• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRasterPipeline_opts_DEFINED
9 #define SkRasterPipeline_opts_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/base/SkMalloc.h"
13 #include "include/private/base/SkSpan_impl.h"
14 #include "include/private/base/SkTemplates.h"
15 #include "modules/skcms/skcms.h"
16 #include "src/base/SkUtils.h"  // unaligned_{load,store}
17 #include "src/core/SkRasterPipeline.h"
18 #include "src/core/SkRasterPipelineContextUtils.h"
19 #include "src/shaders/SkPerlinNoiseShaderType.h"
20 #include "src/sksl/tracing/SkSLTraceHook.h"
21 
22 #include <cstdint>
23 #include <cmath>
24 #include <type_traits>
25 
26 // Every function in this file should be marked static and inline using SI.
27 #if defined(__clang__) || defined(__GNUC__)
28     #define SI __attribute__((always_inline)) static inline
29 #else
30     #define SI static inline
31 #endif
32 
33 #if defined(__clang__)
34     #define SK_UNROLL _Pragma("unroll")
35 #else
36     #define SK_UNROLL
37 #endif
38 
39 #if defined(__clang__)
40     template <int N, typename T> using Vec = T __attribute__((ext_vector_type(N)));
41 #elif defined(__GNUC__)
42     // Unfortunately, GCC does not allow us to omit the struct. This will not compile:
43     //   template <int N, typename T> using Vec = T __attribute__((vector_size(N*sizeof(T))));
44     template <int N, typename T> struct VecHelper {
45         typedef T __attribute__((vector_size(N * sizeof(T)))) V;
46     };
47     template <int N, typename T> using Vec = typename VecHelper<N, T>::V;
48 #endif
49 
50 template <typename Dst, typename Src>
widen_cast(const Src & src)51 SI Dst widen_cast(const Src& src) {
52     static_assert(sizeof(Dst) > sizeof(Src));
53     static_assert(std::is_trivially_copyable<Dst>::value);
54     static_assert(std::is_trivially_copyable<Src>::value);
55     Dst dst;
56     memcpy(&dst, &src, sizeof(Src));
57     return dst;
58 }
59 
60 struct Ctx {
61     SkRasterPipelineStage* fStage;
62 
63     template <typename T>
64     operator T*() {
65         return (T*)fStage->ctx;
66     }
67 };
68 
69 using NoCtx = const void*;
70 
71 #if defined(SKRP_CPU_SCALAR) || defined(SKRP_CPU_NEON) || defined(SKRP_CPU_HSW) || \
72         defined(SKRP_CPU_SKX) || defined(SKRP_CPU_AVX) || defined(SKRP_CPU_SSE41) || \
73         defined(SKRP_CPU_SSE2)
74     // Honor the existing setting
75 #elif !defined(__clang__) && !defined(__GNUC__)
76     #define SKRP_CPU_SCALAR
77 #elif defined(SK_ARM_HAS_NEON)
78     #define SKRP_CPU_NEON
79 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX
80     #define SKRP_CPU_SKX
81 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
82     #define SKRP_CPU_HSW
83 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
84     #define SKRP_CPU_AVX
85 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
86     #define SKRP_CPU_SSE41
87 #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
88     #define SKRP_CPU_SSE2
89 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LASX
90     #define SKRP_CPU_LASX
91 #elif SK_CPU_LSX_LEVEL >= SK_CPU_LSX_LEVEL_LSX
92     #define SKRP_CPU_LSX
93 #else
94     #define SKRP_CPU_SCALAR
95 #endif
96 
97 #if defined(SKRP_CPU_SCALAR)
98     #include <math.h>
99 #elif defined(SKRP_CPU_NEON)
100     #include <arm_neon.h>
101 #elif defined(SKRP_CPU_LASX)
102     #include <lasxintrin.h>
103     #include <lsxintrin.h>
104 #elif defined(SKRP_CPU_LSX)
105     #include <lsxintrin.h>
106 #else
107     #include <immintrin.h>
108 #endif
109 
110 // Notes:
111 // * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least
112 //   12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise
113 //   requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for
114 //   Intel this requires one additional step because its estimate has 12 bit precision.
115 //
116 // * Don't call rcp_approx or rsqrt_approx directly; only use rcp_fast and rsqrt.
117 
118 namespace SK_OPTS_NS {
119 #if defined(SKRP_CPU_SCALAR)
120     // This path should lead to portable scalar code.
121     using F   = float   ;
122     using I32 =  int32_t;
123     using U64 = uint64_t;
124     using U32 = uint32_t;
125     using U16 = uint16_t;
126     using U8  = uint8_t ;
127 
min(F a,F b)128     SI F   min(F a, F b)     { return fminf(a,b); }
min(I32 a,I32 b)129     SI I32 min(I32 a, I32 b) { return a < b ? a : b; }
min(U32 a,U32 b)130     SI U32 min(U32 a, U32 b) { return a < b ? a : b; }
max(F a,F b)131     SI F   max(F a, F b)     { return fmaxf(a,b); }
max(I32 a,I32 b)132     SI I32 max(I32 a, I32 b) { return a > b ? a : b; }
max(U32 a,U32 b)133     SI U32 max(U32 a, U32 b) { return a > b ? a : b; }
134 
mad(F f,F m,F a)135     SI F   mad(F f, F m, F a)   { return a+f*m; }
nmad(F f,F m,F a)136     SI F   nmad(F f, F m, F a)  { return a-f*m; }
abs_(F v)137     SI F   abs_  (F v)          { return fabsf(v); }
abs_(I32 v)138     SI I32 abs_  (I32 v)        { return v < 0 ? -v : v; }
floor_(F v)139     SI F   floor_(F v)          { return floorf(v); }
ceil_(F v)140     SI F    ceil_(F v)          { return ceilf(v); }
rcp_approx(F v)141     SI F   rcp_approx(F v)      { return 1.0f / v; }  // use rcp_fast instead
rsqrt_approx(F v)142     SI F   rsqrt_approx(F v)    { return 1.0f / sqrtf(v); }
sqrt_(F v)143     SI F   sqrt_ (F v)          { return sqrtf(v); }
rcp_precise(F v)144     SI F   rcp_precise (F v)    { return 1.0f / v; }
145 
iround(F v)146     SI I32 iround(F v)          { return (I32)(v + 0.5f); }
round(F v)147     SI U32 round(F v)           { return (U32)(v + 0.5f); }
round(F v,F scale)148     SI U32 round(F v, F scale)  { return (U32)(v*scale + 0.5f); }
pack(U32 v)149     SI U16 pack(U32 v)          { return (U16)v; }
pack(U16 v)150     SI U8  pack(U16 v)          { return  (U8)v; }
151 
if_then_else(I32 c,F t,F e)152     SI F   if_then_else(I32 c, F   t, F   e) { return c ? t : e; }
if_then_else(I32 c,I32 t,I32 e)153     SI I32 if_then_else(I32 c, I32 t, I32 e) { return c ? t : e; }
154 
any(I32 c)155     SI bool any(I32 c)                 { return c != 0; }
all(I32 c)156     SI bool all(I32 c)                 { return c != 0; }
157 
158     template <typename T>
gather(const T * p,U32 ix)159     SI T gather(const T* p, U32 ix) { return p[ix]; }
160 
scatter_masked(I32 src,int * dst,U32 ix,I32 mask)161     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
162         dst[ix] = mask ? src : dst[ix];
163     }
164 
load2(const uint16_t * ptr,U16 * r,U16 * g)165     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
166         *r = ptr[0];
167         *g = ptr[1];
168     }
store2(uint16_t * ptr,U16 r,U16 g)169     SI void store2(uint16_t* ptr, U16 r, U16 g) {
170         ptr[0] = r;
171         ptr[1] = g;
172     }
load4(const uint16_t * ptr,U16 * r,U16 * g,U16 * b,U16 * a)173     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
174         *r = ptr[0];
175         *g = ptr[1];
176         *b = ptr[2];
177         *a = ptr[3];
178     }
store4(uint16_t * ptr,U16 r,U16 g,U16 b,U16 a)179     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
180         ptr[0] = r;
181         ptr[1] = g;
182         ptr[2] = b;
183         ptr[3] = a;
184     }
185 
load4(const float * ptr,F * r,F * g,F * b,F * a)186     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
187         *r = ptr[0];
188         *g = ptr[1];
189         *b = ptr[2];
190         *a = ptr[3];
191     }
store4(float * ptr,F r,F g,F b,F a)192     SI void store4(float* ptr, F r, F g, F b, F a) {
193         ptr[0] = r;
194         ptr[1] = g;
195         ptr[2] = b;
196         ptr[3] = a;
197     }
198 
199 #elif defined(SKRP_CPU_NEON)
200     template <typename T> using V = Vec<4, T>;
201     using F   = V<float   >;
202     using I32 = V< int32_t>;
203     using U64 = V<uint64_t>;
204     using U32 = V<uint32_t>;
205     using U16 = V<uint16_t>;
206     using U8  = V<uint8_t >;
207 
208     // We polyfill a few routines that Clang doesn't build into ext_vector_types.
209     SI F   min(F a, F b)     { return vminq_f32(a,b); }
210     SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); }
211     SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); }
212     SI F   max(F a, F b)     { return vmaxq_f32(a,b); }
213     SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); }
214     SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); }
215 
216     SI F   abs_  (F v)       { return vabsq_f32(v); }
217     SI I32 abs_  (I32 v)     { return vabsq_s32(v); }
218     SI F   rcp_approx(F v)   { auto e = vrecpeq_f32(v);  return vrecpsq_f32 (v,e  ) * e; }
219     SI F   rcp_precise(F v)  { auto e = rcp_approx(v);   return vrecpsq_f32 (v,e  ) * e; }
220     SI F   rsqrt_approx(F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
221 
222     SI U16 pack(U32 v)       { return __builtin_convertvector(v, U16); }
223     SI U8  pack(U16 v)       { return __builtin_convertvector(v,  U8); }
224 
225     SI F   if_then_else(I32 c, F   t, F   e) { return vbslq_f32((U32)c,t,e); }
226     SI I32 if_then_else(I32 c, I32 t, I32 e) { return vbslq_s32((U32)c,t,e); }
227 
228     #if defined(SK_CPU_ARM64)
229         SI bool any(I32 c) { return vmaxvq_u32((U32)c) != 0; }
230         SI bool all(I32 c) { return vminvq_u32((U32)c) != 0; }
231 
232         SI F     mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
233         SI F    nmad(F f, F m, F a) { return vfmsq_f32(a,f,m); }
234         SI F  floor_(F v)           { return vrndmq_f32(v); }
235         SI F   ceil_(F v)           { return vrndpq_f32(v); }
236         SI F   sqrt_(F v)           { return vsqrtq_f32(v); }
237         SI I32 iround(F v)          { return vcvtnq_s32_f32(v); }
238         SI U32 round(F v)           { return vcvtnq_u32_f32(v); }
239         SI U32 round(F v, F scale)  { return vcvtnq_u32_f32(v*scale); }
240     #else
241         SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; }
242         SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; }
243 
244         SI F mad(F f, F m, F a)  { return vmlaq_f32(a,f,m); }
245         SI F nmad(F f, F m, F a) { return vmlsq_f32(a,f,m); }
246 
247         SI F floor_(F v) {
248             F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
249             return roundtrip - if_then_else(roundtrip > v, F() + 1, F());
250         }
251 
252         SI F ceil_(F v) {
253             F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
254             return roundtrip + if_then_else(roundtrip < v, F() + 1, F());
255         }
256 
257         SI F sqrt_(F v) {
258             auto e = vrsqrteq_f32(v);  // Estimate and two refinement steps for e = rsqrt(v).
259             e *= vrsqrtsq_f32(v,e*e);
260             e *= vrsqrtsq_f32(v,e*e);
261             return v*e;                // sqrt(v) == v*rsqrt(v).
262         }
263 
264         SI I32 iround(F v) {
265             return vcvtq_s32_f32(v + 0.5f);
266         }
267 
268         SI U32 round(F v) {
269             return vcvtq_u32_f32(v + 0.5f);
270         }
271 
272         SI U32 round(F v, F scale) {
273             return vcvtq_u32_f32(mad(v, scale, F() + 0.5f));
274         }
275     #endif
276 
277     template <typename T>
278     SI V<T> gather(const T* p, U32 ix) {
279         return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
280     }
281     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
282         I32 before = gather(dst, ix);
283         I32 after = if_then_else(mask, src, before);
284         dst[ix[0]] = after[0];
285         dst[ix[1]] = after[1];
286         dst[ix[2]] = after[2];
287         dst[ix[3]] = after[3];
288     }
289     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
290         uint16x4x2_t rg = vld2_u16(ptr);
291         *r = rg.val[0];
292         *g = rg.val[1];
293     }
294     SI void store2(uint16_t* ptr, U16 r, U16 g) {
295         vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
296     }
297     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
298         uint16x4x4_t rgba = vld4_u16(ptr);
299         *r = rgba.val[0];
300         *g = rgba.val[1];
301         *b = rgba.val[2];
302         *a = rgba.val[3];
303     }
304 
305     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
306         vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
307     }
308     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
309         float32x4x4_t rgba = vld4q_f32(ptr);
310         *r = rgba.val[0];
311         *g = rgba.val[1];
312         *b = rgba.val[2];
313         *a = rgba.val[3];
314     }
315     SI void store4(float* ptr, F r, F g, F b, F a) {
316         vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
317     }
318 
319 #elif defined(SKRP_CPU_SKX)
320     template <typename T> using V = Vec<16, T>;
321     using F   = V<float   >;
322     using I32 = V< int32_t>;
323     using U64 = V<uint64_t>;
324     using U32 = V<uint32_t>;
325     using U16 = V<uint16_t>;
326     using U8  = V<uint8_t >;
327 
328     SI F   mad(F f, F m, F a) { return _mm512_fmadd_ps(f, m, a); }
329     SI F  nmad(F f, F m, F a) { return _mm512_fnmadd_ps(f, m, a); }
330     SI F   min(F a, F b)     { return _mm512_min_ps(a,b);    }
331     SI I32 min(I32 a, I32 b) { return (I32)_mm512_min_epi32((__m512i)a,(__m512i)b); }
332     SI U32 min(U32 a, U32 b) { return (U32)_mm512_min_epu32((__m512i)a,(__m512i)b); }
333     SI F   max(F a, F b)     { return _mm512_max_ps(a,b);    }
334     SI I32 max(I32 a, I32 b) { return (I32)_mm512_max_epi32((__m512i)a,(__m512i)b); }
335     SI U32 max(U32 a, U32 b) { return (U32)_mm512_max_epu32((__m512i)a,(__m512i)b); }
336     SI F   abs_  (F v)   { return _mm512_and_ps(v, _mm512_sub_ps(_mm512_setzero(), v)); }
337     SI I32 abs_  (I32 v) { return (I32)_mm512_abs_epi32((__m512i)v);   }
338     SI F   floor_(F v)   { return _mm512_floor_ps(v);    }
339     SI F   ceil_(F v)    { return _mm512_ceil_ps(v);     }
340     SI F   rcp_approx(F v) { return _mm512_rcp14_ps  (v);  }
341     SI F   rsqrt_approx (F v)   { return _mm512_rsqrt14_ps(v);  }
342     SI F   sqrt_ (F v)   { return _mm512_sqrt_ps (v);    }
343     SI F rcp_precise (F v) {
344         F e = rcp_approx(v);
345         return _mm512_fnmadd_ps(v, e, _mm512_set1_ps(2.0f)) * e;
346     }
347     SI I32 iround(F v)         { return (I32)_mm512_cvtps_epi32(v); }
348     SI U32 round(F v)          { return (U32)_mm512_cvtps_epi32(v); }
349     SI U32 round(F v, F scale) { return (U32)_mm512_cvtps_epi32(v*scale); }
350     SI U16 pack(U32 v) {
351         __m256i rst = _mm256_packus_epi32(_mm512_castsi512_si256((__m512i)v),
352                                           _mm512_extracti64x4_epi64((__m512i)v, 1));
353         return (U16)_mm256_permutex_epi64(rst, 216);
354     }
355     SI U8 pack(U16 v) {
356         __m256i rst = _mm256_packus_epi16((__m256i)v, (__m256i)v);
357         return (U8)_mm256_castsi256_si128(_mm256_permute4x64_epi64(rst, 8));
358     }
359     SI F if_then_else(I32 c, F t, F e) {
360         __m512i mask = _mm512_set1_epi32(0x80000000);
361         __m512i aa = _mm512_and_si512((__m512i)c, mask);
362         return _mm512_mask_blend_ps(_mm512_test_epi32_mask(aa, aa),e,t);
363     }
364     SI I32 if_then_else(I32 c, I32 t, I32 e) {
365         __m512i mask = _mm512_set1_epi32(0x80000000);
366         __m512i aa = _mm512_and_si512((__m512i)c, mask);
367         return (I32)_mm512_mask_blend_epi32(_mm512_test_epi32_mask(aa, aa),(__m512i)e,(__m512i)t);
368     }
369     SI bool any(I32 c) {
370         __mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
371         return mask32 != 0;
372     }
373     SI bool all(I32 c) {
374         __mmask16 mask32 = _mm512_test_epi32_mask((__m512i)c, (__m512i)c);
375         return mask32 == 0xffff;
376     }
377     template <typename T>
378     SI V<T> gather(const T* p, U32 ix) {
379         return V<T>{ p[ix[ 0]], p[ix[ 1]], p[ix[ 2]], p[ix[ 3]],
380                      p[ix[ 4]], p[ix[ 5]], p[ix[ 6]], p[ix[ 7]],
381                      p[ix[ 8]], p[ix[ 9]], p[ix[10]], p[ix[11]],
382                      p[ix[12]], p[ix[13]], p[ix[14]], p[ix[15]] };
383     }
384     SI F   gather(const float* p, U32 ix) { return _mm512_i32gather_ps((__m512i)ix, p, 4); }
385     SI U32 gather(const uint32_t* p, U32 ix) {
386         return (U32)_mm512_i32gather_epi32((__m512i)ix, p, 4); }
387     SI U64 gather(const uint64_t* p, U32 ix) {
388         __m512i parts[] = {
389             _mm512_i32gather_epi64(_mm512_castsi512_si256((__m512i)ix), p, 8),
390             _mm512_i32gather_epi64(_mm512_extracti32x8_epi32((__m512i)ix, 1), p, 8),
391         };
392         return sk_bit_cast<U64>(parts);
393     }
394     template <typename V, typename S>
395     SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
396         V before = gather(dst, ix);
397         V after = if_then_else(mask, src, before);
398         dst[ix[0]] = after[0];
399         dst[ix[1]] = after[1];
400         dst[ix[2]] = after[2];
401         dst[ix[3]] = after[3];
402         dst[ix[4]] = after[4];
403         dst[ix[5]] = after[5];
404         dst[ix[6]] = after[6];
405         dst[ix[7]] = after[7];
406         dst[ix[8]] = after[8];
407         dst[ix[9]] = after[9];
408         dst[ix[10]] = after[10];
409         dst[ix[11]] = after[11];
410         dst[ix[12]] = after[12];
411         dst[ix[13]] = after[13];
412         dst[ix[14]] = after[14];
413         dst[ix[15]] = after[15];
414     }
415 
416     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
417         __m256i _01234567 = _mm256_loadu_si256(((const __m256i*)ptr) + 0);
418         __m256i _89abcdef = _mm256_loadu_si256(((const __m256i*)ptr) + 1);
419 
420         *r = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_mm256_slli_epi32
421             (_01234567, 16), 16), _mm256_srai_epi32(_mm256_slli_epi32(_89abcdef, 16), 16)), 216);
422         *g = (U16)_mm256_permute4x64_epi64(_mm256_packs_epi32(_mm256_srai_epi32(_01234567, 16),
423                              _mm256_srai_epi32(_89abcdef, 16)), 216);
424     }
425     SI void store2(uint16_t* ptr, U16 r, U16 g) {
426         __m256i _01234567 = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g);
427         __m256i _89abcdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g);
428         __m512i combinedVector = _mm512_inserti64x4(_mm512_castsi256_si512(_01234567),
429                     _89abcdef, 1);
430         __m512i aa = _mm512_permutexvar_epi64(_mm512_setr_epi64(0,1,4,5,2,3,6,7), combinedVector);
431         _01234567 = _mm512_castsi512_si256(aa);
432         _89abcdef = _mm512_extracti64x4_epi64(aa, 1);
433 
434         _mm256_storeu_si256((__m256i*)ptr + 0, _01234567);
435         _mm256_storeu_si256((__m256i*)ptr + 1, _89abcdef);
436     }
437 
438     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
439         __m256i _0123 = _mm256_loadu_si256((const __m256i*)ptr),
440                 _4567 = _mm256_loadu_si256(((const __m256i*)ptr) + 1),
441                 _89ab = _mm256_loadu_si256(((const __m256i*)ptr) + 2),
442                 _cdef = _mm256_loadu_si256(((const __m256i*)ptr) + 3);
443 
444         auto a0 = _mm256_unpacklo_epi16(_0123, _4567),
445              a1 = _mm256_unpackhi_epi16(_0123, _4567),
446              b0 = _mm256_unpacklo_epi16(a0, a1),
447              b1 = _mm256_unpackhi_epi16(a0, a1),
448              a2 = _mm256_unpacklo_epi16(_89ab, _cdef),
449              a3 = _mm256_unpackhi_epi16(_89ab, _cdef),
450              b2 = _mm256_unpacklo_epi16(a2, a3),
451              b3 = _mm256_unpackhi_epi16(a2, a3),
452              rr = _mm256_unpacklo_epi64(b0, b2),
453              gg = _mm256_unpackhi_epi64(b0, b2),
454              bb = _mm256_unpacklo_epi64(b1, b3),
455              aa = _mm256_unpackhi_epi64(b1, b3);
456 
457         *r = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), rr);
458         *g = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), gg);
459         *b = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), bb);
460         *a = (U16)_mm256_permutexvar_epi32(_mm256_setr_epi32(0,4,1,5,2,6,3,7), aa);
461     }
462     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
463         auto rg012389ab = _mm256_unpacklo_epi16((__m256i)r, (__m256i)g),
464              rg4567cdef = _mm256_unpackhi_epi16((__m256i)r, (__m256i)g),
465              ba012389ab = _mm256_unpacklo_epi16((__m256i)b, (__m256i)a),
466              ba4567cdef = _mm256_unpackhi_epi16((__m256i)b, (__m256i)a);
467 
468         auto _0189 = _mm256_unpacklo_epi32(rg012389ab, ba012389ab),
469              _23ab = _mm256_unpackhi_epi32(rg012389ab, ba012389ab),
470              _45cd = _mm256_unpacklo_epi32(rg4567cdef, ba4567cdef),
471              _67ef = _mm256_unpackhi_epi32(rg4567cdef, ba4567cdef);
472 
473         auto _ab23 = _mm256_permutex_epi64(_23ab, 78),
474              _0123 = _mm256_blend_epi32(_0189, _ab23, 0xf0),
475              _89ab = _mm256_permutex_epi64(_mm256_blend_epi32(_0189, _ab23, 0x0f), 78),
476              _ef67 = _mm256_permutex_epi64(_67ef, 78),
477              _4567 = _mm256_blend_epi32(_45cd, _ef67, 0xf0),
478              _cdef = _mm256_permutex_epi64(_mm256_blend_epi32(_45cd, _ef67, 0x0f), 78);
479 
480         _mm256_storeu_si256((__m256i*)ptr, _0123);
481         _mm256_storeu_si256((__m256i*)ptr + 1, _4567);
482         _mm256_storeu_si256((__m256i*)ptr + 2, _89ab);
483         _mm256_storeu_si256((__m256i*)ptr + 3, _cdef);
484     }
485 
486     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
487         F _048c, _159d, _26ae, _37bf;
488 
489         _048c = _mm512_castps128_ps512(_mm_loadu_ps(ptr)         );
490         _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+16), 1);
491         _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+32), 2);
492         _048c = _mm512_insertf32x4(_048c, _mm_loadu_ps(ptr+48), 3);
493         _159d = _mm512_castps128_ps512(_mm_loadu_ps(ptr+4)       );
494         _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+20), 1);
495         _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+36), 2);
496         _159d = _mm512_insertf32x4(_159d, _mm_loadu_ps(ptr+52), 3);
497         _26ae = _mm512_castps128_ps512(_mm_loadu_ps(ptr+8)       );
498         _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+24), 1);
499         _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+40), 2);
500         _26ae = _mm512_insertf32x4(_26ae, _mm_loadu_ps(ptr+56), 3);
501         _37bf = _mm512_castps128_ps512(_mm_loadu_ps(ptr+12)      );
502         _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+28), 1);
503         _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+44), 2);
504         _37bf = _mm512_insertf32x4(_37bf, _mm_loadu_ps(ptr+60), 3);
505 
506         F rg02468acf = _mm512_unpacklo_ps(_048c, _26ae),
507           ba02468acf = _mm512_unpackhi_ps(_048c, _26ae),
508           rg13579bde = _mm512_unpacklo_ps(_159d, _37bf),
509           ba13579bde = _mm512_unpackhi_ps(_159d, _37bf);
510 
511         *r = (F)_mm512_unpacklo_ps(rg02468acf, rg13579bde);
512         *g = (F)_mm512_unpackhi_ps(rg02468acf, rg13579bde);
513         *b = (F)_mm512_unpacklo_ps(ba02468acf, ba13579bde);
514         *a = (F)_mm512_unpackhi_ps(ba02468acf, ba13579bde);
515     }
516 
517     SI void store4(float* ptr, F r, F g, F b, F a) {
518         F rg014589cd = _mm512_unpacklo_ps(r, g),
519           rg2367abef = _mm512_unpackhi_ps(r, g),
520           ba014589cd = _mm512_unpacklo_ps(b, a),
521           ba2367abef = _mm512_unpackhi_ps(b, a);
522 
523         F _048c = (F)_mm512_unpacklo_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
524           _26ae = (F)_mm512_unpacklo_pd((__m512d)rg2367abef, (__m512d)ba2367abef),
525           _159d = (F)_mm512_unpackhi_pd((__m512d)rg014589cd, (__m512d)ba014589cd),
526           _37bf = (F)_mm512_unpackhi_pd((__m512d)rg2367abef, (__m512d)ba2367abef);
527 
528         F _ae26 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_26ae),
529           _bf37 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_37bf),
530           _8c04 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_048c),
531           _9d15 = (F)_mm512_permutexvar_pd(_mm512_setr_epi64(4,5,6,7,0,1,2,3), (__m512d)_159d);
532 
533         __m512i index = _mm512_setr_epi32(4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11);
534         F _0426 = (F)_mm512_permutex2var_pd((__m512d)_048c, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
535                     (__m512d)_ae26),
536           _1537 = (F)_mm512_permutex2var_pd((__m512d)_159d, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
537                     (__m512d)_bf37),
538           _5173 = _mm512_permutexvar_ps(index, _1537),
539           _0123 = (F)_mm512_permutex2var_pd((__m512d)_0426, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
540                     (__m512d)_5173);
541 
542         F _5476 = (F)_mm512_permutex2var_pd((__m512d)_5173, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
543                     (__m512d)_0426),
544           _4567 = _mm512_permutexvar_ps(index, _5476),
545           _8cae = (F)_mm512_permutex2var_pd((__m512d)_8c04, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
546                     (__m512d)_26ae),
547           _9dbf = (F)_mm512_permutex2var_pd((__m512d)_9d15, _mm512_setr_epi64(0,1,2,3,12,13,14,15),
548                     (__m512d)_37bf),
549           _d9fb = _mm512_permutexvar_ps(index, _9dbf),
550           _89ab = (F)_mm512_permutex2var_pd((__m512d)_8cae, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
551                     (__m512d)_d9fb),
552           _dcfe = (F)_mm512_permutex2var_pd((__m512d)_d9fb, _mm512_setr_epi64(0,1,10,11,4,5,14,15),
553                     (__m512d)_8cae),
554           _cdef = _mm512_permutexvar_ps(index, _dcfe);
555 
556         _mm512_storeu_ps(ptr+0, _0123);
557         _mm512_storeu_ps(ptr+16, _4567);
558         _mm512_storeu_ps(ptr+32, _89ab);
559         _mm512_storeu_ps(ptr+48, _cdef);
560     }
561 
562 #elif defined(SKRP_CPU_HSW)
563     // These are __m256 and __m256i, but friendlier and strongly-typed.
564     template <typename T> using V = Vec<8, T>;
565     using F   = V<float   >;
566     using I32 = V< int32_t>;
567     using U64 = V<uint64_t>;
568     using U32 = V<uint32_t>;
569     using U16 = V<uint16_t>;
570     using U8  = V<uint8_t >;
571 
572     SI F   mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); }
573     SI F  nmad(F f, F m, F a) { return _mm256_fnmadd_ps(f, m, a); }
574 
575     SI F   min(F a, F b)     { return _mm256_min_ps(a,b);    }
576     SI I32 min(I32 a, I32 b) { return (I32)_mm256_min_epi32((__m256i)a,(__m256i)b); }
577     SI U32 min(U32 a, U32 b) { return (U32)_mm256_min_epu32((__m256i)a,(__m256i)b); }
578     SI F   max(F a, F b)     { return _mm256_max_ps(a,b);    }
579     SI I32 max(I32 a, I32 b) { return (I32)_mm256_max_epi32((__m256i)a,(__m256i)b); }
580     SI U32 max(U32 a, U32 b) { return (U32)_mm256_max_epu32((__m256i)a,(__m256i)b); }
581 
582     SI F   abs_  (F v)       { return _mm256_and_ps(v, 0-v); }
583     SI I32 abs_  (I32 v)     { return (I32)_mm256_abs_epi32((__m256i)v); }
584     SI F   floor_(F v)       { return _mm256_floor_ps(v);    }
585     SI F   ceil_(F v)        { return _mm256_ceil_ps(v);     }
586     SI F   rcp_approx(F v)   { return _mm256_rcp_ps  (v);    }  // use rcp_fast instead
587     SI F   rsqrt_approx(F v) { return _mm256_rsqrt_ps(v);    }
588     SI F   sqrt_ (F v)       { return _mm256_sqrt_ps (v);    }
589     SI F   rcp_precise (F v) {
590         F e = rcp_approx(v);
591         return _mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)) * e;
592     }
593 
594     SI I32 iround(F v)         { return (I32)_mm256_cvtps_epi32(v); }
595     SI U32 round(F v)          { return (U32)_mm256_cvtps_epi32(v); }
596     SI U32 round(F v, F scale) { return (U32)_mm256_cvtps_epi32(v*scale); }
597     SI U16 pack(U32 v) {
598         return (U16)_mm_packus_epi32(_mm256_extractf128_si256((__m256i)v, 0),
599                                      _mm256_extractf128_si256((__m256i)v, 1));
600     }
601     SI U8 pack(U16 v) {
602         auto r = _mm_packus_epi16((__m128i)v,(__m128i)v);
603         return sk_unaligned_load<U8>(&r);
604     }
605 
606     SI F   if_then_else(I32 c, F   t, F   e) { return _mm256_blendv_ps(e, t, (__m256)c); }
607     SI I32 if_then_else(I32 c, I32 t, I32 e) {
608         return (I32)_mm256_blendv_ps((__m256)e, (__m256)t, (__m256)c);
609     }
610 
611     // NOTE: This version of 'all' only works with mask values (true == all bits set)
612     SI bool any(I32 c) { return !_mm256_testz_si256((__m256i)c, _mm256_set1_epi32(-1)); }
613     SI bool all(I32 c) { return  _mm256_testc_si256((__m256i)c, _mm256_set1_epi32(-1)); }
614 
615     template <typename T>
616     SI V<T> gather(const T* p, U32 ix) {
617         return V<T>{ p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
618                      p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
619     }
620     SI F   gather(const float*    p, U32 ix) { return _mm256_i32gather_ps(p, (__m256i)ix, 4); }
621     SI U32 gather(const uint32_t* p, U32 ix) {
622         return (U32)_mm256_i32gather_epi32((const int*)p, (__m256i)ix, 4);
623     }
624     SI U64 gather(const uint64_t* p, U32 ix) {
625         __m256i parts[] = {
626                 _mm256_i32gather_epi64(
627                         (const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 0), 8),
628                 _mm256_i32gather_epi64(
629                         (const long long int*)p, _mm256_extracti128_si256((__m256i)ix, 1), 8),
630         };
631         return sk_bit_cast<U64>(parts);
632     }
633     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
634         I32 before = gather(dst, ix);
635         I32 after = if_then_else(mask, src, before);
636         dst[ix[0]] = after[0];
637         dst[ix[1]] = after[1];
638         dst[ix[2]] = after[2];
639         dst[ix[3]] = after[3];
640         dst[ix[4]] = after[4];
641         dst[ix[5]] = after[5];
642         dst[ix[6]] = after[6];
643         dst[ix[7]] = after[7];
644     }
645 
646     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
647         __m128i _0123 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
648                 _4567 = _mm_loadu_si128(((const __m128i*)ptr) + 1);
649         *r = (U16)_mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
650                                   _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
651         *g = (U16)_mm_packs_epi32(_mm_srai_epi32(_0123, 16),
652                                   _mm_srai_epi32(_4567, 16));
653     }
654     SI void store2(uint16_t* ptr, U16 r, U16 g) {
655         auto _0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g),
656              _4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g);
657         _mm_storeu_si128((__m128i*)ptr + 0, _0123);
658         _mm_storeu_si128((__m128i*)ptr + 1, _4567);
659     }
660 
661     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
662         __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0),
663                 _23 = _mm_loadu_si128(((const __m128i*)ptr) + 1),
664                 _45 = _mm_loadu_si128(((const __m128i*)ptr) + 2),
665                 _67 = _mm_loadu_si128(((const __m128i*)ptr) + 3);
666 
667         auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
668              _13 = _mm_unpackhi_epi16(_01, _23),  // r1 r3 g1 g3 b1 b3 a1 a3
669              _46 = _mm_unpacklo_epi16(_45, _67),
670              _57 = _mm_unpackhi_epi16(_45, _67);
671 
672         auto rg0123 = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
673              ba0123 = _mm_unpackhi_epi16(_02, _13),  // b0 b1 b2 b3 a0 a1 a2 a3
674              rg4567 = _mm_unpacklo_epi16(_46, _57),
675              ba4567 = _mm_unpackhi_epi16(_46, _57);
676 
677         *r = (U16)_mm_unpacklo_epi64(rg0123, rg4567);
678         *g = (U16)_mm_unpackhi_epi64(rg0123, rg4567);
679         *b = (U16)_mm_unpacklo_epi64(ba0123, ba4567);
680         *a = (U16)_mm_unpackhi_epi64(ba0123, ba4567);
681     }
682     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
683         auto rg0123 = _mm_unpacklo_epi16((__m128i)r, (__m128i)g),  // r0 g0 r1 g1 r2 g2 r3 g3
684              rg4567 = _mm_unpackhi_epi16((__m128i)r, (__m128i)g),  // r4 g4 r5 g5 r6 g6 r7 g7
685              ba0123 = _mm_unpacklo_epi16((__m128i)b, (__m128i)a),
686              ba4567 = _mm_unpackhi_epi16((__m128i)b, (__m128i)a);
687 
688         auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
689              _23 = _mm_unpackhi_epi32(rg0123, ba0123),
690              _45 = _mm_unpacklo_epi32(rg4567, ba4567),
691              _67 = _mm_unpackhi_epi32(rg4567, ba4567);
692 
693         _mm_storeu_si128((__m128i*)ptr + 0, _01);
694         _mm_storeu_si128((__m128i*)ptr + 1, _23);
695         _mm_storeu_si128((__m128i*)ptr + 2, _45);
696         _mm_storeu_si128((__m128i*)ptr + 3, _67);
697     }
698 
699     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
700         F _04 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 0)),
701           _15 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 4)),
702           _26 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+ 8)),
703           _37 = _mm256_castps128_ps256(_mm_loadu_ps(ptr+12));
704         _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
705         _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
706         _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
707         _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
708 
709         F rg0145 = _mm256_unpacklo_ps(_04,_15),  // r0 r1 g0 g1 | r4 r5 g4 g5
710           ba0145 = _mm256_unpackhi_ps(_04,_15),
711           rg2367 = _mm256_unpacklo_ps(_26,_37),
712           ba2367 = _mm256_unpackhi_ps(_26,_37);
713 
714         *r = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)rg2367);
715         *g = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)rg2367);
716         *b = (F)_mm256_unpacklo_pd((__m256d)ba0145, (__m256d)ba2367);
717         *a = (F)_mm256_unpackhi_pd((__m256d)ba0145, (__m256d)ba2367);
718     }
719     SI void store4(float* ptr, F r, F g, F b, F a) {
720         F rg0145 = _mm256_unpacklo_ps(r, g),  // r0 g0 r1 g1 | r4 g4 r5 g5
721           rg2367 = _mm256_unpackhi_ps(r, g),  // r2 ...      | r6 ...
722           ba0145 = _mm256_unpacklo_ps(b, a),  // b0 a0 b1 a1 | b4 a4 b5 a5
723           ba2367 = _mm256_unpackhi_ps(b, a);  // b2 ...      | b6 ...
724 
725         F _04 = (F)_mm256_unpacklo_pd((__m256d)rg0145, (__m256d)ba0145),// r0 g0 b0 a0 | r4 g4 b4 a4
726           _15 = (F)_mm256_unpackhi_pd((__m256d)rg0145, (__m256d)ba0145),// r1 ...      | r5 ...
727           _26 = (F)_mm256_unpacklo_pd((__m256d)rg2367, (__m256d)ba2367),// r2 ...      | r6 ...
728           _37 = (F)_mm256_unpackhi_pd((__m256d)rg2367, (__m256d)ba2367);// r3 ...      | r7 ...
729 
730         F _01 = _mm256_permute2f128_ps(_04, _15, 32),  // 32 == 0010 0000 == lo, lo
731           _23 = _mm256_permute2f128_ps(_26, _37, 32),
732           _45 = _mm256_permute2f128_ps(_04, _15, 49),  // 49 == 0011 0001 == hi, hi
733           _67 = _mm256_permute2f128_ps(_26, _37, 49);
734         _mm256_storeu_ps(ptr+ 0, _01);
735         _mm256_storeu_ps(ptr+ 8, _23);
736         _mm256_storeu_ps(ptr+16, _45);
737         _mm256_storeu_ps(ptr+24, _67);
738     }
739 
740 #elif defined(SKRP_CPU_SSE2) || defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
741     template <typename T> using V = Vec<4, T>;
742     using F   = V<float   >;
743     using I32 = V< int32_t>;
744     using U64 = V<uint64_t>;
745     using U32 = V<uint32_t>;
746     using U16 = V<uint16_t>;
747     using U8  = V<uint8_t >;
748 
749     SI F if_then_else(I32 c, F t, F e) {
750         return _mm_or_ps(_mm_and_ps((__m128)c, t), _mm_andnot_ps((__m128)c, e));
751     }
752     SI I32 if_then_else(I32 c, I32 t, I32 e) {
753         return (I32)_mm_or_ps(_mm_and_ps((__m128)c, (__m128)t),
754                               _mm_andnot_ps((__m128)c, (__m128)e));
755     }
756 
757     SI F   min(F a, F b)     { return _mm_min_ps(a,b); }
758     SI F   max(F a, F b)     { return _mm_max_ps(a,b); }
759 #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
760     SI I32 min(I32 a, I32 b) { return (I32)_mm_min_epi32((__m128i)a,(__m128i)b); }
761     SI U32 min(U32 a, U32 b) { return (U32)_mm_min_epu32((__m128i)a,(__m128i)b); }
762     SI I32 max(I32 a, I32 b) { return (I32)_mm_max_epi32((__m128i)a,(__m128i)b); }
763     SI U32 max(U32 a, U32 b) { return (U32)_mm_max_epu32((__m128i)a,(__m128i)b); }
764 #else
765     SI I32 min(I32 a, I32 b) { return if_then_else(a < b, a, b); }
766     SI I32 max(I32 a, I32 b) { return if_then_else(a > b, a, b); }
767     SI U32 min(U32 a, U32 b) {
768         return sk_bit_cast<U32>(if_then_else(a < b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
769     }
770     SI U32 max(U32 a, U32 b) {
771         return sk_bit_cast<U32>(if_then_else(a > b, sk_bit_cast<I32>(a), sk_bit_cast<I32>(b)));
772     }
773 #endif
774 
775     SI F   mad(F f, F m, F a)  { return a+f*m;              }
776     SI F  nmad(F f, F m, F a)  { return a-f*m;              }
777     SI F   abs_(F v)           { return _mm_and_ps(v, 0-v); }
778 #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
779     SI I32 abs_(I32 v)         { return (I32)_mm_abs_epi32((__m128i)v); }
780 #else
781     SI I32 abs_(I32 v)         { return max(v, -v); }
782 #endif
783     SI F   rcp_approx(F v)     { return _mm_rcp_ps  (v);    }  // use rcp_fast instead
784     SI F   rcp_precise (F v)   { F e = rcp_approx(v); return e * (2.0f - v * e); }
785     SI F   rsqrt_approx(F v)   { return _mm_rsqrt_ps(v);    }
786     SI F    sqrt_(F v)         { return _mm_sqrt_ps (v);    }
787 
788     SI I32 iround(F v)         { return (I32)_mm_cvtps_epi32(v); }
789     SI U32 round(F v)          { return (U32)_mm_cvtps_epi32(v); }
790     SI U32 round(F v, F scale) { return (U32)_mm_cvtps_epi32(v*scale); }
791 
792     SI U16 pack(U32 v) {
793     #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
794         auto p = _mm_packus_epi32((__m128i)v,(__m128i)v);
795     #else
796         // Sign extend so that _mm_packs_epi32() does the pack we want.
797         auto p = _mm_srai_epi32(_mm_slli_epi32((__m128i)v, 16), 16);
798         p = _mm_packs_epi32(p,p);
799     #endif
800         return sk_unaligned_load<U16>(&p);  // We have two copies.  Return (the lower) one.
801     }
802     SI U8 pack(U16 v) {
803         auto r = widen_cast<__m128i>(v);
804         r = _mm_packus_epi16(r,r);
805         return sk_unaligned_load<U8>(&r);
806     }
807 
808     // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values.
809     SI bool any(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) != 0b0000; }
810     SI bool all(I32 c) { return _mm_movemask_ps(sk_bit_cast<F>(c)) == 0b1111; }
811 
812     SI F floor_(F v) {
813     #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
814         return _mm_floor_ps(v);
815     #else
816         F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
817         return roundtrip - if_then_else(roundtrip > v, F() + 1, F() + 0);
818     #endif
819     }
820 
821     SI F ceil_(F v) {
822     #if defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
823         return _mm_ceil_ps(v);
824     #else
825         F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
826         return roundtrip + if_then_else(roundtrip < v, F() + 1, F() + 0);
827     #endif
828     }
829 
830     template <typename T>
831     SI V<T> gather(const T* p, U32 ix) {
832         return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
833     }
834     SI void scatter_masked(I32 src, int* dst, U32 ix, I32 mask) {
835         I32 before = gather(dst, ix);
836         I32 after = if_then_else(mask, src, before);
837         dst[ix[0]] = after[0];
838         dst[ix[1]] = after[1];
839         dst[ix[2]] = after[2];
840         dst[ix[3]] = after[3];
841     }
842     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
843         __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
844         auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8);            // r0 r1 g0 g1 r2 g2 r3 g3
845         auto rg      = _mm_shufflehi_epi16(rg01_23, 0xD8);        // r0 r1 g0 g1 r2 r3 g2 g3
846 
847         auto R = _mm_shuffle_epi32(rg, 0x88);  // r0 r1 r2 r3 r0 r1 r2 r3
848         auto G = _mm_shuffle_epi32(rg, 0xDD);  // g0 g1 g2 g3 g0 g1 g2 g3
849         *r = sk_unaligned_load<U16>(&R);
850         *g = sk_unaligned_load<U16>(&G);
851     }
852     SI void store2(uint16_t* ptr, U16 r, U16 g) {
853         __m128i rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
854         _mm_storeu_si128((__m128i*)ptr + 0, rg);
855     }
856 
857     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
858         __m128i _01 = _mm_loadu_si128(((const __m128i*)ptr) + 0), // r0 g0 b0 a0 r1 g1 b1 a1
859                 _23 = _mm_loadu_si128(((const __m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
860 
861         auto _02 = _mm_unpacklo_epi16(_01, _23),  // r0 r2 g0 g2 b0 b2 a0 a2
862              _13 = _mm_unpackhi_epi16(_01, _23);  // r1 r3 g1 g3 b1 b3 a1 a3
863 
864         auto rg = _mm_unpacklo_epi16(_02, _13),  // r0 r1 r2 r3 g0 g1 g2 g3
865              ba = _mm_unpackhi_epi16(_02, _13);  // b0 b1 b2 b3 a0 a1 a2 a3
866 
867         *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
868         *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
869         *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
870         *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
871     }
872 
873     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
874         auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
875              ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
876 
877         _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
878         _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
879     }
880 
881     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
882         F _0 = _mm_loadu_ps(ptr + 0),
883           _1 = _mm_loadu_ps(ptr + 4),
884           _2 = _mm_loadu_ps(ptr + 8),
885           _3 = _mm_loadu_ps(ptr +12);
886         _MM_TRANSPOSE4_PS(_0,_1,_2,_3);
887         *r = _0;
888         *g = _1;
889         *b = _2;
890         *a = _3;
891     }
892 
893     SI void store4(float* ptr, F r, F g, F b, F a) {
894         _MM_TRANSPOSE4_PS(r,g,b,a);
895         _mm_storeu_ps(ptr + 0, r);
896         _mm_storeu_ps(ptr + 4, g);
897         _mm_storeu_ps(ptr + 8, b);
898         _mm_storeu_ps(ptr +12, a);
899     }
900 
901 #elif defined(SKRP_CPU_LASX)
902     // These are __m256 and __m256i, but friendlier and strongly-typed.
903     template <typename T> using V = Vec<8, T>;
904     using F   = V<float   >;
905     using I32 = V<int32_t>;
906     using U64 = V<uint64_t>;
907     using U32 = V<uint32_t>;
908     using U16 = V<uint16_t>;
909     using U8  = V<uint8_t >;
910 
911     SI __m128i emulate_lasx_d_xr2vr_l(__m256i a) {
912         v4i64 tmp = a;
913         v2i64 al = {tmp[0], tmp[1]};
914         return (__m128i)al;
915     }
916 
917     SI __m128i emulate_lasx_d_xr2vr_h(__m256i a) {
918         v4i64 tmp = a;
919         v2i64 ah = {tmp[2], tmp[3]};
920         return (__m128i)ah;
921     }
922 
923     SI F if_then_else(I32 c, F t, F e) {
924         return sk_bit_cast<Vec<8,float>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
925                                                            sk_bit_cast<__m256i>(t),
926                                                            sk_bit_cast<__m256i>(c)));
927     }
928 
929     SI I32 if_then_else(I32 c, I32 t, I32 e) {
930         return sk_bit_cast<Vec<8,int32_t>>(__lasx_xvbitsel_v(sk_bit_cast<__m256i>(e),
931                                                              sk_bit_cast<__m256i>(t),
932                                                              sk_bit_cast<__m256i>(c)));
933     }
934 
935     SI F   min(F a, F b)        { return __lasx_xvfmin_s(a,b); }
936     SI F   max(F a, F b)        { return __lasx_xvfmax_s(a,b); }
937     SI I32 min(I32 a, I32 b)    { return __lasx_xvmin_w(a,b);  }
938     SI U32 min(U32 a, U32 b)    { return __lasx_xvmin_wu(a,b); }
939     SI I32 max(I32 a, I32 b)    { return __lasx_xvmax_w(a,b);  }
940     SI U32 max(U32 a, U32 b)    { return __lasx_xvmax_wu(a,b); }
941 
942     SI F   mad(F f, F m, F a)   { return __lasx_xvfmadd_s(f, m, a);      }
943     SI F   nmad(F f, F m, F a)  { return __lasx_xvfmadd_s(-f, m, a);    }
944     SI F   abs_  (F v)          { return (F)__lasx_xvand_v((I32)v, (I32)(0-v));     }
945     SI I32 abs_(I32 v)          { return max(v, -v);                     }
946     SI F   rcp_approx(F v)      { return __lasx_xvfrecip_s(v);           }
947     SI F   rcp_precise (F v)    { F e = rcp_approx(v); return e * nmad(v, e, F() + 2.0f); }
948     SI F   rsqrt_approx (F v)   { return __lasx_xvfrsqrt_s(v);           }
949     SI F    sqrt_(F v)          { return __lasx_xvfsqrt_s(v);            }
950 
951     SI U32 iround(F v) {
952         F t = F() + 0.5f;
953         return __lasx_xvftintrz_w_s(v + t);
954     }
955 
956     SI U32 round(F v) {
957         F t = F() + 0.5f;
958         return __lasx_xvftintrz_w_s(v + t);
959     }
960 
961     SI U32 round(F v, F scale) {
962         F t = F() + 0.5f;
963         return __lasx_xvftintrz_w_s(mad(v, scale, t));
964     }
965 
966     SI U16 pack(U32 v) {
967         return __lsx_vpickev_h(__lsx_vsat_wu(emulate_lasx_d_xr2vr_h(v), 15),
968                                __lsx_vsat_wu(emulate_lasx_d_xr2vr_l(v), 15));
969     }
970 
971     SI U8 pack(U16 v) {
972         __m128i tmp = __lsx_vsat_hu(v, 7);
973         auto r = __lsx_vpickev_b(tmp, tmp);
974         return sk_unaligned_load<U8>(&r);
975     }
976 
977     SI bool any(I32 c){
978         v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
979         return (retv[0] | retv[4]) != 0b0000;
980     }
981 
982     SI bool all(I32 c){
983         v8i32 retv = (v8i32)__lasx_xvmskltz_w(__lasx_xvslt_wu(__lasx_xvldi(0), c));
984         return (retv[0] & retv[4]) == 0b1111;
985     }
986 
987     SI F floor_(F v) {
988         return __lasx_xvfrintrm_s(v);
989     }
990 
991     SI F ceil_(F v) {
992         return __lasx_xvfrintrp_s(v);
993     }
994 
995     template <typename T>
996     SI V<T> gather(const T* p, U32 ix) {
997         return V<T>{ p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
998                      p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
999     }
1000 
1001     template <typename V, typename S>
1002     SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
1003         V before = gather(dst, ix);
1004         V after = if_then_else(mask, src, before);
1005         dst[ix[0]] = after[0];
1006         dst[ix[1]] = after[1];
1007         dst[ix[2]] = after[2];
1008         dst[ix[3]] = after[3];
1009         dst[ix[4]] = after[4];
1010         dst[ix[5]] = after[5];
1011         dst[ix[6]] = after[6];
1012         dst[ix[7]] = after[7];
1013     }
1014 
1015     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
1016         U16 _0123 = __lsx_vld(ptr, 0),
1017             _4567 = __lsx_vld(ptr, 16);
1018         *r = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_4567, 16), 16), 15),
1019                              __lsx_vsat_w(__lsx_vsrai_w(__lsx_vslli_w(_0123, 16), 16), 15));
1020         *g = __lsx_vpickev_h(__lsx_vsat_w(__lsx_vsrai_w(_4567, 16), 15),
1021                              __lsx_vsat_w(__lsx_vsrai_w(_0123, 16), 15));
1022     }
1023     SI void store2(uint16_t* ptr, U16 r, U16 g) {
1024         auto _0123 = __lsx_vilvl_h(g, r),
1025              _4567 = __lsx_vilvh_h(g, r);
1026         __lsx_vst(_0123, ptr, 0);
1027         __lsx_vst(_4567, ptr, 16);
1028     }
1029 
1030     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
1031         __m128i _01 = __lsx_vld(ptr, 0),
1032                 _23 = __lsx_vld(ptr, 16),
1033                 _45 = __lsx_vld(ptr, 32),
1034                 _67 = __lsx_vld(ptr, 48);
1035 
1036         auto _02 = __lsx_vilvl_h(_23, _01),     // r0 r2 g0 g2 b0 b2 a0 a2
1037              _13 = __lsx_vilvh_h(_23, _01),     // r1 r3 g1 g3 b1 b3 a1 a3
1038              _46 = __lsx_vilvl_h(_67, _45),
1039              _57 = __lsx_vilvh_h(_67, _45);
1040 
1041         auto rg0123 = __lsx_vilvl_h(_13, _02),  // r0 r1 r2 r3 g0 g1 g2 g3
1042              ba0123 = __lsx_vilvh_h(_13, _02),  // b0 b1 b2 b3 a0 a1 a2 a3
1043              rg4567 = __lsx_vilvl_h(_57, _46),
1044              ba4567 = __lsx_vilvh_h(_57, _46);
1045 
1046         *r = __lsx_vilvl_d(rg4567, rg0123);
1047         *g = __lsx_vilvh_d(rg4567, rg0123);
1048         *b = __lsx_vilvl_d(ba4567, ba0123);
1049         *a = __lsx_vilvh_d(ba4567, ba0123);
1050     }
1051 
1052     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
1053         auto rg0123 = __lsx_vilvl_h(g, r),      // r0 g0 r1 g1 r2 g2 r3 g3
1054              rg4567 = __lsx_vilvh_h(g, r),      // r4 g4 r5 g5 r6 g6 r7 g7
1055              ba0123 = __lsx_vilvl_h(a, b),
1056              ba4567 = __lsx_vilvh_h(a, b);
1057 
1058         auto _01 =__lsx_vilvl_w(ba0123, rg0123),
1059              _23 =__lsx_vilvh_w(ba0123, rg0123),
1060              _45 =__lsx_vilvl_w(ba4567, rg4567),
1061              _67 =__lsx_vilvh_w(ba4567, rg4567);
1062 
1063         __lsx_vst(_01, ptr, 0);
1064         __lsx_vst(_23, ptr, 16);
1065         __lsx_vst(_45, ptr, 32);
1066         __lsx_vst(_67, ptr, 48);
1067     }
1068 
1069     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
1070         F _04 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 0), __lasx_xvld(ptr, 64), 0x02);
1071         F _15 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 16), __lasx_xvld(ptr, 80), 0x02);
1072         F _26 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 32), __lasx_xvld(ptr, 96), 0x02);
1073         F _37 = (F)__lasx_xvpermi_q(__lasx_xvld(ptr, 48), __lasx_xvld(ptr, 112), 0x02);
1074 
1075         F rg0145 = (F)__lasx_xvilvl_w((__m256i)_15, (__m256i)_04),  // r0 r1 g0 g1 | r4 r5 g4 g5
1076           ba0145 = (F)__lasx_xvilvh_w((__m256i)_15, (__m256i)_04),
1077           rg2367 = (F)__lasx_xvilvl_w((__m256i)_37, (__m256i)_26),
1078           ba2367 = (F)__lasx_xvilvh_w((__m256i)_37, (__m256i)_26);
1079 
1080         *r = (F)__lasx_xvilvl_d((__m256i)rg2367, (__m256i)rg0145);
1081         *g = (F)__lasx_xvilvh_d((__m256i)rg2367, (__m256i)rg0145);
1082         *b = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)ba0145);
1083         *a = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)ba0145);
1084     }
1085     SI void store4(float* ptr, F r, F g, F b, F a) {
1086         F rg0145 = (F)__lasx_xvilvl_w((__m256i)g, (__m256i)r),         // r0 g0 r1 g1 | r4 g4 r5 g5
1087           rg2367 = (F)__lasx_xvilvh_w((__m256i)g, (__m256i)r),         // r2 ...      | r6 ...
1088           ba0145 = (F)__lasx_xvilvl_w((__m256i)a, (__m256i)b),         // b0 a0 b1 a1 | b4 a4 b5 a5
1089           ba2367 = (F)__lasx_xvilvh_w((__m256i)a, (__m256i)b);         // b2 ...      | b6 ...
1090 
1091         F _04 = (F)__lasx_xvilvl_d((__m256i)ba0145, (__m256i)rg0145),  // r0 g0 b0 a0 | r4 g4 b4 a4
1092           _15 = (F)__lasx_xvilvh_d((__m256i)ba0145, (__m256i)rg0145),  // r1 ...      | r5 ...
1093           _26 = (F)__lasx_xvilvl_d((__m256i)ba2367, (__m256i)rg2367),  // r2 ...      | r6 ...
1094           _37 = (F)__lasx_xvilvh_d((__m256i)ba2367, (__m256i)rg2367);  // r3 ...      | r7 ...
1095 
1096         F _01 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x02),
1097           _23 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x02),
1098           _45 = (F)__lasx_xvpermi_q((__m256i)_04, (__m256i)_15, 0x13),
1099           _67 = (F)__lasx_xvpermi_q((__m256i)_26, (__m256i)_37, 0x13);
1100         __lasx_xvst(_01, ptr, 0);
1101         __lasx_xvst(_23, ptr, 32);
1102         __lasx_xvst(_45, ptr, 64);
1103         __lasx_xvst(_67, ptr, 96);
1104     }
1105 
1106 #elif defined(SKRP_CPU_LSX)
1107     template <typename T> using V = Vec<4, T>;
1108     using F   = V<float   >;
1109     using I32 = V<int32_t >;
1110     using U64 = V<uint64_t>;
1111     using U32 = V<uint32_t>;
1112     using U16 = V<uint16_t>;
1113     using U8  = V<uint8_t >;
1114 
1115     #define _LSX_TRANSPOSE4_S(row0, row1, row2, row3)                          \
1116     do {                                                                       \
1117         __m128 __t0 = (__m128)__lsx_vilvl_w ((__m128i)row1, (__m128i)row0);    \
1118         __m128 __t1 = (__m128)__lsx_vilvl_w ((__m128i)row3, (__m128i)row2);    \
1119         __m128 __t2 = (__m128)__lsx_vilvh_w ((__m128i)row1, (__m128i)row0);    \
1120         __m128 __t3 = (__m128)__lsx_vilvh_w ((__m128i)row3, (__m128i)row2);    \
1121         (row0) = (__m128)__lsx_vilvl_d ((__m128i)__t1, (__m128i)__t0);         \
1122         (row1) = (__m128)__lsx_vilvh_d ((__m128i)__t1, (__m128i)__t0);         \
1123         (row2) = (__m128)__lsx_vilvl_d ((__m128i)__t3, (__m128i)__t2);         \
1124         (row3) = (__m128)__lsx_vilvh_d ((__m128i)__t3, (__m128i)__t2);         \
1125     } while (0)
1126 
1127     SI F if_then_else(I32 c, F t, F e) {
1128         return sk_bit_cast<Vec<4,float>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
1129                                                          sk_bit_cast<__m128i>(t),
1130                                                          sk_bit_cast<__m128i>(c)));
1131     }
1132 
1133     SI I32 if_then_else(I32 c, I32 t, I32 e) {
1134         return sk_bit_cast<Vec<4,int32_t>>(__lsx_vbitsel_v(sk_bit_cast<__m128i>(e),
1135                                                            sk_bit_cast<__m128i>(t),
1136                                                            sk_bit_cast<__m128i>(c)));
1137     }
1138 
1139     SI F   min(F a, F b)        { return __lsx_vfmin_s(a,b);     }
1140     SI F   max(F a, F b)        { return __lsx_vfmax_s(a,b);     }
1141     SI I32 min(I32 a, I32 b)    { return __lsx_vmin_w(a,b);      }
1142     SI U32 min(U32 a, U32 b)    { return __lsx_vmin_wu(a,b);     }
1143     SI I32 max(I32 a, I32 b)    { return __lsx_vmax_w(a,b);      }
1144     SI U32 max(U32 a, U32 b)    { return __lsx_vmax_wu(a,b);     }
1145 
1146     SI F   mad(F f, F m, F a)   { return __lsx_vfmadd_s(f, m, a);        }
1147     SI F   nmad(F f, F m, F a)  { return __lsx_vfmadd_s(-f, m, a);      }
1148     SI F   abs_(F v)            { return (F)__lsx_vand_v((I32)v, (I32)(0-v));       }
1149     SI I32 abs_(I32 v)          { return max(v, -v);                     }
1150     SI F   rcp_approx (F v)     { return __lsx_vfrecip_s(v);             }
1151     SI F   rcp_precise (F v)    { F e = rcp_approx(v); return e * nmad(v, e, F() + 2.0f); }
1152     SI F   rsqrt_approx (F v)   { return __lsx_vfrsqrt_s(v);             }
1153     SI F    sqrt_(F v)          { return __lsx_vfsqrt_s (v);             }
1154 
1155     SI U32 iround(F v) {
1156         F t = F() + 0.5f;
1157         return __lsx_vftintrz_w_s(v + t); }
1158 
1159     SI U32 round(F v) {
1160         F t = F() + 0.5f;
1161         return __lsx_vftintrz_w_s(v + t); }
1162 
1163     SI U32 round(F v, F scale) {
1164         F t = F() + 0.5f;
1165         return __lsx_vftintrz_w_s(mad(v, scale, t)); }
1166 
1167     SI U16 pack(U32 v) {
1168         __m128i tmp = __lsx_vsat_wu(v, 15);
1169         auto p =  __lsx_vpickev_h(tmp, tmp);
1170         return sk_unaligned_load<U16>(&p);  // We have two copies.  Return (the lower) one.
1171     }
1172 
1173     SI U8 pack(U16 v) {
1174         auto r = widen_cast<__m128i>(v);
1175         __m128i tmp = __lsx_vsat_hu(r, 7);
1176         r =  __lsx_vpickev_b(tmp, tmp);
1177         return sk_unaligned_load<U8>(&r);
1178     }
1179 
1180     SI bool any(I32 c){
1181         v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
1182         return retv[0] != 0b0000;
1183     }
1184 
1185     SI bool all(I32 c){
1186         v4i32 retv = (v4i32)__lsx_vmskltz_w(__lsx_vslt_wu(__lsx_vldi(0), c));
1187         return retv[0] == 0b1111;
1188     }
1189 
1190     SI F floor_(F v) {
1191         return __lsx_vfrintrm_s(v);
1192     }
1193 
1194     SI F ceil_(F v) {
1195         return __lsx_vfrintrp_s(v);
1196     }
1197 
1198     template <typename T>
1199     SI V<T> gather(const T* p, U32 ix) {
1200         return V<T>{p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
1201     }
1202     // Using 'int*' prevents data from passing through floating-point registers.
1203     SI F   gather(const int*    p, int ix0, int ix1, int ix2, int ix3) {
1204        F ret = {0.0};
1205        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix0], 0);
1206        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix1], 1);
1207        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix2], 2);
1208        ret = (F)__lsx_vinsgr2vr_w(ret, p[ix3], 3);
1209        return ret;
1210     }
1211 
1212     template <typename V, typename S>
1213     SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) {
1214         V before = gather(dst, ix);
1215         V after = if_then_else(mask, src, before);
1216         dst[ix[0]] = after[0];
1217         dst[ix[1]] = after[1];
1218         dst[ix[2]] = after[2];
1219         dst[ix[3]] = after[3];
1220     }
1221 
1222     SI void load2(const uint16_t* ptr, U16* r, U16* g) {
1223         __m128i _01 = __lsx_vld(ptr, 0);                  // r0 g0 r1 g1 r2 g2 r3 g3
1224         auto rg     = __lsx_vshuf4i_h(_01, 0xD8);         // r0 r1 g0 g1 r2 r3 g2 g3
1225 
1226         auto R = __lsx_vshuf4i_w(rg, 0x88);               // r0 r1 r2 r3 r0 r1 r2 r3
1227         auto G = __lsx_vshuf4i_w(rg, 0xDD);               // g0 g1 g2 g3 g0 g1 g2 g3
1228         *r = sk_unaligned_load<U16>(&R);
1229         *g = sk_unaligned_load<U16>(&G);
1230     }
1231 
1232     SI void store2(uint16_t* ptr, U16 r, U16 g) {
1233         U32 rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r));
1234         __lsx_vst(rg, ptr, 0);
1235     }
1236 
1237     SI void load4(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
1238         __m128i _01 = __lsx_vld(ptr,  0),    // r0 g0 b0 a0 r1 g1 b1 a1
1239                 _23 = __lsx_vld(ptr,  16);   // r2 g2 b2 a2 r3 g3 b3 a3
1240 
1241         auto _02 = __lsx_vilvl_h(_23, _01),  // r0 r2 g0 g2 b0 b2 a0 a2
1242              _13 = __lsx_vilvh_h(_23, _01);  // r1 r3 g1 g3 b1 b3 a1 a3
1243 
1244         auto rg = __lsx_vilvl_h(_13, _02),   // r0 r1 r2 r3 g0 g1 g2 g3
1245              ba = __lsx_vilvh_h(_13, _02);   // b0 b1 b2 b3 a0 a1 a2 a3
1246 
1247         *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
1248         *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
1249         *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
1250         *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
1251     }
1252 
1253     SI void store4(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
1254         auto rg = __lsx_vilvl_h(widen_cast<__m128i>(g), widen_cast<__m128i>(r)),
1255              ba = __lsx_vilvl_h(widen_cast<__m128i>(a), widen_cast<__m128i>(b));
1256 
1257         __lsx_vst(__lsx_vilvl_w(ba, rg), ptr, 0);
1258         __lsx_vst(__lsx_vilvh_w(ba, rg), ptr, 16);
1259     }
1260 
1261     SI void load4(const float* ptr, F* r, F* g, F* b, F* a) {
1262         F _0 = (F)__lsx_vld(ptr, 0),
1263           _1 = (F)__lsx_vld(ptr, 16),
1264           _2 = (F)__lsx_vld(ptr, 32),
1265           _3 = (F)__lsx_vld(ptr, 48);
1266         _LSX_TRANSPOSE4_S(_0,_1,_2,_3);
1267         *r = _0;
1268         *g = _1;
1269         *b = _2;
1270         *a = _3;
1271     }
1272 
1273     SI void store4(float* ptr, F r, F g, F b, F a) {
1274         _LSX_TRANSPOSE4_S(r,g,b,a);
1275         __lsx_vst(r, ptr, 0);
1276         __lsx_vst(g, ptr, 16);
1277         __lsx_vst(b, ptr, 32);
1278         __lsx_vst(a, ptr, 48);
1279     }
1280 
1281 #endif
1282 
1283 // Helpers to do scalar -> vector promotion on GCC (clang does this automatically)
1284 // We need to subtract (not add) zero to keep float conversion zero-cost. See:
1285 // https://stackoverflow.com/q/48255293
1286 //
1287 // The GCC implementation should be usable everywhere, but Mac clang (only) complains that the
1288 // expressions make these functions not constexpr.
1289 //
1290 // Further: We can't use the subtract-zero version in scalar mode. There, the subtraction will
1291 // really happen (at least at low optimization levels), which can alter the bit pattern of NaNs.
1292 // Because F_() is used when copying uniforms (even integer uniforms), this can corrupt values.
1293 // The vector subtraction of zero doesn't appear to ever alter NaN bit patterns.
1294 #if defined(__clang__) || defined(SKRP_CPU_SCALAR)
F_(float x)1295 SI constexpr F F_(float x) { return x; }
I32_(int32_t x)1296 SI constexpr I32 I32_(int32_t x) { return x; }
U32_(uint32_t x)1297 SI constexpr U32 U32_(uint32_t x) { return x; }
1298 #else
F_(float x)1299 SI constexpr F F_(float x) { return x - F(); }
I32_(int32_t x)1300 SI constexpr I32 I32_(int32_t x) { return x + I32(); }
U32_(uint32_t x)1301 SI constexpr U32 U32_(uint32_t x) { return x + U32(); }
1302 #endif
1303 
1304 // Extremely helpful literals:
1305 static constexpr F F0 = F_(0.0f),
1306                    F1 = F_(1.0f);
1307 
1308 #if !defined(SKRP_CPU_SCALAR)
min(F a,float b)1309     SI F min(F a, float b) { return min(a, F_(b)); }
min(float a,F b)1310     SI F min(float a, F b) { return min(F_(a), b); }
max(F a,float b)1311     SI F max(F a, float b) { return max(a, F_(b)); }
max(float a,F b)1312     SI F max(float a, F b) { return max(F_(a), b); }
1313 
mad(F f,F m,float a)1314     SI F mad(F f, F m, float a) { return mad(f, m, F_(a)); }
mad(F f,float m,F a)1315     SI F mad(F f, float m, F a) { return mad(f, F_(m), a); }
mad(F f,float m,float a)1316     SI F mad(F f, float m, float a) { return mad(f, F_(m), F_(a)); }
mad(float f,F m,F a)1317     SI F mad(float f, F m, F a) { return mad(F_(f), m, a); }
mad(float f,F m,float a)1318     SI F mad(float f, F m, float a) { return mad(F_(f), m, F_(a)); }
mad(float f,float m,F a)1319     SI F mad(float f, float m, F a) { return mad(F_(f), F_(m), a); }
1320 
nmad(F f,F m,float a)1321     SI F nmad(F f, F m, float a) { return nmad(f, m, F_(a)); }
nmad(F f,float m,F a)1322     SI F nmad(F f, float m, F a) { return nmad(f, F_(m), a); }
nmad(F f,float m,float a)1323     SI F nmad(F f, float m, float a) { return nmad(f, F_(m), F_(a)); }
nmad(float f,F m,F a)1324     SI F nmad(float f, F m, F a) { return nmad(F_(f), m, a); }
nmad(float f,F m,float a)1325     SI F nmad(float f, F m, float a) { return nmad(F_(f), m, F_(a)); }
nmad(float f,float m,F a)1326     SI F nmad(float f, float m, F a) { return nmad(F_(f), F_(m), a); }
1327 #endif
1328 
1329 // We need to be a careful with casts.
1330 // (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
1331 // These named casts and bit_cast() are always what they seem to be.
1332 #if defined(SKRP_CPU_SCALAR)
cast(U32 v)1333     SI F   cast  (U32 v) { return   (F)v; }
cast64(U64 v)1334     SI F   cast64(U64 v) { return   (F)v; }
trunc_(F v)1335     SI U32 trunc_(F   v) { return (U32)v; }
expand(U16 v)1336     SI U32 expand(U16 v) { return (U32)v; }
expand(U8 v)1337     SI U32 expand(U8  v) { return (U32)v; }
1338 #else
cast(U32 v)1339     SI F   cast  (U32 v) { return      __builtin_convertvector((I32)v,   F); }
cast64(U64 v)1340     SI F   cast64(U64 v) { return      __builtin_convertvector(     v,   F); }
trunc_(F v)1341     SI U32 trunc_(F   v) { return (U32)__builtin_convertvector(     v, I32); }
expand(U16 v)1342     SI U32 expand(U16 v) { return      __builtin_convertvector(     v, U32); }
expand(U8 v)1343     SI U32 expand(U8  v) { return      __builtin_convertvector(     v, U32); }
1344 #endif
1345 
1346 #if !defined(SKRP_CPU_SCALAR)
if_then_else(I32 c,F t,float e)1347 SI F if_then_else(I32 c, F     t, float e) { return if_then_else(c,    t , F_(e)); }
if_then_else(I32 c,float t,F e)1348 SI F if_then_else(I32 c, float t, F     e) { return if_then_else(c, F_(t),    e ); }
if_then_else(I32 c,float t,float e)1349 SI F if_then_else(I32 c, float t, float e) { return if_then_else(c, F_(t), F_(e)); }
1350 #endif
1351 
fract(F v)1352 SI F fract(F v) { return v - floor_(v); }
1353 
1354 // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html
approx_log2(F x)1355 SI F approx_log2(F x) {
1356     // e - 127 is a fair approximation of log2(x) in its own right...
1357     F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23));
1358 
1359     // ... but using the mantissa to refine its error is _much_ better.
1360     F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
1361 
1362     return nmad(m, 1.498030302f, e - 124.225514990f) - 1.725879990f / (0.3520887068f + m);
1363 }
1364 
approx_log(F x)1365 SI F approx_log(F x) {
1366     const float ln2 = 0.69314718f;
1367     return ln2 * approx_log2(x);
1368 }
1369 
approx_pow2(F x)1370 SI F approx_pow2(F x) {
1371     constexpr float kInfinityBits = 0x7f800000;
1372 
1373     F f = fract(x);
1374     F approx = nmad(f, 1.490129070f, x + 121.274057500f);
1375       approx += 27.728023300f / (4.84252568f - f);
1376       approx *= 1.0f * (1<<23);
1377       approx  = min(max(approx, F0), F_(kInfinityBits));  // guard against underflow/overflow
1378 
1379     return sk_bit_cast<F>(round(approx));
1380 }
1381 
approx_exp(F x)1382 SI F approx_exp(F x) {
1383     const float log2_e = 1.4426950408889634074f;
1384     return approx_pow2(log2_e * x);
1385 }
1386 
approx_powf(F x,F y)1387 SI F approx_powf(F x, F y) {
1388     return if_then_else((x == 0)|(x == 1), x
1389                                          , approx_pow2(approx_log2(x) * y));
1390 }
1391 #if !defined(SKRP_CPU_SCALAR)
approx_powf(F x,float y)1392 SI F approx_powf(F x, float y) { return approx_powf(x, F_(y)); }
1393 #endif
1394 
from_half(U16 h)1395 SI F from_half(U16 h) {
1396 #if defined(SKRP_CPU_NEON) && defined(SK_CPU_ARM64)
1397     return vcvt_f32_f16((float16x4_t)h);
1398 
1399 #elif defined(SKRP_CPU_SKX)
1400     return _mm512_cvtph_ps((__m256i)h);
1401 
1402 #elif defined(SKRP_CPU_HSW)
1403     return _mm256_cvtph_ps((__m128i)h);
1404 
1405 #else
1406     // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
1407     U32 sem = expand(h),
1408         s   = sem & 0x8000,
1409          em = sem ^ s;
1410 
1411     // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
1412     auto denorm = (I32)em < 0x0400;      // I32 comparison is often quicker, and always safe here.
1413     return if_then_else(denorm, F0
1414                               , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
1415 #endif
1416 }
1417 
to_half(F f)1418 SI U16 to_half(F f) {
1419 #if defined(SKRP_CPU_NEON) && defined(SK_CPU_ARM64)
1420     return (U16)vcvt_f16_f32(f);
1421 
1422 #elif defined(SKRP_CPU_SKX)
1423     return (U16)_mm512_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1424 
1425 #elif defined(SKRP_CPU_HSW)
1426     return (U16)_mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
1427 
1428 #else
1429     // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
1430     U32 sem = sk_bit_cast<U32>(f),
1431         s   = sem & 0x80000000,
1432          em = sem ^ s;
1433 
1434     // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
1435     auto denorm = (I32)em < 0x38800000;  // I32 comparison is often quicker, and always safe here.
1436     return pack((U32)if_then_else(denorm, I32_(0)
1437                                         , (I32)((s>>16) + (em>>13) - ((127-15)<<10))));
1438 #endif
1439 }
1440 
patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,size_t dx,size_t dy,size_t tail)1441 static void patch_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1442                                   size_t dx, size_t dy, size_t tail) {
1443     for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
1444         SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
1445 
1446         const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
1447         if (patch.info.load) {
1448             void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
1449             memcpy(patch.scratch, ctxData, patch.info.bytesPerPixel * tail);
1450         }
1451 
1452         SkASSERT(patch.backup == nullptr);
1453         void* scratchFakeBase = SkTAddOffset<void>(patch.scratch, -offset);
1454         patch.backup = ctx->pixels;
1455         ctx->pixels = scratchFakeBase;
1456     }
1457 }
1458 
restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,size_t dx,size_t dy,size_t tail)1459 static void restore_memory_contexts(SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1460                                     size_t dx, size_t dy, size_t tail) {
1461     for (SkRasterPipeline_MemoryCtxPatch& patch : memoryCtxPatches) {
1462         SkRasterPipeline_MemoryCtx* ctx = patch.info.context;
1463 
1464         SkASSERT(patch.backup != nullptr);
1465         ctx->pixels = patch.backup;
1466         patch.backup = nullptr;
1467 
1468         const ptrdiff_t offset = patch.info.bytesPerPixel * (dy * ctx->stride + dx);
1469         if (patch.info.store) {
1470             void* ctxData = SkTAddOffset<void>(ctx->pixels, offset);
1471             memcpy(ctxData, patch.scratch, patch.info.bytesPerPixel * tail);
1472         }
1473     }
1474 }
1475 
1476 #if defined(SKRP_CPU_SCALAR) || defined(SKRP_CPU_SSE2)
1477     // In scalar and SSE2 mode, we always use precise math so we can have more predictable results.
1478     // Chrome will use the SSE2 implementation when --disable-skia-runtime-opts is set. (b/40042946)
rcp_fast(F v)1479     SI F rcp_fast(F v) { return rcp_precise(v); }
rsqrt(F v)1480     SI F rsqrt(F v)    { return rcp_precise(sqrt_(v)); }
1481 #else
rcp_fast(F v)1482     SI F rcp_fast(F v) { return rcp_approx(v); }
rsqrt(F v)1483     SI F rsqrt(F v)    { return rsqrt_approx(v); }
1484 #endif
1485 
1486 // Our fundamental vector depth is our pixel stride.
1487 static constexpr size_t N = sizeof(F) / sizeof(float);
1488 
1489 // We're finally going to get to what a Stage function looks like!
1490 
1491 // Any custom ABI to use for all (non-externally-facing) stage functions?
1492 // Also decide here whether to use narrow (compromise) or wide (ideal) stages.
1493 #if defined(SK_CPU_ARM32) && defined(SKRP_CPU_NEON)
1494     // This lets us pass vectors more efficiently on 32-bit ARM.
1495     // We can still only pass 16 floats, so best as 4x {r,g,b,a}.
1496     #define ABI __attribute__((pcs("aapcs-vfp")))
1497     #define SKRP_NARROW_STAGES 1
1498 #elif defined(_MSC_VER)
1499     // Even if not vectorized, this lets us pass {r,g,b,a} as registers,
1500     // instead of {b,a} on the stack.  Narrow stages work best for __vectorcall.
1501     #define ABI __vectorcall
1502     #define SKRP_NARROW_STAGES 1
1503 #elif defined(__x86_64__) || defined(SK_CPU_ARM64) || defined(SK_CPU_LOONGARCH)
1504     // These platforms are ideal for wider stages, and their default ABI is ideal.
1505     #define ABI
1506     #define SKRP_NARROW_STAGES 0
1507 #else
1508     // 32-bit or unknown... shunt them down the narrow path.
1509     // Odds are these have few registers and are better off there.
1510     #define ABI
1511     #define SKRP_NARROW_STAGES 1
1512 #endif
1513 
1514 #if SKRP_NARROW_STAGES
1515     struct Params {
1516         size_t dx, dy;
1517         std::byte* base;
1518         F dr,dg,db,da;
1519     };
1520     using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a);
1521 #else
1522     using Stage = void(ABI*)(SkRasterPipelineStage* program, size_t dx, size_t dy,
1523                              std::byte* base, F,F,F,F, F,F,F,F);
1524 #endif
1525 
start_pipeline(size_t dx,size_t dy,size_t xlimit,size_t ylimit,SkRasterPipelineStage * program,SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,uint8_t * tailPointer)1526 static void start_pipeline(size_t dx, size_t dy,
1527                            size_t xlimit, size_t ylimit,
1528                            SkRasterPipelineStage* program,
1529                            SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
1530                            uint8_t* tailPointer) {
1531     uint8_t unreferencedTail;
1532     if (!tailPointer) {
1533         tailPointer = &unreferencedTail;
1534     }
1535     auto start = (Stage)program->fn;
1536     const size_t x0 = dx;
1537     std::byte* const base = nullptr;
1538     for (; dy < ylimit; dy++) {
1539     #if SKRP_NARROW_STAGES
1540         Params params = { x0,dy,base, F0,F0,F0,F0 };
1541         while (params.dx + N <= xlimit) {
1542             start(&params,program, F0,F0,F0,F0);
1543             params.dx += N;
1544         }
1545         if (size_t tail = xlimit - params.dx) {
1546             *tailPointer = tail;
1547             patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
1548             start(&params,program, F0,F0,F0,F0);
1549             restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
1550             *tailPointer = 0xFF;
1551         }
1552     #else
1553         dx = x0;
1554         while (dx + N <= xlimit) {
1555             start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
1556             dx += N;
1557         }
1558         if (size_t tail = xlimit - dx) {
1559             *tailPointer = tail;
1560             patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
1561             start(program,dx,dy,base, F0,F0,F0,F0, F0,F0,F0,F0);
1562             restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
1563             *tailPointer = 0xFF;
1564         }
1565     #endif
1566     }
1567 }
1568 
1569 #if SK_HAS_MUSTTAIL
1570     #define SKRP_MUSTTAIL [[clang::musttail]]
1571 #else
1572     #define SKRP_MUSTTAIL
1573 #endif
1574 
1575 #if SKRP_NARROW_STAGES
1576     #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL)                     \
1577         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base,                 \
1578                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);         \
1579         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
1580                              F r, F g, F b, F a) {                                         \
1581             OFFSET name##_k(Ctx{program}, params->dx,params->dy,params->base,              \
1582                             r,g,b,a, params->dr, params->dg, params->db, params->da);      \
1583             INC;                                                                           \
1584             auto fn = (Stage)program->fn;                                                  \
1585             MUSTTAIL return fn(params, program, r,g,b,a);                                  \
1586         }                                                                                  \
1587         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base,                 \
1588                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1589 #else
1590     #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL)                           \
1591         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base,                       \
1592                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da);               \
1593         static void ABI name(SkRasterPipelineStage* program, size_t dx, size_t dy,               \
1594                              std::byte* base, F r, F g, F b, F a, F dr, F dg, F db, F da) {      \
1595             OFFSET name##_k(Ctx{program}, dx,dy,base, r,g,b,a, dr,dg,db,da);                     \
1596             INC;                                                                                 \
1597             auto fn = (Stage)program->fn;                                                        \
1598             MUSTTAIL return fn(program, dx,dy,base, r,g,b,a, dr,dg,db,da);                       \
1599         }                                                                                        \
1600         SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, std::byte*& base,                       \
1601                               F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
1602 #endif
1603 
1604 // A typical stage returns void, always increments the program counter by 1, and lets the optimizer
1605 // decide whether or not tail-calling is appropriate.
1606 #define STAGE(name, arg) \
1607     DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/)
1608 
1609 // A tail stage returns void, always increments the program counter by 1, and uses tail-calling.
1610 // Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and
1611 // could overflow the stack (particularly in debug).
1612 #define STAGE_TAIL(name, arg) \
1613     DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, SKRP_MUSTTAIL)
1614 
1615 // A branch stage returns an integer, which is added directly to the program counter, and tailcalls.
1616 #define STAGE_BRANCH(name, arg) \
1617     DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, SKRP_MUSTTAIL)
1618 
1619 // just_return() is a simple no-op stage that only exists to end the chain,
1620 // returning back up to start_pipeline(), and from there to the caller.
1621 #if SKRP_NARROW_STAGES
just_return(Params *,SkRasterPipelineStage *,F,F,F,F)1622     static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {}
1623 #else
just_return(SkRasterPipelineStage *,size_t,size_t,std::byte *,F,F,F,F,F,F,F,F)1624     static void ABI just_return(SkRasterPipelineStage*, size_t,size_t, std::byte*,
1625                                 F,F,F,F, F,F,F,F) {}
1626 #endif
1627 
1628 // Note that in release builds, most stages consume no stack (thanks to tail call optimization).
1629 // However: certain builds (especially with non-clang compilers) may fail to optimize tail
1630 // calls, resulting in actual stack frames being generated.
1631 //
1632 // stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth.
1633 // If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point),
1634 // the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit.
1635 //
1636 // All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of
1637 // a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the
1638 // full state of the mutable registers that are normally passed to the next stage in the program.
1639 //
1640 // stack_rewind is the only stage other than just_return that actually returns (rather than jumping
1641 // to the next stage in the program). Before it does so, it stashes all of the registers in the
1642 // context. This includes the updated `program` pointer. Unlike stages that tail call exactly once,
1643 // stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the
1644 // context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned,
1645 // rather than a just_return).
1646 //
1647 // Normally, just_return is the only stage that returns, and no other stage does anything after a
1648 // subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline.
1649 // With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the
1650 // stack_checkpoint. That grabs the values that would have been passed to the next stage (from the
1651 // context), and continues the linear execution of stages, but has reclaimed all of the stack frames
1652 // pushed before the stack_rewind before doing so.
1653 #if SKRP_NARROW_STAGES
stack_checkpoint(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1654     static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program,
1655                                      F r, F g, F b, F a) {
1656         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1657         while (program) {
1658             auto next = (Stage)(++program)->fn;
1659 
1660             ctx->stage = nullptr;
1661             next(params, program, r, g, b, a);
1662             program = ctx->stage;
1663 
1664             if (program) {
1665                 r            = sk_unaligned_load<F>(ctx->r );
1666                 g            = sk_unaligned_load<F>(ctx->g );
1667                 b            = sk_unaligned_load<F>(ctx->b );
1668                 a            = sk_unaligned_load<F>(ctx->a );
1669                 params->dr   = sk_unaligned_load<F>(ctx->dr);
1670                 params->dg   = sk_unaligned_load<F>(ctx->dg);
1671                 params->db   = sk_unaligned_load<F>(ctx->db);
1672                 params->da   = sk_unaligned_load<F>(ctx->da);
1673                 params->base = ctx->base;
1674             }
1675         }
1676     }
stack_rewind(Params * params,SkRasterPipelineStage * program,F r,F g,F b,F a)1677     static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program,
1678                                  F r, F g, F b, F a) {
1679         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1680         sk_unaligned_store(ctx->r , r );
1681         sk_unaligned_store(ctx->g , g );
1682         sk_unaligned_store(ctx->b , b );
1683         sk_unaligned_store(ctx->a , a );
1684         sk_unaligned_store(ctx->dr, params->dr);
1685         sk_unaligned_store(ctx->dg, params->dg);
1686         sk_unaligned_store(ctx->db, params->db);
1687         sk_unaligned_store(ctx->da, params->da);
1688         ctx->base  = params->base;
1689         ctx->stage = program;
1690     }
1691 #else
stack_checkpoint(SkRasterPipelineStage * program,size_t dx,size_t dy,std::byte * base,F r,F g,F b,F a,F dr,F dg,F db,F da)1692     static void ABI stack_checkpoint(SkRasterPipelineStage* program,
1693                                      size_t dx, size_t dy, std::byte* base,
1694                                      F r, F g, F b, F a, F dr, F dg, F db, F da) {
1695         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1696         while (program) {
1697             auto next = (Stage)(++program)->fn;
1698 
1699             ctx->stage = nullptr;
1700             next(program, dx, dy, base, r, g, b, a, dr, dg, db, da);
1701             program = ctx->stage;
1702 
1703             if (program) {
1704                 r    = sk_unaligned_load<F>(ctx->r );
1705                 g    = sk_unaligned_load<F>(ctx->g );
1706                 b    = sk_unaligned_load<F>(ctx->b );
1707                 a    = sk_unaligned_load<F>(ctx->a );
1708                 dr   = sk_unaligned_load<F>(ctx->dr);
1709                 dg   = sk_unaligned_load<F>(ctx->dg);
1710                 db   = sk_unaligned_load<F>(ctx->db);
1711                 da   = sk_unaligned_load<F>(ctx->da);
1712                 base = ctx->base;
1713             }
1714         }
1715     }
stack_rewind(SkRasterPipelineStage * program,size_t dx,size_t dy,std::byte * base,F r,F g,F b,F a,F dr,F dg,F db,F da)1716     static void ABI stack_rewind(SkRasterPipelineStage* program,
1717                                  size_t dx, size_t dy, std::byte* base,
1718                                  F r, F g, F b, F a, F dr, F dg, F db, F da) {
1719         SkRasterPipeline_RewindCtx* ctx = Ctx{program};
1720         sk_unaligned_store(ctx->r , r );
1721         sk_unaligned_store(ctx->g , g );
1722         sk_unaligned_store(ctx->b , b );
1723         sk_unaligned_store(ctx->a , a );
1724         sk_unaligned_store(ctx->dr, dr);
1725         sk_unaligned_store(ctx->dg, dg);
1726         sk_unaligned_store(ctx->db, db);
1727         sk_unaligned_store(ctx->da, da);
1728         ctx->base  = base;
1729         ctx->stage = program;
1730     }
1731 #endif
1732 
1733 
1734 // We could start defining normal Stages now.  But first, some helper functions.
1735 
1736 template <typename V, typename T>
load(const T * src)1737 SI V load(const T* src) {
1738     return sk_unaligned_load<V>(src);
1739 }
1740 
1741 template <typename V, typename T>
store(T * dst,V v)1742 SI void store(T* dst, V v) {
1743     sk_unaligned_store(dst, v);
1744 }
1745 
from_byte(U8 b)1746 SI F from_byte(U8 b) {
1747     return cast(expand(b)) * (1/255.0f);
1748 }
from_short(U16 s)1749 SI F from_short(U16 s) {
1750     return cast(expand(s)) * (1/65535.0f);
1751 }
from_565(U16 _565,F * r,F * g,F * b)1752 SI void from_565(U16 _565, F* r, F* g, F* b) {
1753     U32 wide = expand(_565);
1754     *r = cast(wide & (31<<11)) * (1.0f / (31<<11));
1755     *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
1756     *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
1757 }
from_4444(U16 _4444,F * r,F * g,F * b,F * a)1758 SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
1759     U32 wide = expand(_4444);
1760     *r = cast(wide & (15<<12)) * (1.0f / (15<<12));
1761     *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
1762     *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
1763     *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
1764 }
from_8888(U32 _8888,F * r,F * g,F * b,F * a)1765 SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
1766     *r = cast((_8888      ) & 0xff) * (1/255.0f);
1767     *g = cast((_8888 >>  8) & 0xff) * (1/255.0f);
1768     *b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
1769     *a = cast((_8888 >> 24)       ) * (1/255.0f);
1770 }
from_88(U16 _88,F * r,F * g)1771 SI void from_88(U16 _88, F* r, F* g) {
1772     U32 wide = expand(_88);
1773     *r = cast((wide      ) & 0xff) * (1/255.0f);
1774     *g = cast((wide >>  8) & 0xff) * (1/255.0f);
1775 }
from_1010102(U32 rgba,F * r,F * g,F * b,F * a)1776 SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
1777     *r = cast((rgba      ) & 0x3ff) * (1/1023.0f);
1778     *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
1779     *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
1780     *a = cast((rgba >> 30)        ) * (1/   3.0f);
1781 }
from_1010102_xr(U32 rgba,F * r,F * g,F * b,F * a)1782 SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) {
1783     static constexpr float min = -0.752941f;
1784     static constexpr float max = 1.25098f;
1785     static constexpr float range = max - min;
1786     *r = cast((rgba      ) & 0x3ff) * (1/1023.0f) * range + min;
1787     *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min;
1788     *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min;
1789     *a = cast((rgba >> 30)        ) * (1/   3.0f);
1790 }
from_10101010_xr(U64 _10x6,F * r,F * g,F * b,F * a)1791 SI void from_10101010_xr(U64 _10x6, F* r, F* g, F* b, F* a) {
1792     *r = (cast64((_10x6 >>  6) & 0x3ff) - 384.f) / 510.f;
1793     *g = (cast64((_10x6 >> 22) & 0x3ff) - 384.f) / 510.f;
1794     *b = (cast64((_10x6 >> 38) & 0x3ff) - 384.f) / 510.f;
1795     *a = (cast64((_10x6 >> 54) & 0x3ff) - 384.f) / 510.f;
1796 }
from_10x6(U64 _10x6,F * r,F * g,F * b,F * a)1797 SI void from_10x6(U64 _10x6, F* r, F* g, F* b, F* a) {
1798     *r = cast64((_10x6 >>  6) & 0x3ff) * (1/1023.0f);
1799     *g = cast64((_10x6 >> 22) & 0x3ff) * (1/1023.0f);
1800     *b = cast64((_10x6 >> 38) & 0x3ff) * (1/1023.0f);
1801     *a = cast64((_10x6 >> 54) & 0x3ff) * (1/1023.0f);
1802 }
from_1616(U32 _1616,F * r,F * g)1803 SI void from_1616(U32 _1616, F* r, F* g) {
1804     *r = cast((_1616      ) & 0xffff) * (1/65535.0f);
1805     *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
1806 }
from_16161616(U64 _16161616,F * r,F * g,F * b,F * a)1807 SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
1808     *r = cast64((_16161616      ) & 0xffff) * (1/65535.0f);
1809     *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
1810     *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
1811     *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
1812 }
1813 
1814 // Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
1815 template <typename T>
ptr_at_xy(const SkRasterPipeline_MemoryCtx * ctx,size_t dx,size_t dy)1816 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
1817     return (T*)ctx->pixels + dy*ctx->stride + dx;
1818 }
1819 
1820 // clamp v to [0,limit).
clamp(F v,F limit)1821 SI F clamp(F v, F limit) {
1822     F inclusive = sk_bit_cast<F>(sk_bit_cast<U32>(limit) - 1);  // Exclusive -> inclusive.
1823     return min(max(0.0f, v), inclusive);
1824 }
1825 
1826 // clamp to (0,limit).
clamp_ex(F v,float limit)1827 SI F clamp_ex(F v, float limit) {
1828     const F inclusiveZ = F_(std::numeric_limits<float>::min()),
1829             inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(F_(limit)) - 1 );
1830     return min(max(inclusiveZ, v), inclusiveL);
1831 }
1832 
1833 // Polynomial approximation of degree 5 for sin(x * 2 * pi) in the range [-1/4, 1/4]
1834 // Adapted from https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf
sin5q_(F x)1835 SI F sin5q_(F x) {
1836     // A * x + B * x^3 + C * x^5
1837     // Exact at x = 0, 1/12, 1/6, 1/4, and their negatives,
1838     // which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2
1839     constexpr float A = 6.28230858f;
1840     constexpr float B = -41.1693687f;
1841     constexpr float C = 74.4388885f;
1842     F x2 = x * x;
1843     return x * mad(mad(x2, C, B), x2, A);
1844 }
1845 
sin_(F x)1846 SI F sin_(F x) {
1847     constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
1848     x = mad(x, -one_over_pi2, 0.25f);
1849     x = 0.25f - abs_(x - floor_(x + 0.5f));
1850     return sin5q_(x);
1851 }
1852 
cos_(F x)1853 SI F cos_(F x) {
1854     constexpr float one_over_pi2 = 1 / (2 * SK_FloatPI);
1855     x *= one_over_pi2;
1856     x = 0.25f - abs_(x - floor_(x + 0.5f));
1857     return sin5q_(x);
1858 }
1859 
1860 /*  "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION"
1861      https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf
1862 
1863     approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9
1864 
1865     Some simplifications:
1866     1. tan(x) is periodic, -PI/2 < x < PI/2
1867     2. tan(x) is odd, so tan(-x) = -tan(x)
1868     3. Our polynomial approximation is best near zero, so we use the following identity
1869                     tan(x) + tan(y)
1870        tan(x + y) = -----------------
1871                    1 - tan(x)*tan(y)
1872        tan(PI/4) = 1
1873 
1874        So for x > PI/8, we do the following refactor:
1875        x' = x - PI/4
1876 
1877                 1 + tan(x')
1878        tan(x) = ------------
1879                 1 - tan(x')
1880  */
tan_(F x)1881 SI F tan_(F x) {
1882     constexpr float Pi = SK_FloatPI;
1883     // periodic between -pi/2 ... pi/2
1884     // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back
1885     x = mad(fract(mad(x, 1/Pi, 0.5f)), Pi, -Pi/2);
1886 
1887     I32 neg = (x < 0.0f);
1888     x = if_then_else(neg, -x, x);
1889 
1890     // minimize total error by shifting if x > pi/8
1891     I32 use_quotient = (x > (Pi/8));
1892     x = if_then_else(use_quotient, x - (Pi/4), x);
1893 
1894     // 9th order poly = 4th order(x^2) * x
1895     const float c4 = 62 / 2835.0f;
1896     const float c3 = 17 / 315.0f;
1897     const float c2 = 2 / 15.0f;
1898     const float c1 = 1 / 3.0f;
1899     const float c0 = 1.0f;
1900     F x2 = x * x;
1901     x *= mad(x2, mad(x2, mad(x2, mad(x2, c4, c3), c2), c1), c0);
1902     x = if_then_else(use_quotient, (1+x)/(1-x), x);
1903     x = if_then_else(neg, -x, x);
1904     return x;
1905 }
1906 
1907 /*  Use 4th order polynomial approximation from https://arachnoid.com/polysolve/
1908         with 129 values of x,atan(x) for x:[0...1]
1909     This only works for 0 <= x <= 1
1910  */
approx_atan_unit(F x)1911 SI F approx_atan_unit(F x) {
1912     // y =   0.14130025741326729 x⁴
1913     //     - 0.34312835980675116 x³
1914     //     - 0.016172900528248768 x²
1915     //     + 1.00376969762003850 x
1916     //     - 0.00014758242182738969
1917     const float c4 =  0.14130025741326729f;
1918     const float c3 = -0.34312835980675116f;
1919     const float c2 = -0.016172900528248768f;
1920     const float c1 =  1.0037696976200385f;
1921     const float c0 = -0.00014758242182738969f;
1922     return mad(x, mad(x, mad(x, mad(x, c4, c3), c2), c1), c0);
1923 }
1924 
1925 // Use identity atan(x) = pi/2 - atan(1/x) for x > 1
atan_(F x)1926 SI F atan_(F x) {
1927     I32 neg = (x < 0.0f);
1928     x = if_then_else(neg, -x, x);
1929     I32 flip = (x > 1.0f);
1930     x = if_then_else(flip, 1/x, x);
1931     x = approx_atan_unit(x);
1932     x = if_then_else(flip, SK_FloatPI/2 - x, x);
1933     x = if_then_else(neg, -x, x);
1934     return x;
1935 }
1936 
1937 // Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun:
1938 // https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0
1939 // http://screen/8YGJxUGFQ49bVX6
asin_(F x)1940 SI F asin_(F x) {
1941     I32 neg = (x < 0.0f);
1942     x = if_then_else(neg, -x, x);
1943     const float c3 = -0.0187293f;
1944     const float c2 = 0.0742610f;
1945     const float c1 = -0.2121144f;
1946     const float c0 = 1.5707288f;
1947     F poly = mad(x, mad(x, mad(x, c3, c2), c1), c0);
1948 
1949     F sqrt_result = { 0.0f };
1950     for (int32_t i = 0; i < 4; ++i) { // 4 is a 4-element vector
1951         sqrt_result[i] = std::sqrt(1.0f - x[i]);
1952     }
1953 
1954     x = nmad(sqrt_result, poly, SK_FloatPI/2);
1955     x = if_then_else(neg, -x, x);
1956     return x;
1957 }
1958 
acos_(F x)1959 SI F acos_(F x) {
1960     return SK_FloatPI/2 - asin_(x);
1961 }
1962 
1963 /*  Use identity atan(x) = pi/2 - atan(1/x) for x > 1
1964     By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit()
1965     which avoids a 2nd divide instruction if we had instead called atan().
1966  */
atan2_(F y0,F x0)1967 SI F atan2_(F y0, F x0) {
1968     I32 flip = (abs_(y0) > abs_(x0));
1969     F   y = if_then_else(flip, x0, y0);
1970     F   x = if_then_else(flip, y0, x0);
1971     F   arg = y/x;
1972 
1973     I32 neg = (arg < 0.0f);
1974     arg = if_then_else(neg, -arg, arg);
1975 
1976     F r = approx_atan_unit(arg);
1977     r = if_then_else(flip, SK_FloatPI/2 - r, r);
1978     r = if_then_else(neg, -r, r);
1979 
1980     // handle quadrant distinctions
1981     r = if_then_else((y0 >= 0) & (x0  < 0), r + SK_FloatPI, r);
1982     r = if_then_else((y0  < 0) & (x0 <= 0), r - SK_FloatPI, r);
1983     // Note: we don't try to handle 0,0 or infinities
1984     return r;
1985 }
1986 
1987 // Used by gather_ stages to calculate the base pointer and a vector of indices to load.
1988 template <typename T>
ix_and_ptr(T ** ptr,const SkRasterPipeline_GatherCtx * ctx,F x,F y)1989 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
1990     // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would
1991     // produce a NaN if applied to +0.f.
1992     x = clamp_ex(x, ctx->width );
1993     y = clamp_ex(y, ctx->height);
1994     x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
1995     y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
1996     *ptr = (const T*)ctx->pixels;
1997     return trunc_(y)*ctx->stride + trunc_(x);
1998 }
1999 
2000 // We often have a nominally [0,1] float value we need to scale and convert to an integer,
2001 // whether for a table lookup or to pack back down into bytes for storage.
2002 //
2003 // In practice, especially when dealing with interesting color spaces, that notionally
2004 // [0,1] float may be out of [0,1] range.  Unorms cannot represent that, so we must clamp.
2005 //
2006 // You can adjust the expected input to [0,bias] by tweaking that parameter.
2007 SI U32 to_unorm(F v, float scale, float bias = 1.0f) {
2008     // Any time we use round() we probably want to use to_unorm().
2009     return round(min(max(0.0f, v), bias), F_(scale));
2010 }
2011 
cond_to_mask(I32 cond)2012 SI I32 cond_to_mask(I32 cond) {
2013 #if defined(SKRP_CPU_SCALAR)
2014     // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks
2015     // (eg, using bitwise operations to select values).
2016     return if_then_else(cond, I32(~0), I32(0));
2017 #else
2018     // In SIMD mode, our various instruction sets already represent conditions as masks.
2019     return cond;
2020 #endif
2021 }
2022 
2023 #if defined(SKRP_CPU_SCALAR)
2024 // In scalar mode, `data` only contains a single lane.
select_lane(uint32_t data,int)2025 SI uint32_t select_lane(uint32_t data, int /*lane*/) { return data; }
select_lane(int32_t data,int)2026 SI  int32_t select_lane( int32_t data, int /*lane*/) { return data; }
2027 #else
2028 // In SIMD mode, `data` contains a vector of lanes.
select_lane(U32 data,int lane)2029 SI uint32_t select_lane(U32 data, int lane) { return data[lane]; }
select_lane(I32 data,int lane)2030 SI  int32_t select_lane(I32 data, int lane) { return data[lane]; }
2031 #endif
2032 
2033 // Now finally, normal Stages!
2034 
STAGE(seed_shader,NoCtx)2035 STAGE(seed_shader, NoCtx) {
2036     static constexpr float iota[] = {
2037         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
2038         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
2039     };
2040     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
2041 
2042     // It's important for speed to explicitly cast(dx) and cast(dy),
2043     // which has the effect of splatting them to vectors before converting to floats.
2044     // On Intel this breaks a data dependency on previous loop iterations' registers.
2045     r = cast(U32_(dx)) + sk_unaligned_load<F>(iota);
2046     g = cast(U32_(dy)) + 0.5f;
2047     b = F1;  // This is w=1 for matrix multiplies by the device coords.
2048     a = F0;
2049 }
2050 
STAGE(dither,const float * rate)2051 STAGE(dither, const float* rate) {
2052     // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
2053     uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
2054     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
2055 
2056     U32 X = U32_(dx) + sk_unaligned_load<U32>(iota),
2057         Y = U32_(dy);
2058 
2059     // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
2060     // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
2061 
2062     // We only need X and X^Y from here on, so it's easier to just think of that as "Y".
2063     Y ^= X;
2064 
2065     // We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
2066     // for 2^6 == 64 == 8x8 matrix values.  If X=abc and Y=def, we make fcebda.
2067     U32 M = (Y & 1) << 5 | (X & 1) << 4
2068           | (Y & 2) << 2 | (X & 2) << 1
2069           | (Y & 4) >> 1 | (X & 4) >> 2;
2070 
2071     // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
2072     // We want to make sure our dither is less than 0.5 in either direction to keep exact values
2073     // like 0 and 1 unchanged after rounding.
2074     F dither = mad(cast(M), 2/128.0f, -63/128.0f);
2075 
2076     r = mad(dither, *rate, r);
2077     g = mad(dither, *rate, g);
2078     b = mad(dither, *rate, b);
2079 
2080     r = max(0.0f, min(r, a));
2081     g = max(0.0f, min(g, a));
2082     b = max(0.0f, min(b, a));
2083 }
2084 
2085 // load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color,const SkRasterPipeline_UniformColorCtx * c)2086 STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
2087     r = F_(c->r);
2088     g = F_(c->g);
2089     b = F_(c->b);
2090     a = F_(c->a);
2091 }
STAGE(unbounded_uniform_color,const SkRasterPipeline_UniformColorCtx * c)2092 STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
2093     r = F_(c->r);
2094     g = F_(c->g);
2095     b = F_(c->b);
2096     a = F_(c->a);
2097 }
2098 // load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst,const SkRasterPipeline_UniformColorCtx * c)2099 STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
2100     dr = F_(c->r);
2101     dg = F_(c->g);
2102     db = F_(c->b);
2103     da = F_(c->a);
2104 }
2105 
2106 // splats opaque-black into r,g,b,a
STAGE(black_color,NoCtx)2107 STAGE(black_color, NoCtx) {
2108     r = g = b = F0;
2109     a = F1;
2110 }
2111 
STAGE(white_color,NoCtx)2112 STAGE(white_color, NoCtx) {
2113     r = g = b = a = F1;
2114 }
2115 
2116 // load registers r,g,b,a from context (mirrors store_src)
STAGE(load_src,const float * ptr)2117 STAGE(load_src, const float* ptr) {
2118     r = sk_unaligned_load<F>(ptr + 0*N);
2119     g = sk_unaligned_load<F>(ptr + 1*N);
2120     b = sk_unaligned_load<F>(ptr + 2*N);
2121     a = sk_unaligned_load<F>(ptr + 3*N);
2122 }
2123 
2124 // store registers r,g,b,a into context (mirrors load_src)
STAGE(store_src,float * ptr)2125 STAGE(store_src, float* ptr) {
2126     sk_unaligned_store(ptr + 0*N, r);
2127     sk_unaligned_store(ptr + 1*N, g);
2128     sk_unaligned_store(ptr + 2*N, b);
2129     sk_unaligned_store(ptr + 3*N, a);
2130 }
2131 // store registers r,g into context
STAGE(store_src_rg,float * ptr)2132 STAGE(store_src_rg, float* ptr) {
2133     sk_unaligned_store(ptr + 0*N, r);
2134     sk_unaligned_store(ptr + 1*N, g);
2135 }
2136 // load registers r,g from context
STAGE(load_src_rg,float * ptr)2137 STAGE(load_src_rg, float* ptr) {
2138     r = sk_unaligned_load<F>(ptr + 0*N);
2139     g = sk_unaligned_load<F>(ptr + 1*N);
2140 }
2141 // store register a into context
STAGE(store_src_a,float * ptr)2142 STAGE(store_src_a, float* ptr) {
2143     sk_unaligned_store(ptr, a);
2144 }
2145 
2146 // load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst,const float * ptr)2147 STAGE(load_dst, const float* ptr) {
2148     dr = sk_unaligned_load<F>(ptr + 0*N);
2149     dg = sk_unaligned_load<F>(ptr + 1*N);
2150     db = sk_unaligned_load<F>(ptr + 2*N);
2151     da = sk_unaligned_load<F>(ptr + 3*N);
2152 }
2153 
2154 // store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst,float * ptr)2155 STAGE(store_dst, float* ptr) {
2156     sk_unaligned_store(ptr + 0*N, dr);
2157     sk_unaligned_store(ptr + 1*N, dg);
2158     sk_unaligned_store(ptr + 2*N, db);
2159     sk_unaligned_store(ptr + 3*N, da);
2160 }
2161 
2162 // Most blend modes apply the same logic to each channel.
2163 #define BLEND_MODE(name)                       \
2164     SI F name##_channel(F s, F d, F sa, F da); \
2165     STAGE(name, NoCtx) {                   \
2166         r = name##_channel(r,dr,a,da);         \
2167         g = name##_channel(g,dg,a,da);         \
2168         b = name##_channel(b,db,a,da);         \
2169         a = name##_channel(a,da,a,da);         \
2170     }                                          \
2171     SI F name##_channel(F s, F d, F sa, F da)
2172 
inv(F x)2173 SI F inv(F x) { return 1.0f - x; }
two(F x)2174 SI F two(F x) { return x + x; }
2175 
BLEND_MODE(clear)2176 BLEND_MODE(clear)    { return F0; }
BLEND_MODE(srcatop)2177 BLEND_MODE(srcatop)  { return mad(s, da, d*inv(sa)); }
BLEND_MODE(dstatop)2178 BLEND_MODE(dstatop)  { return mad(d, sa, s*inv(da)); }
BLEND_MODE(srcin)2179 BLEND_MODE(srcin)    { return s * da; }
BLEND_MODE(dstin)2180 BLEND_MODE(dstin)    { return d * sa; }
BLEND_MODE(srcout)2181 BLEND_MODE(srcout)   { return s * inv(da); }
BLEND_MODE(dstout)2182 BLEND_MODE(dstout)   { return d * inv(sa); }
BLEND_MODE(srcover)2183 BLEND_MODE(srcover)  { return mad(d, inv(sa), s); }
BLEND_MODE(dstover)2184 BLEND_MODE(dstover)  { return mad(s, inv(da), d); }
2185 
BLEND_MODE(modulate)2186 BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply)2187 BLEND_MODE(multiply) { return mad(s, d, mad(s, inv(da), d*inv(sa))); }
BLEND_MODE(plus_)2188 BLEND_MODE(plus_)    { return min(s + d, 1.0f); }  // We can clamp to either 1 or sa.
BLEND_MODE(screen)2189 BLEND_MODE(screen)   { return nmad(s, d, s + d); }
BLEND_MODE(xor_)2190 BLEND_MODE(xor_)     { return mad(s, inv(da), d*inv(sa)); }
2191 #undef BLEND_MODE
2192 
2193 // Most other blend modes apply the same logic to colors, and srcover to alpha.
2194 #define BLEND_MODE(name)                       \
2195     SI F name##_channel(F s, F d, F sa, F da); \
2196     STAGE(name, NoCtx) {                   \
2197         r = name##_channel(r,dr,a,da);         \
2198         g = name##_channel(g,dg,a,da);         \
2199         b = name##_channel(b,db,a,da);         \
2200         a = mad(da, inv(a), a);                \
2201     }                                          \
2202     SI F name##_channel(F s, F d, F sa, F da)
2203 
BLEND_MODE(darken)2204 BLEND_MODE(darken)     { return s + d -     max(s*da, d*sa) ; }
BLEND_MODE(lighten)2205 BLEND_MODE(lighten)    { return s + d -     min(s*da, d*sa) ; }
BLEND_MODE(difference)2206 BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion)2207 BLEND_MODE(exclusion)  { return s + d - two(s*d); }
2208 
BLEND_MODE(colorburn)2209 BLEND_MODE(colorburn) {
2210     return if_then_else(d == da,    d +    s*inv(da),
2211            if_then_else(s ==  0, /* s + */ d*inv(sa),
2212                                 sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa)));
2213 }
BLEND_MODE(colordodge)2214 BLEND_MODE(colordodge) {
2215     return if_then_else(d ==  0, /* d + */ s*inv(da),
2216            if_then_else(s == sa,    s +    d*inv(sa),
2217                                  sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa)));
2218 }
BLEND_MODE(hardlight)2219 BLEND_MODE(hardlight) {
2220     return s*inv(da) + d*inv(sa)
2221          + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
2222 }
BLEND_MODE(overlay)2223 BLEND_MODE(overlay) {
2224     return s*inv(da) + d*inv(sa)
2225          + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
2226 }
2227 
BLEND_MODE(softlight)2228 BLEND_MODE(softlight) {
2229     F m  = if_then_else(da > 0, d / da, 0.0f),
2230       s2 = two(s),
2231       m4 = two(two(m));
2232 
2233     // The logic forks three ways:
2234     //    1. dark src?
2235     //    2. light src, dark dst?
2236     //    3. light src, light dst?
2237     F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)),     // Used in case 1.
2238       darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m,  // Used in case 2.
2239       liteDst = sqrt_(m) - m,
2240       liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
2241     return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc);      // 1 or (2 or 3)?
2242 }
2243 #undef BLEND_MODE
2244 
2245 // We're basing our implemenation of non-separable blend modes on
2246 //   https://www.w3.org/TR/compositing-1/#blendingnonseparable.
2247 // and
2248 //   https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
2249 // They're equivalent, but ES' math has been better simplified.
2250 //
2251 // Anything extra we add beyond that is to make the math work with premul inputs.
2252 
sat(F r,F g,F b)2253 SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
lum(F r,F g,F b)2254 SI F lum(F r, F g, F b) { return mad(r, 0.30f, mad(g, 0.59f, b*0.11f)); }
2255 
set_sat(F * r,F * g,F * b,F s)2256 SI void set_sat(F* r, F* g, F* b, F s) {
2257     F mn  = min(*r, min(*g,*b)),
2258       mx  = max(*r, max(*g,*b)),
2259       sat = mx - mn;
2260 
2261     // Map min channel to 0, max channel to s, and scale the middle proportionally.
2262     s = if_then_else(sat == 0.0f, 0.0f, s * rcp_fast(sat));
2263     *r = (*r - mn) * s;
2264     *g = (*g - mn) * s;
2265     *b = (*b - mn) * s;
2266 }
set_lum(F * r,F * g,F * b,F l)2267 SI void set_lum(F* r, F* g, F* b, F l) {
2268     F diff = l - lum(*r, *g, *b);
2269     *r += diff;
2270     *g += diff;
2271     *b += diff;
2272 }
clip_channel(F c,F l,I32 clip_low,I32 clip_high,F mn_scale,F mx_scale)2273 SI F clip_channel(F c, F l, I32 clip_low, I32 clip_high, F mn_scale, F mx_scale) {
2274     c = if_then_else(clip_low,  mad(mn_scale, c - l, l), c);
2275     c = if_then_else(clip_high, mad(mx_scale, c - l, l), c);
2276     c = max(c, 0.0f);  // Sometimes without this we may dip just a little negative.
2277     return c;
2278 }
clip_color(F * r,F * g,F * b,F a)2279 SI void clip_color(F* r, F* g, F* b, F a) {
2280     F   mn        = min(*r, min(*g, *b)),
2281         mx        = max(*r, max(*g, *b)),
2282         l         = lum(*r, *g, *b),
2283         mn_scale  = (    l) * rcp_fast(l - mn),
2284         mx_scale  = (a - l) * rcp_fast(mx - l);
2285     I32 clip_low  = cond_to_mask(mn < 0 && l != mn),
2286         clip_high = cond_to_mask(mx > a && l != mx);
2287 
2288     *r = clip_channel(*r, l, clip_low, clip_high, mn_scale, mx_scale);
2289     *g = clip_channel(*g, l, clip_low, clip_high, mn_scale, mx_scale);
2290     *b = clip_channel(*b, l, clip_low, clip_high, mn_scale, mx_scale);
2291 }
2292 
STAGE(hue,NoCtx)2293 STAGE(hue, NoCtx) {
2294     F R = r*a,
2295       G = g*a,
2296       B = b*a;
2297 
2298     set_sat(&R, &G, &B, sat(dr,dg,db)*a);
2299     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
2300     clip_color(&R,&G,&B, a*da);
2301 
2302     r = mad(r, inv(da), mad(dr, inv(a), R));
2303     g = mad(g, inv(da), mad(dg, inv(a), G));
2304     b = mad(b, inv(da), mad(db, inv(a), B));
2305     a = a + nmad(a, da, da);
2306 }
STAGE(saturation,NoCtx)2307 STAGE(saturation, NoCtx) {
2308     F R = dr*a,
2309       G = dg*a,
2310       B = db*a;
2311 
2312     set_sat(&R, &G, &B, sat( r, g, b)*da);
2313     set_lum(&R, &G, &B, lum(dr,dg,db)* a);  // (This is not redundant.)
2314     clip_color(&R,&G,&B, a*da);
2315 
2316     r = mad(r, inv(da), mad(dr, inv(a), R));
2317     g = mad(g, inv(da), mad(dg, inv(a), G));
2318     b = mad(b, inv(da), mad(db, inv(a), B));
2319     a = a + nmad(a, da, da);
2320 }
STAGE(color,NoCtx)2321 STAGE(color, NoCtx) {
2322     F R = r*da,
2323       G = g*da,
2324       B = b*da;
2325 
2326     set_lum(&R, &G, &B, lum(dr,dg,db)*a);
2327     clip_color(&R,&G,&B, a*da);
2328 
2329     r = mad(r, inv(da), mad(dr, inv(a), R));
2330     g = mad(g, inv(da), mad(dg, inv(a), G));
2331     b = mad(b, inv(da), mad(db, inv(a), B));
2332     a = a + nmad(a, da, da);
2333 }
STAGE(luminosity,NoCtx)2334 STAGE(luminosity, NoCtx) {
2335     F R = dr*a,
2336       G = dg*a,
2337       B = db*a;
2338 
2339     set_lum(&R, &G, &B, lum(r,g,b)*da);
2340     clip_color(&R,&G,&B, a*da);
2341 
2342     r = mad(r, inv(da), mad(dr, inv(a), R));
2343     g = mad(g, inv(da), mad(dg, inv(a), G));
2344     b = mad(b, inv(da), mad(db, inv(a), B));
2345     a = a + nmad(a, da, da);
2346 }
2347 
STAGE(srcover_rgba_8888,const SkRasterPipeline_MemoryCtx * ctx)2348 STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2349     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2350 
2351     U32 dst = load<U32>(ptr);
2352     dr = cast((dst      ) & 0xff);
2353     dg = cast((dst >>  8) & 0xff);
2354     db = cast((dst >> 16) & 0xff);
2355     da = cast((dst >> 24)       );
2356     // {dr,dg,db,da} are in [0,255]
2357     // { r, g, b, a} are in [0,  1] (but may be out of gamut)
2358 
2359     r = mad(dr, inv(a), r*255.0f);
2360     g = mad(dg, inv(a), g*255.0f);
2361     b = mad(db, inv(a), b*255.0f);
2362     a = mad(da, inv(a), a*255.0f);
2363     // { r, g, b, a} are now in [0,255]  (but may be out of gamut)
2364 
2365     // to_unorm() clamps back to gamut.  Scaling by 1 since we're already 255-biased.
2366     dst = to_unorm(r, 1, 255)
2367         | to_unorm(g, 1, 255) <<  8
2368         | to_unorm(b, 1, 255) << 16
2369         | to_unorm(a, 1, 255) << 24;
2370     store(ptr, dst);
2371 }
2372 
clamp_01_(F v)2373 SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); }
2374 
STAGE(clamp_01,NoCtx)2375 STAGE(clamp_01, NoCtx) {
2376     r = clamp_01_(r);
2377     g = clamp_01_(g);
2378     b = clamp_01_(b);
2379     a = clamp_01_(a);
2380 }
2381 
STAGE(clamp_a_01,NoCtx)2382 STAGE(clamp_a_01, NoCtx) {
2383     a = clamp_01_(a);
2384 }
2385 
STAGE(clamp_gamut,NoCtx)2386 STAGE(clamp_gamut, NoCtx) {
2387     a = min(max(a, 0.0f), 1.0f);
2388     r = min(max(r, 0.0f), a);
2389     g = min(max(g, 0.0f), a);
2390     b = min(max(b, 0.0f), a);
2391 }
2392 
STAGE(set_rgb,const float * rgb)2393 STAGE(set_rgb, const float* rgb) {
2394     r = F_(rgb[0]);
2395     g = F_(rgb[1]);
2396     b = F_(rgb[2]);
2397 }
2398 
STAGE(unbounded_set_rgb,const float * rgb)2399 STAGE(unbounded_set_rgb, const float* rgb) {
2400     r = F_(rgb[0]);
2401     g = F_(rgb[1]);
2402     b = F_(rgb[2]);
2403 }
2404 
STAGE(swap_rb,NoCtx)2405 STAGE(swap_rb, NoCtx) {
2406     auto tmp = r;
2407     r = b;
2408     b = tmp;
2409 }
STAGE(swap_rb_dst,NoCtx)2410 STAGE(swap_rb_dst, NoCtx) {
2411     auto tmp = dr;
2412     dr = db;
2413     db = tmp;
2414 }
2415 
STAGE(move_src_dst,NoCtx)2416 STAGE(move_src_dst, NoCtx) {
2417     dr = r;
2418     dg = g;
2419     db = b;
2420     da = a;
2421 }
STAGE(move_dst_src,NoCtx)2422 STAGE(move_dst_src, NoCtx) {
2423     r = dr;
2424     g = dg;
2425     b = db;
2426     a = da;
2427 }
STAGE(swap_src_dst,NoCtx)2428 STAGE(swap_src_dst, NoCtx) {
2429     std::swap(r, dr);
2430     std::swap(g, dg);
2431     std::swap(b, db);
2432     std::swap(a, da);
2433 }
2434 
STAGE(premul,NoCtx)2435 STAGE(premul, NoCtx) {
2436     r = r * a;
2437     g = g * a;
2438     b = b * a;
2439 }
STAGE(premul_dst,NoCtx)2440 STAGE(premul_dst, NoCtx) {
2441     dr = dr * da;
2442     dg = dg * da;
2443     db = db * da;
2444 }
STAGE(unpremul,NoCtx)2445 STAGE(unpremul, NoCtx) {
2446     float inf = sk_bit_cast<float>(0x7f800000);
2447     auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0.0f);
2448     r *= scale;
2449     g *= scale;
2450     b *= scale;
2451 }
STAGE(unpremul_polar,NoCtx)2452 STAGE(unpremul_polar, NoCtx) {
2453     float inf = sk_bit_cast<float>(0x7f800000);
2454     auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0.0f);
2455     g *= scale;
2456     b *= scale;
2457 }
2458 
STAGE(force_opaque,NoCtx)2459 STAGE(force_opaque    , NoCtx) {  a = F1; }
STAGE(force_opaque_dst,NoCtx)2460 STAGE(force_opaque_dst, NoCtx) { da = F1; }
2461 
STAGE(rgb_to_hsl,NoCtx)2462 STAGE(rgb_to_hsl, NoCtx) {
2463     F mx = max(r, max(g,b)),
2464       mn = min(r, min(g,b)),
2465       d = mx - mn,
2466       d_rcp = 1.0f / d;
2467 
2468     F h = (1/6.0f) *
2469           if_then_else(mx == mn, 0.0f,
2470           if_then_else(mx ==  r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0.0f),
2471           if_then_else(mx ==  g, (b-r)*d_rcp + 2.0f,
2472                                  (r-g)*d_rcp + 4.0f)));
2473 
2474     F l = (mx + mn) * 0.5f;
2475     F s = if_then_else(mx == mn, 0.0f,
2476                        d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
2477 
2478     r = h;
2479     g = s;
2480     b = l;
2481 }
STAGE(hsl_to_rgb,NoCtx)2482 STAGE(hsl_to_rgb, NoCtx) {
2483     // See GrRGBToHSLFilterEffect.fp
2484 
2485     F h = r,
2486       s = g,
2487       l = b,
2488       c = (1.0f - abs_(2.0f * l - 1)) * s;
2489 
2490     auto hue_to_rgb = [&](F hue) {
2491         F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
2492         return (q - 0.5f) * c + l;
2493     };
2494 
2495     r = hue_to_rgb(h + 0.0f/3.0f);
2496     g = hue_to_rgb(h + 2.0f/3.0f);
2497     b = hue_to_rgb(h + 1.0f/3.0f);
2498 }
2499 
2500 // Color conversion functions used in gradient interpolation, based on
2501 // https://www.w3.org/TR/css-color-4/#color-conversion-code
STAGE(css_lab_to_xyz,NoCtx)2502 STAGE(css_lab_to_xyz, NoCtx) {
2503     constexpr float k = 24389 / 27.0f;
2504     constexpr float e = 216 / 24389.0f;
2505 
2506     F f[3];
2507     f[1] = (r + 16) * (1 / 116.0f);
2508     f[0] = (g * (1 / 500.0f)) + f[1];
2509     f[2] = f[1] - (b * (1 / 200.0f));
2510 
2511     F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] };
2512 
2513     F xyz[3] = {
2514         if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)),
2515         if_then_else(r > k * e,      f_cubed[1], r * (1 / k)),
2516         if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k))
2517     };
2518 
2519     constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f };
2520     r = xyz[0]*D50[0];
2521     g = xyz[1]*D50[1];
2522     b = xyz[2]*D50[2];
2523 }
2524 
STAGE(css_oklab_to_linear_srgb,NoCtx)2525 STAGE(css_oklab_to_linear_srgb, NoCtx) {
2526     F l_ = r + 0.3963377774f * g + 0.2158037573f * b,
2527       m_ = r - 0.1055613458f * g - 0.0638541728f * b,
2528       s_ = r - 0.0894841775f * g - 1.2914855480f * b;
2529 
2530     F l = l_*l_*l_,
2531       m = m_*m_*m_,
2532       s = s_*s_*s_;
2533 
2534     r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
2535     g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
2536     b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
2537 }
2538 
STAGE(css_oklab_gamut_map_to_linear_srgb,NoCtx)2539 STAGE(css_oklab_gamut_map_to_linear_srgb, NoCtx) {
2540     // TODO(https://crbug.com/1508329): Add support for gamut mapping.
2541     // Return a greyscale value, so that accidental use is obvious.
2542     F l_ = r,
2543       m_ = r,
2544       s_ = r;
2545 
2546     F l = l_*l_*l_,
2547       m = m_*m_*m_,
2548       s = s_*s_*s_;
2549 
2550     r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s;
2551     g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s;
2552     b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s;
2553 }
2554 
2555 // Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform
2556 // actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB.
2557 // See similar comments & logic in SkGradientBaseShader.cpp.
STAGE(css_hcl_to_lab,NoCtx)2558 STAGE(css_hcl_to_lab, NoCtx) {
2559     F H = r,
2560       C = g,
2561       L = b;
2562 
2563     F hueRadians = H * (SK_FloatPI / 180);
2564 
2565     r = L;
2566     g = C * cos_(hueRadians);
2567     b = C * sin_(hueRadians);
2568 }
2569 
mod_(F x,float y)2570 SI F mod_(F x, float y) {
2571     return nmad(y, floor_(x * (1 / y)), x);
2572 }
2573 
2574 struct RGB { F r, g, b; };
2575 
css_hsl_to_srgb_(F h,F s,F l)2576 SI RGB css_hsl_to_srgb_(F h, F s, F l) {
2577     h = mod_(h, 360);
2578 
2579     s *= 0.01f;
2580     l *= 0.01f;
2581 
2582     F k[3] = {
2583         mod_(0 + h * (1 / 30.0f), 12),
2584         mod_(8 + h * (1 / 30.0f), 12),
2585         mod_(4 + h * (1 / 30.0f), 12)
2586     };
2587     F a  = s * min(l, 1 - l);
2588     return {
2589         l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)),
2590         l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)),
2591         l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f))
2592     };
2593 }
2594 
STAGE(css_hsl_to_srgb,NoCtx)2595 STAGE(css_hsl_to_srgb, NoCtx) {
2596     RGB rgb = css_hsl_to_srgb_(r, g, b);
2597     r = rgb.r;
2598     g = rgb.g;
2599     b = rgb.b;
2600 }
2601 
STAGE(css_hwb_to_srgb,NoCtx)2602 STAGE(css_hwb_to_srgb, NoCtx) {
2603     g *= 0.01f;
2604     b *= 0.01f;
2605 
2606     F gray = g / (g + b);
2607 
2608     RGB rgb = css_hsl_to_srgb_(r, F_(100.0f), F_(50.0f));
2609     rgb.r = rgb.r * (1 - g - b) + g;
2610     rgb.g = rgb.g * (1 - g - b) + g;
2611     rgb.b = rgb.b * (1 - g - b) + g;
2612 
2613     auto isGray = (g + b) >= 1;
2614 
2615     r = if_then_else(isGray, gray, rgb.r);
2616     g = if_then_else(isGray, gray, rgb.g);
2617     b = if_then_else(isGray, gray, rgb.b);
2618 }
2619 
2620 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
alpha_coverage_from_rgb_coverage(F a,F da,F cr,F cg,F cb)2621 SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
2622     return if_then_else(a < da, min(cr, min(cg,cb))
2623                               , max(cr, max(cg,cb)));
2624 }
2625 
STAGE(scale_1_float,const float * c)2626 STAGE(scale_1_float, const float* c) {
2627     r = r * *c;
2628     g = g * *c;
2629     b = b * *c;
2630     a = a * *c;
2631 }
STAGE(scale_u8,const SkRasterPipeline_MemoryCtx * ctx)2632 STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2633     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2634 
2635     auto scales = load<U8>(ptr);
2636     auto c = from_byte(scales);
2637 
2638     r = r * c;
2639     g = g * c;
2640     b = b * c;
2641     a = a * c;
2642 }
STAGE(scale_565,const SkRasterPipeline_MemoryCtx * ctx)2643 STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
2644     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2645 
2646     F cr,cg,cb;
2647     from_565(load<U16>(ptr), &cr, &cg, &cb);
2648 
2649     F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2650 
2651     r = r * cr;
2652     g = g * cg;
2653     b = b * cb;
2654     a = a * ca;
2655 }
2656 
lerp(F from,F to,F t)2657 SI F lerp(F from, F to, F t) {
2658     return mad(to-from, t, from);
2659 }
2660 
STAGE(lerp_1_float,const float * c)2661 STAGE(lerp_1_float, const float* c) {
2662     r = lerp(dr, r, F_(*c));
2663     g = lerp(dg, g, F_(*c));
2664     b = lerp(db, b, F_(*c));
2665     a = lerp(da, a, F_(*c));
2666 }
STAGE(scale_native,const float scales[])2667 STAGE(scale_native, const float scales[]) {
2668     auto c = sk_unaligned_load<F>(scales);
2669     r = r * c;
2670     g = g * c;
2671     b = b * c;
2672     a = a * c;
2673 }
STAGE(lerp_native,const float scales[])2674 STAGE(lerp_native, const float scales[]) {
2675     auto c = sk_unaligned_load<F>(scales);
2676     r = lerp(dr, r, c);
2677     g = lerp(dg, g, c);
2678     b = lerp(db, b, c);
2679     a = lerp(da, a, c);
2680 }
STAGE(lerp_u8,const SkRasterPipeline_MemoryCtx * ctx)2681 STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
2682     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2683 
2684     auto scales = load<U8>(ptr);
2685     auto c = from_byte(scales);
2686 
2687     r = lerp(dr, r, c);
2688     g = lerp(dg, g, c);
2689     b = lerp(db, b, c);
2690     a = lerp(da, a, c);
2691 }
STAGE(lerp_565,const SkRasterPipeline_MemoryCtx * ctx)2692 STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
2693     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2694 
2695     F cr,cg,cb;
2696     from_565(load<U16>(ptr), &cr, &cg, &cb);
2697 
2698     F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
2699 
2700     r = lerp(dr, r, cr);
2701     g = lerp(dg, g, cg);
2702     b = lerp(db, b, cb);
2703     a = lerp(da, a, ca);
2704 }
2705 
STAGE(emboss,const SkRasterPipeline_EmbossCtx * ctx)2706 STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
2707     auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
2708          aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
2709 
2710     F mul = from_byte(load<U8>(mptr)),
2711       add = from_byte(load<U8>(aptr));
2712 
2713     r = mad(r, mul, add);
2714     g = mad(g, mul, add);
2715     b = mad(b, mul, add);
2716 }
2717 
STAGE(byte_tables,const SkRasterPipeline_TablesCtx * tables)2718 STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) {
2719     r = from_byte(gather(tables->r, to_unorm(r, 255)));
2720     g = from_byte(gather(tables->g, to_unorm(g, 255)));
2721     b = from_byte(gather(tables->b, to_unorm(b, 255)));
2722     a = from_byte(gather(tables->a, to_unorm(a, 255)));
2723 }
2724 
strip_sign(F x,U32 * sign)2725 SI F strip_sign(F x, U32* sign) {
2726     U32 bits = sk_bit_cast<U32>(x);
2727     *sign = bits & 0x80000000;
2728     return sk_bit_cast<F>(bits ^ *sign);
2729 }
2730 
apply_sign(F x,U32 sign)2731 SI F apply_sign(F x, U32 sign) {
2732     return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x));
2733 }
2734 
STAGE(parametric,const skcms_TransferFunction * ctx)2735 STAGE(parametric, const skcms_TransferFunction* ctx) {
2736     auto fn = [&](F v) {
2737         U32 sign;
2738         v = strip_sign(v, &sign);
2739 
2740         F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
2741                                       , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
2742         return apply_sign(r, sign);
2743     };
2744     r = fn(r);
2745     g = fn(g);
2746     b = fn(b);
2747 }
2748 
STAGE(gamma_,const float * G)2749 STAGE(gamma_, const float* G) {
2750     auto fn = [&](F v) {
2751         U32 sign;
2752         v = strip_sign(v, &sign);
2753         return apply_sign(approx_powf(v, *G), sign);
2754     };
2755     r = fn(r);
2756     g = fn(g);
2757     b = fn(b);
2758 }
2759 
STAGE(PQish,const skcms_TransferFunction * ctx)2760 STAGE(PQish, const skcms_TransferFunction* ctx) {
2761     auto fn = [&](F v) {
2762         U32 sign;
2763         v = strip_sign(v, &sign);
2764 
2765         F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f)
2766                            / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
2767                         ctx->f);
2768 
2769         return apply_sign(r, sign);
2770     };
2771     r = fn(r);
2772     g = fn(g);
2773     b = fn(b);
2774 }
2775 
STAGE(HLGish,const skcms_TransferFunction * ctx)2776 STAGE(HLGish, const skcms_TransferFunction* ctx) {
2777     auto fn = [&](F v) {
2778         U32 sign;
2779         v = strip_sign(v, &sign);
2780 
2781         const float R = ctx->a, G = ctx->b,
2782                     a = ctx->c, b = ctx->d, c = ctx->e,
2783                     K = ctx->f + 1.0f;
2784 
2785         F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
2786                                    , approx_exp((v-c)*a) + b);
2787 
2788         return K * apply_sign(r, sign);
2789     };
2790     r = fn(r);
2791     g = fn(g);
2792     b = fn(b);
2793 }
2794 
STAGE(HLGinvish,const skcms_TransferFunction * ctx)2795 STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
2796     auto fn = [&](F v) {
2797         U32 sign;
2798         v = strip_sign(v, &sign);
2799 
2800         const float R = ctx->a, G = ctx->b,
2801                     a = ctx->c, b = ctx->d, c = ctx->e,
2802                     K = ctx->f + 1.0f;
2803 
2804         v /= K;
2805         F r = if_then_else(v <= 1, R * approx_powf(v, G)
2806                                  , a * approx_log(v - b) + c);
2807 
2808         return apply_sign(r, sign);
2809     };
2810     r = fn(r);
2811     g = fn(g);
2812     b = fn(b);
2813 }
2814 
STAGE(load_a8,const SkRasterPipeline_MemoryCtx * ctx)2815 STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2816     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2817 
2818     r = g = b = F0;
2819     a = from_byte(load<U8>(ptr));
2820 }
STAGE(load_a8_dst,const SkRasterPipeline_MemoryCtx * ctx)2821 STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2822     auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
2823 
2824     dr = dg = db = F0;
2825     da = from_byte(load<U8>(ptr));
2826 }
STAGE(gather_a8,const SkRasterPipeline_GatherCtx * ctx)2827 STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
2828     const uint8_t* ptr;
2829     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2830     r = g = b = F0;
2831     a = from_byte(gather(ptr, ix));
2832 }
STAGE(store_a8,const SkRasterPipeline_MemoryCtx * ctx)2833 STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
2834     auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2835 
2836     U8 packed = pack(pack(to_unorm(a, 255)));
2837     store(ptr, packed);
2838 }
STAGE(store_r8,const SkRasterPipeline_MemoryCtx * ctx)2839 STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
2840     auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
2841 
2842     U8 packed = pack(pack(to_unorm(r, 255)));
2843     store(ptr, packed);
2844 }
2845 
STAGE(load_565,const SkRasterPipeline_MemoryCtx * ctx)2846 STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
2847     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2848 
2849     from_565(load<U16>(ptr), &r,&g,&b);
2850     a = F1;
2851 }
STAGE(load_565_dst,const SkRasterPipeline_MemoryCtx * ctx)2852 STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2853     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2854 
2855     from_565(load<U16>(ptr), &dr,&dg,&db);
2856     da = F1;
2857 }
STAGE(gather_565,const SkRasterPipeline_GatherCtx * ctx)2858 STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
2859     const uint16_t* ptr;
2860     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2861     from_565(gather(ptr, ix), &r,&g,&b);
2862     a = F1;
2863 }
STAGE(store_565,const SkRasterPipeline_MemoryCtx * ctx)2864 STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
2865     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2866 
2867     U16 px = pack( to_unorm(r, 31) << 11
2868                  | to_unorm(g, 63) <<  5
2869                  | to_unorm(b, 31)      );
2870     store(ptr, px);
2871 }
2872 
STAGE(load_4444,const SkRasterPipeline_MemoryCtx * ctx)2873 STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2874     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2875     from_4444(load<U16>(ptr), &r,&g,&b,&a);
2876 }
STAGE(load_4444_dst,const SkRasterPipeline_MemoryCtx * ctx)2877 STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2878     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2879     from_4444(load<U16>(ptr), &dr,&dg,&db,&da);
2880 }
STAGE(gather_4444,const SkRasterPipeline_GatherCtx * ctx)2881 STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
2882     const uint16_t* ptr;
2883     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2884     from_4444(gather(ptr, ix), &r,&g,&b,&a);
2885 }
STAGE(store_4444,const SkRasterPipeline_MemoryCtx * ctx)2886 STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
2887     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2888     U16 px = pack( to_unorm(r, 15) << 12
2889                  | to_unorm(g, 15) <<  8
2890                  | to_unorm(b, 15) <<  4
2891                  | to_unorm(a, 15)      );
2892     store(ptr, px);
2893 }
2894 
STAGE(load_8888,const SkRasterPipeline_MemoryCtx * ctx)2895 STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2896     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2897     from_8888(load<U32>(ptr), &r,&g,&b,&a);
2898 }
STAGE(load_8888_dst,const SkRasterPipeline_MemoryCtx * ctx)2899 STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2900     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
2901     from_8888(load<U32>(ptr), &dr,&dg,&db,&da);
2902 }
STAGE(gather_8888,const SkRasterPipeline_GatherCtx * ctx)2903 STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
2904     const uint32_t* ptr;
2905     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
2906     from_8888(gather(ptr, ix), &r,&g,&b,&a);
2907 }
STAGE(store_8888,const SkRasterPipeline_MemoryCtx * ctx)2908 STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
2909     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2910 
2911     U32 px = to_unorm(r, 255)
2912            | to_unorm(g, 255) <<  8
2913            | to_unorm(b, 255) << 16
2914            | to_unorm(a, 255) << 24;
2915     store(ptr, px);
2916 }
2917 
STAGE(load_rg88,const SkRasterPipeline_MemoryCtx * ctx)2918 STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2919     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2920     from_88(load<U16>(ptr), &r, &g);
2921     b = F0;
2922     a = F1;
2923 }
STAGE(load_rg88_dst,const SkRasterPipeline_MemoryCtx * ctx)2924 STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2925     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2926     from_88(load<U16>(ptr), &dr, &dg);
2927     db = F0;
2928     da = F1;
2929 }
STAGE(gather_rg88,const SkRasterPipeline_GatherCtx * ctx)2930 STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
2931     const uint16_t* ptr;
2932     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2933     from_88(gather(ptr, ix), &r, &g);
2934     b = F0;
2935     a = F1;
2936 }
STAGE(store_rg88,const SkRasterPipeline_MemoryCtx * ctx)2937 STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
2938     auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
2939     U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) <<  8 );
2940     store(ptr, px);
2941 }
2942 
STAGE(load_a16,const SkRasterPipeline_MemoryCtx * ctx)2943 STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2944     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
2945     r = g = b = F0;
2946     a = from_short(load<U16>(ptr));
2947 }
STAGE(load_a16_dst,const SkRasterPipeline_MemoryCtx * ctx)2948 STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2949     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
2950     dr = dg = db = F0;
2951     da = from_short(load<U16>(ptr));
2952 }
STAGE(gather_a16,const SkRasterPipeline_GatherCtx * ctx)2953 STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
2954     const uint16_t* ptr;
2955     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2956     r = g = b = F0;
2957     a = from_short(gather(ptr, ix));
2958 }
STAGE(store_a16,const SkRasterPipeline_MemoryCtx * ctx)2959 STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
2960     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
2961 
2962     U16 px = pack(to_unorm(a, 65535));
2963     store(ptr, px);
2964 }
2965 
STAGE(load_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2966 STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2967     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2968     b = F0;
2969     a = F1;
2970     from_1616(load<U32>(ptr), &r,&g);
2971 }
STAGE(load_rg1616_dst,const SkRasterPipeline_MemoryCtx * ctx)2972 STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2973     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
2974     from_1616(load<U32>(ptr), &dr, &dg);
2975     db = F0;
2976     da = F1;
2977 }
STAGE(gather_rg1616,const SkRasterPipeline_GatherCtx * ctx)2978 STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
2979     const uint32_t* ptr;
2980     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
2981     from_1616(gather(ptr, ix), &r, &g);
2982     b = F0;
2983     a = F1;
2984 }
STAGE(store_rg1616,const SkRasterPipeline_MemoryCtx * ctx)2985 STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
2986     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
2987 
2988     U32 px = to_unorm(r, 65535)
2989            | to_unorm(g, 65535) <<  16;
2990     store(ptr, px);
2991 }
2992 
STAGE(load_16161616,const SkRasterPipeline_MemoryCtx * ctx)2993 STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
2994     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2995     from_16161616(load<U64>(ptr), &r,&g, &b, &a);
2996 }
STAGE(load_16161616_dst,const SkRasterPipeline_MemoryCtx * ctx)2997 STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
2998     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
2999     from_16161616(load<U64>(ptr), &dr, &dg, &db, &da);
3000 }
STAGE(gather_16161616,const SkRasterPipeline_GatherCtx * ctx)3001 STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
3002     const uint64_t* ptr;
3003     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3004     from_16161616(gather(ptr, ix), &r, &g, &b, &a);
3005 }
STAGE(store_16161616,const SkRasterPipeline_MemoryCtx * ctx)3006 STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
3007     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3008 
3009     U16 R = pack(to_unorm(r, 65535)),
3010         G = pack(to_unorm(g, 65535)),
3011         B = pack(to_unorm(b, 65535)),
3012         A = pack(to_unorm(a, 65535));
3013 
3014     store4(ptr, R,G,B,A);
3015 }
3016 
STAGE(load_10x6,const SkRasterPipeline_MemoryCtx * ctx)3017 STAGE(load_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
3018     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3019     from_10x6(load<U64>(ptr), &r,&g, &b, &a);
3020 }
STAGE(load_10x6_dst,const SkRasterPipeline_MemoryCtx * ctx)3021 STAGE(load_10x6_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3022     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3023     from_10x6(load<U64>(ptr), &dr, &dg, &db, &da);
3024 }
STAGE(gather_10x6,const SkRasterPipeline_GatherCtx * ctx)3025 STAGE(gather_10x6, const SkRasterPipeline_GatherCtx* ctx) {
3026     const uint64_t* ptr;
3027     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3028     from_10x6(gather(ptr, ix), &r, &g, &b, &a);
3029 }
STAGE(store_10x6,const SkRasterPipeline_MemoryCtx * ctx)3030 STAGE(store_10x6, const SkRasterPipeline_MemoryCtx* ctx) {
3031     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3032 
3033     U16 R = pack(to_unorm(r, 1023)) << 6,
3034         G = pack(to_unorm(g, 1023)) << 6,
3035         B = pack(to_unorm(b, 1023)) << 6,
3036         A = pack(to_unorm(a, 1023)) << 6;
3037 
3038     store4(ptr, R,G,B,A);
3039 }
3040 
3041 
STAGE(load_1010102,const SkRasterPipeline_MemoryCtx * ctx)3042 STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
3043     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3044     from_1010102(load<U32>(ptr), &r,&g,&b,&a);
3045 }
STAGE(load_1010102_dst,const SkRasterPipeline_MemoryCtx * ctx)3046 STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3047     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3048     from_1010102(load<U32>(ptr), &dr,&dg,&db,&da);
3049 }
STAGE(load_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)3050 STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3051     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3052     from_1010102_xr(load<U32>(ptr), &r,&g,&b,&a);
3053 }
STAGE(load_1010102_xr_dst,const SkRasterPipeline_MemoryCtx * ctx)3054 STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3055     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
3056     from_1010102_xr(load<U32>(ptr), &dr,&dg,&db,&da);
3057 }
STAGE(gather_1010102,const SkRasterPipeline_GatherCtx * ctx)3058 STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
3059     const uint32_t* ptr;
3060     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3061     from_1010102(gather(ptr, ix), &r,&g,&b,&a);
3062 }
STAGE(gather_1010102_xr,const SkRasterPipeline_GatherCtx * ctx)3063 STAGE(gather_1010102_xr, const SkRasterPipeline_GatherCtx* ctx) {
3064     const uint32_t* ptr;
3065     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3066     from_1010102_xr(gather(ptr, ix), &r,&g,&b,&a);
3067 }
STAGE(gather_10101010_xr,const SkRasterPipeline_GatherCtx * ctx)3068 STAGE(gather_10101010_xr, const SkRasterPipeline_GatherCtx* ctx) {
3069     const uint64_t* ptr;
3070     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3071     from_10101010_xr(gather(ptr, ix), &r, &g, &b, &a);
3072 }
STAGE(load_10101010_xr,const SkRasterPipeline_MemoryCtx * ctx)3073 STAGE(load_10101010_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3074     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3075     from_10101010_xr(load<U64>(ptr), &r,&g, &b, &a);
3076 }
STAGE(load_10101010_xr_dst,const SkRasterPipeline_MemoryCtx * ctx)3077 STAGE(load_10101010_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3078     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
3079     from_10101010_xr(load<U64>(ptr), &dr, &dg, &db, &da);
3080 }
STAGE(store_10101010_xr,const SkRasterPipeline_MemoryCtx * ctx)3081 STAGE(store_10101010_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3082     static constexpr float min = -0.752941f;
3083     static constexpr float max = 1.25098f;
3084     static constexpr float range = max - min;
3085     auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
3086 
3087     U16 R = pack(to_unorm((r - min) / range, 1023)) << 6,
3088         G = pack(to_unorm((g - min) / range, 1023)) << 6,
3089         B = pack(to_unorm((b - min) / range, 1023)) << 6,
3090         A = pack(to_unorm((a - min) / range, 1023)) << 6;
3091 
3092     store4(ptr, R,G,B,A);
3093 }
STAGE(store_1010102,const SkRasterPipeline_MemoryCtx * ctx)3094 STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
3095     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
3096 
3097     U32 px = to_unorm(r, 1023)
3098            | to_unorm(g, 1023) << 10
3099            | to_unorm(b, 1023) << 20
3100            | to_unorm(a,    3) << 30;
3101     store(ptr, px);
3102 }
STAGE(store_1010102_xr,const SkRasterPipeline_MemoryCtx * ctx)3103 STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) {
3104     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
3105     static constexpr float min = -0.752941f;
3106     static constexpr float max = 1.25098f;
3107     static constexpr float range = max - min;
3108     U32 px = to_unorm((r - min) / range, 1023)
3109            | to_unorm((g - min) / range, 1023) << 10
3110            | to_unorm((b - min) / range, 1023) << 20
3111            | to_unorm(a,    3) << 30;
3112     store(ptr, px);
3113 }
3114 
STAGE(load_f16,const SkRasterPipeline_MemoryCtx * ctx)3115 STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
3116     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
3117 
3118     U16 R,G,B,A;
3119     load4((const uint16_t*)ptr, &R,&G,&B,&A);
3120     r = from_half(R);
3121     g = from_half(G);
3122     b = from_half(B);
3123     a = from_half(A);
3124 }
STAGE(load_f16_dst,const SkRasterPipeline_MemoryCtx * ctx)3125 STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3126     auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
3127 
3128     U16 R,G,B,A;
3129     load4((const uint16_t*)ptr, &R,&G,&B,&A);
3130     dr = from_half(R);
3131     dg = from_half(G);
3132     db = from_half(B);
3133     da = from_half(A);
3134 }
STAGE(gather_f16,const SkRasterPipeline_GatherCtx * ctx)3135 STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
3136     const uint64_t* ptr;
3137     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3138     auto px = gather(ptr, ix);
3139 
3140     U16 R,G,B,A;
3141     load4((const uint16_t*)&px, &R,&G,&B,&A);
3142     r = from_half(R);
3143     g = from_half(G);
3144     b = from_half(B);
3145     a = from_half(A);
3146 }
STAGE(store_f16,const SkRasterPipeline_MemoryCtx * ctx)3147 STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
3148     auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
3149     store4((uint16_t*)ptr, to_half(r)
3150                          , to_half(g)
3151                          , to_half(b)
3152                          , to_half(a));
3153 }
3154 
STAGE(load_af16,const SkRasterPipeline_MemoryCtx * ctx)3155 STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
3156     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
3157 
3158     U16 A = load<U16>((const uint16_t*)ptr);
3159     r = F0;
3160     g = F0;
3161     b = F0;
3162     a = from_half(A);
3163 }
STAGE(load_af16_dst,const SkRasterPipeline_MemoryCtx * ctx)3164 STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3165     auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
3166 
3167     U16 A = load<U16>((const uint16_t*)ptr);
3168     dr = dg = db = F0;
3169     da = from_half(A);
3170 }
STAGE(gather_af16,const SkRasterPipeline_GatherCtx * ctx)3171 STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
3172     const uint16_t* ptr;
3173     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3174     r = g = b = F0;
3175     a = from_half(gather(ptr, ix));
3176 }
STAGE(store_af16,const SkRasterPipeline_MemoryCtx * ctx)3177 STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
3178     auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
3179     store(ptr, to_half(a));
3180 }
3181 
STAGE(load_rgf16,const SkRasterPipeline_MemoryCtx * ctx)3182 STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
3183     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
3184 
3185     U16 R,G;
3186     load2((const uint16_t*)ptr, &R, &G);
3187     r = from_half(R);
3188     g = from_half(G);
3189     b = F0;
3190     a = F1;
3191 }
STAGE(load_rgf16_dst,const SkRasterPipeline_MemoryCtx * ctx)3192 STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3193     auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
3194 
3195     U16 R,G;
3196     load2((const uint16_t*)ptr, &R, &G);
3197     dr = from_half(R);
3198     dg = from_half(G);
3199     db = F0;
3200     da = F1;
3201 }
STAGE(gather_rgf16,const SkRasterPipeline_GatherCtx * ctx)3202 STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
3203     const uint32_t* ptr;
3204     U32 ix = ix_and_ptr(&ptr, ctx, r, g);
3205     auto px = gather(ptr, ix);
3206 
3207     U16 R,G;
3208     load2((const uint16_t*)&px, &R, &G);
3209     r = from_half(R);
3210     g = from_half(G);
3211     b = F0;
3212     a = F1;
3213 }
STAGE(store_rgf16,const SkRasterPipeline_MemoryCtx * ctx)3214 STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
3215     auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
3216     store2((uint16_t*)ptr, to_half(r)
3217                          , to_half(g));
3218 }
3219 
STAGE(load_f32,const SkRasterPipeline_MemoryCtx * ctx)3220 STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
3221     auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
3222     load4(ptr, &r,&g,&b,&a);
3223 }
STAGE(load_f32_dst,const SkRasterPipeline_MemoryCtx * ctx)3224 STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
3225     auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
3226     load4(ptr, &dr,&dg,&db,&da);
3227 }
STAGE(gather_f32,const SkRasterPipeline_GatherCtx * ctx)3228 STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
3229     const float* ptr;
3230     U32 ix = ix_and_ptr(&ptr, ctx, r,g);
3231     r = gather(ptr, 4*ix + 0);
3232     g = gather(ptr, 4*ix + 1);
3233     b = gather(ptr, 4*ix + 2);
3234     a = gather(ptr, 4*ix + 3);
3235 }
STAGE(store_f32,const SkRasterPipeline_MemoryCtx * ctx)3236 STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
3237     auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
3238     store4(ptr, r,g,b,a);
3239 }
3240 
exclusive_repeat(F v,const SkRasterPipeline_TileCtx * ctx)3241 SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
3242     return v - floor_(v*ctx->invScale)*ctx->scale;
3243 }
exclusive_mirror(F v,const SkRasterPipeline_TileCtx * ctx)3244 SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
3245     auto limit = ctx->scale;
3246     auto invLimit = ctx->invScale;
3247 
3248     // This is "repeat" over the range 0..2*limit
3249     auto u = v - floor_(v*invLimit*0.5f)*2*limit;
3250     // s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g.
3251     // [limit, 2*limit)).
3252     auto s = floor_(u*invLimit);
3253     // This is the mirror result.
3254     auto m = u - 2*s*(u - limit);
3255     // Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in
3256     // the logical infinite image. This is tested by mirror_tile GM. Note that all values
3257     // that have a non-zero bias applied are > 0.
3258     auto biasInUlps = trunc_(s);
3259     return sk_bit_cast<F>(sk_bit_cast<U32>(m) + ctx->mirrorBiasDir*biasInUlps);
3260 }
3261 // Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
3262 // The gather stages will hard clamp the output of these stages to [0,limit)...
3263 // we just need to do the basic repeat or mirroring.
STAGE(repeat_x,const SkRasterPipeline_TileCtx * ctx)3264 STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y,const SkRasterPipeline_TileCtx * ctx)3265 STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x,const SkRasterPipeline_TileCtx * ctx)3266 STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y,const SkRasterPipeline_TileCtx * ctx)3267 STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
3268 
STAGE(clamp_x_1,NoCtx)3269 STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); }
STAGE(repeat_x_1,NoCtx)3270 STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); }
STAGE(mirror_x_1,NoCtx)3271 STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
3272 
STAGE(clamp_x_and_y,const SkRasterPipeline_CoordClampCtx * ctx)3273 STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) {
3274     r = min(ctx->max_x, max(ctx->min_x, r));
3275     g = min(ctx->max_y, max(ctx->min_y, g));
3276 }
3277 
3278 // Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
3279 //      mask == 0x00000000 if the coordinate(s) are out of bounds
3280 //      mask == 0xFFFFFFFF if the coordinate(s) are in bounds
3281 // After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
3282 // if either of the coordinates were out of bounds.
3283 
STAGE(decal_x,SkRasterPipeline_DecalTileCtx * ctx)3284 STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
3285     auto w = ctx->limit_x;
3286     auto e = ctx->inclusiveEdge_x;
3287     auto cond = ((0 < r) & (r < w)) | (r == e);
3288     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3289 }
STAGE(decal_y,SkRasterPipeline_DecalTileCtx * ctx)3290 STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
3291     auto h = ctx->limit_y;
3292     auto e = ctx->inclusiveEdge_y;
3293     auto cond = ((0 < g) & (g < h)) | (g == e);
3294     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3295 }
STAGE(decal_x_and_y,SkRasterPipeline_DecalTileCtx * ctx)3296 STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
3297     auto w = ctx->limit_x;
3298     auto h = ctx->limit_y;
3299     auto ex = ctx->inclusiveEdge_x;
3300     auto ey = ctx->inclusiveEdge_y;
3301     auto cond = (((0 < r) & (r < w)) | (r == ex))
3302               & (((0 < g) & (g < h)) | (g == ey));
3303     sk_unaligned_store(ctx->mask, cond_to_mask(cond));
3304 }
STAGE(check_decal_mask,SkRasterPipeline_DecalTileCtx * ctx)3305 STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
3306     auto mask = sk_unaligned_load<U32>(ctx->mask);
3307     r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
3308     g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
3309     b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
3310     a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
3311 }
3312 
STAGE(alpha_to_gray,NoCtx)3313 STAGE(alpha_to_gray, NoCtx) {
3314     r = g = b = a;
3315     a = F1;
3316 }
STAGE(alpha_to_gray_dst,NoCtx)3317 STAGE(alpha_to_gray_dst, NoCtx) {
3318     dr = dg = db = da;
3319     da = F1;
3320 }
STAGE(alpha_to_red,NoCtx)3321 STAGE(alpha_to_red, NoCtx) {
3322     r = a;
3323     a = F1;
3324 }
STAGE(alpha_to_red_dst,NoCtx)3325 STAGE(alpha_to_red_dst, NoCtx) {
3326     dr = da;
3327     da = F1;
3328 }
3329 
STAGE(bt709_luminance_or_luma_to_alpha,NoCtx)3330 STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) {
3331     a = r*0.2126f + g*0.7152f + b*0.0722f;
3332     r = g = b = F0;
3333 }
STAGE(bt709_luminance_or_luma_to_rgb,NoCtx)3334 STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) {
3335     r = g = b = r*0.2126f + g*0.7152f + b*0.0722f;
3336 }
3337 
STAGE(matrix_translate,const float * m)3338 STAGE(matrix_translate, const float* m) {
3339     r += m[0];
3340     g += m[1];
3341 }
STAGE(matrix_scale_translate,const float * m)3342 STAGE(matrix_scale_translate, const float* m) {
3343     r = mad(r,m[0], m[2]);
3344     g = mad(g,m[1], m[3]);
3345 }
STAGE(matrix_2x3,const float * m)3346 STAGE(matrix_2x3, const float* m) {
3347     auto R = mad(r,m[0], mad(g,m[1], m[2])),
3348          G = mad(r,m[3], mad(g,m[4], m[5]));
3349     r = R;
3350     g = G;
3351 }
STAGE(matrix_3x3,const float * m)3352 STAGE(matrix_3x3, const float* m) {
3353     auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
3354          G = mad(r,m[1], mad(g,m[4], b*m[7])),
3355          B = mad(r,m[2], mad(g,m[5], b*m[8]));
3356     r = R;
3357     g = G;
3358     b = B;
3359 }
STAGE(matrix_3x4,const float * m)3360 STAGE(matrix_3x4, const float* m) {
3361     auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
3362          G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
3363          B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
3364     r = R;
3365     g = G;
3366     b = B;
3367 }
STAGE(matrix_4x5,const float * m)3368 STAGE(matrix_4x5, const float* m) {
3369     auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
3370          G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
3371          B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
3372          A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
3373     r = R;
3374     g = G;
3375     b = B;
3376     a = A;
3377 }
STAGE(matrix_4x3,const float * m)3378 STAGE(matrix_4x3, const float* m) {
3379     auto X = r,
3380          Y = g;
3381 
3382     r = mad(X, m[0], mad(Y, m[4], m[ 8]));
3383     g = mad(X, m[1], mad(Y, m[5], m[ 9]));
3384     b = mad(X, m[2], mad(Y, m[6], m[10]));
3385     a = mad(X, m[3], mad(Y, m[7], m[11]));
3386 }
STAGE(matrix_perspective,const float * m)3387 STAGE(matrix_perspective, const float* m) {
3388     // N.B. Unlike the other matrix_ stages, this matrix is row-major.
3389     auto R = mad(r,m[0], mad(g,m[1], m[2])),
3390          G = mad(r,m[3], mad(g,m[4], m[5])),
3391          Z = mad(r,m[6], mad(g,m[7], m[8]));
3392     r = R * rcp_precise(Z);
3393     g = G * rcp_precise(Z);
3394 }
3395 
gradient_lookup(const SkRasterPipeline_GradientCtx * c,U32 idx,F t,F * r,F * g,F * b,F * a)3396 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
3397                         F* r, F* g, F* b, F* a) {
3398     F fr, br, fg, bg, fb, bb, fa, ba;
3399 #if defined(SKRP_CPU_HSW)
3400     if (c->stopCount <=8) {
3401         fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), (__m256i)idx);
3402         br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), (__m256i)idx);
3403         fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), (__m256i)idx);
3404         bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), (__m256i)idx);
3405         fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), (__m256i)idx);
3406         bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), (__m256i)idx);
3407         fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), (__m256i)idx);
3408         ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), (__m256i)idx);
3409     } else
3410 #elif defined(SKRP_CPU_LASX)
3411     if (c->stopCount <= 8) {
3412         fr = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[0], 0), idx);
3413         br = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[0], 0), idx);
3414         fg = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[1], 0), idx);
3415         bg = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[1], 0), idx);
3416         fb = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[2], 0), idx);
3417         bb = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[2], 0), idx);
3418         fa = (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[3], 0), idx);
3419         ba = (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[3], 0), idx);
3420     } else
3421 #elif defined(SKRP_CPU_LSX)
3422     if (c->stopCount <= 4) {
3423         __m128i zero = __lsx_vldi(0);
3424         fr = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[0], 0));
3425         br = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[0], 0));
3426         fg = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[1], 0));
3427         bg = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[1], 0));
3428         fb = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[2], 0));
3429         bb = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[2], 0));
3430         fa = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->fs[3], 0));
3431         ba = (__m128)__lsx_vshuf_w(idx, zero, __lsx_vld(c->bs[3], 0));
3432     } else
3433 #endif
3434     {
3435 #if defined(SKRP_CPU_LSX)
3436         // This can reduce some vpickve2gr instructions.
3437         int i0 = __lsx_vpickve2gr_w(idx, 0);
3438         int i1 = __lsx_vpickve2gr_w(idx, 1);
3439         int i2 = __lsx_vpickve2gr_w(idx, 2);
3440         int i3 = __lsx_vpickve2gr_w(idx, 3);
3441         fr = gather((int *)c->fs[0], i0, i1, i2, i3);
3442         br = gather((int *)c->bs[0], i0, i1, i2, i3);
3443         fg = gather((int *)c->fs[1], i0, i1, i2, i3);
3444         bg = gather((int *)c->bs[1], i0, i1, i2, i3);
3445         fb = gather((int *)c->fs[2], i0, i1, i2, i3);
3446         bb = gather((int *)c->bs[2], i0, i1, i2, i3);
3447         fa = gather((int *)c->fs[3], i0, i1, i2, i3);
3448         ba = gather((int *)c->bs[3], i0, i1, i2, i3);
3449 #else
3450         fr = gather(c->fs[0], idx);
3451         br = gather(c->bs[0], idx);
3452         fg = gather(c->fs[1], idx);
3453         bg = gather(c->bs[1], idx);
3454         fb = gather(c->fs[2], idx);
3455         bb = gather(c->bs[2], idx);
3456         fa = gather(c->fs[3], idx);
3457         ba = gather(c->bs[3], idx);
3458 #endif
3459     }
3460 
3461     *r = mad(t, fr, br);
3462     *g = mad(t, fg, bg);
3463     *b = mad(t, fb, bb);
3464     *a = mad(t, fa, ba);
3465 }
3466 
STAGE(evenly_spaced_gradient,const SkRasterPipeline_GradientCtx * c)3467 STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
3468     auto t = r;
3469     auto idx = trunc_(t * static_cast<float>(c->stopCount-1));
3470     gradient_lookup(c, idx, t, &r, &g, &b, &a);
3471 }
3472 
STAGE(gradient,const SkRasterPipeline_GradientCtx * c)3473 STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
3474     auto t = r;
3475     U32 idx = U32_(0);
3476 
3477     // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
3478     for (size_t i = 1; i < c->stopCount; i++) {
3479         idx += (U32)if_then_else(t >= c->ts[i], I32_(1), I32_(0));
3480     }
3481 
3482     gradient_lookup(c, idx, t, &r, &g, &b, &a);
3483 }
3484 
STAGE(evenly_spaced_2_stop_gradient,const SkRasterPipeline_EvenlySpaced2StopGradientCtx * c)3485 STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
3486     auto t = r;
3487     r = mad(t, c->f[0], c->b[0]);
3488     g = mad(t, c->f[1], c->b[1]);
3489     b = mad(t, c->f[2], c->b[2]);
3490     a = mad(t, c->f[3], c->b[3]);
3491 }
3492 
STAGE(xy_to_unit_angle,NoCtx)3493 STAGE(xy_to_unit_angle, NoCtx) {
3494     F X = r,
3495       Y = g;
3496     F xabs = abs_(X),
3497       yabs = abs_(Y);
3498 
3499     F slope = min(xabs, yabs)/max(xabs, yabs);
3500     F s = slope * slope;
3501 
3502     // Use a 7th degree polynomial to approximate atan.
3503     // This was generated using sollya.gforge.inria.fr.
3504     // A float optimized polynomial was generated using the following command.
3505     // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
3506     F phi = slope
3507              * (0.15912117063999176025390625f     + s
3508              * (-5.185396969318389892578125e-2f   + s
3509              * (2.476101927459239959716796875e-2f + s
3510              * (-7.0547382347285747528076171875e-3f))));
3511 
3512     phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
3513     phi = if_then_else(X < 0.0f   , 1.0f/2.0f - phi, phi);
3514     phi = if_then_else(Y < 0.0f   , 1.0f - phi     , phi);
3515     phi = if_then_else(phi != phi , 0.0f           , phi);  // Check for NaN.
3516     r = phi;
3517 }
3518 
STAGE(xy_to_radius,NoCtx)3519 STAGE(xy_to_radius, NoCtx) {
3520     F X2 = r * r,
3521       Y2 = g * g;
3522     r = sqrt_(X2 + Y2);
3523 }
3524 
3525 // Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
3526 
STAGE(negate_x,NoCtx)3527 STAGE(negate_x, NoCtx) { r = -r; }
3528 
STAGE(xy_to_2pt_conical_strip,const SkRasterPipeline_2PtConicalCtx * ctx)3529 STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
3530     F x = r, y = g, &t = r;
3531     t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
3532 }
3533 
STAGE(xy_to_2pt_conical_focal_on_circle,NoCtx)3534 STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) {
3535     F x = r, y = g, &t = r;
3536     t = x + y*y / x; // (x^2 + y^2) / x
3537 }
3538 
STAGE(xy_to_2pt_conical_well_behaved,const SkRasterPipeline_2PtConicalCtx * ctx)3539 STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
3540     F x = r, y = g, &t = r;
3541     t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3542 }
3543 
STAGE(xy_to_2pt_conical_greater,const SkRasterPipeline_2PtConicalCtx * ctx)3544 STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
3545     F x = r, y = g, &t = r;
3546     t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3547 }
3548 
STAGE(xy_to_2pt_conical_smaller,const SkRasterPipeline_2PtConicalCtx * ctx)3549 STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
3550     F x = r, y = g, &t = r;
3551     t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
3552 }
3553 
STAGE(alter_2pt_conical_compensate_focal,const SkRasterPipeline_2PtConicalCtx * ctx)3554 STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
3555     F& t = r;
3556     t = t + ctx->fP1; // ctx->fP1 = f
3557 }
3558 
STAGE(alter_2pt_conical_unswap,NoCtx)3559 STAGE(alter_2pt_conical_unswap, NoCtx) {
3560     F& t = r;
3561     t = 1 - t;
3562 }
3563 
STAGE(mask_2pt_conical_nan,SkRasterPipeline_2PtConicalCtx * c)3564 STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
3565     F& t = r;
3566     auto is_degenerate = (t != t); // NaN
3567     t = if_then_else(is_degenerate, F0, t);
3568     sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3569 }
3570 
STAGE(mask_2pt_conical_degenerates,SkRasterPipeline_2PtConicalCtx * c)3571 STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
3572     F& t = r;
3573     auto is_degenerate = (t <= 0) | (t != t);
3574     t = if_then_else(is_degenerate, F0, t);
3575     sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
3576 }
3577 
STAGE(apply_vector_mask,const uint32_t * ctx)3578 STAGE(apply_vector_mask, const uint32_t* ctx) {
3579     const U32 mask = sk_unaligned_load<U32>(ctx);
3580     r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask);
3581     g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask);
3582     b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask);
3583     a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask);
3584 }
3585 
save_xy(F * r,F * g,SkRasterPipeline_SamplerCtx * c)3586 SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) {
3587     // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
3588     // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
3589     // surrounding (x,y) at (0.5,0.5) off-center.
3590     F fx = fract(*r + 0.5f),
3591       fy = fract(*g + 0.5f);
3592 
3593     // Samplers will need to load x and fx, or y and fy.
3594     sk_unaligned_store(c->x,  *r);
3595     sk_unaligned_store(c->y,  *g);
3596     sk_unaligned_store(c->fx, fx);
3597     sk_unaligned_store(c->fy, fy);
3598 }
3599 
STAGE(accumulate,const SkRasterPipeline_SamplerCtx * c)3600 STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
3601     // Bilinear and bicubic filters are both separable, so we produce independent contributions
3602     // from x and y, multiplying them together here to get each pixel's total scale factor.
3603     auto scale = sk_unaligned_load<F>(c->scalex)
3604                * sk_unaligned_load<F>(c->scaley);
3605     dr = mad(scale, r, dr);
3606     dg = mad(scale, g, dg);
3607     db = mad(scale, b, db);
3608     da = mad(scale, a, da);
3609 }
3610 
3611 // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
3612 // are combined in direct proportion to their area overlapping that logical query pixel.
3613 // At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
3614 // The y-axis is symmetric.
3615 
3616 template <int kScale>
bilinear_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3617 SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3618     *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3619     F fx = sk_unaligned_load<F>(ctx->fx);
3620 
3621     F scalex;
3622     if (kScale == -1) { scalex = 1.0f - fx; }
3623     if (kScale == +1) { scalex =        fx; }
3624     sk_unaligned_store(ctx->scalex, scalex);
3625 }
3626 template <int kScale>
bilinear_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3627 SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3628     *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3629     F fy = sk_unaligned_load<F>(ctx->fy);
3630 
3631     F scaley;
3632     if (kScale == -1) { scaley = 1.0f - fy; }
3633     if (kScale == +1) { scaley =        fy; }
3634     sk_unaligned_store(ctx->scaley, scaley);
3635 }
3636 
STAGE(bilinear_setup,SkRasterPipeline_SamplerCtx * ctx)3637 STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) {
3638     save_xy(&r, &g, ctx);
3639     // Init for accumulate
3640     dr = dg = db = da = F0;
3641 }
3642 
STAGE(bilinear_nx,SkRasterPipeline_SamplerCtx * ctx)3643 STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px,SkRasterPipeline_SamplerCtx * ctx)3644 STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny,SkRasterPipeline_SamplerCtx * ctx)3645 STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py,SkRasterPipeline_SamplerCtx * ctx)3646 STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
3647 
3648 
3649 // In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
3650 // pixel center are combined with a non-uniform cubic filter, with higher values near the center.
3651 //
3652 // This helper computes the total weight along one axis (our bicubic filter is separable), given one
3653 // column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details.
3654 
bicubic_wts(F t,float A,float B,float C,float D)3655 SI F bicubic_wts(F t, float A, float B, float C, float D) {
3656     return mad(t, mad(t, mad(t, D, C), B), A);
3657 }
3658 
3659 template <int kScale>
bicubic_x(SkRasterPipeline_SamplerCtx * ctx,F * x)3660 SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
3661     *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
3662 
3663     F scalex;
3664     if (kScale == -3) { scalex = sk_unaligned_load<F>(ctx->wx[0]); }
3665     if (kScale == -1) { scalex = sk_unaligned_load<F>(ctx->wx[1]); }
3666     if (kScale == +1) { scalex = sk_unaligned_load<F>(ctx->wx[2]); }
3667     if (kScale == +3) { scalex = sk_unaligned_load<F>(ctx->wx[3]); }
3668     sk_unaligned_store(ctx->scalex, scalex);
3669 }
3670 template <int kScale>
bicubic_y(SkRasterPipeline_SamplerCtx * ctx,F * y)3671 SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
3672     *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
3673 
3674     F scaley;
3675     if (kScale == -3) { scaley = sk_unaligned_load<F>(ctx->wy[0]); }
3676     if (kScale == -1) { scaley = sk_unaligned_load<F>(ctx->wy[1]); }
3677     if (kScale == +1) { scaley = sk_unaligned_load<F>(ctx->wy[2]); }
3678     if (kScale == +3) { scaley = sk_unaligned_load<F>(ctx->wy[3]); }
3679     sk_unaligned_store(ctx->scaley, scaley);
3680 }
3681 
STAGE(bicubic_setup,SkRasterPipeline_SamplerCtx * ctx)3682 STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) {
3683     save_xy(&r, &g, ctx);
3684 
3685     const float* w = ctx->weights;
3686 
3687     F fx = sk_unaligned_load<F>(ctx->fx);
3688     sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12]));
3689     sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13]));
3690     sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14]));
3691     sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15]));
3692 
3693     F fy = sk_unaligned_load<F>(ctx->fy);
3694     sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12]));
3695     sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13]));
3696     sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14]));
3697     sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15]));
3698 
3699     // Init for accumulate
3700     dr = dg = db = da = F0;
3701 }
3702 
STAGE(bicubic_n3x,SkRasterPipeline_SamplerCtx * ctx)3703 STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x,SkRasterPipeline_SamplerCtx * ctx)3704 STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x,SkRasterPipeline_SamplerCtx * ctx)3705 STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x,SkRasterPipeline_SamplerCtx * ctx)3706 STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
3707 
STAGE(bicubic_n3y,SkRasterPipeline_SamplerCtx * ctx)3708 STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y,SkRasterPipeline_SamplerCtx * ctx)3709 STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y,SkRasterPipeline_SamplerCtx * ctx)3710 STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y,SkRasterPipeline_SamplerCtx * ctx)3711 STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
3712 
compute_perlin_vector(U32 sample,F x,F y)3713 SI F compute_perlin_vector(U32 sample, F x, F y) {
3714     // We're relying on the packing of uint16s within a uint32, which will vary based on endianness.
3715 #ifdef SK_CPU_BENDIAN
3716     U32 sampleLo = sample >> 16;
3717     U32 sampleHi = sample & 0xFFFF;
3718 #else
3719     U32 sampleLo = sample & 0xFFFF;
3720     U32 sampleHi = sample >> 16;
3721 #endif
3722 
3723     // Convert 32-bit sample value into two floats in the [-1..1] range.
3724     F vecX = mad(cast(sampleLo), 2.0f / 65535.0f, -1.0f);
3725     F vecY = mad(cast(sampleHi), 2.0f / 65535.0f, -1.0f);
3726 
3727     // Return the dot of the sample and the passed-in vector.
3728     return mad(vecX,  x,
3729                vecY * y);
3730 }
3731 
STAGE(perlin_noise,SkRasterPipeline_PerlinNoiseCtx * ctx)3732 STAGE(perlin_noise, SkRasterPipeline_PerlinNoiseCtx* ctx) {
3733     F noiseVecX = (r + 0.5) * ctx->baseFrequencyX;
3734     F noiseVecY = (g + 0.5) * ctx->baseFrequencyY;
3735     r = g = b = a = F0;
3736     F stitchDataX = F_(ctx->stitchDataInX);
3737     F stitchDataY = F_(ctx->stitchDataInY);
3738     F ratio = F1;
3739 
3740     for (int octave = 0; octave < ctx->numOctaves; ++octave) {
3741         // Calculate noise coordinates. (Roughly $noise_helper in Graphite)
3742         F floorValX = floor_(noiseVecX);
3743         F floorValY = floor_(noiseVecY);
3744         F  ceilValX = floorValX + 1.0f;
3745         F  ceilValY = floorValY + 1.0f;
3746         F fractValX = noiseVecX - floorValX;
3747         F fractValY = noiseVecY - floorValY;
3748 
3749         if (ctx->stitching) {
3750             // If we are stitching, wrap the coordinates to the stitch position.
3751             floorValX -= sk_bit_cast<F>(cond_to_mask(floorValX >= stitchDataX) &
3752                                         sk_bit_cast<I32>(stitchDataX));
3753             floorValY -= sk_bit_cast<F>(cond_to_mask(floorValY >= stitchDataY) &
3754                                         sk_bit_cast<I32>(stitchDataY));
3755             ceilValX -= sk_bit_cast<F>(cond_to_mask(ceilValX >= stitchDataX) &
3756                                        sk_bit_cast<I32>(stitchDataX));
3757             ceilValY -= sk_bit_cast<F>(cond_to_mask(ceilValY >= stitchDataY) &
3758                                        sk_bit_cast<I32>(stitchDataY));
3759         }
3760 
3761         U32 latticeLookup = (U32)(iround(floorValX)) & 0xFF;
3762         F latticeIdxX = cast(expand(gather(ctx->latticeSelector, latticeLookup)));
3763         latticeLookup = (U32)(iround(ceilValX)) & 0xFF;
3764         F latticeIdxY = cast(expand(gather(ctx->latticeSelector, latticeLookup)));
3765 
3766         U32 b00 = (U32)(iround(latticeIdxX + floorValY)) & 0xFF;
3767         U32 b10 = (U32)(iround(latticeIdxY + floorValY)) & 0xFF;
3768         U32 b01 = (U32)(iround(latticeIdxX + ceilValY)) & 0xFF;
3769         U32 b11 = (U32)(iround(latticeIdxY + ceilValY)) & 0xFF;
3770 
3771         // Calculate noise colors. (Roughly $noise_function in Graphite)
3772         // Apply Hermite interpolation to the fractional value.
3773         F smoothX = fractValX * fractValX * (3.0f - 2.0f * fractValX);
3774         F smoothY = fractValY * fractValY * (3.0f - 2.0f * fractValY);
3775 
3776         F color[4];
3777         const uint32_t* channelNoiseData = reinterpret_cast<const uint32_t*>(ctx->noiseData);
3778         for (int channel = 0; channel < 4; ++channel) {
3779             U32 sample00 = gather(channelNoiseData, b00);
3780             U32 sample10 = gather(channelNoiseData, b10);
3781             U32 sample01 = gather(channelNoiseData, b01);
3782             U32 sample11 = gather(channelNoiseData, b11);
3783             channelNoiseData += 256;
3784 
3785             F u = compute_perlin_vector(sample00, fractValX,        fractValY);
3786             F v = compute_perlin_vector(sample10, fractValX - 1.0f, fractValY);
3787             F A = lerp(u, v, smoothX);
3788 
3789               u = compute_perlin_vector(sample01, fractValX,        fractValY - 1.0f);
3790               v = compute_perlin_vector(sample11, fractValX - 1.0f, fractValY - 1.0f);
3791             F B = lerp(u, v, smoothX);
3792 
3793             color[channel] = lerp(A, B, smoothY);
3794         }
3795 
3796         if (ctx->noiseType != SkPerlinNoiseShaderType::kFractalNoise) {
3797             // For kTurbulence the result is: abs(noise[-1,1])
3798             color[0] = abs_(color[0]);
3799             color[1] = abs_(color[1]);
3800             color[2] = abs_(color[2]);
3801             color[3] = abs_(color[3]);
3802         }
3803 
3804         r = mad(color[0], ratio, r);
3805         g = mad(color[1], ratio, g);
3806         b = mad(color[2], ratio, b);
3807         a = mad(color[3], ratio, a);
3808 
3809         // Scale inputs for the next round.
3810         noiseVecX *= 2.0f;
3811         noiseVecY *= 2.0f;
3812         stitchDataX *= 2.0f;
3813         stitchDataY *= 2.0f;
3814         ratio *= 0.5f;
3815     }
3816 
3817     if (ctx->noiseType == SkPerlinNoiseShaderType::kFractalNoise) {
3818         // For kFractalNoise the result is: noise[-1,1] * 0.5 + 0.5
3819         r = mad(r, 0.5f, 0.5f);
3820         g = mad(g, 0.5f, 0.5f);
3821         b = mad(b, 0.5f, 0.5f);
3822         a = mad(a, 0.5f, 0.5f);
3823     }
3824 
3825     r = clamp_01_(r) * a;
3826     g = clamp_01_(g) * a;
3827     b = clamp_01_(b) * a;
3828     a = clamp_01_(a);
3829 }
3830 
STAGE(mipmap_linear_init,SkRasterPipeline_MipmapCtx * ctx)3831 STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) {
3832     sk_unaligned_store(ctx->x, r);
3833     sk_unaligned_store(ctx->y, g);
3834 }
3835 
STAGE(mipmap_linear_update,SkRasterPipeline_MipmapCtx * ctx)3836 STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) {
3837     sk_unaligned_store(ctx->r, r);
3838     sk_unaligned_store(ctx->g, g);
3839     sk_unaligned_store(ctx->b, b);
3840     sk_unaligned_store(ctx->a, a);
3841 
3842     r = sk_unaligned_load<F>(ctx->x) * ctx->scaleX;
3843     g = sk_unaligned_load<F>(ctx->y) * ctx->scaleY;
3844 }
3845 
STAGE(mipmap_linear_finish,SkRasterPipeline_MipmapCtx * ctx)3846 STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) {
3847     r = lerp(sk_unaligned_load<F>(ctx->r), r, F_(ctx->lowerWeight));
3848     g = lerp(sk_unaligned_load<F>(ctx->g), g, F_(ctx->lowerWeight));
3849     b = lerp(sk_unaligned_load<F>(ctx->b), b, F_(ctx->lowerWeight));
3850     a = lerp(sk_unaligned_load<F>(ctx->a), a, F_(ctx->lowerWeight));
3851 }
3852 
STAGE(callback,SkRasterPipeline_CallbackCtx * c)3853 STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
3854     store4(c->rgba, r,g,b,a);
3855     c->fn(c, N);
3856     load4(c->read_from, &r,&g,&b,&a);
3857 }
3858 
STAGE_TAIL(set_base_pointer,std::byte * p)3859 STAGE_TAIL(set_base_pointer, std::byte* p) {
3860     base = p;
3861 }
3862 
3863 // All control flow stages used by SkSL maintain some state in the common registers:
3864 //   r: condition mask
3865 //   g: loop mask
3866 //   b: return mask
3867 //   a: execution mask (intersection of all three masks)
3868 // After updating r/g/b, you must invoke update_execution_mask().
3869 #define execution_mask()        sk_bit_cast<I32>(a)
3870 #define update_execution_mask() a = sk_bit_cast<F>(sk_bit_cast<I32>(r) & \
3871                                                    sk_bit_cast<I32>(g) & \
3872                                                    sk_bit_cast<I32>(b))
3873 
STAGE_TAIL(init_lane_masks,SkRasterPipeline_InitLaneMasksCtx * ctx)3874 STAGE_TAIL(init_lane_masks, SkRasterPipeline_InitLaneMasksCtx* ctx) {
3875     uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
3876     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3877 
3878     I32 mask = cond_to_mask(sk_unaligned_load<U32>(iota) < *ctx->tail);
3879     r = g = b = a = sk_bit_cast<F>(mask);
3880 }
3881 
STAGE_TAIL(store_device_xy01,F * dst)3882 STAGE_TAIL(store_device_xy01, F* dst) {
3883     // This is very similar to `seed_shader + store_src`, but b/a are backwards.
3884     // (sk_FragCoord actually puts w=1 in the w slot.)
3885     static constexpr float iota[] = {
3886         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
3887         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
3888     };
3889     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
3890 
3891     dst[0] = cast(U32_(dx)) + sk_unaligned_load<F>(iota);
3892     dst[1] = cast(U32_(dy)) + 0.5f;
3893     dst[2] = F0;
3894     dst[3] = F1;
3895 }
3896 
STAGE_TAIL(exchange_src,F * rgba)3897 STAGE_TAIL(exchange_src, F* rgba) {
3898     // Swaps r,g,b,a registers with the values at `rgba`.
3899     F temp[4] = {r, g, b, a};
3900     r = rgba[0];
3901     rgba[0] = temp[0];
3902     g = rgba[1];
3903     rgba[1] = temp[1];
3904     b = rgba[2];
3905     rgba[2] = temp[2];
3906     a = rgba[3];
3907     rgba[3] = temp[3];
3908 }
3909 
STAGE_TAIL(load_condition_mask,F * ctx)3910 STAGE_TAIL(load_condition_mask, F* ctx) {
3911     r = sk_unaligned_load<F>(ctx);
3912     update_execution_mask();
3913 }
3914 
STAGE_TAIL(store_condition_mask,F * ctx)3915 STAGE_TAIL(store_condition_mask, F* ctx) {
3916     sk_unaligned_store(ctx, r);
3917 }
3918 
STAGE_TAIL(merge_condition_mask,I32 * ptr)3919 STAGE_TAIL(merge_condition_mask, I32* ptr) {
3920     // Set the condition-mask to the intersection of two adjacent masks at the pointer.
3921     r = sk_bit_cast<F>(ptr[0] & ptr[1]);
3922     update_execution_mask();
3923 }
3924 
STAGE_TAIL(merge_inv_condition_mask,I32 * ptr)3925 STAGE_TAIL(merge_inv_condition_mask, I32* ptr) {
3926     // Set the condition-mask to the intersection of the first mask and the inverse of the second.
3927     r = sk_bit_cast<F>(ptr[0] & ~ptr[1]);
3928     update_execution_mask();
3929 }
3930 
STAGE_TAIL(load_loop_mask,F * ctx)3931 STAGE_TAIL(load_loop_mask, F* ctx) {
3932     g = sk_unaligned_load<F>(ctx);
3933     update_execution_mask();
3934 }
3935 
STAGE_TAIL(store_loop_mask,F * ctx)3936 STAGE_TAIL(store_loop_mask, F* ctx) {
3937     sk_unaligned_store(ctx, g);
3938 }
3939 
STAGE_TAIL(mask_off_loop_mask,NoCtx)3940 STAGE_TAIL(mask_off_loop_mask, NoCtx) {
3941     // We encountered a break statement. If a lane was active, it should be masked off now, and stay
3942     // masked-off until the termination of the loop.
3943     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
3944     update_execution_mask();
3945 }
3946 
STAGE_TAIL(reenable_loop_mask,I32 * ptr)3947 STAGE_TAIL(reenable_loop_mask, I32* ptr) {
3948     // Set the loop-mask to the union of the current loop-mask with the mask at the pointer.
3949     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | ptr[0]);
3950     update_execution_mask();
3951 }
3952 
STAGE_TAIL(merge_loop_mask,I32 * ptr)3953 STAGE_TAIL(merge_loop_mask, I32* ptr) {
3954     // Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer.
3955     // (Note: this behavior subtly differs from merge_condition_mask!)
3956     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ptr[0]);
3957     update_execution_mask();
3958 }
3959 
STAGE_TAIL(continue_op,I32 * continueMask)3960 STAGE_TAIL(continue_op, I32* continueMask) {
3961     // Set any currently-executing lanes in the continue-mask to true.
3962     *continueMask |= execution_mask();
3963 
3964     // Disable any currently-executing lanes from the loop mask. (Just like `mask_off_loop_mask`.)
3965     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) & ~execution_mask());
3966     update_execution_mask();
3967 }
3968 
STAGE_TAIL(case_op,SkRasterPipeline_CaseOpCtx * packed)3969 STAGE_TAIL(case_op, SkRasterPipeline_CaseOpCtx* packed) {
3970     auto ctx = SkRPCtxUtils::Unpack(packed);
3971 
3972     // Check each lane to see if the case value matches the expectation.
3973     I32* actualValue = (I32*)(base + ctx.offset);
3974     I32 caseMatches = cond_to_mask(*actualValue == ctx.expectedValue);
3975 
3976     // In lanes where we found a match, enable the loop mask...
3977     g = sk_bit_cast<F>(sk_bit_cast<I32>(g) | caseMatches);
3978     update_execution_mask();
3979 
3980     // ... and clear the default-case mask.
3981     I32* defaultMask = actualValue + 1;
3982     *defaultMask &= ~caseMatches;
3983 }
3984 
STAGE_TAIL(load_return_mask,F * ctx)3985 STAGE_TAIL(load_return_mask, F* ctx) {
3986     b = sk_unaligned_load<F>(ctx);
3987     update_execution_mask();
3988 }
3989 
STAGE_TAIL(store_return_mask,F * ctx)3990 STAGE_TAIL(store_return_mask, F* ctx) {
3991     sk_unaligned_store(ctx, b);
3992 }
3993 
STAGE_TAIL(mask_off_return_mask,NoCtx)3994 STAGE_TAIL(mask_off_return_mask, NoCtx) {
3995     // We encountered a return statement. If a lane was active, it should be masked off now, and
3996     // stay masked-off until the end of the function.
3997     b = sk_bit_cast<F>(sk_bit_cast<I32>(b) & ~execution_mask());
3998     update_execution_mask();
3999 }
4000 
STAGE_BRANCH(branch_if_all_lanes_active,SkRasterPipeline_BranchIfAllLanesActiveCtx * ctx)4001 STAGE_BRANCH(branch_if_all_lanes_active, SkRasterPipeline_BranchIfAllLanesActiveCtx* ctx) {
4002     uint32_t iota[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
4003     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4004 
4005     I32 tailLanes = cond_to_mask(*ctx->tail <= sk_unaligned_load<U32>(iota));
4006     return all(execution_mask() | tailLanes) ? ctx->offset : 1;
4007 }
4008 
STAGE_BRANCH(branch_if_any_lanes_active,SkRasterPipeline_BranchCtx * ctx)4009 STAGE_BRANCH(branch_if_any_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
4010     return any(execution_mask()) ? ctx->offset : 1;
4011 }
4012 
STAGE_BRANCH(branch_if_no_lanes_active,SkRasterPipeline_BranchCtx * ctx)4013 STAGE_BRANCH(branch_if_no_lanes_active, SkRasterPipeline_BranchCtx* ctx) {
4014     return any(execution_mask()) ? 1 : ctx->offset;
4015 }
4016 
STAGE_BRANCH(jump,SkRasterPipeline_BranchCtx * ctx)4017 STAGE_BRANCH(jump, SkRasterPipeline_BranchCtx* ctx) {
4018     return ctx->offset;
4019 }
4020 
STAGE_BRANCH(branch_if_no_active_lanes_eq,SkRasterPipeline_BranchIfEqualCtx * ctx)4021 STAGE_BRANCH(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) {
4022     // Compare each lane against the expected value...
4023     I32 match = cond_to_mask(*(const I32*)ctx->ptr == ctx->value);
4024     // ... but mask off lanes that aren't executing.
4025     match &= execution_mask();
4026     // If any lanes matched, don't take the branch.
4027     return any(match) ? 1 : ctx->offset;
4028 }
4029 
STAGE_TAIL(trace_line,SkRasterPipeline_TraceLineCtx * ctx)4030 STAGE_TAIL(trace_line, SkRasterPipeline_TraceLineCtx* ctx) {
4031     const I32* traceMask = (const I32*)ctx->traceMask;
4032     if (any(execution_mask() & *traceMask)) {
4033         ctx->traceHook->line(ctx->lineNumber);
4034     }
4035 }
4036 
STAGE_TAIL(trace_enter,SkRasterPipeline_TraceFuncCtx * ctx)4037 STAGE_TAIL(trace_enter, SkRasterPipeline_TraceFuncCtx* ctx) {
4038     const I32* traceMask = (const I32*)ctx->traceMask;
4039     if (any(execution_mask() & *traceMask)) {
4040         ctx->traceHook->enter(ctx->funcIdx);
4041     }
4042 }
4043 
STAGE_TAIL(trace_exit,SkRasterPipeline_TraceFuncCtx * ctx)4044 STAGE_TAIL(trace_exit, SkRasterPipeline_TraceFuncCtx* ctx) {
4045     const I32* traceMask = (const I32*)ctx->traceMask;
4046     if (any(execution_mask() & *traceMask)) {
4047         ctx->traceHook->exit(ctx->funcIdx);
4048     }
4049 }
4050 
STAGE_TAIL(trace_scope,SkRasterPipeline_TraceScopeCtx * ctx)4051 STAGE_TAIL(trace_scope, SkRasterPipeline_TraceScopeCtx* ctx) {
4052     // Note that trace_scope intentionally does not incorporate the execution mask. Otherwise, the
4053     // scopes would become unbalanced if the execution mask changed in the middle of a block. The
4054     // caller is responsible for providing a combined trace- and execution-mask.
4055     const I32* traceMask = (const I32*)ctx->traceMask;
4056     if (any(*traceMask)) {
4057         ctx->traceHook->scope(ctx->delta);
4058     }
4059 }
4060 
STAGE_TAIL(trace_var,SkRasterPipeline_TraceVarCtx * ctx)4061 STAGE_TAIL(trace_var, SkRasterPipeline_TraceVarCtx* ctx) {
4062     const I32* traceMask = (const I32*)ctx->traceMask;
4063     I32 mask = execution_mask() & *traceMask;
4064     if (any(mask)) {
4065         for (size_t lane = 0; lane < N; ++lane) {
4066             if (select_lane(mask, lane)) {
4067                 const I32* data = (const I32*)ctx->data;
4068                 int slotIdx = ctx->slotIdx, numSlots = ctx->numSlots;
4069                 if (ctx->indirectOffset) {
4070                     // If this was an indirect store, apply the indirect-offset to the data pointer.
4071                     uint32_t indirectOffset = select_lane(*(const U32*)ctx->indirectOffset, lane);
4072                     indirectOffset = std::min<uint32_t>(indirectOffset, ctx->indirectLimit);
4073                     data += indirectOffset;
4074                     slotIdx += indirectOffset;
4075                 }
4076                 while (numSlots--) {
4077                     ctx->traceHook->var(slotIdx, select_lane(*data, lane));
4078                     ++slotIdx;
4079                     ++data;
4080                 }
4081                 break;
4082             }
4083         }
4084     }
4085 }
4086 
STAGE_TAIL(copy_uniform,SkRasterPipeline_UniformCtx * ctx)4087 STAGE_TAIL(copy_uniform, SkRasterPipeline_UniformCtx* ctx) {
4088     const int* src = ctx->src;
4089     I32* dst = (I32*)ctx->dst;
4090     dst[0] = I32_(src[0]);
4091 }
STAGE_TAIL(copy_2_uniforms,SkRasterPipeline_UniformCtx * ctx)4092 STAGE_TAIL(copy_2_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4093     const int* src = ctx->src;
4094     I32* dst = (I32*)ctx->dst;
4095     dst[0] = I32_(src[0]);
4096     dst[1] = I32_(src[1]);
4097 }
STAGE_TAIL(copy_3_uniforms,SkRasterPipeline_UniformCtx * ctx)4098 STAGE_TAIL(copy_3_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4099     const int* src = ctx->src;
4100     I32* dst = (I32*)ctx->dst;
4101     dst[0] = I32_(src[0]);
4102     dst[1] = I32_(src[1]);
4103     dst[2] = I32_(src[2]);
4104 }
STAGE_TAIL(copy_4_uniforms,SkRasterPipeline_UniformCtx * ctx)4105 STAGE_TAIL(copy_4_uniforms, SkRasterPipeline_UniformCtx* ctx) {
4106     const int* src = ctx->src;
4107     I32* dst = (I32*)ctx->dst;
4108     dst[0] = I32_(src[0]);
4109     dst[1] = I32_(src[1]);
4110     dst[2] = I32_(src[2]);
4111     dst[3] = I32_(src[3]);
4112 }
4113 
STAGE_TAIL(copy_constant,SkRasterPipeline_ConstantCtx * packed)4114 STAGE_TAIL(copy_constant, SkRasterPipeline_ConstantCtx* packed) {
4115     auto ctx = SkRPCtxUtils::Unpack(packed);
4116     I32* dst = (I32*)(base + ctx.dst);
4117     I32 value = I32_(ctx.value);
4118     dst[0] = value;
4119 }
STAGE_TAIL(splat_2_constants,SkRasterPipeline_ConstantCtx * packed)4120 STAGE_TAIL(splat_2_constants, SkRasterPipeline_ConstantCtx* packed) {
4121     auto ctx = SkRPCtxUtils::Unpack(packed);
4122     I32* dst = (I32*)(base + ctx.dst);
4123     I32 value = I32_(ctx.value);
4124     dst[0] = dst[1] = value;
4125 }
STAGE_TAIL(splat_3_constants,SkRasterPipeline_ConstantCtx * packed)4126 STAGE_TAIL(splat_3_constants, SkRasterPipeline_ConstantCtx* packed) {
4127     auto ctx = SkRPCtxUtils::Unpack(packed);
4128     I32* dst = (I32*)(base + ctx.dst);
4129     I32 value = I32_(ctx.value);
4130     dst[0] = dst[1] = dst[2] = value;
4131 }
STAGE_TAIL(splat_4_constants,SkRasterPipeline_ConstantCtx * packed)4132 STAGE_TAIL(splat_4_constants, SkRasterPipeline_ConstantCtx* packed) {
4133     auto ctx = SkRPCtxUtils::Unpack(packed);
4134     I32* dst = (I32*)(base + ctx.dst);
4135     I32 value = I32_(ctx.value);
4136     dst[0] = dst[1] = dst[2] = dst[3] = value;
4137 }
4138 
4139 template <int NumSlots>
copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4140 SI void copy_n_slots_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4141     auto ctx = SkRPCtxUtils::Unpack(packed);
4142     F* dst = (F*)(base + ctx.dst);
4143     F* src = (F*)(base + ctx.src);
4144     memcpy(dst, src, sizeof(F) * NumSlots);
4145 }
4146 
STAGE_TAIL(copy_slot_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4147 STAGE_TAIL(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4148     copy_n_slots_unmasked_fn<1>(packed, base);
4149 }
STAGE_TAIL(copy_2_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4150 STAGE_TAIL(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4151     copy_n_slots_unmasked_fn<2>(packed, base);
4152 }
STAGE_TAIL(copy_3_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4153 STAGE_TAIL(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4154     copy_n_slots_unmasked_fn<3>(packed, base);
4155 }
STAGE_TAIL(copy_4_slots_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4156 STAGE_TAIL(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4157     copy_n_slots_unmasked_fn<4>(packed, base);
4158 }
4159 
4160 template <int NumSlots>
copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4161 SI void copy_n_immutable_unmasked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4162     auto ctx = SkRPCtxUtils::Unpack(packed);
4163 
4164     // Load the scalar values.
4165     float* src = (float*)(base + ctx.src);
4166     float values[NumSlots];
4167     SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
4168         values[index] = src[index];
4169     }
4170     // Broadcast the scalars into the destination.
4171     F* dst = (F*)(base + ctx.dst);
4172     SK_UNROLL for (int index = 0; index < NumSlots; ++index) {
4173         dst[index] = F_(values[index]);
4174     }
4175 }
4176 
STAGE_TAIL(copy_immutable_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4177 STAGE_TAIL(copy_immutable_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4178     copy_n_immutable_unmasked_fn<1>(packed, base);
4179 }
STAGE_TAIL(copy_2_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4180 STAGE_TAIL(copy_2_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4181     copy_n_immutable_unmasked_fn<2>(packed, base);
4182 }
STAGE_TAIL(copy_3_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4183 STAGE_TAIL(copy_3_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4184     copy_n_immutable_unmasked_fn<3>(packed, base);
4185 }
STAGE_TAIL(copy_4_immutables_unmasked,SkRasterPipeline_BinaryOpCtx * packed)4186 STAGE_TAIL(copy_4_immutables_unmasked, SkRasterPipeline_BinaryOpCtx* packed) {
4187     copy_n_immutable_unmasked_fn<4>(packed, base);
4188 }
4189 
4190 template <int NumSlots>
copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base,I32 mask)4191 SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base, I32 mask) {
4192     auto ctx = SkRPCtxUtils::Unpack(packed);
4193     I32* dst = (I32*)(base + ctx.dst);
4194     I32* src = (I32*)(base + ctx.src);
4195     SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
4196         *dst = if_then_else(mask, *src, *dst);
4197         dst += 1;
4198         src += 1;
4199     }
4200 }
4201 
STAGE_TAIL(copy_slot_masked,SkRasterPipeline_BinaryOpCtx * packed)4202 STAGE_TAIL(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4203     copy_n_slots_masked_fn<1>(packed, base, execution_mask());
4204 }
STAGE_TAIL(copy_2_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4205 STAGE_TAIL(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4206     copy_n_slots_masked_fn<2>(packed, base, execution_mask());
4207 }
STAGE_TAIL(copy_3_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4208 STAGE_TAIL(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4209     copy_n_slots_masked_fn<3>(packed, base, execution_mask());
4210 }
STAGE_TAIL(copy_4_slots_masked,SkRasterPipeline_BinaryOpCtx * packed)4211 STAGE_TAIL(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* packed) {
4212     copy_n_slots_masked_fn<4>(packed, base, execution_mask());
4213 }
4214 
4215 template <int LoopCount, typename OffsetType>
shuffle_fn(std::byte * ptr,OffsetType * offsets,int numSlots)4216 SI void shuffle_fn(std::byte* ptr, OffsetType* offsets, int numSlots) {
4217     F scratch[16];
4218     SK_UNROLL for (int count = 0; count < LoopCount; ++count) {
4219         scratch[count] = *(F*)(ptr + offsets[count]);
4220     }
4221     // Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when
4222     // the number of slots is unknown at compile time, and generates roughly identical code when the
4223     // number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead
4224     // of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes
4225     // that `numSlots` could be arbitrarily large, and so it emits more code than we need.
4226     F* dst = (F*)ptr;
4227     switch (numSlots) {
4228         case 16: dst[15] = scratch[15]; [[fallthrough]];
4229         case 15: dst[14] = scratch[14]; [[fallthrough]];
4230         case 14: dst[13] = scratch[13]; [[fallthrough]];
4231         case 13: dst[12] = scratch[12]; [[fallthrough]];
4232         case 12: dst[11] = scratch[11]; [[fallthrough]];
4233         case 11: dst[10] = scratch[10]; [[fallthrough]];
4234         case 10: dst[ 9] = scratch[ 9]; [[fallthrough]];
4235         case  9: dst[ 8] = scratch[ 8]; [[fallthrough]];
4236         case  8: dst[ 7] = scratch[ 7]; [[fallthrough]];
4237         case  7: dst[ 6] = scratch[ 6]; [[fallthrough]];
4238         case  6: dst[ 5] = scratch[ 5]; [[fallthrough]];
4239         case  5: dst[ 4] = scratch[ 4]; [[fallthrough]];
4240         case  4: dst[ 3] = scratch[ 3]; [[fallthrough]];
4241         case  3: dst[ 2] = scratch[ 2]; [[fallthrough]];
4242         case  2: dst[ 1] = scratch[ 1]; [[fallthrough]];
4243         case  1: dst[ 0] = scratch[ 0];
4244     }
4245 }
4246 
4247 template <int N>
small_swizzle_fn(SkRasterPipeline_SwizzleCtx * packed,std::byte * base)4248 SI void small_swizzle_fn(SkRasterPipeline_SwizzleCtx* packed, std::byte* base) {
4249     auto ctx = SkRPCtxUtils::Unpack(packed);
4250     shuffle_fn<N>(base + ctx.dst, ctx.offsets, N);
4251 }
4252 
STAGE_TAIL(swizzle_1,SkRasterPipeline_SwizzleCtx * packed)4253 STAGE_TAIL(swizzle_1, SkRasterPipeline_SwizzleCtx* packed) {
4254     small_swizzle_fn<1>(packed, base);
4255 }
STAGE_TAIL(swizzle_2,SkRasterPipeline_SwizzleCtx * packed)4256 STAGE_TAIL(swizzle_2, SkRasterPipeline_SwizzleCtx* packed) {
4257     small_swizzle_fn<2>(packed, base);
4258 }
STAGE_TAIL(swizzle_3,SkRasterPipeline_SwizzleCtx * packed)4259 STAGE_TAIL(swizzle_3, SkRasterPipeline_SwizzleCtx* packed) {
4260     small_swizzle_fn<3>(packed, base);
4261 }
STAGE_TAIL(swizzle_4,SkRasterPipeline_SwizzleCtx * packed)4262 STAGE_TAIL(swizzle_4, SkRasterPipeline_SwizzleCtx* packed) {
4263     small_swizzle_fn<4>(packed, base);
4264 }
STAGE_TAIL(shuffle,SkRasterPipeline_ShuffleCtx * ctx)4265 STAGE_TAIL(shuffle, SkRasterPipeline_ShuffleCtx* ctx) {
4266     shuffle_fn<16>((std::byte*)ctx->ptr, ctx->offsets, ctx->count);
4267 }
4268 
4269 template <int NumSlots>
swizzle_copy_masked_fn(I32 * dst,const I32 * src,uint16_t * offsets,I32 mask)4270 SI void swizzle_copy_masked_fn(I32* dst, const I32* src, uint16_t* offsets, I32 mask) {
4271     std::byte* dstB = (std::byte*)dst;
4272     SK_UNROLL for (int count = 0; count < NumSlots; ++count) {
4273         I32* dstS = (I32*)(dstB + *offsets);
4274         *dstS = if_then_else(mask, *src, *dstS);
4275         offsets += 1;
4276         src     += 1;
4277     }
4278 }
4279 
STAGE_TAIL(swizzle_copy_slot_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4280 STAGE_TAIL(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4281     swizzle_copy_masked_fn<1>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4282 }
STAGE_TAIL(swizzle_copy_2_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4283 STAGE_TAIL(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4284     swizzle_copy_masked_fn<2>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4285 }
STAGE_TAIL(swizzle_copy_3_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4286 STAGE_TAIL(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4287     swizzle_copy_masked_fn<3>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4288 }
STAGE_TAIL(swizzle_copy_4_slots_masked,SkRasterPipeline_SwizzleCopyCtx * ctx)4289 STAGE_TAIL(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) {
4290     swizzle_copy_masked_fn<4>((I32*)ctx->dst, (const I32*)ctx->src, ctx->offsets, execution_mask());
4291 }
4292 
STAGE_TAIL(copy_from_indirect_unmasked,SkRasterPipeline_CopyIndirectCtx * ctx)4293 STAGE_TAIL(copy_from_indirect_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4294     // Clamp the indirect offsets to stay within the limit.
4295     U32 offsets = *(const U32*)ctx->indirectOffset;
4296     offsets = min(offsets, U32_(ctx->indirectLimit));
4297 
4298     // Scale up the offsets to account for the N lanes per value.
4299     offsets *= N;
4300 
4301     // Adjust the offsets forward so that they fetch from the correct lane.
4302     static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4303     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4304     offsets += sk_unaligned_load<U32>(iota);
4305 
4306     // Use gather to perform indirect lookups; write the results into `dst`.
4307     const int* src = ctx->src;
4308     I32*       dst = (I32*)ctx->dst;
4309     I32*       end = dst + ctx->slots;
4310     do {
4311         *dst = gather(src, offsets);
4312         dst += 1;
4313         src += N;
4314     } while (dst != end);
4315 }
4316 
STAGE_TAIL(copy_from_indirect_uniform_unmasked,SkRasterPipeline_CopyIndirectCtx * ctx)4317 STAGE_TAIL(copy_from_indirect_uniform_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4318     // Clamp the indirect offsets to stay within the limit.
4319     U32 offsets = *(const U32*)ctx->indirectOffset;
4320     offsets = min(offsets, U32_(ctx->indirectLimit));
4321 
4322     // Use gather to perform indirect lookups; write the results into `dst`.
4323     const int* src = ctx->src;
4324     I32*       dst = (I32*)ctx->dst;
4325     I32*       end = dst + ctx->slots;
4326     do {
4327         *dst = gather(src, offsets);
4328         dst += 1;
4329         src += 1;
4330     } while (dst != end);
4331 }
4332 
STAGE_TAIL(copy_to_indirect_masked,SkRasterPipeline_CopyIndirectCtx * ctx)4333 STAGE_TAIL(copy_to_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) {
4334     // Clamp the indirect offsets to stay within the limit.
4335     U32 offsets = *(const U32*)ctx->indirectOffset;
4336     offsets = min(offsets, U32_(ctx->indirectLimit));
4337 
4338     // Scale up the offsets to account for the N lanes per value.
4339     offsets *= N;
4340 
4341     // Adjust the offsets forward so that they store into the correct lane.
4342     static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4343     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4344     offsets += sk_unaligned_load<U32>(iota);
4345 
4346     // Perform indirect, masked writes into `dst`.
4347     const I32* src = (const I32*)ctx->src;
4348     const I32* end = src + ctx->slots;
4349     int*       dst = ctx->dst;
4350     I32        mask = execution_mask();
4351     do {
4352         scatter_masked(*src, dst, offsets, mask);
4353         dst += N;
4354         src += 1;
4355     } while (src != end);
4356 }
4357 
STAGE_TAIL(swizzle_copy_to_indirect_masked,SkRasterPipeline_SwizzleCopyIndirectCtx * ctx)4358 STAGE_TAIL(swizzle_copy_to_indirect_masked, SkRasterPipeline_SwizzleCopyIndirectCtx* ctx) {
4359     // Clamp the indirect offsets to stay within the limit.
4360     U32 offsets = *(const U32*)ctx->indirectOffset;
4361     offsets = min(offsets, U32_(ctx->indirectLimit));
4362 
4363     // Scale up the offsets to account for the N lanes per value.
4364     offsets *= N;
4365 
4366     // Adjust the offsets forward so that they store into the correct lane.
4367     static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
4368     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride_highp);
4369     offsets += sk_unaligned_load<U32>(iota);
4370 
4371     // Perform indirect, masked, swizzled writes into `dst`.
4372     const I32*      src   = (const I32*)ctx->src;
4373     const I32*      end   = src + ctx->slots;
4374     std::byte*      dstB    = (std::byte*)ctx->dst;
4375     const uint16_t* swizzle = ctx->offsets;
4376     I32             mask    = execution_mask();
4377     do {
4378         int* dst = (int*)(dstB + *swizzle);
4379         scatter_masked(*src, dst, offsets, mask);
4380         swizzle += 1;
4381         src     += 1;
4382     } while (src != end);
4383 }
4384 
4385 // Unary operations take a single input, and overwrite it with their output.
4386 // Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide
4387 // an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually.
4388 template <typename T, void (*ApplyFn)(T*)>
apply_adjacent_unary(T * dst,T * end)4389 SI void apply_adjacent_unary(T* dst, T* end) {
4390     do {
4391         ApplyFn(dst);
4392         dst += 1;
4393     } while (dst != end);
4394 }
4395 
4396 #if defined(SKRP_CPU_SCALAR)
4397 template <typename T>
cast_to_float_from_fn(T * dst)4398 SI void cast_to_float_from_fn(T* dst) {
4399     *dst = sk_bit_cast<T>((F)*dst);
4400 }
cast_to_int_from_fn(F * dst)4401 SI void cast_to_int_from_fn(F* dst) {
4402     *dst = sk_bit_cast<F>((I32)*dst);
4403 }
cast_to_uint_from_fn(F * dst)4404 SI void cast_to_uint_from_fn(F* dst) {
4405     *dst = sk_bit_cast<F>((U32)*dst);
4406 }
4407 #else
4408 template <typename T>
cast_to_float_from_fn(T * dst)4409 SI void cast_to_float_from_fn(T* dst) {
4410     *dst = sk_bit_cast<T>(__builtin_convertvector(*dst, F));
4411 }
cast_to_int_from_fn(F * dst)4412 SI void cast_to_int_from_fn(F* dst) {
4413     *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, I32));
4414 }
cast_to_uint_from_fn(F * dst)4415 SI void cast_to_uint_from_fn(F* dst) {
4416     *dst = sk_bit_cast<F>(__builtin_convertvector(*dst, U32));
4417 }
4418 #endif
4419 
abs_fn(I32 * dst)4420 SI void abs_fn(I32* dst) {
4421     *dst = abs_(*dst);
4422 }
4423 
floor_fn(F * dst)4424 SI void floor_fn(F* dst) {
4425     *dst = floor_(*dst);
4426 }
4427 
ceil_fn(F * dst)4428 SI void ceil_fn(F* dst) {
4429     *dst = ceil_(*dst);
4430 }
4431 
invsqrt_fn(F * dst)4432 SI void invsqrt_fn(F* dst) {
4433     *dst = rsqrt(*dst);
4434 }
4435 
4436 #define DECLARE_UNARY_FLOAT(name)                                                              \
4437     STAGE_TAIL(name##_float, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 1); }    \
4438     STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 2); } \
4439     STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 3); } \
4440     STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 4); }
4441 
4442 #define DECLARE_UNARY_INT(name)                                                                  \
4443     STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 1); }    \
4444     STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 2); } \
4445     STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 3); } \
4446     STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 4); }
4447 
4448 #define DECLARE_UNARY_UINT(name)                                                                  \
4449     STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 1); }    \
4450     STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 2); } \
4451     STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 3); } \
4452     STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 4); }
4453 
DECLARE_UNARY_UINT(cast_to_float_from)4454 DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from)
4455 DECLARE_UNARY_FLOAT(cast_to_int_from)
4456 DECLARE_UNARY_FLOAT(cast_to_uint_from)
4457 DECLARE_UNARY_FLOAT(floor)
4458 DECLARE_UNARY_FLOAT(ceil)
4459 DECLARE_UNARY_FLOAT(invsqrt)
4460 DECLARE_UNARY_INT(abs)
4461 
4462 #undef DECLARE_UNARY_FLOAT
4463 #undef DECLARE_UNARY_INT
4464 #undef DECLARE_UNARY_UINT
4465 
4466 // For complex unary ops, we only provide a 1-slot version to reduce code bloat.
4467 STAGE_TAIL(sin_float, F* dst)  { *dst = sin_(*dst); }
STAGE_TAIL(cos_float,F * dst)4468 STAGE_TAIL(cos_float, F* dst)  { *dst = cos_(*dst); }
STAGE_TAIL(tan_float,F * dst)4469 STAGE_TAIL(tan_float, F* dst)  { *dst = tan_(*dst); }
STAGE_TAIL(asin_float,F * dst)4470 STAGE_TAIL(asin_float, F* dst) { *dst = asin_(*dst); }
STAGE_TAIL(acos_float,F * dst)4471 STAGE_TAIL(acos_float, F* dst) { *dst = acos_(*dst); }
STAGE_TAIL(atan_float,F * dst)4472 STAGE_TAIL(atan_float, F* dst) { *dst = atan_(*dst); }
STAGE_TAIL(sqrt_float,F * dst)4473 STAGE_TAIL(sqrt_float, F* dst) { *dst = sqrt_(*dst); }
STAGE_TAIL(exp_float,F * dst)4474 STAGE_TAIL(exp_float, F* dst)  { *dst = approx_exp(*dst); }
STAGE_TAIL(exp2_float,F * dst)4475 STAGE_TAIL(exp2_float, F* dst) { *dst = approx_pow2(*dst); }
STAGE_TAIL(log_float,F * dst)4476 STAGE_TAIL(log_float, F* dst)  { *dst = approx_log(*dst); }
STAGE_TAIL(log2_float,F * dst)4477 STAGE_TAIL(log2_float, F* dst) { *dst = approx_log2(*dst); }
4478 
STAGE_TAIL(inverse_mat2,F * dst)4479 STAGE_TAIL(inverse_mat2, F* dst) {
4480     F a00 = dst[0], a01 = dst[1],
4481       a10 = dst[2], a11 = dst[3];
4482     F det = nmad(a01, a10, a00 * a11),
4483       invdet = rcp_precise(det);
4484     dst[0] =  invdet * a11;
4485     dst[1] = -invdet * a01;
4486     dst[2] = -invdet * a10;
4487     dst[3] =  invdet * a00;
4488 }
4489 
STAGE_TAIL(inverse_mat3,F * dst)4490 STAGE_TAIL(inverse_mat3, F* dst) {
4491     F a00 = dst[0], a01 = dst[1], a02 = dst[2],
4492       a10 = dst[3], a11 = dst[4], a12 = dst[5],
4493       a20 = dst[6], a21 = dst[7], a22 = dst[8];
4494     F b01 = nmad(a12, a21, a22 * a11),
4495       b11 = nmad(a22, a10, a12 * a20),
4496       b21 = nmad(a11, a20, a21 * a10);
4497     F det = mad(a00, b01, mad(a01, b11, a02 * b21)),
4498       invdet = rcp_precise(det);
4499     dst[0] = invdet * b01;
4500     dst[1] = invdet * nmad(a22, a01, a02 * a21);
4501     dst[2] = invdet * nmad(a02, a11, a12 * a01);
4502     dst[3] = invdet * b11;
4503     dst[4] = invdet * nmad(a02, a20, a22 * a00);
4504     dst[5] = invdet * nmad(a12, a00, a02 * a10);
4505     dst[6] = invdet * b21;
4506     dst[7] = invdet * nmad(a21, a00, a01 * a20);
4507     dst[8] = invdet * nmad(a01, a10, a11 * a00);
4508 }
4509 
STAGE_TAIL(inverse_mat4,F * dst)4510 STAGE_TAIL(inverse_mat4, F* dst) {
4511     F a00 = dst[0],  a01 = dst[1],  a02 = dst[2],  a03 = dst[3],
4512       a10 = dst[4],  a11 = dst[5],  a12 = dst[6],  a13 = dst[7],
4513       a20 = dst[8],  a21 = dst[9],  a22 = dst[10], a23 = dst[11],
4514       a30 = dst[12], a31 = dst[13], a32 = dst[14], a33 = dst[15];
4515     F b00 = nmad(a01, a10, a00 * a11),
4516       b01 = nmad(a02, a10, a00 * a12),
4517       b02 = nmad(a03, a10, a00 * a13),
4518       b03 = nmad(a02, a11, a01 * a12),
4519       b04 = nmad(a03, a11, a01 * a13),
4520       b05 = nmad(a03, a12, a02 * a13),
4521       b06 = nmad(a21, a30, a20 * a31),
4522       b07 = nmad(a22, a30, a20 * a32),
4523       b08 = nmad(a23, a30, a20 * a33),
4524       b09 = nmad(a22, a31, a21 * a32),
4525       b10 = nmad(a23, a31, a21 * a33),
4526       b11 = nmad(a23, a32, a22 * a33),
4527       det = mad(b00, b11, b05 * b06) + mad(b02, b09, b03 * b08) - mad(b01, b10, b04 * b07),
4528       invdet = rcp_precise(det);
4529     b00 *= invdet;
4530     b01 *= invdet;
4531     b02 *= invdet;
4532     b03 *= invdet;
4533     b04 *= invdet;
4534     b05 *= invdet;
4535     b06 *= invdet;
4536     b07 *= invdet;
4537     b08 *= invdet;
4538     b09 *= invdet;
4539     b10 *= invdet;
4540     b11 *= invdet;
4541     dst[0]  =  mad(a13, b09, nmad(a12, b10, a11*b11));
4542     dst[1]  = nmad(a03, b09, nmad(a01, b11, a02*b10));
4543     dst[2]  =  mad(a33, b03, nmad(a32, b04, a31*b05));
4544     dst[3]  = nmad(a23, b03, nmad(a21, b05, a22*b04));
4545     dst[4]  = nmad(a13, b07, nmad(a10, b11, a12*b08));
4546     dst[5]  =  mad(a03, b07, nmad(a02, b08, a00*b11));
4547     dst[6]  = nmad(a33, b01, nmad(a30, b05, a32*b02));
4548     dst[7]  =  mad(a23, b01, nmad(a22, b02, a20*b05));
4549     dst[8]  =  mad(a13, b06, nmad(a11, b08, a10*b10));
4550     dst[9]  = nmad(a03, b06, nmad(a00, b10, a01*b08));
4551     dst[10] =  mad(a33, b00, nmad(a31, b02, a30*b04));
4552     dst[11] = nmad(a23, b00, nmad(a20, b04, a21*b02));
4553     dst[12] = nmad(a12, b06, nmad(a10, b09, a11*b07));
4554     dst[13] =  mad(a02, b06, nmad(a01, b07, a00*b09));
4555     dst[14] = nmad(a32, b00, nmad(a30, b03, a31*b01));
4556     dst[15] =  mad(a22, b00, nmad(a21, b01, a20*b03));
4557 }
4558 
4559 // Binary operations take two adjacent inputs, and write their output in the first position.
4560 template <typename T, void (*ApplyFn)(T*, T*)>
apply_adjacent_binary(T * dst,T * src)4561 SI void apply_adjacent_binary(T* dst, T* src) {
4562     T* end = src;
4563     do {
4564         ApplyFn(dst, src);
4565         dst += 1;
4566         src += 1;
4567     } while (dst != end);
4568 }
4569 
4570 template <typename T, void (*ApplyFn)(T*, T*)>
apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx * packed,std::byte * base)4571 SI void apply_adjacent_binary_packed(SkRasterPipeline_BinaryOpCtx* packed, std::byte* base) {
4572     auto ctx = SkRPCtxUtils::Unpack(packed);
4573     std::byte* dst = base + ctx.dst;
4574     std::byte* src = base + ctx.src;
4575     apply_adjacent_binary<T, ApplyFn>((T*)dst, (T*)src);
4576 }
4577 
4578 template <int N, typename V, typename S, void (*ApplyFn)(V*, V*)>
apply_binary_immediate(SkRasterPipeline_ConstantCtx * packed,std::byte * base)4579 SI void apply_binary_immediate(SkRasterPipeline_ConstantCtx* packed, std::byte* base) {
4580     auto ctx = SkRPCtxUtils::Unpack(packed);
4581     V* dst = (V*)(base + ctx.dst);         // get a pointer to the destination
4582     S scalar = sk_bit_cast<S>(ctx.value);  // bit-pun the constant value as desired
4583     V src = scalar - V();                  // broadcast the constant value into a vector
4584     SK_UNROLL for (int index = 0; index < N; ++index) {
4585         ApplyFn(dst, &src);                // perform the operation
4586         dst += 1;
4587     }
4588 }
4589 
4590 template <typename T>
add_fn(T * dst,T * src)4591 SI void add_fn(T* dst, T* src) {
4592     *dst += *src;
4593 }
4594 
4595 template <typename T>
sub_fn(T * dst,T * src)4596 SI void sub_fn(T* dst, T* src) {
4597     *dst -= *src;
4598 }
4599 
4600 template <typename T>
mul_fn(T * dst,T * src)4601 SI void mul_fn(T* dst, T* src) {
4602     *dst *= *src;
4603 }
4604 
4605 template <typename T>
div_fn(T * dst,T * src)4606 SI void div_fn(T* dst, T* src) {
4607     T divisor = *src;
4608     if constexpr (!std::is_same_v<T, F>) {
4609         // We will crash if we integer-divide against zero. Convert 0 to ~0 to avoid this.
4610         divisor |= (T)cond_to_mask(divisor == 0);
4611     }
4612     *dst /= divisor;
4613 }
4614 
bitwise_and_fn(I32 * dst,I32 * src)4615 SI void bitwise_and_fn(I32* dst, I32* src) {
4616     *dst &= *src;
4617 }
4618 
bitwise_or_fn(I32 * dst,I32 * src)4619 SI void bitwise_or_fn(I32* dst, I32* src) {
4620     *dst |= *src;
4621 }
4622 
bitwise_xor_fn(I32 * dst,I32 * src)4623 SI void bitwise_xor_fn(I32* dst, I32* src) {
4624     *dst ^= *src;
4625 }
4626 
4627 template <typename T>
max_fn(T * dst,T * src)4628 SI void max_fn(T* dst, T* src) {
4629     *dst = max(*dst, *src);
4630 }
4631 
4632 template <typename T>
min_fn(T * dst,T * src)4633 SI void min_fn(T* dst, T* src) {
4634     *dst = min(*dst, *src);
4635 }
4636 
4637 template <typename T>
cmplt_fn(T * dst,T * src)4638 SI void cmplt_fn(T* dst, T* src) {
4639     static_assert(sizeof(T) == sizeof(I32));
4640     I32 result = cond_to_mask(*dst < *src);
4641     memcpy(dst, &result, sizeof(I32));
4642 }
4643 
4644 template <typename T>
cmple_fn(T * dst,T * src)4645 SI void cmple_fn(T* dst, T* src) {
4646     static_assert(sizeof(T) == sizeof(I32));
4647     I32 result = cond_to_mask(*dst <= *src);
4648     memcpy(dst, &result, sizeof(I32));
4649 }
4650 
4651 template <typename T>
cmpeq_fn(T * dst,T * src)4652 SI void cmpeq_fn(T* dst, T* src) {
4653     static_assert(sizeof(T) == sizeof(I32));
4654     I32 result = cond_to_mask(*dst == *src);
4655     memcpy(dst, &result, sizeof(I32));
4656 }
4657 
4658 template <typename T>
cmpne_fn(T * dst,T * src)4659 SI void cmpne_fn(T* dst, T* src) {
4660     static_assert(sizeof(T) == sizeof(I32));
4661     I32 result = cond_to_mask(*dst != *src);
4662     memcpy(dst, &result, sizeof(I32));
4663 }
4664 
atan2_fn(F * dst,F * src)4665 SI void atan2_fn(F* dst, F* src) {
4666     *dst = atan2_(*dst, *src);
4667 }
4668 
pow_fn(F * dst,F * src)4669 SI void pow_fn(F* dst, F* src) {
4670     *dst = approx_powf(*dst, *src);
4671 }
4672 
mod_fn(F * dst,F * src)4673 SI void mod_fn(F* dst, F* src) {
4674     *dst = nmad(*src, floor_(*dst / *src), *dst);
4675 }
4676 
4677 #define DECLARE_N_WAY_BINARY_FLOAT(name)                                \
4678     STAGE_TAIL(name##_n_floats, SkRasterPipeline_BinaryOpCtx* packed) { \
4679         apply_adjacent_binary_packed<F, &name##_fn>(packed, base);      \
4680     }
4681 
4682 #define DECLARE_BINARY_FLOAT(name)                                                              \
4683     STAGE_TAIL(name##_float, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 1); }    \
4684     STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 2); } \
4685     STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 3); } \
4686     STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 4); } \
4687     DECLARE_N_WAY_BINARY_FLOAT(name)
4688 
4689 #define DECLARE_N_WAY_BINARY_INT(name)                                \
4690     STAGE_TAIL(name##_n_ints, SkRasterPipeline_BinaryOpCtx* packed) { \
4691         apply_adjacent_binary_packed<I32, &name##_fn>(packed, base);  \
4692     }
4693 
4694 #define DECLARE_BINARY_INT(name)                                                                  \
4695     STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 1); }    \
4696     STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 2); } \
4697     STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 3); } \
4698     STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 4); } \
4699     DECLARE_N_WAY_BINARY_INT(name)
4700 
4701 #define DECLARE_N_WAY_BINARY_UINT(name)                                \
4702     STAGE_TAIL(name##_n_uints, SkRasterPipeline_BinaryOpCtx* packed) { \
4703         apply_adjacent_binary_packed<U32, &name##_fn>(packed, base);   \
4704     }
4705 
4706 #define DECLARE_BINARY_UINT(name)                                                                  \
4707     STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 1); }    \
4708     STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 2); } \
4709     STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 3); } \
4710     STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 4); } \
4711     DECLARE_N_WAY_BINARY_UINT(name)
4712 
4713 // Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a
4714 // two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.)
DECLARE_BINARY_INT(add)4715 DECLARE_BINARY_FLOAT(add)    DECLARE_BINARY_INT(add)
4716 DECLARE_BINARY_FLOAT(sub)    DECLARE_BINARY_INT(sub)
4717 DECLARE_BINARY_FLOAT(mul)    DECLARE_BINARY_INT(mul)
4718 DECLARE_BINARY_FLOAT(div)    DECLARE_BINARY_INT(div)    DECLARE_BINARY_UINT(div)
4719                              DECLARE_BINARY_INT(bitwise_and)
4720                              DECLARE_BINARY_INT(bitwise_or)
4721                              DECLARE_BINARY_INT(bitwise_xor)
4722 DECLARE_BINARY_FLOAT(mod)
4723 DECLARE_BINARY_FLOAT(min)    DECLARE_BINARY_INT(min)    DECLARE_BINARY_UINT(min)
4724 DECLARE_BINARY_FLOAT(max)    DECLARE_BINARY_INT(max)    DECLARE_BINARY_UINT(max)
4725 DECLARE_BINARY_FLOAT(cmplt)  DECLARE_BINARY_INT(cmplt)  DECLARE_BINARY_UINT(cmplt)
4726 DECLARE_BINARY_FLOAT(cmple)  DECLARE_BINARY_INT(cmple)  DECLARE_BINARY_UINT(cmple)
4727 DECLARE_BINARY_FLOAT(cmpeq)  DECLARE_BINARY_INT(cmpeq)
4728 DECLARE_BINARY_FLOAT(cmpne)  DECLARE_BINARY_INT(cmpne)
4729 
4730 // Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated
4731 // 1-4 slot versions.
4732 DECLARE_N_WAY_BINARY_FLOAT(atan2)
4733 DECLARE_N_WAY_BINARY_FLOAT(pow)
4734 
4735 // Some ops have an optimized version when the right-side is an immediate value.
4736 #define DECLARE_IMM_BINARY_FLOAT(name)                                   \
4737     STAGE_TAIL(name##_imm_float, SkRasterPipeline_ConstantCtx* packed) { \
4738         apply_binary_immediate<1, F, float, &name##_fn>(packed, base);   \
4739     }
4740 #define DECLARE_IMM_BINARY_INT(name)                                       \
4741     STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) {     \
4742         apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
4743     }
4744 #define DECLARE_MULTI_IMM_BINARY_INT(name)                                 \
4745     STAGE_TAIL(name##_imm_int, SkRasterPipeline_ConstantCtx* packed) {     \
4746         apply_binary_immediate<1, I32, int32_t, &name##_fn>(packed, base); \
4747     }                                                                      \
4748     STAGE_TAIL(name##_imm_2_ints, SkRasterPipeline_ConstantCtx* packed) {  \
4749         apply_binary_immediate<2, I32, int32_t, &name##_fn>(packed, base); \
4750     }                                                                      \
4751     STAGE_TAIL(name##_imm_3_ints, SkRasterPipeline_ConstantCtx* packed) {  \
4752         apply_binary_immediate<3, I32, int32_t, &name##_fn>(packed, base); \
4753     }                                                                      \
4754     STAGE_TAIL(name##_imm_4_ints, SkRasterPipeline_ConstantCtx* packed) {  \
4755         apply_binary_immediate<4, I32, int32_t, &name##_fn>(packed, base); \
4756     }
4757 #define DECLARE_IMM_BINARY_UINT(name)                                       \
4758     STAGE_TAIL(name##_imm_uint, SkRasterPipeline_ConstantCtx* packed) {     \
4759         apply_binary_immediate<1, U32, uint32_t, &name##_fn>(packed, base); \
4760     }
4761 
4762 DECLARE_IMM_BINARY_FLOAT(add)   DECLARE_IMM_BINARY_INT(add)
4763 DECLARE_IMM_BINARY_FLOAT(mul)   DECLARE_IMM_BINARY_INT(mul)
4764                                 DECLARE_MULTI_IMM_BINARY_INT(bitwise_and)
4765                                 DECLARE_IMM_BINARY_FLOAT(max)
4766                                 DECLARE_IMM_BINARY_FLOAT(min)
4767                                 DECLARE_IMM_BINARY_INT(bitwise_xor)
4768 DECLARE_IMM_BINARY_FLOAT(cmplt) DECLARE_IMM_BINARY_INT(cmplt) DECLARE_IMM_BINARY_UINT(cmplt)
4769 DECLARE_IMM_BINARY_FLOAT(cmple) DECLARE_IMM_BINARY_INT(cmple) DECLARE_IMM_BINARY_UINT(cmple)
4770 DECLARE_IMM_BINARY_FLOAT(cmpeq) DECLARE_IMM_BINARY_INT(cmpeq)
4771 DECLARE_IMM_BINARY_FLOAT(cmpne) DECLARE_IMM_BINARY_INT(cmpne)
4772 
4773 #undef DECLARE_MULTI_IMM_BINARY_INT
4774 #undef DECLARE_IMM_BINARY_FLOAT
4775 #undef DECLARE_IMM_BINARY_INT
4776 #undef DECLARE_IMM_BINARY_UINT
4777 #undef DECLARE_BINARY_FLOAT
4778 #undef DECLARE_BINARY_INT
4779 #undef DECLARE_BINARY_UINT
4780 #undef DECLARE_N_WAY_BINARY_FLOAT
4781 #undef DECLARE_N_WAY_BINARY_INT
4782 #undef DECLARE_N_WAY_BINARY_UINT
4783 
4784 // Dots can be represented with multiply and add ops, but they are so foundational that it's worth
4785 // having dedicated ops.
4786 STAGE_TAIL(dot_2_floats, F* dst) {
4787     dst[0] = mad(dst[0],  dst[2],
4788                  dst[1] * dst[3]);
4789 }
4790 
STAGE_TAIL(dot_3_floats,F * dst)4791 STAGE_TAIL(dot_3_floats, F* dst) {
4792     dst[0] = mad(dst[0],  dst[3],
4793              mad(dst[1],  dst[4],
4794                  dst[2] * dst[5]));
4795 }
4796 
STAGE_TAIL(dot_4_floats,F * dst)4797 STAGE_TAIL(dot_4_floats, F* dst) {
4798     dst[0] = mad(dst[0],  dst[4],
4799              mad(dst[1],  dst[5],
4800              mad(dst[2],  dst[6],
4801                  dst[3] * dst[7])));
4802 }
4803 
4804 // MxM, VxM and MxV multiplication all use matrix_multiply. Vectors are treated like a matrix with a
4805 // single column or row.
4806 template <int N>
matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx * packed,std::byte * base)4807 SI void matrix_multiply(SkRasterPipeline_MatrixMultiplyCtx* packed, std::byte* base) {
4808     auto ctx = SkRPCtxUtils::Unpack(packed);
4809 
4810     int outColumns   = ctx.rightColumns,
4811         outRows      = ctx.leftRows;
4812 
4813     SkASSERT(outColumns >= 1);
4814     SkASSERT(outRows    >= 1);
4815     SkASSERT(outColumns <= 4);
4816     SkASSERT(outRows    <= 4);
4817 
4818     SkASSERT(ctx.leftColumns == ctx.rightRows);
4819     SkASSERT(N == ctx.leftColumns);  // N should match the result width
4820 
4821 #if !defined(SKRP_CPU_SCALAR)
4822     // This prevents Clang from generating early-out checks for zero-sized matrices.
4823     SK_ASSUME(outColumns >= 1);
4824     SK_ASSUME(outRows    >= 1);
4825     SK_ASSUME(outColumns <= 4);
4826     SK_ASSUME(outRows    <= 4);
4827 #endif
4828 
4829     // Get pointers to the adjacent left- and right-matrices.
4830     F* resultMtx  = (F*)(base + ctx.dst);
4831     F* leftMtx    = &resultMtx[ctx.rightColumns * ctx.leftRows];
4832     F* rightMtx   = &leftMtx[N * ctx.leftRows];
4833 
4834     // Emit each matrix element.
4835     for (int c = 0; c < outColumns; ++c) {
4836         for (int r = 0; r < outRows; ++r) {
4837             // Dot a vector from leftMtx[*][r] with rightMtx[c][*].
4838             F* leftRow     = &leftMtx [r];
4839             F* rightColumn = &rightMtx[c * N];
4840 
4841             F element = *leftRow * *rightColumn;
4842             for (int idx = 1; idx < N; ++idx) {
4843                 leftRow     += outRows;
4844                 rightColumn += 1;
4845                 element = mad(*leftRow, *rightColumn, element);
4846             }
4847 
4848             *resultMtx++ = element;
4849         }
4850     }
4851 }
4852 
STAGE_TAIL(matrix_multiply_2,SkRasterPipeline_MatrixMultiplyCtx * packed)4853 STAGE_TAIL(matrix_multiply_2, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4854     matrix_multiply<2>(packed, base);
4855 }
4856 
STAGE_TAIL(matrix_multiply_3,SkRasterPipeline_MatrixMultiplyCtx * packed)4857 STAGE_TAIL(matrix_multiply_3, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4858     matrix_multiply<3>(packed, base);
4859 }
4860 
STAGE_TAIL(matrix_multiply_4,SkRasterPipeline_MatrixMultiplyCtx * packed)4861 STAGE_TAIL(matrix_multiply_4, SkRasterPipeline_MatrixMultiplyCtx* packed) {
4862     matrix_multiply<4>(packed, base);
4863 }
4864 
4865 // Refract always operates on 4-wide incident and normal vectors; for narrower inputs, the code
4866 // generator fills in the input columns with zero, and discards the extra output columns.
STAGE_TAIL(refract_4_floats,F * dst)4867 STAGE_TAIL(refract_4_floats, F* dst) {
4868     // Algorithm adapted from https://registry.khronos.org/OpenGL-Refpages/gl4/html/refract.xhtml
4869     F *incident = dst + 0;
4870     F *normal = dst + 4;
4871     F eta = dst[8];
4872 
4873     F dotNI = mad(normal[0],  incident[0],
4874               mad(normal[1],  incident[1],
4875               mad(normal[2],  incident[2],
4876                   normal[3] * incident[3])));
4877 
4878     F k = 1.0 - eta * eta * (1.0 - dotNI * dotNI);
4879     F sqrt_k = sqrt_(k);
4880 
4881     for (int idx = 0; idx < 4; ++idx) {
4882         dst[idx] = if_then_else(k >= 0,
4883                                 eta * incident[idx] - (eta * dotNI + sqrt_k) * normal[idx],
4884                                 0.0);
4885     }
4886 }
4887 
4888 // Ternary operations work like binary ops (see immediately above) but take two source inputs.
4889 template <typename T, void (*ApplyFn)(T*, T*, T*)>
apply_adjacent_ternary(T * dst,T * src0,T * src1)4890 SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) {
4891     int count = src0 - dst;
4892 #if !defined(SKRP_CPU_SCALAR)
4893     SK_ASSUME(count >= 1);
4894 #endif
4895 
4896     for (int index = 0; index < count; ++index) {
4897         ApplyFn(dst, src0, src1);
4898         dst += 1;
4899         src0 += 1;
4900         src1 += 1;
4901     }
4902 }
4903 
4904 template <typename T, void (*ApplyFn)(T*, T*, T*)>
apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx * packed,std::byte * base)4905 SI void apply_adjacent_ternary_packed(SkRasterPipeline_TernaryOpCtx* packed, std::byte* base) {
4906     auto ctx = SkRPCtxUtils::Unpack(packed);
4907     std::byte* dst  = base + ctx.dst;
4908     std::byte* src0 = dst  + ctx.delta;
4909     std::byte* src1 = src0 + ctx.delta;
4910     apply_adjacent_ternary<T, ApplyFn>((T*)dst, (T*)src0, (T*)src1);
4911 }
4912 
mix_fn(F * a,F * x,F * y)4913 SI void mix_fn(F* a, F* x, F* y) {
4914     // We reorder the arguments here to match lerp's GLSL-style order (interpolation point last).
4915     *a = lerp(*x, *y, *a);
4916 }
4917 
mix_fn(I32 * a,I32 * x,I32 * y)4918 SI void mix_fn(I32* a, I32* x, I32* y) {
4919     // We reorder the arguments here to match if_then_else's expected order (y before x).
4920     *a = if_then_else(*a, *y, *x);
4921 }
4922 
smoothstep_fn(F * edge0,F * edge1,F * x)4923 SI void smoothstep_fn(F* edge0, F* edge1, F* x) {
4924     F t = clamp_01_((*x - *edge0) / (*edge1 - *edge0));
4925     *edge0 = t * t * (3.0 - 2.0 * t);
4926 }
4927 
4928 #define DECLARE_N_WAY_TERNARY_FLOAT(name)                                \
4929     STAGE_TAIL(name##_n_floats, SkRasterPipeline_TernaryOpCtx* packed) { \
4930         apply_adjacent_ternary_packed<F, &name##_fn>(packed, base);      \
4931     }
4932 
4933 #define DECLARE_TERNARY_FLOAT(name)                                                           \
4934     STAGE_TAIL(name##_float, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+1, p+2); }    \
4935     STAGE_TAIL(name##_2_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+2, p+4); } \
4936     STAGE_TAIL(name##_3_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+3, p+6); } \
4937     STAGE_TAIL(name##_4_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+4, p+8); } \
4938     DECLARE_N_WAY_TERNARY_FLOAT(name)
4939 
4940 #define DECLARE_TERNARY_INT(name)                                                               \
4941     STAGE_TAIL(name##_int, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+1, p+2); }    \
4942     STAGE_TAIL(name##_2_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+2, p+4); } \
4943     STAGE_TAIL(name##_3_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+3, p+6); } \
4944     STAGE_TAIL(name##_4_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+4, p+8); } \
4945     STAGE_TAIL(name##_n_ints, SkRasterPipeline_TernaryOpCtx* packed) {                          \
4946         apply_adjacent_ternary_packed<I32, &name##_fn>(packed, base);                           \
4947     }
4948 
4949 DECLARE_N_WAY_TERNARY_FLOAT(smoothstep)
DECLARE_TERNARY_FLOAT(mix)4950 DECLARE_TERNARY_FLOAT(mix)
4951 DECLARE_TERNARY_INT(mix)
4952 
4953 #undef DECLARE_N_WAY_TERNARY_FLOAT
4954 #undef DECLARE_TERNARY_FLOAT
4955 #undef DECLARE_TERNARY_INT
4956 
4957 STAGE(gauss_a_to_rgba, NoCtx) {
4958     // x = 1 - x;
4959     // exp(-x * x * 4) - 0.018f;
4960     // ... now approximate with quartic
4961     //
4962     const float c4 = -2.26661229133605957031f;
4963     const float c3 = 2.89795351028442382812f;
4964     const float c2 = 0.21345567703247070312f;
4965     const float c1 = 0.15489584207534790039f;
4966     const float c0 = 0.00030726194381713867f;
4967     a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
4968     r = a;
4969     g = a;
4970     b = a;
4971 }
4972 
4973 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bilerp_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)4974 STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
4975     // (cx,cy) are the center of our sample.
4976     F cx = r,
4977       cy = g;
4978 
4979     // All sample points are at the same fractional offset (fx,fy).
4980     // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
4981     F fx = fract(cx + 0.5f),
4982       fy = fract(cy + 0.5f);
4983 
4984     // We'll accumulate the color of all four samples into {r,g,b,a} directly.
4985     r = g = b = a = F0;
4986 
4987     for (float py = -0.5f; py <= +0.5f; py += 1.0f)
4988     for (float px = -0.5f; px <= +0.5f; px += 1.0f) {
4989         // (x,y) are the coordinates of this sample point.
4990         F x = cx + px,
4991           y = cy + py;
4992 
4993         // ix_and_ptr() will clamp to the image's bounds for us.
4994         const uint32_t* ptr;
4995         U32 ix = ix_and_ptr(&ptr, ctx, x,y);
4996 
4997         F sr,sg,sb,sa;
4998         from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
4999 
5000         // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
5001         // are combined in direct proportion to their area overlapping that logical query pixel.
5002         // At positive offsets, the x-axis contribution to that rectangle is fx,
5003         // or (1-fx) at negative x.  Same deal for y.
5004         F sx = (px > 0) ? fx : 1.0f - fx,
5005           sy = (py > 0) ? fy : 1.0f - fy,
5006           area = sx * sy;
5007 
5008         r += sr * area;
5009         g += sg * area;
5010         b += sb * area;
5011         a += sa * area;
5012     }
5013 }
5014 
5015 // A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bicubic_clamp_8888,const SkRasterPipeline_GatherCtx * ctx)5016 STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
5017     // (cx,cy) are the center of our sample.
5018     F cx = r,
5019       cy = g;
5020 
5021     // All sample points are at the same fractional offset (fx,fy).
5022     // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
5023     F fx = fract(cx + 0.5f),
5024       fy = fract(cy + 0.5f);
5025 
5026     // We'll accumulate the color of all four samples into {r,g,b,a} directly.
5027     r = g = b = a = F0;
5028 
5029     const float* w = ctx->weights;
5030     const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]),
5031                          bicubic_wts(fy, w[1], w[5], w[ 9], w[13]),
5032                          bicubic_wts(fy, w[2], w[6], w[10], w[14]),
5033                          bicubic_wts(fy, w[3], w[7], w[11], w[15])};
5034     const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]),
5035                          bicubic_wts(fx, w[1], w[5], w[ 9], w[13]),
5036                          bicubic_wts(fx, w[2], w[6], w[10], w[14]),
5037                          bicubic_wts(fx, w[3], w[7], w[11], w[15])};
5038 
5039     F sample_y = cy - 1.5f;
5040     for (int yy = 0; yy <= 3; ++yy) {
5041         F sample_x = cx - 1.5f;
5042         for (int xx = 0; xx <= 3; ++xx) {
5043             F scale = scalex[xx] * scaley[yy];
5044 
5045             // ix_and_ptr() will clamp to the image's bounds for us.
5046             const uint32_t* ptr;
5047             U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
5048 
5049             F sr,sg,sb,sa;
5050             from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
5051 
5052             r = mad(scale, sr, r);
5053             g = mad(scale, sg, g);
5054             b = mad(scale, sb, b);
5055             a = mad(scale, sa, a);
5056 
5057             sample_x += 1;
5058         }
5059         sample_y += 1;
5060     }
5061 }
5062 
5063 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
5064 
STAGE(swizzle,void * ctx)5065 STAGE(swizzle, void* ctx) {
5066     auto ir = r, ig = g, ib = b, ia = a;
5067     F* o[] = {&r, &g, &b, &a};
5068     char swiz[4];
5069     memcpy(swiz, &ctx, sizeof(swiz));
5070 
5071     for (int i = 0; i < 4; ++i) {
5072         switch (swiz[i]) {
5073             case 'r': *o[i] = ir; break;
5074             case 'g': *o[i] = ig; break;
5075             case 'b': *o[i] = ib; break;
5076             case 'a': *o[i] = ia; break;
5077             case '0': *o[i] = F0; break;
5078             case '1': *o[i] = F1; break;
5079             default:              break;
5080         }
5081     }
5082 }
5083 
5084 namespace lowp {
5085 #if defined(SKRP_CPU_SCALAR) || defined(SK_ENABLE_OPTIMIZE_SIZE) || \
5086         defined(SK_BUILD_FOR_GOOGLE3) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
5087     // We don't bother generating the lowp stages if we are:
5088     //   - ... in scalar mode (MSVC, old clang, etc...)
5089     //   - ... trying to save code size
5090     //   - ... building for Google3. (No justification for this, but changing it would be painful).
5091     //   - ... explicitly disabling it. This is currently just used by Flutter.
5092     //
5093     // Having nullptr for every stage will cause SkRasterPipeline to always use the highp stages.
5094     #define M(st) static void (*st)(void) = nullptr;
5095         SK_RASTER_PIPELINE_OPS_LOWP(M)
5096     #undef M
5097     static void (*just_return)(void) = nullptr;
5098 
start_pipeline(size_t,size_t,size_t,size_t,SkRasterPipelineStage *,SkSpan<SkRasterPipeline_MemoryCtxPatch>,uint8_t * tailPointer)5099     static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*,
5100                                SkSpan<SkRasterPipeline_MemoryCtxPatch>,
5101                                uint8_t* tailPointer) {}
5102 
5103 #else  // We are compiling vector code with Clang... let's make some lowp stages!
5104 
5105 #if defined(SKRP_CPU_SKX) || defined(SKRP_CPU_HSW) || defined(SKRP_CPU_LASX)
5106     template <typename T> using V = Vec<16, T>;
5107 #else
5108     template <typename T> using V = Vec<8, T>;
5109 #endif
5110 
5111 using U8  = V<uint8_t >;
5112 using U16 = V<uint16_t>;
5113 using I16 = V< int16_t>;
5114 using I32 = V< int32_t>;
5115 using U32 = V<uint32_t>;
5116 using I64 = V< int64_t>;
5117 using U64 = V<uint64_t>;
5118 using F   = V<float   >;
5119 
5120 static constexpr size_t N = sizeof(U16) / sizeof(uint16_t);
5121 
5122 // Promotion helpers (for GCC)
5123 #if defined(__clang__)
5124 SI constexpr U16 U16_(uint16_t x) { return x; }
5125 SI constexpr I32 I32_( int32_t x) { return x; }
5126 SI constexpr U32 U32_(uint32_t x) { return x; }
5127 SI constexpr F   F_  (float    x) { return x; }
5128 #else
5129 SI constexpr U16 U16_(uint16_t x) { return x + U16(); }
5130 SI constexpr I32 I32_( int32_t x) { return x + I32(); }
5131 SI constexpr U32 U32_(uint32_t x) { return x + U32(); }
5132 SI constexpr F   F_  (float    x) { return x - F  (); }
5133 #endif
5134 
5135 static constexpr U16 U16_0   = U16_(0),
5136                      U16_255 = U16_(255);
5137 
5138 // Once again, some platforms benefit from a restricted Stage calling convention,
5139 // but others can pass tons and tons of registers and we're happy to exploit that.
5140 // It's exactly the same decision and implementation strategy as the F stages above.
5141 #if SKRP_NARROW_STAGES
5142     struct Params {
5143         size_t dx, dy;
5144         U16 dr,dg,db,da;
5145     };
5146     using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a);
5147 #else
5148     using Stage = void (ABI*)(SkRasterPipelineStage* program,
5149                               size_t dx, size_t dy,
5150                               U16  r, U16  g, U16  b, U16  a,
5151                               U16 dr, U16 dg, U16 db, U16 da);
5152 #endif
5153 
5154 static void start_pipeline(size_t x0,     size_t y0,
5155                            size_t xlimit, size_t ylimit,
5156                            SkRasterPipelineStage* program,
5157                            SkSpan<SkRasterPipeline_MemoryCtxPatch> memoryCtxPatches,
5158                            uint8_t* tailPointer) {
5159     uint8_t unreferencedTail;
5160     if (!tailPointer) {
5161         tailPointer = &unreferencedTail;
5162     }
5163     auto start = (Stage)program->fn;
5164     for (size_t dy = y0; dy < ylimit; dy++) {
5165     #if SKRP_NARROW_STAGES
5166         Params params = { x0,dy, U16_0,U16_0,U16_0,U16_0 };
5167         for (; params.dx + N <= xlimit; params.dx += N) {
5168             start(&params, program, U16_0,U16_0,U16_0,U16_0);
5169         }
5170         if (size_t tail = xlimit - params.dx) {
5171             *tailPointer = tail;
5172             patch_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
5173             start(&params, program, U16_0,U16_0,U16_0,U16_0);
5174             restore_memory_contexts(memoryCtxPatches, params.dx, dy, tail);
5175             *tailPointer = 0xFF;
5176         }
5177     #else
5178         size_t dx = x0;
5179         for (; dx + N <= xlimit; dx += N) {
5180             start(program, dx,dy, U16_0,U16_0,U16_0,U16_0, U16_0,U16_0,U16_0,U16_0);
5181         }
5182         if (size_t tail = xlimit - dx) {
5183             *tailPointer = tail;
5184             patch_memory_contexts(memoryCtxPatches, dx, dy, tail);
5185             start(program, dx,dy, U16_0,U16_0,U16_0,U16_0, U16_0,U16_0,U16_0,U16_0);
5186             restore_memory_contexts(memoryCtxPatches, dx, dy, tail);
5187             *tailPointer = 0xFF;
5188         }
5189     #endif
5190     }
5191 }
5192 
5193 #if SKRP_NARROW_STAGES
5194     static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {}
5195 #else
5196     static void ABI just_return(SkRasterPipelineStage*, size_t,size_t,
5197                                 U16,U16,U16,U16, U16,U16,U16,U16) {}
5198 #endif
5199 
5200 // All stages use the same function call ABI to chain into each other, but there are three types:
5201 //   GG: geometry in, geometry out  -- think, a matrix
5202 //   GP: geometry in, pixels out.   -- think, a memory gather
5203 //   PP: pixels in, pixels out.     -- think, a blend mode
5204 //
5205 // (Some stages ignore their inputs or produce no logical output.  That's perfectly fine.)
5206 //
5207 // These three STAGE_ macros let you define each type of stage,
5208 // and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
5209 
5210 #if SKRP_NARROW_STAGES
5211     #define STAGE_GG(name, ARG)                                                                \
5212         SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y);                               \
5213         static void ABI name(Params* params, SkRasterPipelineStage* program,                   \
5214                              U16 r, U16 g, U16 b, U16 a) {                                     \
5215             auto x = join<F>(r,g),                                                             \
5216                  y = join<F>(b,a);                                                             \
5217             name##_k(Ctx{program}, params->dx,params->dy, x,y);                                \
5218             split(x, &r,&g);                                                                   \
5219             split(y, &b,&a);                                                                   \
5220             auto fn = (Stage)(++program)->fn;                                                  \
5221             fn(params, program, r,g,b,a);                                                      \
5222         }                                                                                      \
5223         SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y)
5224 
5225     #define STAGE_GP(name, ARG)                                                            \
5226         SI void name##_k(ARG, size_t dx, size_t dy, F x, F y,                              \
5227                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5228                          U16& dr, U16& dg, U16& db, U16& da);                              \
5229         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
5230                              U16 r, U16 g, U16 b, U16 a) {                                 \
5231             auto x = join<F>(r,g),                                                         \
5232                  y = join<F>(b,a);                                                         \
5233             name##_k(Ctx{program}, params->dx,params->dy, x,y, r,g,b,a,                    \
5234                      params->dr,params->dg,params->db,params->da);                         \
5235             auto fn = (Stage)(++program)->fn;                                              \
5236             fn(params, program, r,g,b,a);                                                  \
5237         }                                                                                  \
5238         SI void name##_k(ARG, size_t dx, size_t dy, F x, F y,                              \
5239                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5240                          U16& dr, U16& dg, U16& db, U16& da)
5241 
5242     #define STAGE_PP(name, ARG)                                                            \
5243         SI void name##_k(ARG, size_t dx, size_t dy,                                        \
5244                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5245                          U16& dr, U16& dg, U16& db, U16& da);                              \
5246         static void ABI name(Params* params, SkRasterPipelineStage* program,               \
5247                              U16 r, U16 g, U16 b, U16 a) {                                 \
5248             name##_k(Ctx{program}, params->dx,params->dy, r,g,b,a,                         \
5249                      params->dr,params->dg,params->db,params->da);                         \
5250             auto fn = (Stage)(++program)->fn;                                              \
5251             fn(params, program, r,g,b,a);                                                  \
5252         }                                                                                  \
5253         SI void name##_k(ARG, size_t dx, size_t dy,                                        \
5254                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5255                          U16& dr, U16& dg, U16& db, U16& da)
5256 #else
5257     #define STAGE_GG(name, ARG)                                                            \
5258         SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y);                           \
5259         static void ABI name(SkRasterPipelineStage* program,                               \
5260                              size_t dx, size_t dy,                                         \
5261                              U16  r, U16  g, U16  b, U16  a,                               \
5262                              U16 dr, U16 dg, U16 db, U16 da) {                             \
5263             auto x = join<F>(r,g),                                                         \
5264                  y = join<F>(b,a);                                                         \
5265             name##_k(Ctx{program}, dx,dy, x,y);                                            \
5266             split(x, &r,&g);                                                               \
5267             split(y, &b,&a);                                                               \
5268             auto fn = (Stage)(++program)->fn;                                              \
5269             fn(program, dx,dy, r,g,b,a, dr,dg,db,da);                                      \
5270         }                                                                                  \
5271         SI void name##_k(ARG, size_t dx, size_t dy, F& x, F& y)
5272 
5273     #define STAGE_GP(name, ARG)                                                            \
5274         SI void name##_k(ARG, size_t dx, size_t dy, F x, F y,                              \
5275                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5276                          U16& dr, U16& dg, U16& db, U16& da);                              \
5277         static void ABI name(SkRasterPipelineStage* program,                               \
5278                              size_t dx, size_t dy,                                         \
5279                              U16  r, U16  g, U16  b, U16  a,                               \
5280                              U16 dr, U16 dg, U16 db, U16 da) {                             \
5281             auto x = join<F>(r,g),                                                         \
5282                  y = join<F>(b,a);                                                         \
5283             name##_k(Ctx{program}, dx,dy, x,y, r,g,b,a, dr,dg,db,da);                      \
5284             auto fn = (Stage)(++program)->fn;                                              \
5285             fn(program, dx,dy, r,g,b,a, dr,dg,db,da);                                      \
5286         }                                                                                  \
5287         SI void name##_k(ARG, size_t dx, size_t dy, F x, F y,                              \
5288                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5289                          U16& dr, U16& dg, U16& db, U16& da)
5290 
5291     #define STAGE_PP(name, ARG)                                                            \
5292         SI void name##_k(ARG, size_t dx, size_t dy,                                        \
5293                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5294                          U16& dr, U16& dg, U16& db, U16& da);                              \
5295         static void ABI name(SkRasterPipelineStage* program,                               \
5296                              size_t dx, size_t dy,                                         \
5297                              U16  r, U16  g, U16  b, U16  a,                               \
5298                              U16 dr, U16 dg, U16 db, U16 da) {                             \
5299             name##_k(Ctx{program}, dx,dy, r,g,b,a, dr,dg,db,da);                           \
5300             auto fn = (Stage)(++program)->fn;                                              \
5301             fn(program, dx,dy, r,g,b,a, dr,dg,db,da);                                      \
5302         }                                                                                  \
5303         SI void name##_k(ARG, size_t dx, size_t dy,                                        \
5304                          U16&  r, U16&  g, U16&  b, U16&  a,                               \
5305                          U16& dr, U16& dg, U16& db, U16& da)
5306 #endif
5307 
5308 // ~~~~~~ Commonly used helper functions ~~~~~~ //
5309 
5310 /**
5311  * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow,
5312  * thanks to a division by a non-power of two:
5313  *   [1]  (v + 127) / 255
5314  *
5315  * There is a two-step process that computes the correct answer for all inputs:
5316  *   [2]  (v + 128 + ((v + 128) >> 8)) >> 8
5317  *
5318  * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time:
5319  *   [3]  (v + 255) >> 8;
5320  *
5321  * We offer two different implementations here, depending on the requirements of the calling stage.
5322  */
5323 
5324 /**
5325  * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast
5326  * as [3]), and uses [3] elsewhere.
5327  */
5328 SI U16 div255(U16 v) {
5329 #if defined(SKRP_CPU_NEON)
5330     // With NEON we can compute [2] just as fast as [3], so let's be correct.
5331     // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up:
5332     return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
5333 #else
5334     // Otherwise, use [3], which is never wrong by more than 1:
5335     return (v+255)/256;
5336 #endif
5337 }
5338 
5339 /**
5340  * div255_accurate guarantees the right answer on all platforms, at the expense of performance.
5341  */
5342 SI U16 div255_accurate(U16 v) {
5343 #if defined(SKRP_CPU_NEON)
5344     // Our NEON implementation of div255 is already correct for all inputs:
5345     return div255(v);
5346 #else
5347     // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics:
5348     v += 128;
5349     return (v+(v/256))/256;
5350 #endif
5351 }
5352 
5353 SI U16 inv(U16 v) { return 255-v; }
5354 
5355 SI U16 if_then_else(I16 c, U16 t, U16 e) {
5356     return (t & sk_bit_cast<U16>(c)) | (e & sk_bit_cast<U16>(~c));
5357 }
5358 SI U32 if_then_else(I32 c, U32 t, U32 e) {
5359     return (t & sk_bit_cast<U32>(c)) | (e & sk_bit_cast<U32>(~c));
5360 }
5361 
5362 SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
5363 SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
5364 
5365 SI U16 max(U16      a, uint16_t b) { return max(     a , U16_(b)); }
5366 SI U16 max(uint16_t a, U16      b) { return max(U16_(a),      b ); }
5367 SI U16 min(U16      a, uint16_t b) { return min(     a , U16_(b)); }
5368 SI U16 min(uint16_t a, U16      b) { return min(U16_(a),      b ); }
5369 
5370 SI U16 from_float(float f) { return U16_(f * 255.0f + 0.5f); }
5371 
5372 SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
5373 
5374 template <typename D, typename S>
5375 SI D cast(S src) {
5376     return __builtin_convertvector(src, D);
5377 }
5378 
5379 template <typename D, typename S>
5380 SI void split(S v, D* lo, D* hi) {
5381     static_assert(2*sizeof(D) == sizeof(S), "");
5382     memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
5383     memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
5384 }
5385 template <typename D, typename S>
5386 SI D join(S lo, S hi) {
5387     static_assert(sizeof(D) == 2*sizeof(S), "");
5388     D v;
5389     memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
5390     memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
5391     return v;
5392 }
5393 
5394 SI F if_then_else(I32 c, F t, F e) {
5395     return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) );
5396 }
5397 SI F if_then_else(I32 c, F     t, float e) { return if_then_else(c,    t , F_(e)); }
5398 SI F if_then_else(I32 c, float t, F     e) { return if_then_else(c, F_(t),    e ); }
5399 
5400 SI F max(F x, F y) { return if_then_else(x < y, y, x); }
5401 SI F min(F x, F y) { return if_then_else(x < y, x, y); }
5402 
5403 SI F max(F     a, float b) { return max(   a , F_(b)); }
5404 SI F max(float a, F     b) { return max(F_(a),    b ); }
5405 SI F min(F     a, float b) { return min(   a , F_(b)); }
5406 SI F min(float a, F     b) { return min(F_(a),    b ); }
5407 
5408 SI I32 if_then_else(I32 c, I32 t, I32 e) {
5409     return (t & c) | (e & ~c);
5410 }
5411 SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); }
5412 SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); }
5413 
5414 SI I32 max(I32     a, int32_t b) { return max(     a , I32_(b)); }
5415 SI I32 max(int32_t a, I32     b) { return max(I32_(a),      b ); }
5416 SI I32 min(I32     a, int32_t b) { return min(     a , I32_(b)); }
5417 SI I32 min(int32_t a, I32     b) { return min(I32_(a),      b ); }
5418 
5419 SI F mad(F     f, F     m, F     a) { return a+f*m; }
5420 SI F mad(F     f, F     m, float a) { return mad(   f ,    m , F_(a)); }
5421 SI F mad(F     f, float m, F     a) { return mad(   f , F_(m),    a ); }
5422 SI F mad(F     f, float m, float a) { return mad(   f , F_(m), F_(a)); }
5423 SI F mad(float f, F     m, F     a) { return mad(F_(f),    m ,    a ); }
5424 SI F mad(float f, F     m, float a) { return mad(F_(f),    m , F_(a)); }
5425 SI F mad(float f, float m, F     a) { return mad(F_(f), F_(m),    a ); }
5426 
5427 SI F nmad(F     f, F     m, F     a) { return a-f*m; }
5428 SI F nmad(F     f, F     m, float a) { return nmad(   f ,    m , F_(a)); }
5429 SI F nmad(F     f, float m, F     a) { return nmad(   f , F_(m),    a ); }
5430 SI F nmad(F     f, float m, float a) { return nmad(   f , F_(m), F_(a)); }
5431 SI F nmad(float f, F     m, F     a) { return nmad(F_(f),    m ,    a ); }
5432 SI F nmad(float f, F     m, float a) { return nmad(F_(f),    m , F_(a)); }
5433 SI F nmad(float f, float m, F     a) { return nmad(F_(f), F_(m),    a ); }
5434 
5435 SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
5436 
5437 // Use approximate instructions and one Newton-Raphson step to calculate 1/x.
5438 SI F rcp_precise(F x) {
5439 #if defined(SKRP_CPU_SKX)
5440     F e = _mm512_rcp14_ps(x);
5441     return _mm512_fnmadd_ps(x, e, _mm512_set1_ps(2.0f)) * e;
5442 #elif defined(SKRP_CPU_HSW)
5443     __m256 lo,hi;
5444     split(x, &lo,&hi);
5445     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5446 #elif defined(SKRP_CPU_SSE2) || defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5447     __m128 lo,hi;
5448     split(x, &lo,&hi);
5449     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5450 #elif defined(SKRP_CPU_NEON)
5451     float32x4_t lo,hi;
5452     split(x, &lo,&hi);
5453     return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi));
5454 #elif defined(SKRP_CPU_LASX)
5455     __m256 lo,hi;
5456     split(x, &lo,&hi);
5457     return join<F>(__lasx_xvfrecip_s(lo), __lasx_xvfrecip_s(hi));
5458 #elif defined(SKRP_CPU_LSX)
5459     __m128 lo,hi;
5460     split(x, &lo,&hi);
5461     return join<F>(__lsx_vfrecip_s(lo), __lsx_vfrecip_s(hi));
5462 #else
5463     return 1.0f / x;
5464 #endif
5465 }
5466 SI F sqrt_(F x) {
5467 #if defined(SKRP_CPU_SKX)
5468     return _mm512_sqrt_ps(x);
5469 #elif defined(SKRP_CPU_HSW)
5470     __m256 lo,hi;
5471     split(x, &lo,&hi);
5472     return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
5473 #elif defined(SKRP_CPU_SSE2) || defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5474     __m128 lo,hi;
5475     split(x, &lo,&hi);
5476     return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
5477 #elif defined(SK_CPU_ARM64)
5478     float32x4_t lo,hi;
5479     split(x, &lo,&hi);
5480     return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
5481 #elif defined(SKRP_CPU_NEON)
5482     auto sqrt = [](float32x4_t v) {
5483         auto est = vrsqrteq_f32(v);  // Estimate and two refinement steps for est = rsqrt(v).
5484         est *= vrsqrtsq_f32(v,est*est);
5485         est *= vrsqrtsq_f32(v,est*est);
5486         return v*est;                // sqrt(v) == v*rsqrt(v).
5487     };
5488     float32x4_t lo,hi;
5489     split(x, &lo,&hi);
5490     return join<F>(sqrt(lo), sqrt(hi));
5491 #elif defined(SKRP_CPU_LASX)
5492     __m256 lo,hi;
5493     split(x, &lo,&hi);
5494     return join<F>(__lasx_xvfsqrt_s(lo), __lasx_xvfsqrt_s(hi));
5495 #elif defined(SKRP_CPU_LSX)
5496     __m128 lo,hi;
5497     split(x, &lo,&hi);
5498     return join<F>(__lsx_vfsqrt_s(lo), __lsx_vfsqrt_s(hi));
5499 #else
5500     return F{
5501         sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
5502         sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
5503     };
5504 #endif
5505 }
5506 
5507 SI F floor_(F x) {
5508 #if defined(SK_CPU_ARM64)
5509     float32x4_t lo,hi;
5510     split(x, &lo,&hi);
5511     return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
5512 #elif defined(SKRP_CPU_SKX)
5513     return _mm512_floor_ps(x);
5514 #elif defined(SKRP_CPU_HSW)
5515     __m256 lo,hi;
5516     split(x, &lo,&hi);
5517     return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
5518 #elif defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5519     __m128 lo,hi;
5520     split(x, &lo,&hi);
5521     return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
5522 #elif defined(SKRP_CPU_LASX)
5523     __m256 lo,hi;
5524     split(x, &lo,&hi);
5525     return join<F>(__lasx_xvfrintrm_s(lo), __lasx_xvfrintrm_s(hi));
5526 #elif defined(SKRP_CPU_LSX)
5527     __m128 lo,hi;
5528     split(x, &lo,&hi);
5529     return join<F>(__lsx_vfrintrm_s(lo), __lsx_vfrintrm_s(hi));
5530 #else
5531     F roundtrip = cast<F>(cast<I32>(x));
5532     return roundtrip - if_then_else(roundtrip > x, F_(1), F_(0));
5533 #endif
5534 }
5535 
5536 // scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally
5537 // this multiply is:
5538 //     (2 * a * b + (1 << 15)) >> 16
5539 // The result is a number on [-1, 1).
5540 // Note: on neon this is a saturating multiply while the others are not.
5541 SI I16 scaled_mult(I16 a, I16 b) {
5542 #if defined(SKRP_CPU_SKX)
5543     return (I16)_mm256_mulhrs_epi16((__m256i)a, (__m256i)b);
5544 #elif defined(SKRP_CPU_HSW)
5545     return (I16)_mm256_mulhrs_epi16((__m256i)a, (__m256i)b);
5546 #elif defined(SKRP_CPU_SSE41) || defined(SKRP_CPU_AVX)
5547     return (I16)_mm_mulhrs_epi16((__m128i)a, (__m128i)b);
5548 #elif defined(SK_CPU_ARM64)
5549     return vqrdmulhq_s16(a, b);
5550 #elif defined(SKRP_CPU_NEON)
5551     return vqrdmulhq_s16(a, b);
5552 #elif defined(SKRP_CPU_LASX)
5553     I16 res = __lasx_xvmuh_h(a, b);
5554     return __lasx_xvslli_h(res, 1);
5555 #elif defined(SKRP_CPU_LSX)
5556     I16 res = __lsx_vmuh_h(a, b);
5557     return __lsx_vslli_h(res, 1);
5558 #else
5559     const I32 roundingTerm = I32_(1 << 14);
5560     return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15);
5561 #endif
5562 }
5563 
5564 // This sum is to support lerp where the result will always be a positive number. In general,
5565 // a sum like this would require an additional bit, but because we know the range of the result
5566 // we know that the extra bit will always be zero.
5567 SI U16 constrained_add(I16 a, U16 b) {
5568     #if defined(SK_DEBUG)
5569         for (size_t i = 0; i < N; i++) {
5570             // Ensure that a + b is on the interval [0, UINT16_MAX]
5571             int ia = a[i],
5572                 ib = b[i];
5573             // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is
5574             // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be
5575             // interpreted as an uint32_t.
5576             SkASSERT(-ib <= ia && ia <= 65535 - ib);
5577         }
5578     #endif
5579     return b + sk_bit_cast<U16>(a);
5580 }
5581 
5582 SI F fract(F x) { return x - floor_(x); }
5583 SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); }
5584 
5585 // ~~~~~~ Basic / misc. stages ~~~~~~ //
5586 
5587 STAGE_GG(seed_shader, NoCtx) {
5588 #if defined(SKRP_CPU_LSX)
5589     __m128 val1 = {0.5f, 1.5f, 2.5f, 3.5f};
5590     __m128 val2 = {4.5f, 5.5f, 6.5f, 7.5f};
5591     __m128 val3 = {0.5f, 0.5f, 0.5f, 0.5f};
5592 
5593     __m128i v_d = __lsx_vreplgr2vr_w(dx);
5594 
5595     __m128 f_d = __lsx_vffint_s_w(v_d);
5596     val1 = __lsx_vfadd_s(val1, f_d);
5597     val2 = __lsx_vfadd_s(val2, f_d);
5598     x = join<F>(val1, val2);
5599 
5600     v_d = __lsx_vreplgr2vr_w(dy);
5601     f_d = __lsx_vffint_s_w(v_d);
5602     val3 = __lsx_vfadd_s(val3, f_d);
5603     y = join<F>(val3, val3);
5604 #else
5605     static constexpr float iota[] = {
5606         0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
5607         8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
5608     };
5609     static_assert(std::size(iota) >= SkRasterPipeline_kMaxStride);
5610 
5611     x = cast<F>(I32_(dx)) + sk_unaligned_load<F>(iota);
5612     y = cast<F>(I32_(dy)) + 0.5f;
5613 #endif
5614 }
5615 
5616 STAGE_GG(matrix_translate, const float* m) {
5617     x += m[0];
5618     y += m[1];
5619 }
5620 STAGE_GG(matrix_scale_translate, const float* m) {
5621     x = mad(x,m[0], m[2]);
5622     y = mad(y,m[1], m[3]);
5623 }
5624 STAGE_GG(matrix_2x3, const float* m) {
5625     auto X = mad(x,m[0], mad(y,m[1], m[2])),
5626          Y = mad(x,m[3], mad(y,m[4], m[5]));
5627     x = X;
5628     y = Y;
5629 }
5630 STAGE_GG(matrix_perspective, const float* m) {
5631     // N.B. Unlike the other matrix_ stages, this matrix is row-major.
5632     auto X = mad(x,m[0], mad(y,m[1], m[2])),
5633          Y = mad(x,m[3], mad(y,m[4], m[5])),
5634          Z = mad(x,m[6], mad(y,m[7], m[8]));
5635     x = X * rcp_precise(Z);
5636     y = Y * rcp_precise(Z);
5637 }
5638 
5639 STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
5640     r = U16_(c->rgba[0]);
5641     g = U16_(c->rgba[1]);
5642     b = U16_(c->rgba[2]);
5643     a = U16_(c->rgba[3]);
5644 }
5645 STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
5646     dr = U16_(c->rgba[0]);
5647     dg = U16_(c->rgba[1]);
5648     db = U16_(c->rgba[2]);
5649     da = U16_(c->rgba[3]);
5650 }
5651 STAGE_PP(black_color, NoCtx) { r = g = b =   U16_0; a = U16_255; }
5652 STAGE_PP(white_color, NoCtx) { r = g = b = U16_255; a = U16_255; }
5653 
5654 STAGE_PP(set_rgb, const float rgb[3]) {
5655     r = from_float(rgb[0]);
5656     g = from_float(rgb[1]);
5657     b = from_float(rgb[2]);
5658 }
5659 
5660 // No need to clamp against 0 here (values are unsigned)
5661 STAGE_PP(clamp_01, NoCtx) {
5662     r = min(r, 255);
5663     g = min(g, 255);
5664     b = min(b, 255);
5665     a = min(a, 255);
5666 }
5667 
5668 STAGE_PP(clamp_a_01, NoCtx) {
5669     a = min(a, 255);
5670 }
5671 
5672 STAGE_PP(clamp_gamut, NoCtx) {
5673     a = min(a, 255);
5674     r = min(r, a);
5675     g = min(g, a);
5676     b = min(b, a);
5677 }
5678 
5679 STAGE_PP(premul, NoCtx) {
5680     r = div255_accurate(r * a);
5681     g = div255_accurate(g * a);
5682     b = div255_accurate(b * a);
5683 }
5684 STAGE_PP(premul_dst, NoCtx) {
5685     dr = div255_accurate(dr * da);
5686     dg = div255_accurate(dg * da);
5687     db = div255_accurate(db * da);
5688 }
5689 
5690 STAGE_PP(force_opaque    , NoCtx) {  a = U16_255; }
5691 STAGE_PP(force_opaque_dst, NoCtx) { da = U16_255; }
5692 
5693 STAGE_PP(swap_rb, NoCtx) {
5694     auto tmp = r;
5695     r = b;
5696     b = tmp;
5697 }
5698 STAGE_PP(swap_rb_dst, NoCtx) {
5699     auto tmp = dr;
5700     dr = db;
5701     db = tmp;
5702 }
5703 
5704 STAGE_PP(move_src_dst, NoCtx) {
5705     dr = r;
5706     dg = g;
5707     db = b;
5708     da = a;
5709 }
5710 
5711 STAGE_PP(move_dst_src, NoCtx) {
5712     r = dr;
5713     g = dg;
5714     b = db;
5715     a = da;
5716 }
5717 
5718 STAGE_PP(swap_src_dst, NoCtx) {
5719     std::swap(r, dr);
5720     std::swap(g, dg);
5721     std::swap(b, db);
5722     std::swap(a, da);
5723 }
5724 
5725 // ~~~~~~ Blend modes ~~~~~~ //
5726 
5727 // The same logic applied to all 4 channels.
5728 #define BLEND_MODE(name)                                 \
5729     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
5730     STAGE_PP(name, NoCtx) {                          \
5731         r = name##_channel(r,dr,a,da);                   \
5732         g = name##_channel(g,dg,a,da);                   \
5733         b = name##_channel(b,db,a,da);                   \
5734         a = name##_channel(a,da,a,da);                   \
5735     }                                                    \
5736     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
5737 
5738 #if defined(SK_USE_INACCURATE_DIV255_IN_BLEND)
5739     BLEND_MODE(clear)    { return U16_0; }
5740     BLEND_MODE(srcatop)  { return div255( s*da + d*inv(sa) ); }
5741     BLEND_MODE(dstatop)  { return div255( d*sa + s*inv(da) ); }
5742     BLEND_MODE(srcin)    { return div255( s*da ); }
5743     BLEND_MODE(dstin)    { return div255( d*sa ); }
5744     BLEND_MODE(srcout)   { return div255( s*inv(da) ); }
5745     BLEND_MODE(dstout)   { return div255( d*inv(sa) ); }
5746     BLEND_MODE(srcover)  { return s + div255( d*inv(sa) ); }
5747     BLEND_MODE(dstover)  { return d + div255( s*inv(da) ); }
5748     BLEND_MODE(modulate) { return div255( s*d ); }
5749     BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
5750     BLEND_MODE(plus_)    { return min(s+d, 255); }
5751     BLEND_MODE(screen)   { return s + d - div255( s*d ); }
5752     BLEND_MODE(xor_)     { return div255( s*inv(da) + d*inv(sa) ); }
5753 #else
5754     BLEND_MODE(clear)    { return U16_0; }
5755     BLEND_MODE(srcatop)  { return div255( s*da + d*inv(sa) ); }
5756     BLEND_MODE(dstatop)  { return div255( d*sa + s*inv(da) ); }
5757     BLEND_MODE(srcin)    { return div255_accurate( s*da ); }
5758     BLEND_MODE(dstin)    { return div255_accurate( d*sa ); }
5759     BLEND_MODE(srcout)   { return div255_accurate( s*inv(da) ); }
5760     BLEND_MODE(dstout)   { return div255_accurate( d*inv(sa) ); }
5761     BLEND_MODE(srcover)  { return s + div255_accurate( d*inv(sa) ); }
5762     BLEND_MODE(dstover)  { return d + div255_accurate( s*inv(da) ); }
5763     BLEND_MODE(modulate) { return div255_accurate( s*d ); }
5764     BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
5765     BLEND_MODE(plus_)    { return min(s+d, 255); }
5766     BLEND_MODE(screen)   { return s + d - div255_accurate( s*d ); }
5767     BLEND_MODE(xor_)     { return div255( s*inv(da) + d*inv(sa) ); }
5768 #endif
5769 #undef BLEND_MODE
5770 
5771 // The same logic applied to color, and srcover for alpha.
5772 #define BLEND_MODE(name)                                 \
5773     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
5774     STAGE_PP(name, NoCtx) {                          \
5775         r = name##_channel(r,dr,a,da);                   \
5776         g = name##_channel(g,dg,a,da);                   \
5777         b = name##_channel(b,db,a,da);                   \
5778         a = a + div255( da*inv(a) );                     \
5779     }                                                    \
5780     SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
5781 
5782     BLEND_MODE(darken)     { return s + d -   div255( max(s*da, d*sa) ); }
5783     BLEND_MODE(lighten)    { return s + d -   div255( min(s*da, d*sa) ); }
5784     BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
5785     BLEND_MODE(exclusion)  { return s + d - 2*div255( s*d ); }
5786 
5787     BLEND_MODE(hardlight) {
5788         return div255( s*inv(da) + d*inv(sa) +
5789                        if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
5790     }
5791     BLEND_MODE(overlay) {
5792         return div255( s*inv(da) + d*inv(sa) +
5793                        if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
5794     }
5795 #undef BLEND_MODE
5796 
5797 // ~~~~~~ Helpers for interacting with memory ~~~~~~ //
5798 
5799 template <typename T>
5800 SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
5801     return (T*)ctx->pixels + dy*ctx->stride + dx;
5802 }
5803 
5804 template <typename T>
5805 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
5806     // Exclusive -> inclusive.
5807     const F w = F_(sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1)),
5808             h = F_(sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1));
5809 
5810     const F z = F_(std::numeric_limits<float>::min());
5811 
5812     x = min(max(z, x), w);
5813     y = min(max(z, y), h);
5814 
5815     x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger);
5816     y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger);
5817 
5818     *ptr = (const T*)ctx->pixels;
5819     return trunc_(y)*ctx->stride + trunc_(x);
5820 }
5821 
5822 template <typename T>
5823 SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) {
5824     // This flag doesn't make sense when the coords are integers.
5825     SkASSERT(ctx->roundDownAtInteger == 0);
5826     // Exclusive -> inclusive.
5827     const I32 w = I32_( ctx->width - 1),
5828               h = I32_(ctx->height - 1);
5829 
5830     U32 ax = cast<U32>(min(max(0, x), w)),
5831         ay = cast<U32>(min(max(0, y), h));
5832 
5833     *ptr = (const T*)ctx->pixels;
5834     return ay * ctx->stride + ax;
5835 }
5836 
5837 template <typename V, typename T>
5838 SI V load(const T* ptr) {
5839     V v;
5840     memcpy(&v, ptr, sizeof(v));
5841     return v;
5842 }
5843 template <typename V, typename T>
5844 SI void store(T* ptr, V v) {
5845     memcpy(ptr, &v, sizeof(v));
5846 }
5847 
5848 #if defined(SKRP_CPU_SKX)
5849     template <typename V, typename T>
5850     SI V gather(const T* ptr, U32 ix) {
5851         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5852                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5853                   ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5854                   ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5855     }
5856 
5857     template<>
5858     F gather(const float* ptr, U32 ix) {
5859         return _mm512_i32gather_ps((__m512i)ix, ptr, 4);
5860     }
5861 
5862     template<>
5863     U32 gather(const uint32_t* ptr, U32 ix) {
5864         return (U32)_mm512_i32gather_epi32((__m512i)ix, ptr, 4);
5865     }
5866 
5867 #elif defined(SKRP_CPU_HSW)
5868     template <typename V, typename T>
5869     SI V gather(const T* ptr, U32 ix) {
5870         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5871                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5872                   ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5873                   ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5874     }
5875 
5876     template<>
5877     F gather(const float* ptr, U32 ix) {
5878         __m256i lo, hi;
5879         split(ix, &lo, &hi);
5880 
5881         return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
5882                        _mm256_i32gather_ps(ptr, hi, 4));
5883     }
5884 
5885     template<>
5886     U32 gather(const uint32_t* ptr, U32 ix) {
5887         __m256i lo, hi;
5888         split(ix, &lo, &hi);
5889 
5890         return join<U32>(_mm256_i32gather_epi32((const int*)ptr, lo, 4),
5891                          _mm256_i32gather_epi32((const int*)ptr, hi, 4));
5892     }
5893 #elif defined(SKRP_CPU_LASX)
5894     template <typename V, typename T>
5895     SI V gather(const T* ptr, U32 ix) {
5896         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5897                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
5898                   ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
5899                   ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
5900     }
5901 #else
5902     template <typename V, typename T>
5903     SI V gather(const T* ptr, U32 ix) {
5904         return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
5905                   ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
5906     }
5907 #endif
5908 
5909 
5910 // ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
5911 
5912 SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
5913 #if defined(SKRP_CPU_SKX)
5914     rgba = (U32)_mm512_permutexvar_epi64(_mm512_setr_epi64(0,1,4,5,2,3,6,7), (__m512i)rgba);
5915     auto cast_U16 = [](U32 v) -> U16 {
5916         return (U16)_mm256_packus_epi32(_mm512_castsi512_si256((__m512i)v),
5917                     _mm512_extracti64x4_epi64((__m512i)v, 1));
5918     };
5919 #elif defined(SKRP_CPU_HSW)
5920     // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
5921     __m256i _01,_23;
5922     split(rgba, &_01, &_23);
5923     __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
5924             _13 = _mm256_permute2x128_si256(_01,_23, 0x31);
5925     rgba = join<U32>(_02, _13);
5926 
5927     auto cast_U16 = [](U32 v) -> U16 {
5928         __m256i _02,_13;
5929         split(v, &_02,&_13);
5930         return (U16)_mm256_packus_epi32(_02,_13);
5931     };
5932 #elif defined(SKRP_CPU_LASX)
5933     __m256i _01, _23;
5934     split(rgba, &_01, &_23);
5935     __m256i _02 = __lasx_xvpermi_q(_01, _23, 0x02),
5936             _13 = __lasx_xvpermi_q(_01, _23, 0x13);
5937     rgba = join<U32>(_02, _13);
5938 
5939     auto cast_U16 = [](U32 v) -> U16 {
5940         __m256i _02,_13;
5941         split(v, &_02,&_13);
5942         __m256i tmp0 = __lasx_xvsat_wu(_02, 15);
5943         __m256i tmp1 = __lasx_xvsat_wu(_13, 15);
5944         return __lasx_xvpickev_h(tmp1, tmp0);
5945     };
5946 #elif defined(SKRP_CPU_LSX)
5947     __m128i _01, _23, rg, ba;
5948     split(rgba, &_01, &_23);
5949     rg = __lsx_vpickev_h(_23, _01);
5950     ba = __lsx_vpickod_h(_23, _01);
5951 
5952     __m128i mask_00ff = __lsx_vreplgr2vr_h(0xff);
5953 
5954     *r = __lsx_vand_v(rg, mask_00ff);
5955     *g = __lsx_vsrli_h(rg, 8);
5956     *b = __lsx_vand_v(ba, mask_00ff);
5957     *a = __lsx_vsrli_h(ba, 8);
5958 #else
5959     auto cast_U16 = [](U32 v) -> U16 {
5960         return cast<U16>(v);
5961     };
5962 #endif
5963 #if !defined(SKRP_CPU_LSX)
5964     *r = cast_U16(rgba & 65535) & 255;
5965     *g = cast_U16(rgba & 65535) >>  8;
5966     *b = cast_U16(rgba >>   16) & 255;
5967     *a = cast_U16(rgba >>   16) >>  8;
5968 #endif
5969 }
5970 
5971 SI void load_8888_(const uint32_t* ptr, U16* r, U16* g, U16* b, U16* a) {
5972 #if 1 && defined(SKRP_CPU_NEON)
5973     uint8x8x4_t rgba = vld4_u8((const uint8_t*)(ptr));
5974     *r = cast<U16>(rgba.val[0]);
5975     *g = cast<U16>(rgba.val[1]);
5976     *b = cast<U16>(rgba.val[2]);
5977     *a = cast<U16>(rgba.val[3]);
5978 #else
5979     from_8888(load<U32>(ptr), r,g,b,a);
5980 #endif
5981 }
5982 SI void store_8888_(uint32_t* ptr, U16 r, U16 g, U16 b, U16 a) {
5983 #if defined(SKRP_CPU_LSX)
5984     __m128i mask = __lsx_vreplgr2vr_h(255);
5985     r = __lsx_vmin_hu(r, mask);
5986     g = __lsx_vmin_hu(g, mask);
5987     b = __lsx_vmin_hu(b, mask);
5988     a = __lsx_vmin_hu(a, mask);
5989 
5990     g = __lsx_vslli_h(g, 8);
5991     r = r | g;
5992     a = __lsx_vslli_h(a, 8);
5993     a = a | b;
5994 
5995     __m128i r_lo = __lsx_vsllwil_wu_hu(r, 0);
5996     __m128i r_hi = __lsx_vexth_wu_hu(r);
5997     __m128i a_lo = __lsx_vsllwil_wu_hu(a, 0);
5998     __m128i a_hi = __lsx_vexth_wu_hu(a);
5999 
6000     a_lo = __lsx_vslli_w(a_lo, 16);
6001     a_hi = __lsx_vslli_w(a_hi, 16);
6002 
6003     r = r_lo | a_lo;
6004     a = r_hi | a_hi;
6005     store(ptr, join<U32>(r, a));
6006 #else
6007     r = min(r, 255);
6008     g = min(g, 255);
6009     b = min(b, 255);
6010     a = min(a, 255);
6011 
6012 #if 1 && defined(SKRP_CPU_NEON)
6013     uint8x8x4_t rgba = {{
6014         cast<U8>(r),
6015         cast<U8>(g),
6016         cast<U8>(b),
6017         cast<U8>(a),
6018     }};
6019     vst4_u8((uint8_t*)(ptr), rgba);
6020 #else
6021     store(ptr, cast<U32>(r | (g<<8)) <<  0
6022              | cast<U32>(b | (a<<8)) << 16);
6023 #endif
6024 #endif
6025 }
6026 
6027 STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
6028     load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &r,&g,&b,&a);
6029 }
6030 STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6031     load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), &dr,&dg,&db,&da);
6032 }
6033 STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
6034     store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), r,g,b,a);
6035 }
6036 STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
6037     const uint32_t* ptr;
6038     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6039     from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
6040 }
6041 
6042 // ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
6043 
6044 SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
6045     // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
6046     U16 R = (rgb >> 11) & 31,
6047         G = (rgb >>  5) & 63,
6048         B = (rgb >>  0) & 31;
6049 
6050     // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
6051     *r = (R << 3) | (R >> 2);
6052     *g = (G << 2) | (G >> 4);
6053     *b = (B << 3) | (B >> 2);
6054 }
6055 SI void load_565_(const uint16_t* ptr, U16* r, U16* g, U16* b) {
6056     from_565(load<U16>(ptr), r,g,b);
6057 }
6058 SI void store_565_(uint16_t* ptr, U16 r, U16 g, U16 b) {
6059     r = min(r, 255);
6060     g = min(g, 255);
6061     b = min(b, 255);
6062 
6063     // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
6064     // (Don't feel like you need to find some fundamental truth in these...
6065     // they were brute-force searched.)
6066     U16 R = (r *  9 + 36) / 74,   //  9/74 ≈ 31/255, plus 36/74, about half.
6067         G = (g * 21 + 42) / 85,   // 21/85 = 63/255 exactly.
6068         B = (b *  9 + 36) / 74;
6069     // Pack them back into 15|rrrrr gggggg bbbbb|0.
6070     store(ptr, R << 11
6071              | G <<  5
6072              | B <<  0);
6073 }
6074 
6075 STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
6076     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b);
6077     a = U16_255;
6078 }
6079 STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6080     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db);
6081     da = U16_255;
6082 }
6083 STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
6084     store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b);
6085 }
6086 STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
6087     const uint16_t* ptr;
6088     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6089     from_565(gather<U16>(ptr, ix), &r, &g, &b);
6090     a = U16_255;
6091 }
6092 
6093 SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
6094     // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
6095     U16 R = (rgba >> 12) & 15,
6096         G = (rgba >>  8) & 15,
6097         B = (rgba >>  4) & 15,
6098         A = (rgba >>  0) & 15;
6099 
6100     // Scale [0,15] to [0,255].
6101     *r = (R << 4) | R;
6102     *g = (G << 4) | G;
6103     *b = (B << 4) | B;
6104     *a = (A << 4) | A;
6105 }
6106 SI void load_4444_(const uint16_t* ptr, U16* r, U16* g, U16* b, U16* a) {
6107     from_4444(load<U16>(ptr), r,g,b,a);
6108 }
6109 SI void store_4444_(uint16_t* ptr, U16 r, U16 g, U16 b, U16 a) {
6110     r = min(r, 255);
6111     g = min(g, 255);
6112     b = min(b, 255);
6113     a = min(a, 255);
6114 
6115     // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
6116     U16 R = (r + 8) / 17,
6117         G = (g + 8) / 17,
6118         B = (b + 8) / 17,
6119         A = (a + 8) / 17;
6120     // Pack them back into 15|rrrr gggg bbbb aaaa|0.
6121     store(ptr, R << 12
6122              | G <<  8
6123              | B <<  4
6124              | A <<  0);
6125 }
6126 
6127 STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
6128     load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &r,&g,&b,&a);
6129 }
6130 STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6131     load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &dr,&dg,&db,&da);
6132 }
6133 STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
6134     store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), r,g,b,a);
6135 }
6136 STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
6137     const uint16_t* ptr;
6138     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6139     from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
6140 }
6141 
6142 SI void from_88(U16 rg, U16* r, U16* g) {
6143     *r = (rg & 0xFF);
6144     *g = (rg >> 8);
6145 }
6146 
6147 SI void load_88_(const uint16_t* ptr, U16* r, U16* g) {
6148 #if 1 && defined(SKRP_CPU_NEON)
6149     uint8x8x2_t rg = vld2_u8((const uint8_t*)(ptr));
6150     *r = cast<U16>(rg.val[0]);
6151     *g = cast<U16>(rg.val[1]);
6152 #else
6153     from_88(load<U16>(ptr), r,g);
6154 #endif
6155 }
6156 
6157 SI void store_88_(uint16_t* ptr, U16 r, U16 g) {
6158     r = min(r, 255);
6159     g = min(g, 255);
6160 
6161 #if 1 && defined(SKRP_CPU_NEON)
6162     uint8x8x2_t rg = {{
6163         cast<U8>(r),
6164         cast<U8>(g),
6165     }};
6166     vst2_u8((uint8_t*)(ptr), rg);
6167 #else
6168     store(ptr, cast<U16>(r | (g<<8)) <<  0);
6169 #endif
6170 }
6171 
6172 STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
6173     load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &r, &g);
6174     b = U16_0;
6175     a = U16_255;
6176 }
6177 STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6178     load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), &dr, &dg);
6179     db = U16_0;
6180     da = U16_255;
6181 }
6182 STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
6183     store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), r, g);
6184 }
6185 STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
6186     const uint16_t* ptr;
6187     U32 ix = ix_and_ptr(&ptr, ctx, x, y);
6188     from_88(gather<U16>(ptr, ix), &r, &g);
6189     b = U16_0;
6190     a = U16_255;
6191 }
6192 
6193 // ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
6194 
6195 SI U16 load_8(const uint8_t* ptr) {
6196     return cast<U16>(load<U8>(ptr));
6197 }
6198 SI void store_8(uint8_t* ptr, U16 v) {
6199     v = min(v, 255);
6200     store(ptr, cast<U8>(v));
6201 }
6202 
6203 STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
6204     r = g = b = U16_0;
6205     a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6206 }
6207 STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
6208     dr = dg = db = U16_0;
6209     da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6210 }
6211 STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
6212     store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), a);
6213 }
6214 STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
6215     const uint8_t* ptr;
6216     U32 ix = ix_and_ptr(&ptr, ctx, x,y);
6217     r = g = b = U16_0;
6218     a = cast<U16>(gather<U8>(ptr, ix));
6219 }
6220 STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) {
6221     store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), r);
6222 }
6223 
6224 STAGE_PP(alpha_to_gray, NoCtx) {
6225     r = g = b = a;
6226     a = U16_255;
6227 }
6228 STAGE_PP(alpha_to_gray_dst, NoCtx) {
6229     dr = dg = db = da;
6230     da = U16_255;
6231 }
6232 STAGE_PP(alpha_to_red, NoCtx) {
6233     r = a;
6234     a = U16_255;
6235 }
6236 STAGE_PP(alpha_to_red_dst, NoCtx) {
6237     dr = da;
6238     da = U16_255;
6239 }
6240 
6241 STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) {
6242     a = (r*54 + g*183 + b*19)/256;  // 0.2126, 0.7152, 0.0722 with 256 denominator.
6243     r = g = b = U16_0;
6244 }
6245 STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) {
6246     r = g = b =(r*54 + g*183 + b*19)/256;  // 0.2126, 0.7152, 0.0722 with 256 denominator.
6247 }
6248 
6249 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
6250 
6251 STAGE_PP(load_src, const uint16_t* ptr) {
6252     r = sk_unaligned_load<U16>(ptr + 0*N);
6253     g = sk_unaligned_load<U16>(ptr + 1*N);
6254     b = sk_unaligned_load<U16>(ptr + 2*N);
6255     a = sk_unaligned_load<U16>(ptr + 3*N);
6256 }
6257 STAGE_PP(store_src, uint16_t* ptr) {
6258     sk_unaligned_store(ptr + 0*N, r);
6259     sk_unaligned_store(ptr + 1*N, g);
6260     sk_unaligned_store(ptr + 2*N, b);
6261     sk_unaligned_store(ptr + 3*N, a);
6262 }
6263 STAGE_PP(store_src_a, uint16_t* ptr) {
6264     sk_unaligned_store(ptr, a);
6265 }
6266 STAGE_PP(load_dst, const uint16_t* ptr) {
6267     dr = sk_unaligned_load<U16>(ptr + 0*N);
6268     dg = sk_unaligned_load<U16>(ptr + 1*N);
6269     db = sk_unaligned_load<U16>(ptr + 2*N);
6270     da = sk_unaligned_load<U16>(ptr + 3*N);
6271 }
6272 STAGE_PP(store_dst, uint16_t* ptr) {
6273     sk_unaligned_store(ptr + 0*N, dr);
6274     sk_unaligned_store(ptr + 1*N, dg);
6275     sk_unaligned_store(ptr + 2*N, db);
6276     sk_unaligned_store(ptr + 3*N, da);
6277 }
6278 
6279 // ~~~~~~ Coverage scales / lerps ~~~~~~ //
6280 
6281 STAGE_PP(scale_1_float, const float* f) {
6282     U16 c = from_float(*f);
6283     r = div255( r * c );
6284     g = div255( g * c );
6285     b = div255( b * c );
6286     a = div255( a * c );
6287 }
6288 STAGE_PP(lerp_1_float, const float* f) {
6289     U16 c = from_float(*f);
6290     r = lerp(dr, r, c);
6291     g = lerp(dg, g, c);
6292     b = lerp(db, b, c);
6293     a = lerp(da, a, c);
6294 }
6295 STAGE_PP(scale_native, const uint16_t scales[]) {
6296     auto c = sk_unaligned_load<U16>(scales);
6297     r = div255( r * c );
6298     g = div255( g * c );
6299     b = div255( b * c );
6300     a = div255( a * c );
6301 }
6302 
6303 STAGE_PP(lerp_native, const uint16_t scales[]) {
6304     auto c = sk_unaligned_load<U16>(scales);
6305     r = lerp(dr, r, c);
6306     g = lerp(dg, g, c);
6307     b = lerp(db, b, c);
6308     a = lerp(da, a, c);
6309 }
6310 
6311 STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
6312     U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6313     r = div255( r * c );
6314     g = div255( g * c );
6315     b = div255( b * c );
6316     a = div255( a * c );
6317 }
6318 STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
6319     U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy));
6320     r = lerp(dr, r, c);
6321     g = lerp(dg, g, c);
6322     b = lerp(db, b, c);
6323     a = lerp(da, a, c);
6324 }
6325 
6326 // Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
6327 SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
6328     return if_then_else(a < da, min(cr, min(cg,cb))
6329                               , max(cr, max(cg,cb)));
6330 }
6331 STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
6332     U16 cr,cg,cb;
6333     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
6334     U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
6335 
6336     r = div255( r * cr );
6337     g = div255( g * cg );
6338     b = div255( b * cb );
6339     a = div255( a * ca );
6340 }
6341 STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
6342     U16 cr,cg,cb;
6343     load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), &cr,&cg,&cb);
6344     U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
6345 
6346     r = lerp(dr, r, cr);
6347     g = lerp(dg, g, cg);
6348     b = lerp(db, b, cb);
6349     a = lerp(da, a, ca);
6350 }
6351 
6352 STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
6353     U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy)),
6354         add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy));
6355 
6356     r = min(div255(r*mul) + add, a);
6357     g = min(div255(g*mul) + add, a);
6358     b = min(div255(b*mul) + add, a);
6359 }
6360 
6361 
6362 // ~~~~~~ Gradient stages ~~~~~~ //
6363 
6364 // Clamp x to [0,1], both sides inclusive (think, gradients).
6365 // Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
6366 SI F clamp_01_(F v) { return min(max(0, v), 1); }
6367 
6368 STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); }
6369 STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); }
6370 STAGE_GG(mirror_x_1, NoCtx) {
6371     auto two = [](F x){ return x+x; };
6372     x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
6373 }
6374 
6375 SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
6376 
6377 STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
6378     auto w = ctx->limit_x;
6379     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
6380 }
6381 STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
6382     auto h = ctx->limit_y;
6383     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
6384 }
6385 STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
6386     auto w = ctx->limit_x;
6387     auto h = ctx->limit_y;
6388     sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
6389 }
6390 STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) {
6391     x = min(ctx->max_x, max(ctx->min_x, x));
6392     y = min(ctx->max_y, max(ctx->min_y, y));
6393 }
6394 STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
6395     auto mask = sk_unaligned_load<U16>(ctx->mask);
6396     r = r & mask;
6397     g = g & mask;
6398     b = b & mask;
6399     a = a & mask;
6400 }
6401 
6402 SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) {
6403     auto round_color = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
6404 
6405     *r = round_color(min(max(0, R), 1));
6406     *g = round_color(min(max(0, G), 1));
6407     *b = round_color(min(max(0, B), 1));
6408     *a = round_color(A);  // we assume alpha is already in [0,1].
6409 }
6410 
6411 SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
6412                         U16* r, U16* g, U16* b, U16* a) {
6413 
6414     F fr, fg, fb, fa, br, bg, bb, ba;
6415 #if defined(SKRP_CPU_HSW)
6416     if (c->stopCount <=8) {
6417         __m256i lo, hi;
6418         split(idx, &lo, &hi);
6419 
6420         fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
6421                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
6422         br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
6423                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
6424         fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
6425                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
6426         bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
6427                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
6428         fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
6429                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
6430         bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
6431                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
6432         fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
6433                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
6434         ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
6435                      _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
6436     } else
6437 #elif defined(SKRP_CPU_LASX)
6438     if (c->stopCount <= 8) {
6439         __m256i lo, hi;
6440         split(idx, &lo, &hi);
6441 
6442         fr = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[0], 0), lo),
6443                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[0], 0), hi));
6444         br = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[0], 0), lo),
6445                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[0], 0), hi));
6446         fg = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[1], 0), lo),
6447                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[1], 0), hi));
6448         bg = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[1], 0), lo),
6449                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[1], 0), hi));
6450         fb = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[2], 0), lo),
6451                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[2], 0), hi));
6452         bb = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[2], 0), lo),
6453                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[2], 0), hi));
6454         fa = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[3], 0), lo),
6455                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->fs[3], 0), hi));
6456         ba = join<F>((__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[3], 0), lo),
6457                      (__m256)__lasx_xvperm_w(__lasx_xvld(c->bs[3], 0), hi));
6458     } else
6459 #elif defined(SKRP_CPU_LSX)
6460     if (c->stopCount <= 4) {
6461         __m128i lo, hi;
6462         split(idx, &lo, &hi);
6463         __m128i zero = __lsx_vldi(0);
6464         fr = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[0], 0)),
6465                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[0], 0)));
6466         br = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[0], 0)),
6467                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[0], 0)));
6468         fg = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[1], 0)),
6469                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[1], 0)));
6470         bg = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[1], 0)),
6471                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[1], 0)));
6472         fb = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[2], 0)),
6473                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[2], 0)));
6474         bb = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[2], 0)),
6475                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[2], 0)));
6476         fa = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->fs[3], 0)),
6477                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->fs[3], 0)));
6478         ba = join<F>((__m128)__lsx_vshuf_w(lo, zero, __lsx_vld(c->bs[3], 0)),
6479                      (__m128)__lsx_vshuf_w(hi, zero, __lsx_vld(c->bs[3], 0)));
6480     } else
6481 #endif
6482     {
6483         fr = gather<F>(c->fs[0], idx);
6484         fg = gather<F>(c->fs[1], idx);
6485         fb = gather<F>(c->fs[2], idx);
6486         fa = gather<F>(c->fs[3], idx);
6487         br = gather<F>(c->bs[0], idx);
6488         bg = gather<F>(c->bs[1], idx);
6489         bb = gather<F>(c->bs[2], idx);
6490         ba = gather<F>(c->bs[3], idx);
6491     }
6492     round_F_to_U16(mad(t, fr, br),
6493                    mad(t, fg, bg),
6494                    mad(t, fb, bb),
6495                    mad(t, fa, ba),
6496                    r,g,b,a);
6497 }
6498 
6499 STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
6500     auto t = x;
6501     U32 idx = U32_(0);
6502 
6503     // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
6504     for (size_t i = 1; i < c->stopCount; i++) {
6505         idx += if_then_else(t >= c->ts[i], U32_(1), U32_(0));
6506     }
6507 
6508     gradient_lookup(c, idx, t, &r, &g, &b, &a);
6509 }
6510 
6511 STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
6512     auto t = x;
6513     auto idx = trunc_(t * static_cast<float>(c->stopCount-1));
6514     gradient_lookup(c, idx, t, &r, &g, &b, &a);
6515 }
6516 
6517 STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
6518     auto t = x;
6519     round_F_to_U16(mad(t, c->f[0], c->b[0]),
6520                    mad(t, c->f[1], c->b[1]),
6521                    mad(t, c->f[2], c->b[2]),
6522                    mad(t, c->f[3], c->b[3]),
6523                    &r,&g,&b,&a);
6524 }
6525 
6526 STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
6527     // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed
6528     // point number.
6529 #if defined(SKRP_CPU_LSX)
6530     __m128 _01, _23, _45, _67;
6531     v4f32 v_tmp1 = {0.5f, 0.5f, 0.5f, 0.5f};
6532     v4f32 v_tmp2 = {65536.0f, 65536.0f, 65536.0f, 65536.0f};
6533     split(x, &_01,&_23);
6534     split(y, &_45,&_67);
6535     __m128 val1 = __lsx_vfmadd_s((__m128)v_tmp2, _01, (__m128)v_tmp1);
6536     __m128 val2 = __lsx_vfmadd_s((__m128)v_tmp2, _23, (__m128)v_tmp1);
6537     __m128 val3 = __lsx_vfmadd_s((__m128)v_tmp2, _45, (__m128)v_tmp1);
6538     __m128 val4 = __lsx_vfmadd_s((__m128)v_tmp2, _67, (__m128)v_tmp1);
6539     I32 qx = cast<I32>((join<F>(__lsx_vfrintrm_s(val1), __lsx_vfrintrm_s(val2)))) - 32768,
6540     qy = cast<I32>((join<F>(__lsx_vfrintrm_s(val3), __lsx_vfrintrm_s(val4)))) - 32768;
6541 #else
6542     I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768,
6543         qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768;
6544 #endif
6545 
6546     // Calculate screen coordinates sx & sy by flooring qx and qy.
6547     I32 sx = qx >> 16,
6548         sy = qy >> 16;
6549 
6550     // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1).
6551     // This will put tx in Q15 format for use with q_mult.
6552     // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval
6553     // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows
6554     // the same math:
6555     //     tx = 2 * {qx} - 1, so
6556     //     {qx} = (tx + 1) / 2.
6557     // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1
6558     // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in
6559     // order to use the full 16-bit resolution.
6560 #if defined(SKRP_CPU_LSX)
6561     __m128i qx_lo, qx_hi, qy_lo, qy_hi;
6562     split(qx, &qx_lo, &qx_hi);
6563     split(qy, &qy_lo, &qy_hi);
6564     __m128i temp = __lsx_vreplgr2vr_w(0x8000);
6565     qx_lo = __lsx_vxor_v(qx_lo, temp);
6566     qx_hi = __lsx_vxor_v(qx_hi, temp);
6567     qy_lo = __lsx_vxor_v(qy_lo, temp);
6568     qy_hi = __lsx_vxor_v(qy_hi, temp);
6569 
6570     I16 tx = __lsx_vpickev_h(qx_hi, qx_lo);
6571     I16 ty = __lsx_vpickev_h(qy_hi, qy_lo);
6572 #else
6573     I16 tx = cast<I16>(qx ^ 0x8000),
6574         ty = cast<I16>(qy ^ 0x8000);
6575 #endif
6576 
6577     // Substituting the {qx} by the equation for tx from above into the lerp equation where v is
6578     // the lerped value:
6579     //         v = {qx}*(R - L) + L,
6580     //         v = 1/2*(tx + 1)*(R - L) + L
6581     //     2 * v = (tx + 1)*(R - L) + 2*L
6582     //           = tx*R - tx*L + R - L + 2*L
6583     //           = tx*(R - L) + (R + L).
6584     // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form
6585     // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In
6586     // code, we can multiply by 2^7 to get the value directly.
6587     //            2 * v = tx*(R - L) + (R + L)
6588     //     2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9
6589     //         2^-8 * v = 2^-9 * (tx*(R - L) + (R + L))
6590     //                v = 1/2 * (tx*(R - L) + (R + L))
6591     auto lerpX = [&](U16 left, U16 right) -> U16 {
6592         I16 width  = (I16)(right - left) << 7;
6593         U16 middle = (right + left) << 7;
6594         // The constrained_add is the most subtle part of lerp. The first term is on the interval
6595         // [-1, 1), and the second term is on the interval is on the interval [0, 1) because
6596         // both terms are too high by a factor of 2 which will be handled below. (Both R and L are
6597         // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below
6598         // should overflow, but because we know that sum produces an output on the
6599         // interval [0, 1) we know that the extra bit that would be needed will always be 0. So
6600         // we need to be careful to treat this sum as an unsigned positive number in the divide
6601         // by 2 below. Add +1 for rounding.
6602         U16 v2  = constrained_add(scaled_mult(tx, width), middle) + 1;
6603         // Divide by 2 to calculate v and at the same time bring the intermediate value onto the
6604         // interval [0, 1/2] to set up for the lerpY.
6605         return v2 >> 1;
6606     };
6607 
6608     const uint32_t* ptr;
6609     U32 ix = ix_and_ptr(&ptr, ctx, sx, sy);
6610     U16 leftR, leftG, leftB, leftA;
6611     from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
6612 
6613     ix = ix_and_ptr(&ptr, ctx, sx+1, sy);
6614     U16 rightR, rightG, rightB, rightA;
6615     from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
6616 
6617     U16 topR = lerpX(leftR, rightR),
6618         topG = lerpX(leftG, rightG),
6619         topB = lerpX(leftB, rightB),
6620         topA = lerpX(leftA, rightA);
6621 
6622     ix = ix_and_ptr(&ptr, ctx, sx, sy+1);
6623     from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA);
6624 
6625     ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1);
6626     from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA);
6627 
6628     U16 bottomR = lerpX(leftR, rightR),
6629         bottomG = lerpX(leftG, rightG),
6630         bottomB = lerpX(leftB, rightB),
6631         bottomA = lerpX(leftA, rightA);
6632 
6633     // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting
6634     // in a value on [0, 255].
6635     auto lerpY = [&](U16 top, U16 bottom) -> U16 {
6636         I16 width  = (I16)bottom - (I16)top;
6637         U16 middle = bottom + top;
6638         // Add + 0x80 for rounding.
6639         U16 blend  = constrained_add(scaled_mult(ty, width), middle) + 0x80;
6640 
6641         return blend >> 8;
6642     };
6643 
6644     r = lerpY(topR, bottomR);
6645     g = lerpY(topG, bottomG);
6646     b = lerpY(topB, bottomB);
6647     a = lerpY(topA, bottomA);
6648 }
6649 
6650 STAGE_GG(xy_to_unit_angle, NoCtx) {
6651     F xabs = abs_(x),
6652       yabs = abs_(y);
6653 
6654     F slope = min(xabs, yabs)/max(xabs, yabs);
6655     F s = slope * slope;
6656 
6657     // Use a 7th degree polynomial to approximate atan.
6658     // This was generated using sollya.gforge.inria.fr.
6659     // A float optimized polynomial was generated using the following command.
6660     // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
6661     F phi = slope
6662              * (0.15912117063999176025390625f     + s
6663              * (-5.185396969318389892578125e-2f   + s
6664              * (2.476101927459239959716796875e-2f + s
6665              * (-7.0547382347285747528076171875e-3f))));
6666 
6667     phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
6668     phi = if_then_else(x < 0.0f   , 1.0f/2.0f - phi, phi);
6669     phi = if_then_else(y < 0.0f   , 1.0f - phi     , phi);
6670     phi = if_then_else(phi != phi , 0              , phi);  // Check for NaN.
6671     x = phi;
6672 }
6673 STAGE_GG(xy_to_radius, NoCtx) {
6674     x = sqrt_(x*x + y*y);
6675 }
6676 
6677 // ~~~~~~ Compound stages ~~~~~~ //
6678 
6679 STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
6680     auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
6681 
6682     load_8888_(ptr, &dr,&dg,&db,&da);
6683     r = r + div255( dr*inv(a) );
6684     g = g + div255( dg*inv(a) );
6685     b = b + div255( db*inv(a) );
6686     a = a + div255( da*inv(a) );
6687     store_8888_(ptr, r,g,b,a);
6688 }
6689 
6690 // ~~~~~~ skgpu::Swizzle stage ~~~~~~ //
6691 
6692 STAGE_PP(swizzle, void* ctx) {
6693     auto ir = r, ig = g, ib = b, ia = a;
6694     U16* o[] = {&r, &g, &b, &a};
6695     char swiz[4];
6696     memcpy(swiz, &ctx, sizeof(swiz));
6697 
6698     for (int i = 0; i < 4; ++i) {
6699         switch (swiz[i]) {
6700             case 'r': *o[i] = ir;       break;
6701             case 'g': *o[i] = ig;       break;
6702             case 'b': *o[i] = ib;       break;
6703             case 'a': *o[i] = ia;       break;
6704             case '0': *o[i] = U16_0;    break;
6705             case '1': *o[i] = U16_255;  break;
6706             default:                    break;
6707         }
6708     }
6709 }
6710 
6711 #endif//defined(SKRP_CPU_SCALAR) controlling whether we build lowp stages
6712 }  // namespace lowp
6713 
6714 /* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */
6715 namespace lowp { static constexpr size_t lowp_N = N; }
6716 
6717 /** Allow outside code to access the Raster Pipeline pixel stride. */
raster_pipeline_lowp_stride()6718 constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; }
raster_pipeline_highp_stride()6719 constexpr size_t raster_pipeline_highp_stride() { return N; }
6720 
6721 }  // namespace SK_OPTS_NS
6722 
6723 #undef SI
6724 
6725 #endif//SkRasterPipeline_opts_DEFINED
6726