• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ganesh/vk/GrVkCaps.h"
9 
10 #include "include/core/SkRect.h"
11 #include "include/core/SkSize.h"
12 #include "include/core/SkTextureCompressionType.h"
13 #include "include/core/SkTypes.h"
14 #include "include/gpu/GpuTypes.h"
15 #include "include/gpu/ganesh/GrBackendSurface.h"
16 #include "include/gpu/ganesh/GrContextOptions.h"
17 #include "include/gpu/ganesh/vk/GrVkBackendSurface.h"
18 #include "include/gpu/vk/VulkanExtensions.h"
19 #include "include/gpu/vk/VulkanTypes.h"
20 #include "src/core/SkCompressedDataUtils.h"
21 #include "src/gpu/KeyBuilder.h"
22 #include "src/gpu/ganesh/GrBackendUtils.h"
23 #include "src/gpu/ganesh/GrPipeline.h"
24 #include "src/gpu/ganesh/GrProgramDesc.h"
25 #include "src/gpu/ganesh/GrProgramInfo.h"
26 #include "src/gpu/ganesh/GrRenderTarget.h"
27 #include "src/gpu/ganesh/GrRenderTargetProxy.h"
28 #include "src/gpu/ganesh/GrShaderCaps.h"
29 #include "src/gpu/ganesh/GrStencilSettings.h"
30 #include "src/gpu/ganesh/GrSurface.h"
31 #include "src/gpu/ganesh/GrSurfaceProxy.h"
32 #include "src/gpu/ganesh/GrXferProcessor.h"
33 #include "src/gpu/ganesh/TestFormatColorTypeCombination.h"
34 #include "src/gpu/ganesh/vk/GrVkGpu.h"
35 #include "src/gpu/ganesh/vk/GrVkImage.h"
36 #include "src/gpu/ganesh/vk/GrVkRenderPass.h"
37 #include "src/gpu/ganesh/vk/GrVkRenderTarget.h"
38 #include "src/gpu/ganesh/vk/GrVkSampler.h"
39 #include "src/gpu/ganesh/vk/GrVkTexture.h"
40 #include "src/gpu/ganesh/vk/GrVkUniformHandler.h"
41 #include "src/gpu/ganesh/vk/GrVkUtil.h"
42 #include "src/gpu/vk/VulkanUtilsPriv.h"
43 
44 #include <limits.h>
45 #include <algorithm>
46 #include <array>
47 #include <cstring>
48 #include <memory>
49 
50 #ifdef SK_BUILD_FOR_ANDROID
51 #include <sys/system_properties.h>
52 #endif
53 
GrVkCaps(const GrContextOptions & contextOptions,const skgpu::VulkanInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t instanceVersion,uint32_t physicalDeviceVersion,const skgpu::VulkanExtensions & extensions,GrProtected isProtected)54 GrVkCaps::GrVkCaps(const GrContextOptions& contextOptions,
55                    const skgpu::VulkanInterface* vkInterface,
56                    VkPhysicalDevice physDev,
57                    const VkPhysicalDeviceFeatures2& features,
58                    uint32_t instanceVersion,
59                    uint32_t physicalDeviceVersion,
60                    const skgpu::VulkanExtensions& extensions,
61                    GrProtected isProtected)
62         : INHERITED(contextOptions) {
63     /**************************************************************************
64      * GrCaps fields
65      **************************************************************************/
66     fMipmapSupport = true;   // always available in Vulkan
67     fAnisoSupport = true;   // always available in Vulkan
68     fNPOTTextureTileSupport = true;  // always available in Vulkan
69     fReuseScratchTextures = true; //TODO: figure this out
70     fGpuTracingSupport = false; //TODO: figure this out
71     fOversizedStencilSupport = false; //TODO: figure this out
72     fDrawInstancedSupport = true;
73 
74     fSemaphoreSupport = true;   // always available in Vulkan
75     fBackendSemaphoreSupport = true;
76     fFinishedProcAsyncCallbackSupport = true;
77     fCrossContextTextureSupport = true;
78     fHalfFloatVertexAttributeSupport = true;
79 
80     // We always copy in/out of a transfer buffer so it's trivial to support row bytes.
81     fReadPixelsRowBytesSupport = true;
82     fWritePixelsRowBytesSupport = true;
83 
84     fTransferFromBufferToTextureSupport = true;
85     fTransferFromSurfaceToBufferSupport = true;
86     fTransferFromBufferToBufferSupport  = true;
87 
88     fMaxRenderTargetSize = 4096; // minimum required by spec
89     fMaxTextureSize = 4096; // minimum required by spec
90 
91     fDynamicStateArrayGeometryProcessorTextureSupport = true;
92 
93     fTextureBarrierSupport = true;
94 
95     fShaderCaps = std::make_unique<GrShaderCaps>();
96 
97     this->init(contextOptions, vkInterface, physDev, features, physicalDeviceVersion, extensions,
98                isProtected);
99 }
100 
101 namespace {
102 /**
103  * This comes from section 37.1.6 of the Vulkan spec. Format is
104  * (<bits>|<tag>)_<block_size>_<texels_per_block>.
105  */
106 enum class FormatCompatibilityClass {
107     k8_1_1,
108     k16_2_1,
109     k24_3_1,
110     k32_4_1,
111     k64_8_1,
112     k10x6_64_6_1,
113     kBC1_RGB_8_16_1,
114     kBC1_RGBA_8_16,
115     kETC2_RGB_8_16,
116     kASTC_RGBA_8_16,
117 };
118 }  // anonymous namespace
119 
format_compatibility_class(VkFormat format)120 static FormatCompatibilityClass format_compatibility_class(VkFormat format) {
121     switch (format) {
122         case VK_FORMAT_B8G8R8A8_UNORM:
123         case VK_FORMAT_R8G8B8A8_UNORM:
124         case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
125         case VK_FORMAT_A2R10G10B10_UNORM_PACK32:
126         case VK_FORMAT_R8G8B8A8_SRGB:
127         case VK_FORMAT_R16G16_UNORM:
128         case VK_FORMAT_R16G16_SFLOAT:
129             return FormatCompatibilityClass::k32_4_1;
130 
131         case VK_FORMAT_R8_UNORM:
132             return FormatCompatibilityClass::k8_1_1;
133 
134         case VK_FORMAT_R5G6B5_UNORM_PACK16:
135         case VK_FORMAT_B5G6R5_UNORM_PACK16:
136         case VK_FORMAT_R16_SFLOAT:
137         case VK_FORMAT_R8G8_UNORM:
138         case VK_FORMAT_B4G4R4A4_UNORM_PACK16:
139         case VK_FORMAT_R4G4B4A4_UNORM_PACK16:
140         case VK_FORMAT_R16_UNORM:
141             return FormatCompatibilityClass::k16_2_1;
142 
143         case VK_FORMAT_R16G16B16A16_SFLOAT:
144         case VK_FORMAT_R16G16B16A16_UNORM:
145             return FormatCompatibilityClass::k64_8_1;
146 
147         case VK_FORMAT_R8G8B8_UNORM:
148             return FormatCompatibilityClass::k24_3_1;
149 
150         case VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16:
151             return FormatCompatibilityClass::k10x6_64_6_1;
152 
153         case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
154             return FormatCompatibilityClass::kETC2_RGB_8_16;
155 
156         case VK_FORMAT_BC1_RGB_UNORM_BLOCK:
157             return FormatCompatibilityClass::kBC1_RGB_8_16_1;
158 
159         case VK_FORMAT_BC1_RGBA_UNORM_BLOCK:
160             return FormatCompatibilityClass::kBC1_RGBA_8_16;
161 
162         case VK_FORMAT_ASTC_4x4_UNORM_BLOCK:
163         case VK_FORMAT_ASTC_6x6_UNORM_BLOCK:
164         case VK_FORMAT_ASTC_8x8_UNORM_BLOCK:
165             return FormatCompatibilityClass::kASTC_RGBA_8_16;
166 
167         default:
168             SK_ABORT("Unsupported VkFormat");
169     }
170 }
171 
canCopyImage(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const172 bool GrVkCaps::canCopyImage(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
173                             VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
174     if ((dstSampleCnt > 1 || srcSampleCnt > 1) && dstSampleCnt != srcSampleCnt) {
175         return false;
176     }
177 
178     if (dstHasYcbcr || srcHasYcbcr) {
179         return false;
180     }
181 
182     // We require that all Vulkan GrSurfaces have been created with transfer_dst and transfer_src
183     // as image usage flags.
184     return format_compatibility_class(srcFormat) == format_compatibility_class(dstFormat);
185 }
186 
canCopyAsBlit(VkFormat dstFormat,int dstSampleCnt,bool dstIsLinear,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcIsLinear,bool srcHasYcbcr) const187 bool GrVkCaps::canCopyAsBlit(VkFormat dstFormat, int dstSampleCnt, bool dstIsLinear,
188                              bool dstHasYcbcr, VkFormat srcFormat, int srcSampleCnt,
189                              bool srcIsLinear, bool srcHasYcbcr) const {
190     // We require that all vulkan GrSurfaces have been created with transfer_dst and transfer_src
191     // as image usage flags.
192     if (!this->formatCanBeDstofBlit(dstFormat, dstIsLinear) ||
193         !this->formatCanBeSrcofBlit(srcFormat, srcIsLinear)) {
194         return false;
195     }
196 
197     // We cannot blit images that are multisampled. Will need to figure out if we can blit the
198     // resolved msaa though.
199     if (dstSampleCnt > 1 || srcSampleCnt > 1) {
200         return false;
201     }
202 
203     if (dstHasYcbcr || srcHasYcbcr) {
204         return false;
205     }
206 
207     return true;
208 }
209 
canCopyAsResolve(VkFormat dstFormat,int dstSampleCnt,bool dstHasYcbcr,VkFormat srcFormat,int srcSampleCnt,bool srcHasYcbcr) const210 bool GrVkCaps::canCopyAsResolve(VkFormat dstFormat, int dstSampleCnt, bool dstHasYcbcr,
211                                 VkFormat srcFormat, int srcSampleCnt, bool srcHasYcbcr) const {
212     // The src surface must be multisampled.
213     if (srcSampleCnt <= 1) {
214         return false;
215     }
216 
217     // The dst must not be multisampled.
218     if (dstSampleCnt > 1) {
219         return false;
220     }
221 
222     // Surfaces must have the same format.
223     if (srcFormat != dstFormat) {
224         return false;
225     }
226 
227     if (dstHasYcbcr || srcHasYcbcr) {
228         return false;
229     }
230 
231     return true;
232 }
233 
onCanCopySurface(const GrSurfaceProxy * dst,const SkIRect & dstRect,const GrSurfaceProxy * src,const SkIRect & srcRect) const234 bool GrVkCaps::onCanCopySurface(const GrSurfaceProxy* dst, const SkIRect& dstRect,
235                                 const GrSurfaceProxy* src, const SkIRect& srcRect) const {
236     if (src->isProtected() == GrProtected::kYes && dst->isProtected() != GrProtected::kYes) {
237         return false;
238     }
239 
240     // TODO: Figure out a way to track if we've wrapped a linear texture in a proxy (e.g.
241     // PromiseImage which won't get instantiated right away. Does this need a similar thing like the
242     // tracking of external or rectangle textures in GL? For now we don't create linear textures
243     // internally, and I don't believe anyone is wrapping them.
244     bool srcIsLinear = false;
245     bool dstIsLinear = false;
246 
247     int dstSampleCnt = 0;
248     int srcSampleCnt = 0;
249     if (const GrRenderTargetProxy* rtProxy = dst->asRenderTargetProxy()) {
250         // Copying to or from render targets that wrap a secondary command buffer is not allowed
251         // since they would require us to know the VkImage, which we don't have, as well as need us
252         // to stop and start the VkRenderPass which we don't have access to.
253         if (rtProxy->wrapsVkSecondaryCB()) {
254             return false;
255         }
256         if (this->preferDiscardableMSAAAttachment() && dst->asTextureProxy() &&
257             rtProxy->supportsVkInputAttachment()) {
258             dstSampleCnt = 1;
259         } else {
260             dstSampleCnt = rtProxy->numSamples();
261         }
262     }
263     if (const GrRenderTargetProxy* rtProxy = src->asRenderTargetProxy()) {
264         // Copying to or from render targets that wrap a secondary command buffer is not allowed
265         // since they would require us to know the VkImage, which we don't have, as well as need us
266         // to stop and start the VkRenderPass which we don't have access to.
267         if (rtProxy->wrapsVkSecondaryCB()) {
268             return false;
269         }
270         if (this->preferDiscardableMSAAAttachment() && src->asTextureProxy() &&
271             rtProxy->supportsVkInputAttachment()) {
272             srcSampleCnt = 1;
273         } else {
274             srcSampleCnt = rtProxy->numSamples();
275         }
276     }
277     SkASSERT((dstSampleCnt > 0) == SkToBool(dst->asRenderTargetProxy()));
278     SkASSERT((srcSampleCnt > 0) == SkToBool(src->asRenderTargetProxy()));
279 
280     bool dstHasYcbcr = false;
281     if (auto ycbcr = GrBackendFormats::GetVkYcbcrConversionInfo(dst->backendFormat())) {
282         if (ycbcr->isValid()) {
283             dstHasYcbcr = true;
284         }
285     }
286 
287     bool srcHasYcbcr = false;
288     if (auto ycbcr = GrBackendFormats::GetVkYcbcrConversionInfo(src->backendFormat())) {
289         if (ycbcr->isValid()) {
290             srcHasYcbcr = true;
291         }
292     }
293 
294     VkFormat dstFormat, srcFormat;
295     SkAssertResult(GrBackendFormats::AsVkFormat(dst->backendFormat(), &dstFormat));
296     SkAssertResult(GrBackendFormats::AsVkFormat(src->backendFormat(), &srcFormat));
297 
298     // Only blits support scaling, but since we've already clamped the src and dst rects,
299     // the dimensions of the scaled blit aren't important to know if it's allowed.
300     const bool copyScales = srcRect.size() != dstRect.size();
301     if (!copyScales && (this->canCopyImage(dstFormat, dstSampleCnt, dstHasYcbcr,
302                                            srcFormat, srcSampleCnt, srcHasYcbcr) ||
303                         this->canCopyAsResolve(dstFormat, dstSampleCnt, dstHasYcbcr,
304                                                srcFormat, srcSampleCnt, srcHasYcbcr))) {
305         return true;
306     }
307     return this->canCopyAsBlit(dstFormat, dstSampleCnt, dstIsLinear, dstHasYcbcr,
308                                srcFormat, srcSampleCnt, srcIsLinear, srcHasYcbcr);
309 
310 }
311 
init(const GrContextOptions & contextOptions,const skgpu::VulkanInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceFeatures2 & features,uint32_t physicalDeviceVersion,const skgpu::VulkanExtensions & extensions,GrProtected isProtected)312 void GrVkCaps::init(const GrContextOptions& contextOptions,
313                     const skgpu::VulkanInterface* vkInterface,
314                     VkPhysicalDevice physDev,
315                     const VkPhysicalDeviceFeatures2& features,
316                     uint32_t physicalDeviceVersion,
317                     const skgpu::VulkanExtensions& extensions,
318                     GrProtected isProtected) {
319     VkPhysicalDeviceProperties properties;
320     GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties(physDev, &properties));
321 
322 #if defined(GPU_TEST_UTILS)
323     this->setDeviceName(properties.deviceName);
324 #endif
325 
326     VkPhysicalDeviceMemoryProperties memoryProperties;
327     GR_VK_CALL(vkInterface, GetPhysicalDeviceMemoryProperties(physDev, &memoryProperties));
328 
329     SkASSERT(physicalDeviceVersion <= properties.apiVersion);
330 
331     if (extensions.hasExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, 1)) {
332         fSupportsSwapchain = true;
333     }
334 
335     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
336         extensions.hasExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, 1)) {
337         fSupportsPhysicalDeviceProperties2 = true;
338     }
339 
340     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
341         extensions.hasExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, 1)) {
342         fSupportsMemoryRequirements2 = true;
343     }
344 
345     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
346         extensions.hasExtension(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, 1)) {
347         fSupportsBindMemory2 = true;
348     }
349 
350     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
351         extensions.hasExtension(VK_KHR_MAINTENANCE1_EXTENSION_NAME, 1)) {
352         fSupportsMaintenance1 = true;
353     }
354 
355     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
356         extensions.hasExtension(VK_KHR_MAINTENANCE2_EXTENSION_NAME, 1)) {
357         fSupportsMaintenance2 = true;
358     }
359 
360     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
361         extensions.hasExtension(VK_KHR_MAINTENANCE3_EXTENSION_NAME, 1)) {
362         fSupportsMaintenance3 = true;
363     }
364 
365     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
366         (extensions.hasExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME, 1) &&
367          this->supportsMemoryRequirements2())) {
368         fSupportsDedicatedAllocation = true;
369     }
370 
371     if (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
372         (extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME, 1) &&
373          this->supportsPhysicalDeviceProperties2() &&
374          extensions.hasExtension(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME, 1) &&
375          this->supportsDedicatedAllocation())) {
376         fSupportsExternalMemory = true;
377     }
378 
379 #ifdef SK_BUILD_FOR_ANDROID
380     // Currently Adreno devices are not supporting the QUEUE_FAMILY_FOREIGN_EXTENSION, so until they
381     // do we don't explicitly require it here even the spec says it is required.
382     if (extensions.hasExtension(
383             VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME, 2) &&
384        /* extensions.hasExtension(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, 1) &&*/
385         this->supportsExternalMemory() &&
386         this->supportsBindMemory2()) {
387         fSupportsAndroidHWBExternalMemory = true;
388         fSupportsAHardwareBufferImages = true;
389     }
390 #endif
391 
392     auto ycbcrFeatures = skgpu::GetExtensionFeatureStruct<
393             VkPhysicalDeviceSamplerYcbcrConversionFeatures>(
394                     features,
395                     VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES);
396     if (ycbcrFeatures && ycbcrFeatures->samplerYcbcrConversion &&
397         (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0) ||
398          (extensions.hasExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, 1) &&
399           this->supportsMaintenance1() && this->supportsBindMemory2() &&
400           this->supportsMemoryRequirements2() && this->supportsPhysicalDeviceProperties2()))) {
401         fSupportsYcbcrConversion = true;
402     }
403 
404     // We always push back the default skgpu::VulkanYcbcrConversionInfo so that the case of no
405     // conversion will return a key of 0.
406     fYcbcrInfos.push_back(skgpu::VulkanYcbcrConversionInfo());
407 
408     if ((isProtected == GrProtected::kYes) &&
409         (physicalDeviceVersion >= VK_MAKE_VERSION(1, 1, 0))) {
410         fSupportsProtectedContent = true;
411         fAvoidUpdateBuffers = true;
412         fShouldAlwaysUseDedicatedImageMemory = true;
413     }
414 
415     if (extensions.hasExtension(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, 1)) {
416         fSupportsDRMFormatModifiers = true;
417     }
418 
419     if (extensions.hasExtension(VK_EXT_DEVICE_FAULT_EXTENSION_NAME, 1)) {
420         fSupportsDeviceFaultInfo = true;
421     }
422 
423     if (extensions.hasExtension(VK_EXT_FRAME_BOUNDARY_EXTENSION_NAME, 1)) {
424         fSupportsFrameBoundary = true;
425     }
426 
427     fMaxInputAttachmentDescriptors = properties.limits.maxDescriptorSetInputAttachments;
428 
429     fMaxSamplerAnisotropy = properties.limits.maxSamplerAnisotropy;
430 
431     // On desktop GPUs we have found that this does not provide much benefit. The perf results show
432     // a mix of regressions, some improvements, and lots of no changes. Thus it is not worth
433     // enabling this (especially with the rendering artifacts) on desktop.
434     //
435     // On Adreno devices we were expecting to see perf gains. But instead there were actually a lot
436     // of perf regressions and only a few perf wins. This needs some follow up with qualcomm since
437     // we do expect this to be a big win on tilers.
438     //
439     // On ARM devices we are seeing an average perf win of around 50%-60% across the board.
440     if (kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID) {
441         // We currently don't see any Vulkan devices that expose a memory type that supports
442         // both lazy allocated and protected memory. So for simplicity we just disable the
443         // use of memoryless attachments when using protected memory. In the future, if we ever
444         // do see devices that support both, we can look through the device's memory types here
445         // and see if any support both flags.
446         fPreferDiscardableMSAAAttachment = !fSupportsProtectedContent;
447         fSupportsMemorylessAttachments = !fSupportsProtectedContent;
448     }
449 
450     this->initGrCaps(vkInterface, physDev, properties, memoryProperties, features, extensions);
451     this->initShaderCaps(properties, features);
452 
453     if (kQualcomm_VkVendor == properties.vendorID) {
454         // A "clear" load for atlases runs faster on QC than a "discard" load followed by a
455         // scissored clear.
456         // On NVIDIA and Intel, the discard load followed by clear is faster.
457         // TODO: Evaluate on ARM, Imagination, and ATI.
458         fPreferFullscreenClears = true;
459     }
460 
461     if (properties.vendorID == kNvidia_VkVendor || properties.vendorID == kAMD_VkVendor) {
462         // On discrete GPUs it can be faster to read gpu only memory compared to memory that is also
463         // mappable on the host.
464         fGpuOnlyBuffersMorePerformant = true;
465 
466         // On discrete GPUs we try to use special DEVICE_LOCAL and HOST_VISIBLE memory for our
467         // cpu write, gpu read buffers. This memory is not ideal to be kept persistently mapped.
468         // Some discrete GPUs do not expose this special memory, however we still disable
469         // persistently mapped buffers for all of them since most GPUs with updated drivers do
470         // expose it. If this becomes an issue we can try to be more fine grained.
471         fShouldPersistentlyMapCpuToGpuBuffers = false;
472     }
473 
474     if (kQualcomm_VkVendor == properties.vendorID) {
475         // On Qualcomm it looks like using vkCmdUpdateBuffer is slower than using a transfer buffer
476         // even for small sizes.
477         fAvoidUpdateBuffers = true;
478     }
479 
480     fNativeDrawIndirectSupport = features.features.drawIndirectFirstInstance;
481     if (properties.vendorID == kQualcomm_VkVendor) {
482         // Indirect draws seem slow on QC. Disable until we can investigate. http://skbug.com/11139
483         fNativeDrawIndirectSupport = false;
484     }
485 
486     if (fNativeDrawIndirectSupport) {
487         fMaxDrawIndirectDrawCount = properties.limits.maxDrawIndirectCount;
488         SkASSERT(fMaxDrawIndirectDrawCount == 1 || features.features.multiDrawIndirect);
489     }
490 
491 #ifdef SK_BUILD_FOR_UNIX
492     if (kNvidia_VkVendor == properties.vendorID) {
493         // On nvidia linux we see a big perf regression when not using dedicated image allocations.
494         fShouldAlwaysUseDedicatedImageMemory = true;
495     }
496 #endif
497 
498     this->initFormatTable(contextOptions, vkInterface, physDev, properties, features, extensions);
499     this->initStencilFormat(vkInterface, physDev);
500 
501     if (contextOptions.fMaxCachedVulkanSecondaryCommandBuffers >= 0) {
502         fMaxPerPoolCachedSecondaryCommandBuffers =
503                 contextOptions.fMaxCachedVulkanSecondaryCommandBuffers;
504     }
505 
506     if (!contextOptions.fDisableDriverCorrectnessWorkarounds) {
507         this->applyDriverCorrectnessWorkarounds(properties);
508     }
509 
510     this->finishInitialization(contextOptions);
511 }
512 
applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties & properties)513 void GrVkCaps::applyDriverCorrectnessWorkarounds(const VkPhysicalDeviceProperties& properties) {
514 #if defined(SK_BUILD_FOR_WIN)
515     if (kNvidia_VkVendor == properties.vendorID || kIntel_VkVendor == properties.vendorID) {
516         fMustSyncCommandBuffersWithQueue = true;
517     }
518 #elif defined(SK_BUILD_FOR_ANDROID)
519     if (kImagination_VkVendor == properties.vendorID) {
520         fMustSyncCommandBuffersWithQueue = true;
521     }
522 #endif
523 
524     // Defaults to zero since all our workaround checks that use this consider things "fixed" once
525     // above a certain api level. So this will just default to it being less which will enable
526     // workarounds.
527     int androidAPIVersion = 0;
528 #if defined(SK_BUILD_FOR_ANDROID)
529     char androidAPIVersionStr[PROP_VALUE_MAX];
530     int strLength = __system_property_get("ro.build.version.sdk", androidAPIVersionStr);
531     // Defaults to zero since most checks care if it is greater than a specific value. So this will
532     // just default to it being less.
533     androidAPIVersion = (strLength == 0) ? 0 : atoi(androidAPIVersionStr);
534 #endif
535 
536     // Protected memory features have problems in Android P and earlier.
537     if (fSupportsProtectedContent && (kQualcomm_VkVendor == properties.vendorID)) {
538         if (androidAPIVersion <= 28) {
539             fSupportsProtectedContent = false;
540         }
541     }
542 
543     // On Mali galaxy s7 we see lots of rendering issues when we suballocate VkImages.
544     if ((kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID) && androidAPIVersion <= 28) {
545         fShouldAlwaysUseDedicatedImageMemory = true;
546     }
547 
548 #if defined(SK_BUILD_FOR_OLD_MALI)
549     // On Mali galaxy s7 and s9 we see lots of rendering issues with image filters dropping out when
550     // using only primary command buffers. We also see issues on the P30 running android 28.
551     if (kARM_VkVendor == properties.vendorID && androidAPIVersion <= 28) {
552         fPreferPrimaryOverSecondaryCommandBuffers = false;
553         // If we are using secondary command buffers our code isn't setup to insert barriers into
554         // the secondary cb so we need to disable support for them.
555         fTextureBarrierSupport = false;
556         fBlendEquationSupport = kBasic_BlendEquationSupport;
557     }
558 #endif
559 
560     // We've seen numerous driver bugs on qualcomm devices running on android P (api 28) or earlier
561     // when trying to using discardable msaa attachments and loading from resolve. So we disable the
562     // feature for those devices.
563     if (properties.vendorID == kQualcomm_VkVendor && androidAPIVersion <= 28) {
564         fPreferDiscardableMSAAAttachment = false;
565         fSupportsDiscardableMSAAForDMSAA = false;
566     }
567 
568     // On the Mali G76 and T880, the Perlin noise code needs to aggressively snap to multiples
569     // of 1/255 to avoid artifacts in the double table lookup.
570     if (kARM_VkVendor == properties.vendorID) {
571         fShaderCaps->fPerlinNoiseRoundingFix = true;
572     }
573 
574     // On various devices, when calling vkCmdClearAttachments on a primary command buffer, it
575     // corrupts the bound buffers on the command buffer. As a workaround we invalidate our knowledge
576     // of bound buffers so that we will rebind them on the next draw.
577     if (kQualcomm_VkVendor == properties.vendorID || kAMD_VkVendor == properties.vendorID) {
578         fMustInvalidatePrimaryCmdBufferStateAfterClearAttachments = true;
579     }
580 
581     // On Qualcomm and Arm the gpu resolves an area larger than the render pass bounds when using
582     // discardable msaa attachments. This causes the resolve to resolve uninitialized data from the
583     // msaa image into the resolve image.
584     // This also occurs on swiftshader: b/303705884
585     if (properties.vendorID == kQualcomm_VkVendor ||
586         properties.vendorID == kARM_VkVendor ||
587         properties.vendorID == kHisi_VkVendor ||
588         (properties.vendorID == kGoogle_VkVendor &&
589          properties.deviceID == kSwiftshader_DeviceID)) {
590         fMustLoadFullImageWithDiscardableMSAA = true;
591     }
592 
593     // There seems to be bug in swiftshader when we reuse scratch buffers for uploads. We end up
594     // with very slight pixel diffs. For example:
595     // (https://ci.chromium.org/ui/p/chromium/builders/try/linux-rel/1585128/overview).
596     // Since swiftshader is only really used for testing, to try and make things more stable we
597     // disable the reuse of buffers.
598     if (properties.vendorID == kGoogle_VkVendor && properties.deviceID == kSwiftshader_DeviceID) {
599         fReuseScratchBuffers = false;
600     }
601 
602     ////////////////////////////////////////////////////////////////////////////
603     // GrCaps workarounds
604     ////////////////////////////////////////////////////////////////////////////
605 
606     if (kARM_VkVendor == properties.vendorID) {
607         fAvoidWritePixelsFastPath = true; // bugs.skia.org/8064
608     }
609 
610     if (kHisi_VkVendor == properties.vendorID) {
611         fAvoidWritePixelsFastPath = false; // bugs.skia.org/8064
612     }
613 
614     // AMD advertises support for MAX_UINT vertex input attributes, but in reality only supports 32.
615     if (kAMD_VkVendor == properties.vendorID) {
616         fMaxVertexAttributes = std::min(fMaxVertexAttributes, 32);
617     }
618 
619     // Adreno devices fail when trying to read the dest using an input attachment and texture
620     // barriers.
621     if (kQualcomm_VkVendor == properties.vendorID) {
622         fTextureBarrierSupport = false;
623     }
624 
625 #ifdef SK_BUILD_FOR_WIN
626     // Gen 12 Intel devices running on windows has issues using barriers for dst reads. This is seen
627     // when running the unit tests SkRuntimeEffect_Blender_GPU and DMSAA_aa_dst_read_after_dmsaa.
628     //
629     // Additionally, as of 2023-01-19 the latest driver compatible with Intel Iris Graphics 540
630     // (9th gen Skylake microarchitecture) produce SkRuntimeEffect_Blender and DMSAA deltas that
631     // are unacceptable and break our tests. The drivers in question are version 31.0.101.2115 and
632     // can be downloaded from
633     // https://www.intel.com/content/www/us/en/download/762755/intel-6th-10th-gen-processor-graphics-windows.html.
634     // This is likely due to bugs in the driver. As a temporary workaround, we disable texture
635     // barrier support in Skylake and newer generations (i.e. 9th gen or newer).
636     if (kIntel_VkVendor == properties.vendorID &&
637         GetIntelGen(GetIntelGPUType(properties.deviceID)) >= 9) {
638         fTextureBarrierSupport = false;
639     }
640 #endif
641 
642     // On ARM indirect draws are broken on Android 9 and earlier. This was tested on a P30 and
643     // Mate 20x running android 9.
644     if ((properties.vendorID == kARM_VkVendor || kHisi_VkVendor == properties.vendorID) && androidAPIVersion <= 28) {
645         fNativeDrawIndirectSupport = false;
646     }
647 
648     ////////////////////////////////////////////////////////////////////////////
649     // GrShaderCaps workarounds
650     ////////////////////////////////////////////////////////////////////////////
651 
652     if (kImagination_VkVendor == properties.vendorID) {
653         fShaderCaps->fAtan2ImplementedAsAtanYOverX = true;
654     }
655 
656     // ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are
657     // RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769)
658     if (kARM_VkVendor == properties.vendorID) {
659         fShaderCaps->fRewriteMatrixVectorMultiply = true;
660     }
661 }
662 
initGrCaps(const skgpu::VulkanInterface * vkInterface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceMemoryProperties & memoryProperties,const VkPhysicalDeviceFeatures2 & features,const skgpu::VulkanExtensions & extensions)663 void GrVkCaps::initGrCaps(const skgpu::VulkanInterface* vkInterface,
664                           VkPhysicalDevice physDev,
665                           const VkPhysicalDeviceProperties& properties,
666                           const VkPhysicalDeviceMemoryProperties& memoryProperties,
667                           const VkPhysicalDeviceFeatures2& features,
668                           const skgpu::VulkanExtensions& extensions) {
669     // So GPUs, like AMD, are reporting MAX_INT support vertex attributes. In general, there is no
670     // need for us ever to support that amount, and it makes tests which tests all the vertex
671     // attribs timeout looping over that many. For now, we'll cap this at 64 max and can raise it if
672     // we ever find that need.
673     static const uint32_t kMaxVertexAttributes = 64;
674     fMaxVertexAttributes = std::min(properties.limits.maxVertexInputAttributes,
675                                     kMaxVertexAttributes);
676 
677     // GrCaps::fSampleLocationsSupport refers to the ability to *query* the sample locations (not
678     // program them). For now we just set this to true if the device uses standard locations, and
679     // return the standard locations back when queried.
680     if (properties.limits.standardSampleLocations) {
681         fSampleLocationsSupport = true;
682     }
683 
684     if (extensions.hasExtension(VK_EXT_CONSERVATIVE_RASTERIZATION_EXTENSION_NAME, 1)) {
685         fConservativeRasterSupport = true;
686     }
687 
688     fWireframeSupport = true;
689 
690     // We could actually query and get a max size for each config, however maxImageDimension2D will
691     // give the minimum max size across all configs. So for simplicity we will use that for now.
692     fMaxRenderTargetSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
693     fMaxTextureSize = std::min(properties.limits.maxImageDimension2D, (uint32_t)INT_MAX);
694 
695     // TODO: check if RT's larger than 4k incur a performance cost on ARM.
696     fMaxPreferredRenderTargetSize = fMaxRenderTargetSize;
697 
698     fMaxPushConstantsSize = std::min(properties.limits.maxPushConstantsSize, (uint32_t)INT_MAX);
699 
700     // Assuming since we will always map in the end to upload the data we might as well just map
701     // from the get go. There is no hard data to suggest this is faster or slower.
702     fBufferMapThreshold = 0;
703 
704     fMapBufferFlags = kCanMap_MapFlag | kSubset_MapFlag | kAsyncRead_MapFlag;
705 
706     fOversizedStencilSupport = true;
707 
708     if (extensions.hasExtension(VK_EXT_BLEND_OPERATION_ADVANCED_EXTENSION_NAME, 2) &&
709         this->supportsPhysicalDeviceProperties2()) {
710 
711         VkPhysicalDeviceBlendOperationAdvancedPropertiesEXT blendProps;
712         blendProps.sType =
713                 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_PROPERTIES_EXT;
714         blendProps.pNext = nullptr;
715 
716         VkPhysicalDeviceProperties2 props;
717         props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
718         props.pNext = &blendProps;
719 
720         GR_VK_CALL(vkInterface, GetPhysicalDeviceProperties2(physDev, &props));
721 
722         if (blendProps.advancedBlendAllOperations == VK_TRUE) {
723             fShaderCaps->fAdvBlendEqInteraction = GrShaderCaps::kAutomatic_AdvBlendEqInteraction;
724 
725             auto blendFeatures = skgpu::GetExtensionFeatureStruct<
726                     VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(
727                             features,
728                             VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BLEND_OPERATION_ADVANCED_FEATURES_EXT
729                     );
730             if (blendFeatures && blendFeatures->advancedBlendCoherentOperations == VK_TRUE) {
731                 fBlendEquationSupport = kAdvancedCoherent_BlendEquationSupport;
732             } else {
733                 fBlendEquationSupport = kAdvanced_BlendEquationSupport;
734             }
735         }
736     }
737 
738     if (kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID) {
739         fShouldCollapseSrcOverToSrcWhenAble = true;
740     }
741 }
742 
initShaderCaps(const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features)743 void GrVkCaps::initShaderCaps(const VkPhysicalDeviceProperties& properties,
744                               const VkPhysicalDeviceFeatures2& features) {
745     GrShaderCaps* shaderCaps = fShaderCaps.get();
746     shaderCaps->fVersionDeclString = "#version 330\n";
747 
748     // Ganesh + Vulkan always emits `sk_Clockwise` to avoid some Adreno rendering errors.
749     shaderCaps->fMustDeclareFragmentFrontFacing = true;
750 
751     // Vulkan is based off ES 3.0 so the following should all be supported
752     shaderCaps->fUsesPrecisionModifiers = true;
753     shaderCaps->fFlatInterpolationSupport = true;
754     // Flat interpolation appears to be slow on Qualcomm GPUs. This was tested in GL and is assumed
755     // to be true with Vulkan as well.
756     shaderCaps->fPreferFlatInterpolation = kQualcomm_VkVendor != properties.vendorID;
757 
758     shaderCaps->fSampleMaskSupport = true;
759 
760     // ARM GPUs calculate `matrix * vector` in SPIR-V at full precision, even when the inputs are
761     // RelaxedPrecision. Rewriting the multiply as a sum of vector*scalar fixes this. (skia:11769)
762     shaderCaps->fRewriteMatrixVectorMultiply = (kARM_VkVendor == properties.vendorID || kHisi_VkVendor == properties.vendorID);
763 
764     shaderCaps->fShaderDerivativeSupport = true;
765     shaderCaps->fExplicitTextureLodSupport = true;
766 
767     shaderCaps->fDualSourceBlendingSupport = features.features.dualSrcBlend;
768 
769     shaderCaps->fIntegerSupport = true;
770     shaderCaps->fNonsquareMatrixSupport = true;
771     shaderCaps->fInverseHyperbolicSupport = true;
772     shaderCaps->fVertexIDSupport = true;
773     shaderCaps->fInfinitySupport = true;
774     shaderCaps->fNonconstantArrayIndexSupport = true;
775     shaderCaps->fBitManipulationSupport = true;
776 
777     // Assume the minimum precisions mandated by the SPIR-V spec.
778     shaderCaps->fFloatIs32Bits = true;
779     shaderCaps->fHalfIs32Bits = false;
780 
781     shaderCaps->fMaxFragmentSamplers = std::min(
782                                        std::min(properties.limits.maxPerStageDescriptorSampledImages,
783                                               properties.limits.maxPerStageDescriptorSamplers),
784                                               (uint32_t)INT_MAX);
785 }
786 
stencil_format_supported(const skgpu::VulkanInterface * interface,VkPhysicalDevice physDev,VkFormat format)787 bool stencil_format_supported(const skgpu::VulkanInterface* interface,
788                               VkPhysicalDevice physDev,
789                               VkFormat format) {
790     VkFormatProperties props;
791     memset(&props, 0, sizeof(VkFormatProperties));
792     GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
793     return SkToBool(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT & props.optimalTilingFeatures);
794 }
795 
initStencilFormat(const skgpu::VulkanInterface * interface,VkPhysicalDevice physDev)796 void GrVkCaps::initStencilFormat(const skgpu::VulkanInterface* interface,
797                                  VkPhysicalDevice physDev) {
798     if (stencil_format_supported(interface, physDev, VK_FORMAT_S8_UINT)) {
799         fPreferredStencilFormat = VK_FORMAT_S8_UINT;
800     } else if (stencil_format_supported(interface, physDev, VK_FORMAT_D24_UNORM_S8_UINT)) {
801         fPreferredStencilFormat = VK_FORMAT_D24_UNORM_S8_UINT;
802     } else {
803         SkASSERT(stencil_format_supported(interface, physDev, VK_FORMAT_D32_SFLOAT_S8_UINT));
804         fPreferredStencilFormat = VK_FORMAT_D32_SFLOAT_S8_UINT;
805     }
806 }
807 
format_is_srgb(VkFormat format)808 static bool format_is_srgb(VkFormat format) {
809     SkASSERT(GrVkFormatIsSupported(format));
810 
811     switch (format) {
812         case VK_FORMAT_R8G8B8A8_SRGB:
813             return true;
814         default:
815             return false;
816     }
817 }
818 
819 // These are all the valid VkFormats that we support in Skia. They are roughly ordered from most
820 // frequently used to least to improve look up times in arrays.
821 static constexpr VkFormat kVkFormats[] = {
822     VK_FORMAT_R8G8B8A8_UNORM,
823     VK_FORMAT_R8_UNORM,
824     VK_FORMAT_B8G8R8A8_UNORM,
825     VK_FORMAT_R5G6B5_UNORM_PACK16,
826     VK_FORMAT_B5G6R5_UNORM_PACK16,
827     VK_FORMAT_R16G16B16A16_SFLOAT,
828     VK_FORMAT_R16_SFLOAT,
829     VK_FORMAT_R8G8B8_UNORM,
830     VK_FORMAT_R8G8_UNORM,
831     VK_FORMAT_A2B10G10R10_UNORM_PACK32,
832     VK_FORMAT_A2R10G10B10_UNORM_PACK32,
833     VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16,
834     VK_FORMAT_B4G4R4A4_UNORM_PACK16,
835     VK_FORMAT_R4G4B4A4_UNORM_PACK16,
836     VK_FORMAT_R8G8B8A8_SRGB,
837     VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK,
838     VK_FORMAT_BC1_RGB_UNORM_BLOCK,
839     VK_FORMAT_BC1_RGBA_UNORM_BLOCK,
840     VK_FORMAT_R16_UNORM,
841     VK_FORMAT_R16G16_UNORM,
842     VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM,
843     VK_FORMAT_G8_B8R8_2PLANE_420_UNORM,
844     VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16,
845     VK_FORMAT_R16G16B16A16_UNORM,
846     VK_FORMAT_R16G16_SFLOAT,
847     VK_FORMAT_ASTC_4x4_UNORM_BLOCK,
848     VK_FORMAT_ASTC_6x6_UNORM_BLOCK,
849     VK_FORMAT_ASTC_8x8_UNORM_BLOCK,
850 };
851 
setColorType(GrColorType colorType,std::initializer_list<VkFormat> formats)852 void GrVkCaps::setColorType(GrColorType colorType, std::initializer_list<VkFormat> formats) {
853 #ifdef SK_DEBUG
854     for (size_t i = 0; i < kNumVkFormats; ++i) {
855         const auto& formatInfo = fFormatTable[i];
856         for (int j = 0; j < formatInfo.fColorTypeInfoCount; ++j) {
857             const auto& ctInfo = formatInfo.fColorTypeInfos[j];
858             if (ctInfo.fColorType == colorType &&
859                 !SkToBool(ctInfo.fFlags & ColorTypeInfo::kWrappedOnly_Flag)) {
860                 bool found = false;
861                 for (auto it = formats.begin(); it != formats.end(); ++it) {
862                     if (kVkFormats[i] == *it) {
863                         found = true;
864                     }
865                 }
866                 SkASSERT(found);
867             }
868         }
869     }
870 #endif
871     int idx = static_cast<int>(colorType);
872     for (auto it = formats.begin(); it != formats.end(); ++it) {
873         const auto& info = this->getFormatInfo(*it);
874         for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
875             if (info.fColorTypeInfos[i].fColorType == colorType) {
876                 fColorTypeToFormatTable[idx] = *it;
877                 return;
878             }
879         }
880     }
881 }
882 
getFormatInfo(VkFormat format) const883 const GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) const {
884     GrVkCaps* nonConstThis = const_cast<GrVkCaps*>(this);
885     return nonConstThis->getFormatInfo(format);
886 }
887 
getFormatInfo(VkFormat format)888 GrVkCaps::FormatInfo& GrVkCaps::getFormatInfo(VkFormat format) {
889     static_assert(std::size(kVkFormats) == GrVkCaps::kNumVkFormats,
890                   "Size of VkFormats array must match static value in header");
891     for (size_t i = 0; i < std::size(kVkFormats); ++i) {
892         if (kVkFormats[i] == format) {
893             return fFormatTable[i];
894         }
895     }
896     static FormatInfo kInvalidFormat;
897     return kInvalidFormat;
898 }
899 
initFormatTable(const GrContextOptions & contextOptions,const skgpu::VulkanInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,const VkPhysicalDeviceFeatures2 & features,const skgpu::VulkanExtensions & extensions)900 void GrVkCaps::initFormatTable(const GrContextOptions& contextOptions,
901                                const skgpu::VulkanInterface* interface,
902                                VkPhysicalDevice physDev,
903                                const VkPhysicalDeviceProperties& properties,
904                                const VkPhysicalDeviceFeatures2& features,
905                                const skgpu::VulkanExtensions& extensions) {
906     static_assert(std::size(kVkFormats) == GrVkCaps::kNumVkFormats,
907                   "Size of VkFormats array must match static value in header");
908 
909     std::fill_n(fColorTypeToFormatTable, kGrColorTypeCnt, VK_FORMAT_UNDEFINED);
910 
911     // Go through all the formats and init their support surface and data GrColorTypes.
912     // Format: VK_FORMAT_R8G8B8A8_UNORM
913     {
914         constexpr VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
915         auto& info = this->getFormatInfo(format);
916         info.init(contextOptions, interface, physDev, properties, format);
917         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
918             info.fColorTypeInfoCount = 2;
919             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
920             int ctIdx = 0;
921             // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGBA_8888
922             {
923                 constexpr GrColorType ct = GrColorType::kRGBA_8888;
924                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
925                 ctInfo.fColorType = ct;
926                 ctInfo.fTransferColorType = ct;
927                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
928             }
929             // Format: VK_FORMAT_R8G8B8A8_UNORM, Surface: kRGB_888x
930             {
931                 constexpr GrColorType ct = GrColorType::kRGB_888x;
932                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
933                 ctInfo.fColorType = ct;
934                 ctInfo.fTransferColorType = ct;
935                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
936                 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
937             }
938         }
939     }
940 
941     // Format: VK_FORMAT_R8_UNORM
942     {
943         constexpr VkFormat format = VK_FORMAT_R8_UNORM;
944         auto& info = this->getFormatInfo(format);
945         info.init(contextOptions, interface, physDev, properties, format);
946         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
947             info.fColorTypeInfoCount = 3;
948             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
949             int ctIdx = 0;
950             // Format: VK_FORMAT_R8_UNORM, Surface: kR_8
951             {
952                 constexpr GrColorType ct = GrColorType::kR_8;
953                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
954                 ctInfo.fColorType = ct;
955                 ctInfo.fTransferColorType = ct;
956                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
957             }
958             // Format: VK_FORMAT_R8_UNORM, Surface: kAlpha_8
959             {
960                 constexpr GrColorType ct = GrColorType::kAlpha_8;
961                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
962                 ctInfo.fColorType = ct;
963                 ctInfo.fTransferColorType = ct;
964                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
965                 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
966                 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
967             }
968             // Format: VK_FORMAT_R8_UNORM, Surface: kGray_8
969             {
970                 constexpr GrColorType ct = GrColorType::kGray_8;
971                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
972                 ctInfo.fColorType = ct;
973                 ctInfo.fTransferColorType = ct;
974                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
975                 ctInfo.fReadSwizzle = skgpu::Swizzle("rrr1");
976             }
977         }
978     }
979     // Format: VK_FORMAT_B8G8R8A8_UNORM
980     {
981         constexpr VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
982         auto& info = this->getFormatInfo(format);
983         info.init(contextOptions, interface, physDev, properties, format);
984         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
985             info.fColorTypeInfoCount = 2;
986             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
987             int ctIdx = 0;
988             // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kBGRA_8888
989             {
990                 constexpr GrColorType ct = GrColorType::kBGRA_8888;
991                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
992                 ctInfo.fColorType = ct;
993                 ctInfo.fTransferColorType = ct;
994                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
995             }
996             // Format: VK_FORMAT_B8G8R8A8_UNORM, Surface: kRGB_888x
997             // TODO: add and use kBGR_888X instead
998             {
999                 constexpr GrColorType ct = GrColorType::kRGB_888x;
1000                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1001                 ctInfo.fColorType = ct;
1002                 ctInfo.fTransferColorType = GrColorType::kBGRA_8888;
1003                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
1004                 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
1005             }
1006         }
1007     }
1008     // Format: VK_FORMAT_R5G6B5_UNORM_PACK16
1009     {
1010         constexpr VkFormat format = VK_FORMAT_R5G6B5_UNORM_PACK16;
1011         auto& info = this->getFormatInfo(format);
1012         info.init(contextOptions, interface, physDev, properties, format);
1013         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1014             info.fColorTypeInfoCount = 1;
1015             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1016             int ctIdx = 0;
1017             // Format: VK_FORMAT_R5G6B5_UNORM_PACK16, Surface: kBGR_565
1018             {
1019                 constexpr GrColorType ct = GrColorType::kBGR_565;
1020                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1021                 ctInfo.fColorType = ct;
1022                 ctInfo.fTransferColorType = ct;
1023                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1024             }
1025         }
1026     }
1027     // Format: VK_FORMAT_B5G6R5_UNORM_PACK16
1028     {
1029         constexpr VkFormat format = VK_FORMAT_B5G6R5_UNORM_PACK16;
1030         auto& info = this->getFormatInfo(format);
1031         info.init(contextOptions, interface, physDev, properties, format);
1032         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1033             info.fColorTypeInfoCount = 2;
1034             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1035             int ctIdx = 0;
1036             // Format: VK_FORMAT_B5G6R5_UNORM_PACK16, Surface: kRGB_565
1037             {
1038                 constexpr GrColorType ct = GrColorType::kRGB_565;
1039                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1040                 ctInfo.fColorType = ct;
1041                 ctInfo.fTransferColorType = ct;
1042                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1043             }
1044             // Format: VK_FORMAT_B5G6R5_UNORM_PACK16, Surface: kBGR_565
1045             // We need this because there is no kBGR_565_SkColorType.
1046             {
1047                 constexpr GrColorType ct = GrColorType::kBGR_565;
1048                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1049                 ctInfo.fColorType = ct;
1050                 ctInfo.fTransferColorType = GrColorType::kRGB_565;
1051                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
1052             }
1053         }
1054     }
1055     // Format: VK_FORMAT_R16G16B16A16_SFLOAT
1056     {
1057         constexpr VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT;
1058         auto& info = this->getFormatInfo(format);
1059         info.init(contextOptions, interface, physDev, properties, format);
1060         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1061             info.fColorTypeInfoCount = 3;
1062             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1063             int ctIdx = 0;
1064             // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16
1065             {
1066                 constexpr GrColorType ct = GrColorType::kRGBA_F16;
1067                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1068                 ctInfo.fColorType = ct;
1069                 ctInfo.fTransferColorType = ct;
1070                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1071             }
1072             // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGBA_F16_Clamped
1073             {
1074                 constexpr GrColorType ct = GrColorType::kRGBA_F16_Clamped;
1075                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1076                 ctInfo.fColorType = ct;
1077                 ctInfo.fTransferColorType = ct;
1078                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1079             }
1080             // Format: VK_FORMAT_R16G16B16A16_SFLOAT, Surface: GrColorType::kRGB_F16F16F16x
1081             {
1082                 constexpr GrColorType ct = GrColorType::kRGB_F16F16F16x;
1083                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1084                 ctInfo.fColorType = ct;
1085                 ctInfo.fTransferColorType = ct;
1086                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
1087                 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
1088             }
1089         }
1090     }
1091     // Format: VK_FORMAT_R16_SFLOAT
1092     {
1093         constexpr VkFormat format = VK_FORMAT_R16_SFLOAT;
1094         auto& info = this->getFormatInfo(format);
1095         info.init(contextOptions, interface, physDev, properties, format);
1096         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1097             info.fColorTypeInfoCount = 1;
1098             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1099             int ctIdx = 0;
1100             // Format: VK_FORMAT_R16_SFLOAT, Surface: kAlpha_F16
1101             {
1102                 constexpr GrColorType ct = GrColorType::kAlpha_F16;
1103                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1104                 ctInfo.fColorType = ct;
1105                 ctInfo.fTransferColorType = ct;
1106                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1107                 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
1108                 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
1109             }
1110         }
1111     }
1112     // Format: VK_FORMAT_R8G8B8_UNORM
1113     {
1114         constexpr VkFormat format = VK_FORMAT_R8G8B8_UNORM;
1115         auto& info = this->getFormatInfo(format);
1116         info.init(contextOptions, interface, physDev, properties, format);
1117         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1118             info.fColorTypeInfoCount = 1;
1119             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1120             int ctIdx = 0;
1121             // Format: VK_FORMAT_R8G8B8_UNORM, Surface: kRGB_888x
1122             {
1123                 constexpr GrColorType ct = GrColorType::kRGB_888x;
1124                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1125                 ctInfo.fColorType = ct;
1126                 // The Vulkan format is 3 bpp so we must convert to/from that when transferring.
1127                 ctInfo.fTransferColorType = GrColorType::kRGB_888;
1128                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1129             }
1130         }
1131     }
1132     // Format: VK_FORMAT_R8G8_UNORM
1133     {
1134         constexpr VkFormat format = VK_FORMAT_R8G8_UNORM;
1135         auto& info = this->getFormatInfo(format);
1136         info.init(contextOptions, interface, physDev, properties, format);
1137         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1138             info.fColorTypeInfoCount = 1;
1139             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1140             int ctIdx = 0;
1141             // Format: VK_FORMAT_R8G8_UNORM, Surface: kRG_88
1142             {
1143                 constexpr GrColorType ct = GrColorType::kRG_88;
1144                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1145                 ctInfo.fColorType = ct;
1146                 ctInfo.fTransferColorType = ct;
1147                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1148             }
1149         }
1150     }
1151     // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32
1152     {
1153         constexpr VkFormat format = VK_FORMAT_A2B10G10R10_UNORM_PACK32;
1154         auto& info = this->getFormatInfo(format);
1155         info.init(contextOptions, interface, physDev, properties, format);
1156         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1157             info.fColorTypeInfoCount = 2;
1158             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1159             int ctIdx = 0;
1160             // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGBA_1010102
1161             {
1162                 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
1163                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1164                 ctInfo.fColorType = ct;
1165                 ctInfo.fTransferColorType = ct;
1166                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1167             }
1168             // Format: VK_FORMAT_A2B10G10R10_UNORM_PACK32, Surface: kRGB_101010x
1169             {
1170                 constexpr GrColorType ct = GrColorType::kRGB_101010x;
1171                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1172                 ctInfo.fColorType = ct;
1173                 ctInfo.fTransferColorType = ct;
1174                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag;
1175                 ctInfo.fReadSwizzle = skgpu::Swizzle::RGB1();
1176             }
1177         }
1178     }
1179     // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32
1180     {
1181         constexpr VkFormat format = VK_FORMAT_A2R10G10B10_UNORM_PACK32;
1182         auto& info = this->getFormatInfo(format);
1183         info.init(contextOptions, interface, physDev, properties, format);
1184         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1185             info.fColorTypeInfoCount = 1;
1186             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1187             int ctIdx = 0;
1188             // Format: VK_FORMAT_A2R10G10B10_UNORM_PACK32, Surface: kBGRA_1010102
1189             {
1190                 constexpr GrColorType ct = GrColorType::kBGRA_1010102;
1191                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1192                 ctInfo.fColorType = ct;
1193                 ctInfo.fTransferColorType = ct;
1194                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1195             }
1196         }
1197     }
1198 
1199     bool supportsRGBA10x6 = false;
1200     if (extensions.hasExtension(VK_EXT_RGBA10X6_FORMATS_EXTENSION_NAME, 1)) {
1201         auto rgba10x6Feature =
1202                 skgpu::GetExtensionFeatureStruct<VkPhysicalDeviceRGBA10X6FormatsFeaturesEXT>(
1203                         features, VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RGBA10X6_FORMATS_FEATURES_EXT);
1204         // Technically without this extension and exabled feature we could still use this format to
1205         // sample with a ycbcr sampler. But for simplicity until we have clients requesting that, we
1206         // limit the use of this format to cases where we have the extension supported.
1207         supportsRGBA10x6 = rgba10x6Feature  && rgba10x6Feature->formatRgba10x6WithoutYCbCrSampler;
1208     }
1209 
1210     // Format: VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16
1211     if (supportsRGBA10x6) {
1212         constexpr VkFormat format = VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16;
1213         auto& info = this->getFormatInfo(format);
1214         info.init(contextOptions, interface, physDev, properties, format);
1215         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1216             info.fColorTypeInfoCount = 1;
1217             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1218             int ctIdx = 0;
1219             // Format: VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16, Surface: kRGBA_10x6
1220             {
1221                 constexpr GrColorType ct = GrColorType::kRGBA_10x6;
1222                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1223                 ctInfo.fColorType = ct;
1224                 ctInfo.fTransferColorType = ct;
1225                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1226             }
1227         }
1228     }
1229 
1230     // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16
1231     {
1232         constexpr VkFormat format = VK_FORMAT_B4G4R4A4_UNORM_PACK16;
1233         auto& info = this->getFormatInfo(format);
1234         info.init(contextOptions, interface, physDev, properties, format);
1235         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1236             info.fColorTypeInfoCount = 1;
1237             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1238             int ctIdx = 0;
1239             // Format: VK_FORMAT_B4G4R4A4_UNORM_PACK16, Surface: kABGR_4444
1240             {
1241                 constexpr GrColorType ct = GrColorType::kABGR_4444;
1242                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1243                 ctInfo.fColorType = ct;
1244                 ctInfo.fTransferColorType = ct;
1245                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1246                 ctInfo.fReadSwizzle = skgpu::Swizzle::BGRA();
1247                 ctInfo.fWriteSwizzle = skgpu::Swizzle::BGRA();
1248             }
1249         }
1250     }
1251 
1252     // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16
1253     {
1254         constexpr VkFormat format = VK_FORMAT_R4G4B4A4_UNORM_PACK16;
1255         auto& info = this->getFormatInfo(format);
1256         info.init(contextOptions, interface, physDev, properties, format);
1257         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1258             info.fColorTypeInfoCount = 1;
1259             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1260             int ctIdx = 0;
1261             // Format: VK_FORMAT_R4G4B4A4_UNORM_PACK16, Surface: kABGR_4444
1262             {
1263                 constexpr GrColorType ct = GrColorType::kABGR_4444;
1264                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1265                 ctInfo.fColorType = ct;
1266                 ctInfo.fTransferColorType = ct;
1267                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1268             }
1269         }
1270     }
1271     // Format: VK_FORMAT_R8G8B8A8_SRGB
1272     {
1273         constexpr VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
1274         auto& info = this->getFormatInfo(format);
1275         info.init(contextOptions, interface, physDev, properties, format);
1276         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1277             info.fColorTypeInfoCount = 1;
1278             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1279             int ctIdx = 0;
1280             // Format: VK_FORMAT_R8G8B8A8_SRGB, Surface: kRGBA_8888_SRGB
1281             {
1282                 constexpr GrColorType ct = GrColorType::kRGBA_8888_SRGB;
1283                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1284                 ctInfo.fColorType = ct;
1285                 ctInfo.fTransferColorType = ct;
1286                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1287             }
1288         }
1289     }
1290     // Format: VK_FORMAT_R16_UNORM
1291     {
1292         constexpr VkFormat format = VK_FORMAT_R16_UNORM;
1293         auto& info = this->getFormatInfo(format);
1294         info.init(contextOptions, interface, physDev, properties, format);
1295         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1296             info.fColorTypeInfoCount = 1;
1297             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1298             int ctIdx = 0;
1299             // Format: VK_FORMAT_R16_UNORM, Surface: kAlpha_16
1300             {
1301                 constexpr GrColorType ct = GrColorType::kAlpha_16;
1302                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1303                 ctInfo.fColorType = ct;
1304                 ctInfo.fTransferColorType = ct;
1305                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1306                 ctInfo.fReadSwizzle = skgpu::Swizzle("000r");
1307                 ctInfo.fWriteSwizzle = skgpu::Swizzle("a000");
1308             }
1309         }
1310     }
1311     // Format: VK_FORMAT_R16G16_UNORM
1312     {
1313         constexpr VkFormat format = VK_FORMAT_R16G16_UNORM;
1314         auto& info = this->getFormatInfo(format);
1315         info.init(contextOptions, interface, physDev, properties, format);
1316         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1317             info.fColorTypeInfoCount = 1;
1318             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1319             int ctIdx = 0;
1320             // Format: VK_FORMAT_R16G16_UNORM, Surface: kRG_1616
1321             {
1322                 constexpr GrColorType ct = GrColorType::kRG_1616;
1323                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1324                 ctInfo.fColorType = ct;
1325                 ctInfo.fTransferColorType = ct;
1326                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1327             }
1328         }
1329     }
1330     // Format: VK_FORMAT_R16G16B16A16_UNORM
1331     {
1332         constexpr VkFormat format = VK_FORMAT_R16G16B16A16_UNORM;
1333         auto& info = this->getFormatInfo(format);
1334         info.init(contextOptions, interface, physDev, properties, format);
1335         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1336             info.fColorTypeInfoCount = 1;
1337             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1338             int ctIdx = 0;
1339             // Format: VK_FORMAT_R16G16B16A16_UNORM, Surface: kRGBA_16161616
1340             {
1341                 constexpr GrColorType ct = GrColorType::kRGBA_16161616;
1342                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1343                 ctInfo.fColorType = ct;
1344                 ctInfo.fTransferColorType = ct;
1345                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1346             }
1347         }
1348     }
1349     // Format: VK_FORMAT_R16G16_SFLOAT
1350     {
1351         constexpr VkFormat format = VK_FORMAT_R16G16_SFLOAT;
1352         auto& info = this->getFormatInfo(format);
1353         info.init(contextOptions, interface, physDev, properties, format);
1354         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1355             info.fColorTypeInfoCount = 1;
1356             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1357             int ctIdx = 0;
1358             // Format: VK_FORMAT_R16G16_SFLOAT, Surface: kRG_F16
1359             {
1360                 constexpr GrColorType ct = GrColorType::kRG_F16;
1361                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1362                 ctInfo.fColorType = ct;
1363                 ctInfo.fTransferColorType = ct;
1364                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kRenderable_Flag;
1365             }
1366         }
1367     }
1368     // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM
1369     {
1370         constexpr VkFormat format = VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM;
1371         auto& info = this->getFormatInfo(format);
1372         if (fSupportsYcbcrConversion) {
1373             info.init(contextOptions, interface, physDev, properties, format);
1374         }
1375         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1376             info.fColorTypeInfoCount = 1;
1377             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1378             int ctIdx = 0;
1379             // Format: VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, Surface: kRGB_888x
1380             {
1381                 constexpr GrColorType ct = GrColorType::kRGB_888x;
1382                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1383                 ctInfo.fColorType = ct;
1384                 ctInfo.fTransferColorType = ct;
1385                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1386             }
1387         }
1388     }
1389     // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM
1390     {
1391         constexpr VkFormat format = VK_FORMAT_G8_B8R8_2PLANE_420_UNORM;
1392         auto& info = this->getFormatInfo(format);
1393         if (fSupportsYcbcrConversion) {
1394             info.init(contextOptions, interface, physDev, properties, format);
1395         }
1396         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1397             info.fColorTypeInfoCount = 1;
1398             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1399             int ctIdx = 0;
1400             // Format: VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, Surface: kRGB_888x
1401             {
1402                 constexpr GrColorType ct = GrColorType::kRGB_888x;
1403                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1404                 ctInfo.fColorType = ct;
1405                 ctInfo.fTransferColorType = ct;
1406                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1407             }
1408         }
1409     }
1410     // Format: VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16
1411     {
1412         constexpr VkFormat format = VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16;
1413         auto& info = this->getFormatInfo(format);
1414         if (fSupportsYcbcrConversion) {
1415             info.init(contextOptions, interface, physDev, properties, format);
1416         }
1417         if (SkToBool(info.fOptimalFlags & FormatInfo::kTexturable_Flag)) {
1418             info.fColorTypeInfoCount = 1;
1419             info.fColorTypeInfos = std::make_unique<ColorTypeInfo[]>(info.fColorTypeInfoCount);
1420             int ctIdx = 0;
1421             // Format: VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16, Surface: kRGBA_1010102
1422             {
1423                 constexpr GrColorType ct = GrColorType::kRGBA_1010102;
1424                 auto& ctInfo = info.fColorTypeInfos[ctIdx++];
1425                 ctInfo.fColorType = ct;
1426                 ctInfo.fTransferColorType = ct;
1427                 ctInfo.fFlags = ColorTypeInfo::kUploadData_Flag | ColorTypeInfo::kWrappedOnly_Flag;
1428             }
1429         }
1430     }
1431     // Format: VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK
1432     {
1433         constexpr VkFormat format = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK;
1434         auto& info = this->getFormatInfo(format);
1435         info.init(contextOptions, interface, physDev, properties, format);
1436         // Setting this to texel block size
1437         // No supported GrColorTypes.
1438     }
1439 
1440     // Format: VK_FORMAT_BC1_RGB_UNORM_BLOCK
1441     {
1442         constexpr VkFormat format = VK_FORMAT_BC1_RGB_UNORM_BLOCK;
1443         auto& info = this->getFormatInfo(format);
1444         info.init(contextOptions, interface, physDev, properties, format);
1445         // Setting this to texel block size
1446         // No supported GrColorTypes.
1447     }
1448 
1449     // Format: VK_FORMAT_BC1_RGBA_UNORM_BLOCK
1450     {
1451         constexpr VkFormat format = VK_FORMAT_BC1_RGBA_UNORM_BLOCK;
1452         auto& info = this->getFormatInfo(format);
1453         info.init(contextOptions, interface, physDev, properties, format);
1454         // Setting this to texel block size
1455         // No supported GrColorTypes.
1456     }
1457 
1458     // Format: VK_FORMAT_ASTC_4x4_UNORM_BLOCK
1459     {
1460         constexpr VkFormat format = VK_FORMAT_ASTC_4x4_UNORM_BLOCK;
1461         auto& info = this->getFormatInfo(format);
1462         info.init(contextOptions, interface, physDev, properties, format);
1463         // Setting this to texel block size
1464         // No supported GrColorTypes.
1465     }
1466 
1467     // Format: VK_FORMAT_ASTC_6x6_UNORM_BLOCK
1468     {
1469         constexpr VkFormat format = VK_FORMAT_ASTC_6x6_UNORM_BLOCK;
1470         auto& info = this->getFormatInfo(format);
1471         info.init(contextOptions, interface, physDev, properties, format);
1472         // Setting this to texel block size
1473         // No supported GrColorTypes.
1474     }
1475 
1476     // Format: VK_FORMAT_ASTC_8x8_UNORM_BLOCK
1477     {
1478         constexpr VkFormat format = VK_FORMAT_ASTC_8x8_UNORM_BLOCK;
1479         auto& info = this->getFormatInfo(format);
1480         info.init(contextOptions, interface, physDev, properties, format);
1481         // Setting this to texel block size
1482         // No supported GrColorTypes.
1483     }
1484 
1485     ////////////////////////////////////////////////////////////////////////////
1486     // Map GrColorTypes (used for creating GrSurfaces) to VkFormats. The order in which the formats
1487     // are passed into the setColorType function indicates the priority in selecting which format
1488     // we use for a given GrcolorType.
1489 
1490     this->setColorType(GrColorType::kAlpha_8,          { VK_FORMAT_R8_UNORM });
1491     this->setColorType(GrColorType::kBGR_565,          { VK_FORMAT_R5G6B5_UNORM_PACK16,
1492                                                          VK_FORMAT_B5G6R5_UNORM_PACK16 });
1493     this->setColorType(GrColorType::kRGB_565,          { VK_FORMAT_B5G6R5_UNORM_PACK16 });
1494     this->setColorType(GrColorType::kABGR_4444,        { VK_FORMAT_R4G4B4A4_UNORM_PACK16,
1495                                                          VK_FORMAT_B4G4R4A4_UNORM_PACK16 });
1496     this->setColorType(GrColorType::kRGBA_8888,        { VK_FORMAT_R8G8B8A8_UNORM });
1497     this->setColorType(GrColorType::kRGBA_8888_SRGB,   { VK_FORMAT_R8G8B8A8_SRGB });
1498     this->setColorType(GrColorType::kRGB_888x,         { VK_FORMAT_R8G8B8_UNORM,
1499                                                          VK_FORMAT_R8G8B8A8_UNORM,
1500                                                          VK_FORMAT_B8G8R8A8_UNORM, });
1501     this->setColorType(GrColorType::kRG_88,            { VK_FORMAT_R8G8_UNORM });
1502     this->setColorType(GrColorType::kBGRA_8888,        { VK_FORMAT_B8G8R8A8_UNORM });
1503     this->setColorType(GrColorType::kRGBA_1010102,     { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1504     this->setColorType(GrColorType::kBGRA_1010102,     { VK_FORMAT_A2R10G10B10_UNORM_PACK32 });
1505     this->setColorType(GrColorType::kRGB_101010x,      { VK_FORMAT_A2B10G10R10_UNORM_PACK32 });
1506     this->setColorType(GrColorType::kGray_8,           { VK_FORMAT_R8_UNORM });
1507     this->setColorType(GrColorType::kAlpha_F16,        { VK_FORMAT_R16_SFLOAT });
1508     this->setColorType(GrColorType::kRGBA_F16,         { VK_FORMAT_R16G16B16A16_SFLOAT });
1509     this->setColorType(GrColorType::kRGBA_F16_Clamped, { VK_FORMAT_R16G16B16A16_SFLOAT });
1510     this->setColorType(GrColorType::kRGB_F16F16F16x,   { VK_FORMAT_R16G16B16A16_SFLOAT});
1511     this->setColorType(GrColorType::kAlpha_16,         { VK_FORMAT_R16_UNORM });
1512     this->setColorType(GrColorType::kRG_1616,          { VK_FORMAT_R16G16_UNORM });
1513     this->setColorType(GrColorType::kRGBA_16161616,    { VK_FORMAT_R16G16B16A16_UNORM });
1514     this->setColorType(GrColorType::kRG_F16,           { VK_FORMAT_R16G16_SFLOAT });
1515 }
1516 
InitFormatFlags(VkFormatFeatureFlags vkFlags,uint16_t * flags)1517 void GrVkCaps::FormatInfo::InitFormatFlags(VkFormatFeatureFlags vkFlags, uint16_t* flags) {
1518     if (SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT & vkFlags) &&
1519         SkToBool(VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT & vkFlags)) {
1520         *flags = *flags | kTexturable_Flag;
1521 
1522         // Ganesh assumes that all renderable surfaces are also texturable
1523         if (SkToBool(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT & vkFlags)) {
1524             *flags = *flags | kRenderable_Flag;
1525         }
1526     }
1527     // TODO: For Vk w/ VK_KHR_maintenance1 extension support, check
1528     //  VK_FORMAT_FEATURE_TRANSFER_[SRC|DST]_BIT_KHR explicitly to set copy flags
1529     //  Can do similar check for VK_KHR_sampler_ycbcr_conversion added bits
1530 
1531     if (SkToBool(VK_FORMAT_FEATURE_BLIT_SRC_BIT & vkFlags)) {
1532         *flags = *flags | kBlitSrc_Flag;
1533     }
1534 
1535     if (SkToBool(VK_FORMAT_FEATURE_BLIT_DST_BIT & vkFlags)) {
1536         *flags = *flags | kBlitDst_Flag;
1537     }
1538 }
1539 
initSampleCounts(const GrContextOptions & contextOptions,const skgpu::VulkanInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & physProps,VkFormat format)1540 void GrVkCaps::FormatInfo::initSampleCounts(const GrContextOptions& contextOptions,
1541                                             const skgpu::VulkanInterface* interface,
1542                                             VkPhysicalDevice physDev,
1543                                             const VkPhysicalDeviceProperties& physProps,
1544                                             VkFormat format) {
1545     VkImageUsageFlags usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
1546                               VK_IMAGE_USAGE_TRANSFER_DST_BIT |
1547                               VK_IMAGE_USAGE_SAMPLED_BIT |
1548                               VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
1549     VkImageFormatProperties properties;
1550     GR_VK_CALL(interface, GetPhysicalDeviceImageFormatProperties(physDev,
1551                                                                  format,
1552                                                                  VK_IMAGE_TYPE_2D,
1553                                                                  VK_IMAGE_TILING_OPTIMAL,
1554                                                                  usage,
1555                                                                  0,  // createFlags
1556                                                                  &properties));
1557     VkSampleCountFlags flags = properties.sampleCounts;
1558     if (flags & VK_SAMPLE_COUNT_1_BIT) {
1559         fColorSampleCounts.push_back(1);
1560     }
1561     if (kImagination_VkVendor == physProps.vendorID) {
1562         // MSAA does not work on imagination
1563         return;
1564     }
1565     if (kIntel_VkVendor == physProps.vendorID) {
1566         if (GetIntelGen(GetIntelGPUType(physProps.deviceID)) < 12 ||
1567             !contextOptions.fAllowMSAAOnNewIntel) {
1568             // MSAA doesn't work well on Intel GPUs chromium:527565, chromium:983926
1569             return;
1570         }
1571     }
1572     if (flags & VK_SAMPLE_COUNT_2_BIT) {
1573         fColorSampleCounts.push_back(2);
1574     }
1575     if (flags & VK_SAMPLE_COUNT_4_BIT) {
1576         fColorSampleCounts.push_back(4);
1577     }
1578     if (flags & VK_SAMPLE_COUNT_8_BIT) {
1579         fColorSampleCounts.push_back(8);
1580     }
1581     if (flags & VK_SAMPLE_COUNT_16_BIT) {
1582         fColorSampleCounts.push_back(16);
1583     }
1584     // Standard sample locations are not defined for more than 16 samples, and we don't need more
1585     // than 16. Omit 32 and 64.
1586 }
1587 
init(const GrContextOptions & contextOptions,const skgpu::VulkanInterface * interface,VkPhysicalDevice physDev,const VkPhysicalDeviceProperties & properties,VkFormat format)1588 void GrVkCaps::FormatInfo::init(const GrContextOptions& contextOptions,
1589                                 const skgpu::VulkanInterface* interface,
1590                                 VkPhysicalDevice physDev,
1591                                 const VkPhysicalDeviceProperties& properties,
1592                                 VkFormat format) {
1593     VkFormatProperties props;
1594     memset(&props, 0, sizeof(VkFormatProperties));
1595     GR_VK_CALL(interface, GetPhysicalDeviceFormatProperties(physDev, format, &props));
1596     InitFormatFlags(props.linearTilingFeatures, &fLinearFlags);
1597     InitFormatFlags(props.optimalTilingFeatures, &fOptimalFlags);
1598     if (fOptimalFlags & kRenderable_Flag) {
1599         this->initSampleCounts(contextOptions, interface, physDev, properties, format);
1600     }
1601 }
1602 
1603 // For many checks in caps, we need to know whether the GrBackendFormat is external or not. If it is
1604 // external the VkFormat will be VK_NULL_HANDLE which is not handled by our various format
1605 // capability checks.
backend_format_is_external(const GrBackendFormat & format)1606 static bool backend_format_is_external(const GrBackendFormat& format) {
1607     const skgpu::VulkanYcbcrConversionInfo* ycbcrInfo =
1608             GrBackendFormats::GetVkYcbcrConversionInfo(format);
1609     SkASSERT(ycbcrInfo);
1610 
1611     // All external formats have a valid ycbcrInfo used for sampling and a non zero external format.
1612     if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1613 #ifdef SK_DEBUG
1614         VkFormat vkFormat;
1615         SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat));
1616         SkASSERT(vkFormat == VK_FORMAT_UNDEFINED);
1617 #endif
1618         return true;
1619     }
1620     return false;
1621 }
1622 
isFormatSRGB(const GrBackendFormat & format) const1623 bool GrVkCaps::isFormatSRGB(const GrBackendFormat& format) const {
1624     VkFormat vkFormat;
1625     if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) {
1626         return false;
1627     }
1628     if (backend_format_is_external(format)) {
1629         return false;
1630     }
1631 
1632     return format_is_srgb(vkFormat);
1633 }
1634 
isFormatTexturable(const GrBackendFormat & format,GrTextureType) const1635 bool GrVkCaps::isFormatTexturable(const GrBackendFormat& format, GrTextureType) const {
1636     VkFormat vkFormat;
1637     if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) {
1638         return false;
1639     }
1640     if (backend_format_is_external(format)) {
1641         // We can always texture from an external format (assuming we have the ycbcr conversion
1642         // info which we require to be passed in).
1643         return true;
1644     }
1645     return this->isVkFormatTexturable(vkFormat);
1646 }
1647 
isVkFormatTexturable(VkFormat format) const1648 bool GrVkCaps::isVkFormatTexturable(VkFormat format) const {
1649     const FormatInfo& info = this->getFormatInfo(format);
1650     return SkToBool(FormatInfo::kTexturable_Flag & info.fOptimalFlags);
1651 }
1652 
isFormatAsColorTypeRenderable(GrColorType ct,const GrBackendFormat & format,int sampleCount) const1653 bool GrVkCaps::isFormatAsColorTypeRenderable(GrColorType ct, const GrBackendFormat& format,
1654                                              int sampleCount) const {
1655     if (!this->isFormatRenderable(format, sampleCount)) {
1656         return false;
1657     }
1658     VkFormat vkFormat;
1659     if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) {
1660         return false;
1661     }
1662     const auto& info = this->getFormatInfo(vkFormat);
1663     if (!SkToBool(info.colorTypeFlags(ct) & ColorTypeInfo::kRenderable_Flag)) {
1664         return false;
1665     }
1666     return true;
1667 }
1668 
isFormatRenderable(const GrBackendFormat & format,int sampleCount) const1669 bool GrVkCaps::isFormatRenderable(const GrBackendFormat& format, int sampleCount) const {
1670     VkFormat vkFormat;
1671     if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) {
1672         return false;
1673     }
1674     return this->isFormatRenderable(vkFormat, sampleCount);
1675 }
1676 
isFormatRenderable(VkFormat format,int sampleCount) const1677 bool GrVkCaps::isFormatRenderable(VkFormat format, int sampleCount) const {
1678     return sampleCount <= this->maxRenderTargetSampleCount(format);
1679 }
1680 
getRenderTargetSampleCount(int requestedCount,const GrBackendFormat & format) const1681 int GrVkCaps::getRenderTargetSampleCount(int requestedCount,
1682                                          const GrBackendFormat& format) const {
1683     VkFormat vkFormat;
1684     if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) {
1685         return 0;
1686     }
1687 
1688     return this->getRenderTargetSampleCount(requestedCount, vkFormat);
1689 }
1690 
getRenderTargetSampleCount(int requestedCount,VkFormat format) const1691 int GrVkCaps::getRenderTargetSampleCount(int requestedCount, VkFormat format) const {
1692     requestedCount = std::max(1, requestedCount);
1693 
1694     const FormatInfo& info = this->getFormatInfo(format);
1695 
1696     int count = info.fColorSampleCounts.size();
1697 
1698     if (!count) {
1699         return 0;
1700     }
1701 
1702     if (1 == requestedCount) {
1703         SkASSERT(!info.fColorSampleCounts.empty() && info.fColorSampleCounts[0] == 1);
1704         return 1;
1705     }
1706 
1707     for (int i = 0; i < count; ++i) {
1708         if (info.fColorSampleCounts[i] >= requestedCount) {
1709             return info.fColorSampleCounts[i];
1710         }
1711     }
1712     return 0;
1713 }
1714 
maxRenderTargetSampleCount(const GrBackendFormat & format) const1715 int GrVkCaps::maxRenderTargetSampleCount(const GrBackendFormat& format) const {
1716     VkFormat vkFormat;
1717     if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) {
1718         return 0;
1719     }
1720     return this->maxRenderTargetSampleCount(vkFormat);
1721 }
1722 
maxRenderTargetSampleCount(VkFormat format) const1723 int GrVkCaps::maxRenderTargetSampleCount(VkFormat format) const {
1724     const FormatInfo& info = this->getFormatInfo(format);
1725 
1726     const auto& table = info.fColorSampleCounts;
1727     if (table.empty()) {
1728         return 0;
1729     }
1730     return table[table.size() - 1];
1731 }
1732 
align_to_4(size_t v)1733 static inline size_t align_to_4(size_t v) {
1734     switch (v & 0b11) {
1735         // v is already a multiple of 4.
1736         case 0:     return v;
1737         // v is a multiple of 2 but not 4.
1738         case 2:     return 2 * v;
1739         // v is not a multiple of 2.
1740         default:    return 4 * v;
1741     }
1742 }
1743 
supportedWritePixelsColorType(GrColorType surfaceColorType,const GrBackendFormat & surfaceFormat,GrColorType srcColorType) const1744 GrCaps::SupportedWrite GrVkCaps::supportedWritePixelsColorType(GrColorType surfaceColorType,
1745                                                                const GrBackendFormat& surfaceFormat,
1746                                                                GrColorType srcColorType) const {
1747     VkFormat vkFormat;
1748     if (!GrBackendFormats::AsVkFormat(surfaceFormat, &vkFormat)) {
1749         return {GrColorType::kUnknown, 0};
1750     }
1751 
1752     // We don't support the ability to upload to external formats or formats that require a ycbcr
1753     // sampler. In general these types of formats are only used for sampling in a shader.
1754     if (backend_format_is_external(surfaceFormat) || skgpu::VkFormatNeedsYcbcrSampler(vkFormat)) {
1755         return {GrColorType::kUnknown, 0};
1756     }
1757 
1758     // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
1759     size_t offsetAlignment = align_to_4(skgpu::VkFormatBytesPerBlock(vkFormat));
1760 
1761     const auto& info = this->getFormatInfo(vkFormat);
1762     for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1763         const auto& ctInfo = info.fColorTypeInfos[i];
1764         if (ctInfo.fColorType == surfaceColorType) {
1765             return {ctInfo.fTransferColorType, offsetAlignment};
1766         }
1767     }
1768     return {GrColorType::kUnknown, 0};
1769 }
1770 
surfaceSupportsReadPixels(const GrSurface * surface) const1771 GrCaps::SurfaceReadPixelsSupport GrVkCaps::surfaceSupportsReadPixels(
1772         const GrSurface* surface) const {
1773     if (surface->isProtected()) {
1774         return SurfaceReadPixelsSupport::kUnsupported;
1775     }
1776     if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1777         auto texImage = tex->textureImage();
1778         if (!texImage) {
1779             return SurfaceReadPixelsSupport::kUnsupported;
1780         }
1781         // We can't directly read from a VkImage that has a ycbcr sampler.
1782         if (texImage->ycbcrConversionInfo().isValid()) {
1783             return SurfaceReadPixelsSupport::kCopyToTexture2D;
1784         }
1785         // We can't directly read from a compressed format
1786         if (skgpu::VkFormatIsCompressed(texImage->imageFormat())) {
1787             return SurfaceReadPixelsSupport::kCopyToTexture2D;
1788         }
1789         return SurfaceReadPixelsSupport::kSupported;
1790     } else if (auto rt = surface->asRenderTarget()) {
1791         if (rt->numSamples() > 1) {
1792             return SurfaceReadPixelsSupport::kCopyToTexture2D;
1793         }
1794         return SurfaceReadPixelsSupport::kSupported;
1795     }
1796     return SurfaceReadPixelsSupport::kUnsupported;
1797 }
1798 
transferColorType(VkFormat vkFormat,GrColorType surfaceColorType) const1799 GrColorType GrVkCaps::transferColorType(VkFormat vkFormat, GrColorType surfaceColorType) const {
1800     const auto& info = this->getFormatInfo(vkFormat);
1801     for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1802         if (info.fColorTypeInfos[i].fColorType == surfaceColorType) {
1803             return info.fColorTypeInfos[i].fTransferColorType;
1804         }
1805     }
1806     return GrColorType::kUnknown;
1807 }
1808 
onSurfaceSupportsWritePixels(const GrSurface * surface) const1809 bool GrVkCaps::onSurfaceSupportsWritePixels(const GrSurface* surface) const {
1810     if (auto rt = surface->asRenderTarget()) {
1811         return rt->numSamples() <= 1 && SkToBool(surface->asTexture());
1812     }
1813     // We can't write to a texture that has a ycbcr sampler.
1814     if (auto tex = static_cast<const GrVkTexture*>(surface->asTexture())) {
1815         auto texImage = tex->textureImage();
1816         if (!texImage) {
1817             return false;
1818         }
1819         // We can't directly read from a VkImage that has a ycbcr sampler.
1820         if (texImage->ycbcrConversionInfo().isValid()) {
1821             return false;
1822         }
1823     }
1824     return true;
1825 }
1826 
onAreColorTypeAndFormatCompatible(GrColorType ct,const GrBackendFormat & format) const1827 bool GrVkCaps::onAreColorTypeAndFormatCompatible(GrColorType ct,
1828                                                  const GrBackendFormat& format) const {
1829     VkFormat vkFormat;
1830     if (!GrBackendFormats::AsVkFormat(format, &vkFormat)) {
1831         return false;
1832     }
1833     const skgpu::VulkanYcbcrConversionInfo* ycbcrInfo =
1834             GrBackendFormats::GetVkYcbcrConversionInfo(format);
1835     SkASSERT(ycbcrInfo);
1836 
1837     if (ycbcrInfo->isValid() && !skgpu::VkFormatNeedsYcbcrSampler(vkFormat)) {
1838         // Format may be undefined for external images, which are required to have YCbCr conversion.
1839         if (VK_FORMAT_UNDEFINED == vkFormat && ycbcrInfo->fExternalFormat != 0) {
1840             return true;
1841         }
1842         return false;
1843     }
1844 
1845     const auto& info = this->getFormatInfo(vkFormat);
1846     for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1847         if (info.fColorTypeInfos[i].fColorType == ct) {
1848             return true;
1849         }
1850     }
1851     return false;
1852 }
1853 
onGetDefaultBackendFormat(GrColorType ct) const1854 GrBackendFormat GrVkCaps::onGetDefaultBackendFormat(GrColorType ct) const {
1855     VkFormat format = this->getFormatFromColorType(ct);
1856     if (format == VK_FORMAT_UNDEFINED) {
1857         return {};
1858     }
1859     return GrBackendFormats::MakeVk(format);
1860 }
1861 
onSupportsDynamicMSAA(const GrRenderTargetProxy * rtProxy) const1862 bool GrVkCaps::onSupportsDynamicMSAA(const GrRenderTargetProxy* rtProxy) const {
1863     // We must be able to use the rtProxy as an input attachment to load into the discardable msaa
1864     // attachment. Also the rtProxy should have a sample count of 1 so that it can be used as a
1865     // resolve attachment.
1866     return this->supportsDiscardableMSAAForDMSAA() &&
1867            rtProxy->supportsVkInputAttachment() &&
1868            rtProxy->numSamples() == 1;
1869 }
1870 
renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget * rt) const1871 bool GrVkCaps::renderTargetSupportsDiscardableMSAA(const GrVkRenderTarget* rt) const {
1872     return rt->resolveAttachment() &&
1873            rt->resolveAttachment()->supportsInputAttachmentUsage() &&
1874            ((rt->numSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1875             (rt->numSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1876 }
1877 
programInfoWillUseDiscardableMSAA(const GrProgramInfo & programInfo) const1878 bool GrVkCaps::programInfoWillUseDiscardableMSAA(const GrProgramInfo& programInfo) const {
1879     return programInfo.targetHasVkResolveAttachmentWithInput() &&
1880            programInfo.numSamples() > 1 &&
1881            ((programInfo.targetsNumSamples() > 1 && this->preferDiscardableMSAAAttachment()) ||
1882             (programInfo.targetsNumSamples() == 1 && this->supportsDiscardableMSAAForDMSAA()));
1883 }
1884 
getBackendFormatFromCompressionType(SkTextureCompressionType compressionType) const1885 GrBackendFormat GrVkCaps::getBackendFormatFromCompressionType(
1886         SkTextureCompressionType compressionType) const {
1887     switch (compressionType) {
1888         case SkTextureCompressionType::kNone:
1889             return {};
1890         case SkTextureCompressionType::kETC2_RGB8_UNORM:
1891             if (this->isVkFormatTexturable(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)) {
1892                 return GrBackendFormats::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK);
1893             }
1894             return {};
1895         case SkTextureCompressionType::kBC1_RGB8_UNORM:
1896             if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGB_UNORM_BLOCK)) {
1897                 return GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK);
1898             }
1899             return {};
1900         case SkTextureCompressionType::kBC1_RGBA8_UNORM:
1901             if (this->isVkFormatTexturable(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)) {
1902                 return GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK);
1903             }
1904             return {};
1905         case SkTextureCompressionType::kASTC_RGBA8_4x4:
1906             if (this->isVkFormatTexturable(VK_FORMAT_ASTC_4x4_UNORM_BLOCK)) {
1907                 return GrBackendFormats::MakeVk(VK_FORMAT_ASTC_4x4_UNORM_BLOCK);
1908             }
1909             return {};
1910         case SkTextureCompressionType::kASTC_RGBA8_6x6:
1911             if (this->isVkFormatTexturable(VK_FORMAT_ASTC_6x6_UNORM_BLOCK)) {
1912                 return GrBackendFormats::MakeVk(VK_FORMAT_ASTC_6x6_UNORM_BLOCK);
1913             }
1914             return {};
1915         case SkTextureCompressionType::kASTC_RGBA8_8x8:
1916             if (this->isVkFormatTexturable(VK_FORMAT_ASTC_8x8_UNORM_BLOCK)) {
1917                 return GrBackendFormats::MakeVk(VK_FORMAT_ASTC_8x8_UNORM_BLOCK);
1918             }
1919             return {};
1920     }
1921 
1922     SkUNREACHABLE;
1923 }
1924 
onGetReadSwizzle(const GrBackendFormat & format,GrColorType colorType) const1925 skgpu::Swizzle GrVkCaps::onGetReadSwizzle(const GrBackendFormat& format,
1926                                           GrColorType colorType) const {
1927     VkFormat vkFormat;
1928     SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat));
1929     const skgpu::VulkanYcbcrConversionInfo* ycbcrInfo =
1930             GrBackendFormats::GetVkYcbcrConversionInfo(format);
1931     SkASSERT(ycbcrInfo);
1932     if (ycbcrInfo->isValid() && ycbcrInfo->fExternalFormat != 0) {
1933         // We allow these to work with any color type and never swizzle. See
1934         // onAreColorTypeAndFormatCompatible.
1935         return skgpu::Swizzle{"rgba"};
1936     }
1937 
1938     const auto& info = this->getFormatInfo(vkFormat);
1939     for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1940         const auto& ctInfo = info.fColorTypeInfos[i];
1941         if (ctInfo.fColorType == colorType) {
1942             return ctInfo.fReadSwizzle;
1943         }
1944     }
1945     SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1946                  (int)colorType, (int)vkFormat);
1947     return {};
1948 }
1949 
getWriteSwizzle(const GrBackendFormat & format,GrColorType colorType) const1950 skgpu::Swizzle GrVkCaps::getWriteSwizzle(const GrBackendFormat& format,
1951                                          GrColorType colorType) const {
1952     VkFormat vkFormat;
1953     SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat));
1954     const auto& info = this->getFormatInfo(vkFormat);
1955     for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
1956         const auto& ctInfo = info.fColorTypeInfos[i];
1957         if (ctInfo.fColorType == colorType) {
1958             return ctInfo.fWriteSwizzle;
1959         }
1960     }
1961     SkDEBUGFAILF("Illegal color type (%d) and format (%d) combination.",
1962                  (int)colorType, (int)vkFormat);
1963     return {};
1964 }
1965 
onGetDstSampleFlagsForProxy(const GrRenderTargetProxy * rt) const1966 GrDstSampleFlags GrVkCaps::onGetDstSampleFlagsForProxy(const GrRenderTargetProxy* rt) const {
1967     bool isMSAAWithResolve = rt->numSamples() > 1 && rt->asTextureProxy();
1968     // TODO: Currently if we have an msaa rt with a resolve, the supportsVkInputAttachment call
1969     // references whether the resolve is supported as an input attachment. We need to add a check to
1970     // allow checking the color attachment (msaa or not) supports input attachment specifically.
1971     if (!isMSAAWithResolve && rt->supportsVkInputAttachment()) {
1972         return GrDstSampleFlags::kRequiresTextureBarrier | GrDstSampleFlags::kAsInputAttachment;
1973     }
1974     return GrDstSampleFlags::kNone;
1975 }
1976 
computeFormatKey(const GrBackendFormat & format) const1977 uint64_t GrVkCaps::computeFormatKey(const GrBackendFormat& format) const {
1978     VkFormat vkFormat;
1979     SkAssertResult(GrBackendFormats::AsVkFormat(format, &vkFormat));
1980 
1981 #ifdef SK_DEBUG
1982     // We should never be trying to compute a key for an external format
1983     const skgpu::VulkanYcbcrConversionInfo* ycbcrInfo =
1984             GrBackendFormats::GetVkYcbcrConversionInfo(format);
1985     SkASSERT(ycbcrInfo);
1986     SkASSERT(!ycbcrInfo->isValid() || ycbcrInfo->fExternalFormat == 0);
1987 #endif
1988 
1989     // A VkFormat has a size of 64 bits.
1990     return (uint64_t)vkFormat;
1991 }
1992 
onSupportedReadPixelsColorType(GrColorType srcColorType,const GrBackendFormat & srcBackendFormat,GrColorType dstColorType) const1993 GrCaps::SupportedRead GrVkCaps::onSupportedReadPixelsColorType(
1994         GrColorType srcColorType, const GrBackendFormat& srcBackendFormat,
1995         GrColorType dstColorType) const {
1996     VkFormat vkFormat;
1997     if (!GrBackendFormats::AsVkFormat(srcBackendFormat, &vkFormat)) {
1998         return {GrColorType::kUnknown, 0};
1999     }
2000 
2001     if (skgpu::VkFormatNeedsYcbcrSampler(vkFormat)) {
2002         return {GrColorType::kUnknown, 0};
2003     }
2004 
2005     SkTextureCompressionType compression = GrBackendFormatToCompressionType(srcBackendFormat);
2006     if (compression != SkTextureCompressionType::kNone) {
2007         return { SkTextureCompressionTypeIsOpaque(compression) ? GrColorType::kRGB_888x
2008                                                         : GrColorType::kRGBA_8888, 0 };
2009     }
2010 
2011     // The VkBufferImageCopy bufferOffset field must be both a multiple of 4 and of a single texel.
2012     size_t offsetAlignment = align_to_4(skgpu::VkFormatBytesPerBlock(vkFormat));
2013 
2014     const auto& info = this->getFormatInfo(vkFormat);
2015     for (int i = 0; i < info.fColorTypeInfoCount; ++i) {
2016         const auto& ctInfo = info.fColorTypeInfos[i];
2017         if (ctInfo.fColorType == srcColorType) {
2018             return {ctInfo.fTransferColorType, offsetAlignment};
2019         }
2020     }
2021     return {GrColorType::kUnknown, 0};
2022 }
2023 
getFragmentUniformBinding() const2024 int GrVkCaps::getFragmentUniformBinding() const {
2025     return GrVkUniformHandler::kUniformBinding;
2026 }
2027 
getFragmentUniformSet() const2028 int GrVkCaps::getFragmentUniformSet() const {
2029     return GrVkUniformHandler::kUniformBufferDescSet;
2030 }
2031 
addExtraSamplerKey(skgpu::KeyBuilder * b,GrSamplerState samplerState,const GrBackendFormat & format) const2032 void GrVkCaps::addExtraSamplerKey(skgpu::KeyBuilder* b,
2033                                   GrSamplerState samplerState,
2034                                   const GrBackendFormat& format) const {
2035     const skgpu::VulkanYcbcrConversionInfo* ycbcrInfo =
2036             GrBackendFormats::GetVkYcbcrConversionInfo(format);
2037     if (!ycbcrInfo) {
2038         return;
2039     }
2040 
2041     GrVkSampler::Key key = GrVkSampler::GenerateKey(samplerState, *ycbcrInfo);
2042 
2043     constexpr size_t numInts = (sizeof(key) + 3) / 4;
2044     uint32_t tmp[numInts];
2045     memcpy(tmp, &key, sizeof(key));
2046 
2047     for (size_t i = 0; i < numInts; ++i) {
2048         b->add32(tmp[i]);
2049     }
2050 }
2051 
2052 /**
2053  * For Vulkan we want to cache the entire VkPipeline for reuse of draws. The Desc here holds all
2054  * the information needed to differentiate one pipeline from another.
2055  *
2056  * The GrProgramDesc contains all the information need to create the actual shaders for the
2057  * pipeline.
2058  *
2059  * For Vulkan we need to add to the GrProgramDesc to include the rest of the state on the
2060  * pipline. This includes stencil settings, blending information, render pass format, draw face
2061  * information, and primitive type. Note that some state is set dynamically on the pipeline for
2062  * each draw  and thus is not included in this descriptor. This includes the viewport, scissor,
2063  * and blend constant.
2064  */
makeDesc(GrRenderTarget * rt,const GrProgramInfo & programInfo,ProgramDescOverrideFlags overrideFlags) const2065 GrProgramDesc GrVkCaps::makeDesc(GrRenderTarget* rt,
2066                                  const GrProgramInfo& programInfo,
2067                                  ProgramDescOverrideFlags overrideFlags) const {
2068     GrProgramDesc desc;
2069     GrProgramDesc::Build(&desc, programInfo, *this);
2070 
2071     skgpu::KeyBuilder b(desc.key());
2072 
2073     // This will become part of the sheared off key used to persistently cache
2074     // the SPIRV code. It needs to be added right after the base key so that,
2075     // when the base-key is sheared off, the shearing code can include it in the
2076     // reduced key (c.f. the +4s in the SkData::MakeWithCopy calls in
2077     // GrVkPipelineStateBuilder.cpp).
2078     b.add32(GrVkGpu::kShader_PersistentCacheKeyType);
2079 
2080     GrVkRenderPass::SelfDependencyFlags selfDepFlags = GrVkRenderPass::SelfDependencyFlags::kNone;
2081     if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kBlend) {
2082         selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForNonCoherentAdvBlend;
2083     }
2084     if (programInfo.renderPassBarriers() & GrXferBarrierFlags::kTexture) {
2085         selfDepFlags |= GrVkRenderPass::SelfDependencyFlags::kForInputAttachment;
2086     }
2087 
2088     bool needsResolve = this->programInfoWillUseDiscardableMSAA(programInfo);
2089 
2090     bool forceLoadFromResolve =
2091             overrideFlags & GrCaps::ProgramDescOverrideFlags::kVulkanHasResolveLoadSubpass;
2092     SkASSERT(!forceLoadFromResolve || needsResolve);
2093 
2094     GrVkRenderPass::LoadFromResolve loadFromResolve = GrVkRenderPass::LoadFromResolve::kNo;
2095     if (needsResolve && (programInfo.colorLoadOp() == GrLoadOp::kLoad || forceLoadFromResolve)) {
2096         loadFromResolve = GrVkRenderPass::LoadFromResolve::kLoad;
2097     }
2098 
2099     if (rt) {
2100         GrVkRenderTarget* vkRT = (GrVkRenderTarget*) rt;
2101 
2102         SkASSERT(!needsResolve || (vkRT->resolveAttachment() &&
2103                                    vkRT->resolveAttachment()->supportsInputAttachmentUsage()));
2104 
2105         bool needsStencil = programInfo.needsStencil() || programInfo.isStencilEnabled();
2106         // TODO: support failure in getSimpleRenderPass
2107         auto rp = vkRT->getSimpleRenderPass(needsResolve, needsStencil, selfDepFlags,
2108                                             loadFromResolve);
2109         SkASSERT(rp);
2110         rp->genKey(&b);
2111 
2112 #ifdef SK_DEBUG
2113         if (!rp->isExternal()) {
2114             // This is to ensure ReconstructAttachmentsDescriptor keeps matching
2115             // getSimpleRenderPass' result
2116             GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
2117             GrVkRenderPass::AttachmentFlags attachmentFlags;
2118             GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
2119                                                                &attachmentsDescriptor,
2120                                                                &attachmentFlags);
2121             SkASSERT(rp->isCompatible(attachmentsDescriptor, attachmentFlags, selfDepFlags,
2122                                       loadFromResolve));
2123         }
2124 #endif
2125     } else {
2126         GrVkRenderPass::AttachmentsDescriptor attachmentsDescriptor;
2127         GrVkRenderPass::AttachmentFlags attachmentFlags;
2128         GrVkRenderTarget::ReconstructAttachmentsDescriptor(*this, programInfo,
2129                                                            &attachmentsDescriptor,
2130                                                            &attachmentFlags);
2131 
2132         // kExternal_AttachmentFlag is only set for wrapped secondary command buffers - which
2133         // will always go through the above 'rt' path (i.e., we can always pass 0 as the final
2134         // parameter to GenKey).
2135         GrVkRenderPass::GenKey(&b, attachmentFlags, attachmentsDescriptor, selfDepFlags,
2136                                loadFromResolve, 0);
2137     }
2138 
2139     GrStencilSettings stencil = programInfo.nonGLStencilSettings();
2140     stencil.genKey(&b, true);
2141 
2142     programInfo.pipeline().genKey(&b, *this);
2143     b.add32(programInfo.numSamples());
2144 
2145     // Vulkan requires the full primitive type as part of its key
2146     b.add32(programInfo.primitiveTypeKey());
2147 
2148     b.flush();
2149     return desc;
2150 }
2151 
getExtraSurfaceFlagsForDeferredRT() const2152 GrInternalSurfaceFlags GrVkCaps::getExtraSurfaceFlagsForDeferredRT() const {
2153     // We always create vulkan RT with the input attachment flag;
2154     return GrInternalSurfaceFlags::kVkRTSupportsInputAttachment;
2155 }
2156 
getPushConstantStageFlags() const2157 VkShaderStageFlags GrVkCaps::getPushConstantStageFlags() const {
2158     VkShaderStageFlags stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT;
2159     return stageFlags;
2160 }
2161 
2162 template <size_t N>
intel_deviceID_present(const std::array<uint32_t,N> & array,uint32_t deviceID)2163 static bool intel_deviceID_present(const std::array<uint32_t, N>& array, uint32_t deviceID) {
2164     return std::find(array.begin(), array.end(), deviceID) != array.end();
2165 }
2166 
2167 
GetIntelGPUType(uint32_t deviceID)2168 GrVkCaps::IntelGPUType GrVkCaps::GetIntelGPUType(uint32_t deviceID) {
2169     // Some common Intel GPU models, currently we cover SKL/ICL/RKL/TGL/ADL
2170     // Referenced from the following Mesa source files:
2171     // https://github.com/mesa3d/mesa/blob/master/include/pci_ids/i965_pci_ids.h
2172     // https://github.com/mesa3d/mesa/blob/master/include/pci_ids/iris_pci_ids.h
2173     static constexpr std::array<uint32_t, 25> kSkyLakeIDs = {
2174         {0x1902, 0x1906, 0x190A, 0x190B, 0x190E, 0x1912, 0x1913,
2175          0x1915, 0x1916, 0x1917, 0x191A, 0x191B, 0x191D, 0x191E,
2176          0x1921, 0x1923, 0x1926, 0x1927, 0x192A, 0x192B, 0x192D,
2177          0x1932, 0x193A, 0x193B, 0x193D}};
2178     static constexpr std::array<uint32_t, 14> kIceLakeIDs = {
2179         {0x8A50, 0x8A51, 0x8A52, 0x8A53, 0x8A54, 0x8A56, 0x8A57,
2180          0x8A58, 0x8A59, 0x8A5A, 0x8A5B, 0x8A5C, 0x8A5D, 0x8A71}};
2181     static constexpr  std::array<uint32_t, 5> kRocketLakeIDs = {
2182         {0x4c8a, 0x4c8b, 0x4c8c, 0x4c90, 0x4c9a}};
2183     static constexpr  std::array<uint32_t, 11> kTigerLakeIDs = {
2184         {0x9A40, 0x9A49, 0x9A59, 0x9A60, 0x9A68, 0x9A70,
2185          0x9A78, 0x9AC0, 0x9AC9, 0x9AD9, 0x9AF8}};
2186     static constexpr  std::array<uint32_t, 10> kAlderLakeIDs = {
2187         {0x4680, 0x4681, 0x4682, 0x4683, 0x4690,
2188          0x4691, 0x4692, 0x4693, 0x4698, 0x4699}};
2189 
2190     if (intel_deviceID_present(kSkyLakeIDs, deviceID)) {
2191         return IntelGPUType::kSkyLake;
2192     }
2193     if (intel_deviceID_present(kIceLakeIDs, deviceID)) {
2194         return IntelGPUType::kIceLake;
2195     }
2196     if (intel_deviceID_present(kRocketLakeIDs, deviceID)) {
2197         return IntelGPUType::kRocketLake;
2198     }
2199     if (intel_deviceID_present(kTigerLakeIDs, deviceID)) {
2200         return IntelGPUType::kTigerLake;
2201     }
2202     if (intel_deviceID_present(kAlderLakeIDs, deviceID)) {
2203         return IntelGPUType::kAlderLake;
2204     }
2205     return IntelGPUType::kOther;
2206 }
2207 
2208 #if defined(GPU_TEST_UTILS)
getTestingCombinations() const2209 std::vector<GrTest::TestFormatColorTypeCombination> GrVkCaps::getTestingCombinations() const {
2210     std::vector<GrTest::TestFormatColorTypeCombination> combos = {
2211         { GrColorType::kAlpha_8,          GrBackendFormats::MakeVk(VK_FORMAT_R8_UNORM)            },
2212         { GrColorType::kBGR_565,          GrBackendFormats::MakeVk(VK_FORMAT_R5G6B5_UNORM_PACK16) },
2213         { GrColorType::kRGB_565,          GrBackendFormats::MakeVk(VK_FORMAT_B5G6R5_UNORM_PACK16) },
2214         { GrColorType::kABGR_4444,       GrBackendFormats::MakeVk(VK_FORMAT_R4G4B4A4_UNORM_PACK16)},
2215         { GrColorType::kABGR_4444,       GrBackendFormats::MakeVk(VK_FORMAT_B4G4R4A4_UNORM_PACK16)},
2216         { GrColorType::kRGBA_8888,        GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8A8_UNORM)      },
2217         { GrColorType::kRGBA_8888_SRGB,   GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8A8_SRGB)       },
2218         { GrColorType::kRGB_888x,         GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8A8_UNORM)      },
2219         { GrColorType::kRGB_888x,         GrBackendFormats::MakeVk(VK_FORMAT_B8G8R8A8_UNORM)      },
2220         { GrColorType::kRGB_888x,         GrBackendFormats::MakeVk(VK_FORMAT_R8G8B8_UNORM)        },
2221         { GrColorType::kRG_88,            GrBackendFormats::MakeVk(VK_FORMAT_R8G8_UNORM)          },
2222         { GrColorType::kBGRA_8888,        GrBackendFormats::MakeVk(VK_FORMAT_B8G8R8A8_UNORM)      },
2223         { GrColorType::kRGBA_1010102, GrBackendFormats::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
2224         { GrColorType::kBGRA_1010102, GrBackendFormats::MakeVk(VK_FORMAT_A2R10G10B10_UNORM_PACK32)},
2225         { GrColorType::kRGB_101010x, GrBackendFormats::MakeVk(VK_FORMAT_A2B10G10R10_UNORM_PACK32)},
2226         { GrColorType::kRGBA_10x6,
2227           GrBackendFormats::MakeVk(VK_FORMAT_R10X6G10X6B10X6A10X6_UNORM_4PACK16)},
2228         { GrColorType::kGray_8,           GrBackendFormats::MakeVk(VK_FORMAT_R8_UNORM)            },
2229         { GrColorType::kAlpha_F16,        GrBackendFormats::MakeVk(VK_FORMAT_R16_SFLOAT)          },
2230         { GrColorType::kRGBA_F16,         GrBackendFormats::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
2231         { GrColorType::kRGBA_F16_Clamped, GrBackendFormats::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
2232         { GrColorType::kRGB_F16F16F16x,   GrBackendFormats::MakeVk(VK_FORMAT_R16G16B16A16_SFLOAT) },
2233         { GrColorType::kAlpha_16,         GrBackendFormats::MakeVk(VK_FORMAT_R16_UNORM)           },
2234         { GrColorType::kRG_1616,          GrBackendFormats::MakeVk(VK_FORMAT_R16G16_UNORM)        },
2235         { GrColorType::kRGBA_16161616,    GrBackendFormats::MakeVk(VK_FORMAT_R16G16B16A16_UNORM)  },
2236         { GrColorType::kRG_F16,           GrBackendFormats::MakeVk(VK_FORMAT_R16G16_SFLOAT)       },
2237         // These two compressed formats both have an effective colorType of kRGB_888x
2238         { GrColorType::kRGB_888x,      GrBackendFormats::MakeVk(VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK)},
2239         { GrColorType::kRGB_888x,         GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGB_UNORM_BLOCK) },
2240         { GrColorType::kRGBA_8888,        GrBackendFormats::MakeVk(VK_FORMAT_BC1_RGBA_UNORM_BLOCK)},
2241         { GrColorType::kRGBA_8888,        GrBackendFormats::MakeVk(VK_FORMAT_ASTC_4x4_UNORM_BLOCK) },
2242         { GrColorType::kRGBA_8888,        GrBackendFormats::MakeVk(VK_FORMAT_ASTC_6x6_UNORM_BLOCK) },
2243         { GrColorType::kRGBA_8888,        GrBackendFormats::MakeVk(VK_FORMAT_ASTC_8x8_UNORM_BLOCK) },
2244     };
2245 
2246     return combos;
2247 }
2248 #endif
2249