
504 ///
505 /// impl Write for Example {
506 ///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
507 ///          unimplemented!();
508 ///     }
509 /// }
510 ///
511 /// let mut m = Example{};
512 /// write!(&mut m, "Hello World").expect("Not written");
513 /// ```
514 #[macro_export]
515 #[stable(feature = "rust1", since = "1.0.0")]
516 #[cfg_attr(not(test), rustc_diagnostic_item = "write_macro")]
517 macro_rules! write {
518     ($dst:expr, $($arg:tt)*) => {
519         $dst.write_fmt($crate::format_args!($($arg)*))
520     };
521 }
522 
523 /// Write formatted data into a buffer, with a newline appended.
524 ///
525 /// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
526 /// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
527 ///
528 /// For more information, see [`write!`]. For information on the format string syntax, see
529 /// [`std::fmt`].
530 ///
531 /// [`std::fmt`]: ../std/fmt/index.html
532 ///
533 /// # Examples
534 ///
535 /// ```
536 /// use std::io::{Write, Result};
537 ///
538 /// fn main() -> Result<()> {
539 ///     let mut w = Vec::new();
540 ///     writeln!(&mut w)?;
541 ///     writeln!(&mut w, "test")?;
542 ///     writeln!(&mut w, "formatted {}", "arguments")?;
543 ///
544 ///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
545 ///     Ok(())
546 /// }
547 /// ```
548 #[macro_export]
549 #[stable(feature = "rust1", since = "1.0.0")]
550 #[cfg_attr(not(test), rustc_diagnostic_item = "writeln_macro")]
551 #[allow_internal_unstable(format_args_nl)]
552 macro_rules! writeln {
553     ($dst:expr $(,)?) => {
554         $crate::write!($dst, "\n")
555     };
556     ($dst:expr, $($arg:tt)*) => {
557         $dst.write_fmt($crate::format_args_nl!($($arg)*))
558     };
559 }
560 
561 /// Indicates unreachable code.
562 ///
563 /// This is useful any time that the compiler can't determine that some code is unreachable. For
564 /// example:
565 ///
566 /// * Match arms with guard conditions.
567 /// * Loops that dynamically terminate.
568 /// * Iterators that dynamically terminate.
569 ///
570 /// If the determination that the code is unreachable proves incorrect, the
571 /// program immediately terminates with a [`panic!`].
572 ///
573 /// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
574 /// will cause undefined behavior if the code is reached.
575 ///
576 /// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
577 ///
578 /// # Panics
579 ///
580 /// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
581 /// fixed, specific message.
582 ///
583 /// Like `panic!`, this macro has a second form for displaying custom values.
584 ///
585 /// # Examples
586 ///
587 /// Match arms:
588 ///
589 /// ```
590 /// # #[allow(dead_code)]
591 /// fn foo(x: Option<i32>) {
592 ///     match x {
593 ///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
594 ///         Some(n) if n <  0 => println!("Some(Negative)"),
595 ///         Some(_)           => unreachable!(), // compile error if commented out
596 ///         None              => println!("None")
597 ///     }
598 /// }
599 /// ```
600 ///
601 /// Iterators:
602 ///
603 /// ```
604 /// # #[allow(dead_code)]
605 /// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
606 ///     for i in 0.. {
607 ///         if 3*i < i { panic!("u32 overflow"); }
608 ///         if x < 3*i { return i-1; }
609 ///     }
610 ///     unreachable!("The loop should always return");
611 /// }
612 /// ```
613 #[macro_export]
614 #[rustc_builtin_macro(unreachable)]
615 #[allow_internal_unstable(edition_panic)]
616 #[stable(feature = "rust1", since = "1.0.0")]
617 #[cfg_attr(not(test), rustc_diagnostic_item = "unreachable_macro")]
618 macro_rules! unreachable {
619     // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
620     // depending on the edition of the caller.
621     ($($arg:tt)*) => {
622         /* compiler built-in */
623     };
624 }
625 
626 /// Indicates unimplemented code by panicking with a message of "not implemented".
627 ///
628 /// This allows your code to type-check, which is useful if you are prototyping or
629 /// implementing a trait that requires multiple methods which you don't plan to use all of.
630 ///
631 /// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
632 /// conveys an intent of implementing the functionality later and the message is "not yet
633 /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
634 /// Also some IDEs will mark `todo!`s.
635 ///
636 /// # Panics
637 ///
638 /// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
639 /// fixed, specific message.
640 ///
641 /// Like `panic!`, this macro has a second form for displaying custom values.
642 ///
643 /// [`todo!`]: crate::todo
644 ///
645 /// # Examples
646 ///
647 /// Say we have a trait `Foo`:
648 ///
649 /// ```
650 /// trait Foo {
651 ///     fn bar(&self) -> u8;
652 ///     fn baz(&self);
653 ///     fn qux(&self) -> Result<u64, ()>;
654 /// }
655 /// ```
656 ///
657 /// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
658 /// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
659 /// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
660 /// to allow our code to compile.
661 ///
662 /// We still want to have our program stop running if the unimplemented methods are
663 /// reached.
664 ///
665 /// ```
666 /// # trait Foo {
667 /// #     fn bar(&self) -> u8;
668 /// #     fn baz(&self);
669 /// #     fn qux(&self) -> Result<u64, ()>;
670 /// # }
671 /// struct MyStruct;
672 ///
673 /// impl Foo for MyStruct {
674 ///     fn bar(&self) -> u8 {
675 ///         1 + 1
676 ///     }
677 ///
678 ///     fn baz(&self) {
679 ///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
680 ///         // at all.
681 ///         // This will display "thread 'main' panicked at 'not implemented'".
682 ///         unimplemented!();
683 ///     }
684 ///
685 ///     fn qux(&self) -> Result<u64, ()> {
686 ///         // We have some logic here,
687 ///         // We can add a message to unimplemented! to display our omission.
688 ///         // This will display:
689 ///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
690 ///         unimplemented!("MyStruct isn't quxable");
691 ///     }
692 /// }
693 ///
694 /// fn main() {
695 ///     let s = MyStruct;
696 ///     s.bar();
697 /// }
698 /// ```
699 #[macro_export]
700 #[stable(feature = "rust1", since = "1.0.0")]
701 #[cfg_attr(not(test), rustc_diagnostic_item = "unimplemented_macro")]
702 #[allow_internal_unstable(core_panic)]
703 macro_rules! unimplemented {
704     () => {
705         $crate::panicking::panic("not implemented")
706     };
707     ($($arg:tt)+) => {
708         $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
709     };
710 }
711 
712 /// Indicates unfinished code.
713 ///
714 /// This can be useful if you are prototyping and just
715 /// want a placeholder to let your code pass type analysis.
716 ///
717 /// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
718 /// an intent of implementing the functionality later and the message is "not yet
719 /// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
720 /// Also some IDEs will mark `todo!`s.
721 ///
722 /// # Panics
723 ///
724 /// This will always [`panic!`].
725 ///
726 /// # Examples
727 ///
728 /// Here's an example of some in-progress code. We have a trait `Foo`:
729 ///
730 /// ```
731 /// trait Foo {
732 ///     fn bar(&self);
733 ///     fn baz(&self);
734 /// }
735 /// ```
736 ///
737 /// We want to implement `Foo` on one of our types, but we also want to work on
738 /// just `bar()` first. In order for our code to compile, we need to implement
739 /// `baz()`, so we can use `todo!`:
740 ///
741 /// ```
742 /// # trait Foo {
743 /// #     fn bar(&self);
744 /// #     fn baz(&self);
745 /// # }
746 /// struct MyStruct;
747 ///
748 /// impl Foo for MyStruct {
749 ///     fn bar(&self) {
750 ///         // implementation goes here
751 ///     }
752 ///
753 ///     fn baz(&self) {
754 ///         // let's not worry about implementing baz() for now
755 ///         todo!();
756 ///     }
757 /// }
758 ///
759 /// fn main() {
760 ///     let s = MyStruct;
761 ///     s.bar();
762 ///
763 ///     // we aren't even using baz(), so this is fine.
764 /// }
765 /// ```
766 #[macro_export]
767 #[stable(feature = "todo_macro", since = "1.40.0")]
768 #[cfg_attr(not(test), rustc_diagnostic_item = "todo_macro")]
769 #[allow_internal_unstable(core_panic)]
770 macro_rules! todo {
771     () => {
772         $crate::panicking::panic("not yet implemented")
773     };
774     ($($arg:tt)+) => {
775         $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
776     };
777 }
778 
779 /// Definitions of built-in macros.
780 ///
781 /// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
782 /// with exception of expansion functions transforming macro inputs into outputs,
783 /// those functions are provided by the compiler.
784 pub(crate) mod builtin {
785 
786     /// Causes compilation to fail with the given error message when encountered.
787     ///
788     /// This macro should be used when a crate uses a conditional compilation strategy to provide
789     /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
790     /// but emits an error during *compilation* rather than at *runtime*.
791     ///
792     /// # Examples
793     ///
794     /// Two such examples are macros and `#[cfg]` environments.
795     ///
796     /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
797     /// the compiler would still emit an error, but the error's message would not mention the two
798     /// valid values.
799     ///
800     /// ```compile_fail
801     /// macro_rules! give_me_foo_or_bar {
802     ///     (foo) => {};
803     ///     (bar) => {};
804     ///     ($x:ident) => {
805     ///         compile_error!("This macro only accepts `foo` or `bar`");
806     ///     }
807     /// }
808     ///
809     /// give_me_foo_or_bar!(neither);
810     /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
811     /// ```
812     ///
813     /// Emit a compiler error if one of a number of features isn't available.
814     ///
815     /// ```compile_fail
816     /// #[cfg(not(any(feature = "foo", feature = "bar")))]
817     /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
818     /// ```
819     #[stable(feature = "compile_error_macro", since = "1.20.0")]
820     #[rustc_builtin_macro]
821     #[macro_export]
822     macro_rules! compile_error {
823         ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
824     }
825 
826     /// Constructs parameters for the other string-formatting macros.
827     ///
828     /// This macro functions by taking a formatting string literal containing
829     /// `{}` for each additional argument passed. `format_args!` prepares the
830     /// additional parameters to ensure the output can be interpreted as a string
831     /// and canonicalizes the arguments into a single type. Any value that implements
832     /// the [`Display`] trait can be passed to `format_args!`, as can any
833     /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
834     ///
835     /// This macro produces a value of type [`fmt::Arguments`]. This value can be
836     /// passed to the macros within [`std::fmt`] for performing useful redirection.
837     /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
838     /// proxied through this one. `format_args!`, unlike its derived macros, avoids
839     /// heap allocations.
840     ///
841     /// You can use the [`fmt::Arguments`] value that `format_args!` returns
842     /// in `Debug` and `Display` contexts as seen below. The example also shows
843     /// that `Debug` and `Display` format to the same thing: the interpolated
844     /// format string in `format_args!`.
845     ///
846     /// ```rust
847     /// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
848     /// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
849     /// assert_eq!("1 foo 2", display);
850     /// assert_eq!(display, debug);
851     /// ```
852     ///
853     /// For more information, see the documentation in [`std::fmt`].
854     ///
855     /// [`Display`]: crate::fmt::Display
856     /// [`Debug`]: crate::fmt::Debug
857     /// [`fmt::Arguments`]: crate::fmt::Arguments
858     /// [`std::fmt`]: ../std/fmt/index.html
859     /// [`format!`]: ../std/macro.format.html
860     /// [`println!`]: ../std/macro.println.html
861     ///
862     /// # Examples
863     ///
864     /// ```
865     /// use std::fmt;
866     ///
867     /// let s = fmt::format(format_args!("hello {}", "world"));
868     /// assert_eq!(s, format!("hello {}", "world"));
869     /// ```
870     #[stable(feature = "rust1", since = "1.0.0")]
871     #[cfg_attr(not(test), rustc_diagnostic_item = "format_args_macro")]
872     #[allow_internal_unsafe]
873     #[allow_internal_unstable(fmt_internals)]
874     #[rustc_builtin_macro]
875     #[macro_export]
876     macro_rules! format_args {
877         ($fmt:expr) => {{ /* compiler built-in */ }};
878         ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
879     }
880 
881     /// Same as [`format_args`], but can be used in some const contexts.
882     ///
883     /// This macro is used by the panic macros for the `const_panic` feature.
884     ///
885     /// This macro will be removed once `format_args` is allowed in const contexts.
886     #[unstable(feature = "const_format_args", issue = "none")]
887     #[allow_internal_unstable(fmt_internals, const_fmt_arguments_new)]
888     #[rustc_builtin_macro]
889     #[macro_export]
890     macro_rules! const_format_args {
891         ($fmt:expr) => {{ /* compiler built-in */ }};
892         ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
893     }
894 
895     /// Same as [`format_args`], but adds a newline in the end.
896     #[unstable(
897         feature = "format_args_nl",
898         issue = "none",
899         reason = "`format_args_nl` is only for internal \
900                   language use and is subject to change"
901     )]
902     #[allow_internal_unstable(fmt_internals)]
903     #[rustc_builtin_macro]
904     #[macro_export]
905     macro_rules! format_args_nl {
906         ($fmt:expr) => {{ /* compiler built-in */ }};
907         ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
908     }
909 
910     /// Inspects an environment variable at compile time.
911     ///
912     /// This macro will expand to the value of the named environment variable at
913     /// compile time, yielding an expression of type `&'static str`. Use
914     /// [`std::env::var`] instead if you want to read the value at runtime.
915     ///
916     /// [`std::env::var`]: ../std/env/fn.var.html
917     ///
918     /// If the environment variable is not defined, then a compilation error
919     /// will be emitted. To not emit a compile error, use the [`option_env!`]
920     /// macro instead.
921     ///
922     /// # Examples
923     ///
924     /// ```
925     /// let path: &'static str = env!("PATH");
926     /// println!("the $PATH variable at the time of compiling was: {path}");
927     /// ```
928     ///
929     /// You can customize the error message by passing a string as the second
930     /// parameter:
931     ///
932     /// ```compile_fail
933     /// let doc: &'static str = env!("documentation", "what's that?!");
934     /// ```
935     ///
936     /// If the `documentation` environment variable is not defined, you'll get
937     /// the following error:
938     ///
939     /// ```text
940     /// error: what's that?!
941     /// ```
942     #[stable(feature = "rust1", since = "1.0.0")]
943     #[rustc_builtin_macro]
944     #[macro_export]
945     macro_rules! env {
946         ($name:expr $(,)?) => {{ /* compiler built-in */ }};
947         ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
948     }
949 
950     /// Optionally inspects an environment variable at compile time.
951     ///
952     /// If the named environment variable is present at compile time, this will
953     /// expand into an expression of type `Option<&'static str>` whose value is
954     /// `Some` of the value of the environment variable. If the environment
955     /// variable is not present, then this will expand to `None`. See
956     /// [`Option<T>`][Option] for more information on this type.  Use
957     /// [`std::env::var`] instead if you want to read the value at runtime.
958     ///
959     /// [`std::env::var`]: ../std/env/fn.var.html
960     ///
961     /// A compile time error is never emitted when using this macro regardless
962     /// of whether the environment variable is present or not.
963     /// To emit a compile error if the environment variable is not present,
964     /// use the [`env!`] macro instead.
965     ///
966     /// # Examples
967     ///
968     /// ```
969     /// let key: Option<&'static str> = option_env!("SECRET_KEY");
970     /// println!("the secret key might be: {key:?}");
971     /// ```
972     #[stable(feature = "rust1", since = "1.0.0")]
973     #[rustc_builtin_macro]
974     #[macro_export]
975     macro_rules! option_env {
976         ($name:expr $(,)?) => {{ /* compiler built-in */ }};
977     }
978 
979     /// Concatenates identifiers into one identifier.
980     ///
981     /// This macro takes any number of comma-separated identifiers, and
982     /// concatenates them all into one, yielding an expression which is a new
983     /// identifier. Note that hygiene makes it such that this macro cannot
984     /// capture local variables. Also, as a general rule, macros are only
985     /// allowed in item, statement or expression position. That means while
986     /// you may use this macro for referring to existing variables, functions or
987     /// modules etc, you cannot define a new one with it.
988     ///
989     /// # Examples
990     ///
991     /// ```
992     /// #![feature(concat_idents)]
993     ///
994     /// # fn main() {
995     /// fn foobar() -> u32 { 23 }
996     ///
997     /// let f = concat_idents!(foo, bar);
998     /// println!("{}", f());
999     ///
1000     /// // fn concat_idents!(new, fun, name) { } // not usable in this way!
1001     /// # }
1002     /// ```
1003     #[unstable(
1004         feature = "concat_idents",
1005         issue = "29599",
1006         reason = "`concat_idents` is not stable enough for use and is subject to change"
1007     )]
1008     #[rustc_builtin_macro]
1009     #[macro_export]
1010     macro_rules! concat_idents {
1011         ($($e:ident),+ $(,)?) => {{ /* compiler built-in */ }};
1012     }
1013 
1014     /// Concatenates literals into a byte slice.
1015     ///
1016     /// This macro takes any number of comma-separated literals, and concatenates them all into
1017     /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1018     /// concatenated left-to-right. The literals passed can be any combination of:
1019     ///
1020     /// - byte literals (`b'r'`)
1021     /// - byte strings (`b"Rust"`)
1022     /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1023     ///
1024     /// # Examples
1025     ///
1026     /// ```
1027     /// #![feature(concat_bytes)]
1028     ///
1029     /// # fn main() {
1030     /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1031     /// assert_eq!(s, b"ABCDEF");
1032     /// # }
1033     /// ```
1034     #[unstable(feature = "concat_bytes", issue = "87555")]
1035     #[rustc_builtin_macro]
1036     #[macro_export]
1037     macro_rules! concat_bytes {
1038         ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1039     }
1040 
1041     /// Concatenates literals into a static string slice.
1042     ///
1043     /// This macro takes any number of comma-separated literals, yielding an
1044     /// expression of type `&'static str` which represents all of the literals
1045     /// concatenated left-to-right.
1046     ///
1047     /// Integer and floating point literals are stringified in order to be
1048     /// concatenated.
1049     ///
1050     /// # Examples
1051     ///
1052     /// ```
1053     /// let s = concat!("test", 10, 'b', true);
1054     /// assert_eq!(s, "test10btrue");
1055     /// ```
1056     #[stable(feature = "rust1", since = "1.0.0")]
1057     #[rustc_builtin_macro]
1058     #[macro_export]
1059     macro_rules! concat {
1060         ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1061     }
1062 
1063     /// Expands to the line number on which it was invoked.
1064     ///
1065     /// With [`column!`] and [`file!`], these macros provide debugging information for
1066     /// developers about the location within the source.
1067     ///
1068     /// The expanded expression has type `u32` and is 1-based, so the first line
1069     /// in each file evaluates to 1, the second to 2, etc. This is consistent
1070     /// with error messages by common compilers or popular editors.
1071     /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1072     /// but rather the first macro invocation leading up to the invocation
1073     /// of the `line!` macro.
1074     ///
1075     /// # Examples
1076     ///
1077     /// ```
1078     /// let current_line = line!();
1079     /// println!("defined on line: {current_line}");
1080     /// ```
1081     #[stable(feature = "rust1", since = "1.0.0")]
1082     #[rustc_builtin_macro]
1083     #[macro_export]
1084     macro_rules! line {
1085         () => {
1086             /* compiler built-in */
1087         };
1088     }
1089 
1090     /// Expands to the column number at which it was invoked.
1091     ///
1092     /// With [`line!`] and [`file!`], these macros provide debugging information for
1093     /// developers about the location within the source.
1094     ///
1095     /// The expanded expression has type `u32` and is 1-based, so the first column
1096     /// in each line evaluates to 1, the second to 2, etc. This is consistent
1097     /// with error messages by common compilers or popular editors.
1098     /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1099     /// but rather the first macro invocation leading up to the invocation
1100     /// of the `column!` macro.
1101     ///
1102     /// # Examples
1103     ///
1104     /// ```
1105     /// let current_col = column!();
1106     /// println!("defined on column: {current_col}");
1107     /// ```
1108     ///
1109     /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1110     /// invocations return the same value, but the third does not.
1111     ///
1112     /// ```
1113     /// let a = ("foobar", column!()).1;
1114     /// let b = ("人之初性本善", column!()).1;
1115     /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1116     ///
1117     /// assert_eq!(a, b);
1118     /// assert_ne!(b, c);
1119     /// ```
1120     #[stable(feature = "rust1", since = "1.0.0")]
1121     #[rustc_builtin_macro]
1122     #[macro_export]
1123     macro_rules! column {
1124         () => {
1125             /* compiler built-in */
1126         };
1127     }
1128 
1129     /// Expands to the file name in which it was invoked.
1130     ///
1131     /// With [`line!`] and [`column!`], these macros provide debugging information for
1132     /// developers about the location within the source.
1133     ///
1134     /// The expanded expression has type `&'static str`, and the returned file
1135     /// is not the invocation of the `file!` macro itself, but rather the
1136     /// first macro invocation leading up to the invocation of the `file!`
1137     /// macro.
1138     ///
1139     /// # Examples
1140     ///
1141     /// ```
1142     /// let this_file = file!();
1143     /// println!("defined in file: {this_file}");
1144     /// ```
1145     #[stable(feature = "rust1", since = "1.0.0")]
1146     #[rustc_builtin_macro]
1147     #[macro_export]
1148     macro_rules! file {
1149         () => {
1150             /* compiler built-in */
1151         };
1152     }
1153 
1154     /// Stringifies its arguments.
1155     ///
1156     /// This macro will yield an expression of type `&'static str` which is the
1157     /// stringification of all the tokens passed to the macro. No restrictions
1158     /// are placed on the syntax of the macro invocation itself.
1159     ///
1160     /// Note that the expanded results of the input tokens may change in the
1161     /// future. You should be careful if you rely on the output.
1162     ///
1163     /// # Examples
1164     ///
1165     /// ```
1166     /// let one_plus_one = stringify!(1 + 1);
1167     /// assert_eq!(one_plus_one, "1 + 1");
1168     /// ```
1169     #[stable(feature = "rust1", since = "1.0.0")]
1170     #[rustc_builtin_macro]
1171     #[macro_export]
1172     macro_rules! stringify {
1173         ($($t:tt)*) => {
1174             /* compiler built-in */
1175         };
1176     }
1177 
1178     /// Includes a UTF-8 encoded file as a string.
1179     ///
1180     /// The file is located relative to the current file (similarly to how
1181     /// modules are found). The provided path is interpreted in a platform-specific
1182     /// way at compile time. So, for instance, an invocation with a Windows path
1183     /// containing backslashes `\` would not compile correctly on Unix.
1184     ///
1185     /// This macro will yield an expression of type `&'static str` which is the
1186     /// contents of the file.
1187     ///
1188     /// # Examples
1189     ///
1190     /// Assume there are two files in the same directory with the following
1191     /// contents:
1192     ///
1193     /// File 'spanish.in':
1194     ///
1195     /// ```text
1196     /// adiós
1197     /// ```
1198     ///
1199     /// File 'main.rs':
1200     ///
1201     /// ```ignore (cannot-doctest-external-file-dependency)
1202     /// fn main() {
1203     ///     let my_str = include_str!("spanish.in");
1204     ///     assert_eq!(my_str, "adiós\n");
1205     ///     print!("{my_str}");
1206     /// }
1207     /// ```
1208     ///
1209     /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1210     #[stable(feature = "rust1", since = "1.0.0")]
1211     #[rustc_builtin_macro]
1212     #[macro_export]
1213     #[cfg_attr(not(test), rustc_diagnostic_item = "include_str_macro")]
1214     macro_rules! include_str {
1215         ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1216     }
1217 
1218     /// Includes a file as a reference to a byte array.
1219     ///
1220     /// The file is located relative to the current file (similarly to how
1221     /// modules are found). The provided path is interpreted in a platform-specific
1222     /// way at compile time. So, for instance, an invocation with a Windows path
1223     /// containing backslashes `\` would not compile correctly on Unix.
1224     ///
1225     /// This macro will yield an expression of type `&'static [u8; N]` which is
1226     /// the contents of the file.
1227     ///
1228     /// # Examples
1229     ///
1230     /// Assume there are two files in the same directory with the following
1231     /// contents:
1232     ///
1233     /// File 'spanish.in':
1234     ///
1235     /// ```text
1236     /// adiós
1237     /// ```
1238     ///
1239     /// File 'main.rs':
1240     ///
1241     /// ```ignore (cannot-doctest-external-file-dependency)
1242     /// fn main() {
1243     ///     let bytes = include_bytes!("spanish.in");
1244     ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1245     ///     print!("{}", String::from_utf8_lossy(bytes));
1246     /// }
1247     /// ```
1248     ///
1249     /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1250     #[stable(feature = "rust1", since = "1.0.0")]
1251     #[rustc_builtin_macro]
1252     #[macro_export]
1253     #[cfg_attr(not(test), rustc_diagnostic_item = "include_bytes_macro")]
1254     macro_rules! include_bytes {
1255         ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1256     }
1257 
1258     /// Expands to a string that represents the current module path.
1259     ///
1260     /// The current module path can be thought of as the hierarchy of modules
1261     /// leading back up to the crate root. The first component of the path
1262     /// returned is the name of the crate currently being compiled.
1263     ///
1264     /// # Examples
1265     ///
1266     /// ```
1267     /// mod test {
1268     ///     pub fn foo() {
1269     ///         assert!(module_path!().ends_with("test"));
1270     ///     }
1271     /// }
1272     ///
1273     /// test::foo();
1274     /// ```
1275     #[stable(feature = "rust1", since = "1.0.0")]
1276     #[rustc_builtin_macro]
1277     #[macro_export]
1278     macro_rules! module_path {
1279         () => {
1280             /* compiler built-in */
1281         };
1282     }
1283 
1284     /// Evaluates boolean combinations of configuration flags at compile-time.
1285     ///
1286     /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1287     /// boolean expression evaluation of configuration flags. This frequently
1288     /// leads to less duplicated code.
1289     ///
1290     /// The syntax given to this macro is the same syntax as the [`cfg`]
1291     /// attribute.
1292     ///
1293     /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1294     /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1295     /// the condition, regardless of what `cfg!` is evaluating.
1296     ///
1297     /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1298     ///
1299     /// # Examples
1300     ///
1301     /// ```
1302     /// let my_directory = if cfg!(windows) {
1303     ///     "windows-specific-directory"
1304     /// } else {
1305     ///     "unix-directory"
1306     /// };
1307     /// ```
1308     #[stable(feature = "rust1", since = "1.0.0")]
1309     #[rustc_builtin_macro]
1310     #[macro_export]
1311     macro_rules! cfg {
1312         ($($cfg:tt)*) => {
1313             /* compiler built-in */
1314         };
1315     }
1316 
1317     /// Parses a file as an expression or an item according to the context.
1318     ///
1319     /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1320     /// are looking for. Usually, multi-file Rust projects use
1321     /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1322     /// modules are explained in the Rust-by-Example book
1323     /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1324     /// explained in the Rust Book
1325     /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1326     ///
1327     /// The included file is placed in the surrounding code
1328     /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1329     /// the included file is parsed as an expression and variables or functions share names across
1330     /// both files, it could result in variables or functions being different from what the
1331     /// included file expected.
1332     ///
1333     /// The included file is located relative to the current file (similarly to how modules are
1334     /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1335     /// for instance, an invocation with a Windows path containing backslashes `\` would not
1336     /// compile correctly on Unix.
1337     ///
1338     /// # Uses
1339     ///
1340     /// The `include!` macro is primarily used for two purposes. It is used to include
1341     /// documentation that is written in a separate file and it is used to include [build artifacts
1342     /// usually as a result from the `build.rs`
1343     /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1344     ///
1345     /// When using the `include` macro to include stretches of documentation, remember that the
1346     /// included file still needs to be a valid rust syntax. It is also possible to
1347     /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1348     /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1349     /// text or markdown file.
1350     ///
1351     /// # Examples
1352     ///
1353     /// Assume there are two files in the same directory with the following contents:
1354     ///
1355     /// File 'monkeys.in':
1356     ///
1357     /// ```ignore (only-for-syntax-highlight)
1358     /// ['��', '��', '��']
1359     ///     .iter()
1360     ///     .cycle()
1361     ///     .take(6)
1362     ///     .collect::<String>()
1363     /// ```
1364     ///
1365     /// File 'main.rs':
1366     ///
1367     /// ```ignore (cannot-doctest-external-file-dependency)
1368     /// fn main() {
1369     ///     let my_string = include!("monkeys.in");
1370     ///     assert_eq!("������������", my_string);
1371     ///     println!("{my_string}");
1372     /// }
1373     /// ```
1374     ///
1375     /// Compiling 'main.rs' and running the resulting binary will print
1376     /// "������������".
1377     #[stable(feature = "rust1", since = "1.0.0")]
1378     #[rustc_builtin_macro]
1379     #[macro_export]
1380     macro_rules! include {
1381         ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1382     }
1383 
1384     /// Asserts that a boolean expression is `true` at runtime.
1385     ///
1386     /// This will invoke the [`panic!`] macro if the provided expression cannot be
1387     /// evaluated to `true` at runtime.
1388     ///
1389     /// # Uses
1390     ///
1391     /// Assertions are always checked in both debug and release builds, and cannot
1392     /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1393     /// release builds by default.
1394     ///
1395     /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1396     /// violated could lead to unsafety.
1397     ///
1398     /// Other use-cases of `assert!` include testing and enforcing run-time
1399     /// invariants in safe code (whose violation cannot result in unsafety).
1400     ///
1401     /// # Custom Messages
1402     ///
1403     /// This macro has a second form, where a custom panic message can
1404     /// be provided with or without arguments for formatting. See [`std::fmt`]
1405     /// for syntax for this form. Expressions used as format arguments will only
1406     /// be evaluated if the assertion fails.
1407     ///
1408     /// [`std::fmt`]: ../std/fmt/index.html
1409     ///
1410     /// # Examples
1411     ///
1412     /// ```
1413     /// // the panic message for these assertions is the stringified value of the
1414     /// // expression given.
1415     /// assert!(true);
1416     ///
1417     /// fn some_computation() -> bool { true } // a very simple function
1418     ///
1419     /// assert!(some_computation());
1420     ///
1421     /// // assert with a custom message
1422     /// let x = true;
1423     /// assert!(x, "x wasn't true!");
1424     ///
1425     /// let a = 3; let b = 27;
1426     /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1427     /// ```
1428     #[stable(feature = "rust1", since = "1.0.0")]
1429     #[rustc_builtin_macro]
1430     #[macro_export]
1431     #[rustc_diagnostic_item = "assert_macro"]
1432     #[allow_internal_unstable(core_panic, edition_panic, generic_assert_internals)]
1433     macro_rules! assert {
1434         ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1435         ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1436     }
1437 
1438     /// Prints passed tokens into the standard output.
1439     #[unstable(
1440         feature = "log_syntax",
1441         issue = "29598",
1442         reason = "`log_syntax!` is not stable enough for use and is subject to change"
1443     )]
1444     #[rustc_builtin_macro]
1445     #[macro_export]
1446     macro_rules! log_syntax {
1447         ($($arg:tt)*) => {
1448             /* compiler built-in */
1449         };
1450     }
1451 
1452     /// Enables or disables tracing functionality used for debugging other macros.
1453     #[unstable(
1454         feature = "trace_macros",
1455         issue = "29598",
1456         reason = "`trace_macros` is not stable enough for use and is subject to change"
1457     )]
1458     #[rustc_builtin_macro]
1459     #[macro_export]
1460     macro_rules! trace_macros {
1461         (true) => {{ /* compiler built-in */ }};
1462         (false) => {{ /* compiler built-in */ }};
1463     }
1464 
1465     /// Attribute macro used to apply derive macros.
1466     ///
1467     /// See [the reference] for more info.
1468     ///
1469     /// [the reference]: ../../../reference/attributes/derive.html
1470     #[stable(feature = "rust1", since = "1.0.0")]
1471     #[rustc_builtin_macro]
1472     pub macro derive($item:item) {
1473         /* compiler built-in */
1474     }
1475 
1476     /// Attribute macro used to apply derive macros for implementing traits
1477     /// in a const context.
1478     ///
1479     /// See [the reference] for more info.
1480     ///
1481     /// [the reference]: ../../../reference/attributes/derive.html
1482     #[unstable(feature = "derive_const", issue = "none")]
1483     #[rustc_builtin_macro]
1484     pub macro derive_const($item:item) {
1485         /* compiler built-in */
1486     }
1487 
1488     /// Attribute macro applied to a function to turn it into a unit test.
1489     ///
1490     /// See [the reference] for more info.
1491     ///
1492     /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1493     #[stable(feature = "rust1", since = "1.0.0")]
1494     #[allow_internal_unstable(test, rustc_attrs)]
1495     #[rustc_builtin_macro]
1496     pub macro test($item:item) {
1497         /* compiler built-in */
1498     }
1499 
1500     /// Attribute macro applied to a function to turn it into a benchmark test.
1501     #[unstable(
1502         feature = "test",
1503         issue = "50297",
1504         soft,
1505         reason = "`bench` is a part of custom test frameworks which are unstable"
1506     )]
1507     #[allow_internal_unstable(test, rustc_attrs)]
1508     #[rustc_builtin_macro]
1509     pub macro bench($item:item) {
1510         /* compiler built-in */
1511     }
1512 
1513     /// An implementation detail of the `#[test]` and `#[bench]` macros.
1514     #[unstable(
1515         feature = "custom_test_frameworks",
1516         issue = "50297",
1517         reason = "custom test frameworks are an unstable feature"
1518     )]
1519     #[allow_internal_unstable(test, rustc_attrs)]
1520     #[rustc_builtin_macro]
1521     pub macro test_case($item:item) {
1522         /* compiler built-in */
1523     }
1524 
1525     /// Attribute macro applied to a static to register it as a global allocator.
1526     ///
1527     /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1528     #[stable(feature = "global_allocator", since = "1.28.0")]
1529     #[allow_internal_unstable(rustc_attrs)]
1530     #[rustc_builtin_macro]
1531     pub macro global_allocator($item:item) {
1532         /* compiler built-in */
1533     }
1534 
1535     /// Attribute macro applied to a function to register it as a handler for allocation failure.
1536     ///
1537     /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1538     #[unstable(feature = "alloc_error_handler", issue = "51540")]
1539     #[allow_internal_unstable(rustc_attrs)]
1540     #[rustc_builtin_macro]
1541     pub macro alloc_error_handler($item:item) {
1542         /* compiler built-in */
1543     }
1544 
1545     /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1546     #[unstable(
1547         feature = "cfg_accessible",
1548         issue = "64797",
1549         reason = "`cfg_accessible` is not fully implemented"
1550     )]
1551     #[rustc_builtin_macro]
1552     pub macro cfg_accessible($item:item) {
1553         /* compiler built-in */
1554     }
1555 
1556     /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1557     #[unstable(
1558         feature = "cfg_eval",
1559         issue = "82679",
1560         reason = "`cfg_eval` is a recently implemented feature"
1561     )]
1562     #[rustc_builtin_macro]
1563     pub macro cfg_eval($($tt:tt)*) {
1564         /* compiler built-in */
1565     }
1566 
1567     /// Unstable placeholder for type ascription.
1568     #[rustc_builtin_macro]
1569     #[unstable(
1570         feature = "type_ascription",
1571         issue = "23416",
1572         reason = "placeholder syntax for type ascription"
1573     )]
1574     pub macro type_ascribe($expr:expr, $ty:ty) {
1575         /* compiler built-in */
1576     }
1577 
1578     /// Unstable implementation detail of the `rustc` compiler, do not use.
1579     #[rustc_builtin_macro]
1580     #[stable(feature = "rust1", since = "1.0.0")]
1581     #[allow_internal_unstable(core_intrinsics, libstd_sys_internals, rt)]
1582     #[deprecated(since = "1.52.0", note = "rustc-serialize is deprecated and no longer supported")]
1583     #[doc(hidden)] // While technically stable, using it is unstable, and deprecated. Hide it.
1584     pub macro RustcDecodable($item:item) {
1585         /* compiler built-in */
1586     }
1587 
1588     /// Unstable implementation detail of the `rustc` compiler, do not use.
1589     #[rustc_builtin_macro]
1590     #[stable(feature = "rust1", since = "1.0.0")]
1591     #[allow_internal_unstable(core_intrinsics, rt)]
1592     #[deprecated(since = "1.52.0", note = "rustc-serialize is deprecated and no longer supported")]
1593     #[doc(hidden)] // While technically stable, using it is unstable, and deprecated. Hide it.
1594     pub macro RustcEncodable($item:item) {
1595         /* compiler built-in */
1596     }
1597 }
1598