1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/utils/SkShadowUtils.h"
9
10 #include "include/core/SkBlendMode.h"
11 #include "include/core/SkBlender.h"
12 #include "include/core/SkBlurTypes.h"
13 #include "include/core/SkCanvas.h"
14 #include "include/core/SkColorFilter.h"
15 #include "include/core/SkMaskFilter.h"
16 #include "include/core/SkMatrix.h"
17 #include "include/core/SkPaint.h"
18 #include "include/core/SkPath.h"
19 #include "include/core/SkPoint.h"
20 #include "include/core/SkPoint3.h"
21 #include "include/core/SkRect.h"
22 #include "include/core/SkRefCnt.h"
23 #include "include/core/SkVertices.h"
24 #include "include/private/SkIDChangeListener.h"
25 #include "include/private/base/SkFloatingPoint.h"
26 #include "include/private/base/SkTPin.h"
27 #include "include/private/base/SkTemplates.h"
28 #include "include/private/base/SkTo.h"
29 #include "src/base/SkRandom.h"
30 #include "src/core/SkBlurMask.h"
31 #include "src/core/SkColorFilterPriv.h"
32 #include "src/core/SkDevice.h"
33 #include "src/core/SkDrawShadowInfo.h"
34 #include "src/core/SkPathPriv.h"
35 #include "src/core/SkResourceCache.h"
36 #include "src/core/SkVerticesPriv.h"
37
38 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
39 #include "src/utils/SkShadowTessellator.h"
40 #endif
41
42 #if defined(SK_GANESH)
43 #include "src/gpu/ganesh/GrStyle.h"
44 #include "src/gpu/ganesh/geometry/GrStyledShape.h"
45 #endif
46
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 #include <memory>
51 #include <new>
52 #include <utility>
53
54 using namespace skia_private;
55
56 class SkRRect;
57
58 ///////////////////////////////////////////////////////////////////////////////////////////////////
59
60 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
61 namespace {
62
resource_cache_shared_id()63 uint64_t resource_cache_shared_id() {
64 return 0x2020776f64616873llu; // 'shadow '
65 }
66
67 /** Factory for an ambient shadow mesh with particular shadow properties. */
68 struct AmbientVerticesFactory {
69 SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
70 bool fTransparent;
71 SkVector fOffset;
72
isCompatible__anon0747994b0111::AmbientVerticesFactory73 bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
74 if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
75 return false;
76 }
77 *translate = that.fOffset;
78 return true;
79 }
80
makeVertices__anon0747994b0111::AmbientVerticesFactory81 sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
82 SkVector* translate, bool isLimitElevation = false) const {
83 SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
84 // pick a canonical place to generate shadow
85 SkMatrix noTrans(ctm);
86 if (!ctm.hasPerspective()) {
87 noTrans[SkMatrix::kMTransX] = 0;
88 noTrans[SkMatrix::kMTransY] = 0;
89 }
90 *translate = fOffset;
91 return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
92 }
93 };
94
95 /** Factory for an spot shadow mesh with particular shadow properties. */
96 struct SpotVerticesFactory {
97 enum class OccluderType {
98 // The umbra cannot be dropped out because either the occluder is not opaque,
99 // or the center of the umbra is visible. Uses point light.
100 kPointTransparent,
101 // The umbra can be dropped where it is occluded. Uses point light.
102 kPointOpaquePartialUmbra,
103 // It is known that the entire umbra is occluded. Uses point light.
104 kPointOpaqueNoUmbra,
105 // Uses directional light.
106 kDirectional,
107 // The umbra can't be dropped out. Uses directional light.
108 kDirectionalTransparent,
109 };
110
111 SkVector fOffset;
112 SkPoint fLocalCenter;
113 SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
114 SkPoint3 fDevLightPos;
115 SkScalar fLightRadius;
116 OccluderType fOccluderType;
117
isCompatible__anon0747994b0111::SpotVerticesFactory118 bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
119 if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
120 fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
121 return false;
122 }
123 switch (fOccluderType) {
124 case OccluderType::kPointTransparent:
125 case OccluderType::kPointOpaqueNoUmbra:
126 // 'this' and 'that' will either both have no umbra removed or both have all the
127 // umbra removed.
128 *translate = that.fOffset;
129 return true;
130 case OccluderType::kPointOpaquePartialUmbra:
131 // In this case we partially remove the umbra differently for 'this' and 'that'
132 // if the offsets don't match.
133 if (fOffset == that.fOffset) {
134 translate->set(0, 0);
135 return true;
136 }
137 return false;
138 case OccluderType::kDirectional:
139 case OccluderType::kDirectionalTransparent:
140 *translate = that.fOffset - fOffset;
141 return true;
142 }
143 SK_ABORT("Uninitialized occluder type?");
144 }
145
makeVertices__anon0747994b0111::SpotVerticesFactory146 sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
147 SkVector* translate, bool isLimitElevation = false) const {
148 bool transparent = fOccluderType == OccluderType::kPointTransparent ||
149 fOccluderType == OccluderType::kDirectionalTransparent;
150 bool directional = fOccluderType == OccluderType::kDirectional ||
151 fOccluderType == OccluderType::kDirectionalTransparent;
152 SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
153 if (directional) {
154 translate->set(0, 0);
155 return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
156 transparent, true, isLimitElevation);
157 } else if (ctm.hasPerspective() || OccluderType::kPointOpaquePartialUmbra == fOccluderType) {
158 translate->set(0, 0);
159 return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
160 transparent, false, isLimitElevation);
161 } else {
162 // pick a canonical place to generate shadow, with light centered over path
163 SkMatrix noTrans(ctm);
164 noTrans[SkMatrix::kMTransX] = 0;
165 noTrans[SkMatrix::kMTransY] = 0;
166 SkPoint devCenter(fLocalCenter);
167 noTrans.mapPoints(&devCenter, 1);
168 SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
169 *translate = fOffset;
170 return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
171 centerLightPos, fLightRadius, transparent, false, isLimitElevation);
172 }
173 }
174 };
175
176 /**
177 * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
178 * records are immutable this is not itself a Rec. When we need to update it we return this on
179 * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
180 * a new Rec with an adjusted size for any deletions/additions.
181 */
182 class CachedTessellations : public SkRefCnt {
183 public:
size() const184 size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
185
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const186 sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
187 SkVector* translate) const {
188 return fAmbientSet.find(ambient, matrix, translate);
189 }
190
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate,bool isLimitElevation=false)191 sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
192 const SkMatrix& matrix, SkVector* translate,
193 bool isLimitElevation = false) {
194 return fAmbientSet.add(devPath, ambient, matrix, translate, isLimitElevation);
195 }
196
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const197 sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
198 SkVector* translate) const {
199 return fSpotSet.find(spot, matrix, translate);
200 }
201
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate,bool isLimitElevation=false)202 sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
203 const SkMatrix& matrix, SkVector* translate,
204 bool isLimitElevation = false) {
205 return fSpotSet.add(devPath, spot, matrix, translate, isLimitElevation);
206 }
207
208 private:
209 template <typename FACTORY, int MAX_ENTRIES>
210 class Set {
211 public:
size() const212 size_t size() const { return fSize; }
213
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const214 sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
215 SkVector* translate) const {
216 for (int i = 0; i < MAX_ENTRIES; ++i) {
217 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
218 const SkMatrix& m = fEntries[i].fMatrix;
219 if (matrix.hasPerspective() || m.hasPerspective()) {
220 if (matrix != fEntries[i].fMatrix) {
221 continue;
222 }
223 } else if (matrix.getScaleX() != m.getScaleX() ||
224 matrix.getSkewX() != m.getSkewX() ||
225 matrix.getScaleY() != m.getScaleY() ||
226 matrix.getSkewY() != m.getSkewY()) {
227 continue;
228 }
229 return fEntries[i].fVertices;
230 }
231 }
232 return nullptr;
233 }
234
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate,bool isLimitElevation=false)235 sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
236 SkVector* translate, bool isLimitElevation = false) {
237 sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate, isLimitElevation);
238 if (!vertices) {
239 return nullptr;
240 }
241 int i;
242 if (fCount < MAX_ENTRIES) {
243 i = fCount++;
244 } else {
245 i = fRandom.nextULessThan(MAX_ENTRIES);
246 fSize -= fEntries[i].fVertices->approximateSize();
247 }
248 fEntries[i].fFactory = factory;
249 fEntries[i].fVertices = vertices;
250 fEntries[i].fMatrix = matrix;
251 fSize += vertices->approximateSize();
252 return vertices;
253 }
254
255 private:
256 struct Entry {
257 FACTORY fFactory;
258 sk_sp<SkVertices> fVertices;
259 SkMatrix fMatrix;
260 };
261 Entry fEntries[MAX_ENTRIES];
262 int fCount = 0;
263 size_t fSize = 0;
264 SkRandom fRandom;
265 };
266
267 Set<AmbientVerticesFactory, 4> fAmbientSet;
268 Set<SpotVerticesFactory, 4> fSpotSet;
269 };
270
271 /**
272 * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
273 * path. The key represents the path's geometry and not any shadow params.
274 */
275 class CachedTessellationsRec : public SkResourceCache::Rec {
276 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)277 CachedTessellationsRec(const SkResourceCache::Key& key,
278 sk_sp<CachedTessellations> tessellations)
279 : fTessellations(std::move(tessellations)) {
280 fKey.reset(new uint8_t[key.size()]);
281 memcpy(fKey.get(), &key, key.size());
282 }
283
getKey() const284 const Key& getKey() const override {
285 return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
286 }
287
bytesUsed() const288 size_t bytesUsed() const override { return fTessellations->size(); }
289
getCategory() const290 const char* getCategory() const override { return "tessellated shadow masks"; }
291
refTessellations() const292 sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
293
294 template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const295 sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
296 SkVector* translate) const {
297 return fTessellations->find(factory, matrix, translate);
298 }
299
300 private:
301 std::unique_ptr<uint8_t[]> fKey;
302 sk_sp<CachedTessellations> fTessellations;
303 };
304
305 /**
306 * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
307 * vertices and a translation vector. If the CachedTessellations does not contain a suitable
308 * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
309 * to the caller. The caller will update it and reinsert it back into the cache.
310 */
311 template <typename FACTORY>
312 struct FindContext {
FindContext__anon0747994b0111::FindContext313 FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
314 : fViewMatrix(viewMatrix), fFactory(factory) {}
315 const SkMatrix* const fViewMatrix;
316 // If this is valid after Find is called then we found the vertices and they should be drawn
317 // with fTranslate applied.
318 sk_sp<SkVertices> fVertices;
319 SkVector fTranslate = {0, 0};
320
321 // If this is valid after Find then the caller should add the vertices to the tessellation set
322 // and create a new CachedTessellationsRec and insert it into SkResourceCache.
323 sk_sp<CachedTessellations> fTessellationsOnFailure;
324
325 const FACTORY* fFactory;
326 };
327
328 /**
329 * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
330 * the FindContext are used to determine if the vertices are reusable. If so the vertices and
331 * necessary translation vector are set on the FindContext.
332 */
333 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)334 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
335 FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
336 const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
337 findContext->fVertices =
338 rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
339 if (findContext->fVertices) {
340 return true;
341 }
342 // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
343 // manipulated we will add a new Rec.
344 findContext->fTessellationsOnFailure = rec.refTessellations();
345 return false;
346 }
347
348 class ShadowedPath {
349 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)350 ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
351 : fPath(path)
352 , fViewMatrix(viewMatrix)
353 #if defined(SK_GANESH)
354 , fShapeForKey(*path, GrStyle::SimpleFill())
355 #endif
356 {}
357
path() const358 const SkPath& path() const { return *fPath; }
viewMatrix() const359 const SkMatrix& viewMatrix() const { return *fViewMatrix; }
360 #if defined(SK_GANESH)
361 /** Negative means the vertices should not be cached for this path. */
keyBytes() const362 int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const363 void writeKey(void* key) const {
364 fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
365 }
isRRect(SkRRect * rrect)366 bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr); }
367 #else
keyBytes() const368 int keyBytes() const { return -1; }
writeKey(void * key) const369 void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)370 bool isRRect(SkRRect* rrect) { return false; }
371 #endif
372
373 private:
374 const SkPath* fPath;
375 const SkMatrix* fViewMatrix;
376 #if defined(SK_GANESH)
377 GrStyledShape fShapeForKey;
378 #endif
379 };
380
381 // This creates a domain of keys in SkResourceCache used by this file.
382 static void* kNamespace;
383
384 // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
385 class ShadowInvalidator : public SkIDChangeListener {
386 public:
ShadowInvalidator(const SkResourceCache::Key & key)387 ShadowInvalidator(const SkResourceCache::Key& key) {
388 fKey.reset(new uint8_t[key.size()]);
389 memcpy(fKey.get(), &key, key.size());
390 }
391
392 private:
getKey() const393 const SkResourceCache::Key& getKey() const {
394 return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
395 }
396
397 // always purge
FindVisitor(const SkResourceCache::Rec &,void *)398 static bool FindVisitor(const SkResourceCache::Rec&, void*) {
399 return false;
400 }
401
changed()402 void changed() override {
403 SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr);
404 }
405
406 std::unique_ptr<uint8_t[]> fKey;
407 };
408
409 /**
410 * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
411 * they are first found in SkResourceCache.
412 */
413 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty,bool)> drawProc,ShadowedPath & path,SkColor color,bool isLimitElevation=false)414 bool draw_shadow(const FACTORY& factory,
415 std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
416 SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path,
417 SkColor color, bool isLimitElevation = false) {
418 FindContext<FACTORY> context(&path.viewMatrix(), &factory);
419
420 SkResourceCache::Key* key = nullptr;
421 constexpr int kMinBytes = 128;
422 // We need to make this array be of the cache's Key so the memory we create the Key in
423 // is properly aligned.
424 AutoSTArray<kMinBytes / sizeof(SkResourceCache::Key), SkResourceCache::Key> keyStorage;
425 int keyDataBytes = path.keyBytes();
426 if (keyDataBytes >= 0) {
427 // Store the key...
428 keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
429 key = new (keyStorage.begin()) SkResourceCache::Key();
430 // ... followed by the bytes from path.
431 path.writeKey((uint32_t*)(((uint8_t*)keyStorage.begin()) + sizeof(SkResourceCache::Key)));
432 key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
433 SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
434 }
435
436 sk_sp<SkVertices> vertices;
437 bool foundInCache = SkToBool(context.fVertices);
438 if (foundInCache) {
439 vertices = std::move(context.fVertices);
440 } else {
441 // TODO: handle transforming the path as part of the tessellator
442 if (key) {
443 // Update or initialize a tessellation set and add it to the cache.
444 sk_sp<CachedTessellations> tessellations;
445 if (context.fTessellationsOnFailure) {
446 tessellations = std::move(context.fTessellationsOnFailure);
447 } else {
448 tessellations.reset(new CachedTessellations());
449 }
450 vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
451 &context.fTranslate, isLimitElevation);
452 if (!vertices) {
453 return false;
454 }
455 auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
456 SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key));
457 SkResourceCache::Add(rec);
458 } else {
459 vertices = factory.makeVertices(path.path(), path.viewMatrix(),
460 &context.fTranslate);
461 if (!vertices) {
462 return false;
463 }
464 }
465 }
466
467 SkPaint paint;
468 // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
469 // that against our 'color' param.
470 paint.setColorFilter(
471 SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed(
472 SkColorFilterPriv::MakeGaussian()));
473
474 drawProc(vertices.get(), SkBlendMode::kModulate, paint,
475 context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective());
476
477 return true;
478 }
479 } // namespace
480
tilted(const SkPoint3 & zPlaneParams)481 static bool tilted(const SkPoint3& zPlaneParams) {
482 return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
483 }
484 #endif // SK_ENABLE_OPTIMIZE_SIZE
485
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)486 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
487 SkColor* outAmbientColor, SkColor* outSpotColor) {
488 // For tonal color we only compute color values for the spot shadow.
489 // The ambient shadow is greyscale only.
490
491 // Ambient
492 *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
493
494 // Spot
495 int spotR = SkColorGetR(inSpotColor);
496 int spotG = SkColorGetG(inSpotColor);
497 int spotB = SkColorGetB(inSpotColor);
498 int max = std::max(std::max(spotR, spotG), spotB);
499 int min = std::min(std::min(spotR, spotG), spotB);
500 SkScalar luminance = 0.5f*(max + min)/255.f;
501 SkScalar origA = SkColorGetA(inSpotColor)/255.f;
502
503 // We compute a color alpha value based on the luminance of the color, scaled by an
504 // adjusted alpha value. We want the following properties to match the UX examples
505 // (assuming a = 0.25) and to ensure that we have reasonable results when the color
506 // is black and/or the alpha is 0:
507 // f(0, a) = 0
508 // f(luminance, 0) = 0
509 // f(1, 0.25) = .5
510 // f(0.5, 0.25) = .4
511 // f(1, 1) = 1
512 // The following functions match this as closely as possible.
513 SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
514 SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
515 colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
516
517 // Similarly, we set the greyscale alpha based on luminance and alpha so that
518 // f(0, a) = a
519 // f(luminance, 0) = 0
520 // f(1, 0.25) = 0.15
521 SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
522
523 // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
524 // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
525 // which is an adjusted value of 'a'. Assuming SrcOver, a background color of B_rgb, and
526 // ignoring edge falloff, this becomes
527 //
528 // (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
529 //
530 // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
531 // set the alpha to (S_a + C_a - S_a*C_a).
532 SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
533 SkScalar tonalAlpha = colorScale + greyscaleAlpha;
534 SkScalar unPremulScale = colorScale / tonalAlpha;
535 *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
536 unPremulScale*spotR,
537 unPremulScale*spotG,
538 unPremulScale*spotB);
539 }
540
fill_shadow_rec(const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags,const SkMatrix & ctm,SkDrawShadowRec * rec)541 static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams,
542 const SkPoint3& lightPos, SkScalar lightRadius,
543 SkColor ambientColor, SkColor spotColor,
544 uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) {
545 SkPoint pt = { lightPos.fX, lightPos.fY };
546 if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) {
547 // If light position is in device space, need to transform to local space
548 // before applying to SkCanvas.
549 SkMatrix inverse;
550 if (!ctm.invert(&inverse)) {
551 return false;
552 }
553 inverse.mapPoints(&pt, 1);
554 }
555
556 rec->fZPlaneParams = zPlaneParams;
557 rec->fLightPos = { pt.fX, pt.fY, lightPos.fZ };
558 rec->fLightRadius = lightRadius;
559 rec->fAmbientColor = ambientColor;
560 rec->fSpotColor = spotColor;
561 rec->fFlags = flags;
562
563 return true;
564 }
565
566 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)567 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
568 const SkPoint3& lightPos, SkScalar lightRadius,
569 SkColor ambientColor, SkColor spotColor,
570 uint32_t flags) {
571 DrawShadowStyle(canvas, path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, flags, false);
572 }
573
DrawShadowStyle(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags,bool isLimitElevation)574 void SkShadowUtils::DrawShadowStyle(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
575 const SkPoint3& lightPos, SkScalar lightRadius,
576 SkColor ambientColor, SkColor spotColor,
577 uint32_t flags, bool isLimitElevation) {
578 SkDrawShadowRec rec;
579 rec.isLimitElevation = isLimitElevation;
580 if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor,
581 flags, canvas->getTotalMatrix(), &rec)) {
582 return;
583 }
584
585 canvas->private_draw_shadow_rec(path, rec);
586 }
587
GetLocalBounds(const SkMatrix & ctm,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,uint32_t flags,SkRect * bounds)588 bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path,
589 const SkPoint3& zPlaneParams, const SkPoint3& lightPos,
590 SkScalar lightRadius, uint32_t flags, SkRect* bounds) {
591 SkDrawShadowRec rec;
592 if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK,
593 flags, ctm, &rec)) {
594 return false;
595 }
596
597 SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds);
598
599 return true;
600 }
601
602 //////////////////////////////////////////////////////////////////////////////////////////////
603
validate_rec(const SkDrawShadowRec & rec)604 static bool validate_rec(const SkDrawShadowRec& rec) {
605 return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
606 SkIsFinite(rec.fLightRadius);
607 }
608
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)609 void SkDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
610 if (!validate_rec(rec)) {
611 return;
612 }
613
614 SkMatrix viewMatrix = this->localToDevice();
615 SkAutoDeviceTransformRestore adr(this, SkMatrix::I());
616
617 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
618 auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
619 SkScalar tx, SkScalar ty, bool hasPerspective) {
620 if (vertices->priv().vertexCount()) {
621 // For perspective shadows we've already computed the shadow in world space,
622 // and we can't translate it without changing it. Otherwise we concat the
623 // change in translation from the cached version.
624 SkAutoDeviceTransformRestore adr(
625 this,
626 hasPerspective ? SkMatrix::I()
627 : this->localToDevice() * SkMatrix::Translate(tx, ty));
628 // The vertex colors for a tesselated shadow polygon are always either opaque black
629 // or transparent and their real contribution to the final blended color is via
630 // their alpha. We can skip expensive per-vertex color conversion for this.
631 this->drawVertices(vertices, SkBlender::Mode(mode), paint, /*skipColorXform=*/true);
632 }
633 };
634
635 ShadowedPath shadowedPath(&path, &viewMatrix);
636
637 bool tiltZPlane = tilted(rec.fZPlaneParams);
638 bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
639 bool useBlur = SkToBool(rec.fFlags & SkShadowFlags::kConcaveBlurOnly_ShadowFlag) &&
640 !path.isConvex();
641 bool uncached = tiltZPlane || path.isVolatile();
642 #endif
643 bool directional = SkToBool(rec.fFlags & SkShadowFlags::kDirectionalLight_ShadowFlag);
644
645 SkPoint3 zPlaneParams = rec.fZPlaneParams;
646 SkPoint3 devLightPos = rec.fLightPos;
647 if (!directional) {
648 viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1);
649 }
650 float lightRadius = rec.fLightRadius;
651
652 if (SkColorGetA(rec.fAmbientColor) > 0) {
653 bool success = false;
654 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
655 if (uncached && !useBlur) {
656 sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
657 zPlaneParams,
658 transparent);
659 if (vertices) {
660 SkPaint paint;
661 // Run the vertex color through a GaussianColorFilter and then modulate the
662 // grayscale result of that against our 'color' param.
663 paint.setColorFilter(
664 SkColorFilters::Blend(rec.fAmbientColor,
665 SkBlendMode::kModulate)->makeComposed(
666 SkColorFilterPriv::MakeGaussian()));
667 // The vertex colors for a tesselated shadow polygon are always either opaque black
668 // or transparent and their real contribution to the final blended color is via
669 // their alpha. We can skip expensive per-vertex color conversion for this.
670 this->drawVertices(vertices.get(),
671 SkBlender::Mode(SkBlendMode::kModulate),
672 paint,
673 /*skipColorXform=*/true);
674 success = true;
675 }
676 }
677
678 if (!success && !useBlur) {
679 AmbientVerticesFactory factory;
680 factory.fOccluderHeight = zPlaneParams.fZ;
681 factory.fTransparent = transparent;
682 if (viewMatrix.hasPerspective()) {
683 factory.fOffset.set(0, 0);
684 } else {
685 factory.fOffset.fX = viewMatrix.getTranslateX();
686 factory.fOffset.fY = viewMatrix.getTranslateY();
687 }
688
689 success = draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor);
690 }
691 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
692
693 // All else has failed, draw with blur
694 if (!success) {
695 // Pretransform the path to avoid transforming the stroke, below.
696 SkPath devSpacePath;
697 path.transform(viewMatrix, &devSpacePath);
698 devSpacePath.setIsVolatile(true);
699
700 // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
701 // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
702 //
703 // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
704 // can be calculated by interpolating:
705 //
706 // original edge outer edge
707 // | |<---------- r ------>|
708 // |<------|--- f -------------->|
709 // | | |
710 // alpha = 1 alpha = a alpha = 0
711 //
712 // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
713 //
714 // We now need to outset the path to place the new edge in the center of the
715 // blur region:
716 //
717 // original new
718 // | |<------|--- r ------>|
719 // |<------|--- f -|------------>|
720 // | |<- o ->|<--- f/2 --->|
721 //
722 // r = o + f/2, so o = r - f/2
723 //
724 // We outset by using the stroker, so the strokeWidth is o/2.
725 //
726 SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
727 SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
728 SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
729 SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
730
731 // Now draw with blur
732 SkPaint paint;
733 paint.setColor(rec.fAmbientColor);
734 paint.setStrokeWidth(strokeWidth);
735 paint.setStyle(SkPaint::kStrokeAndFill_Style);
736 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
737 bool respectCTM = false;
738 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
739 this->drawPath(devSpacePath, paint);
740 }
741 }
742
743 if (SkColorGetA(rec.fSpotColor) > 0) {
744 bool success = false;
745 #if !defined(SK_ENABLE_OPTIMIZE_SIZE)
746 if (uncached && !useBlur) {
747 sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
748 zPlaneParams,
749 devLightPos, lightRadius,
750 transparent,
751 directional, rec.isLimitElevation);
752 if (vertices) {
753 SkPaint paint;
754 // Run the vertex color through a GaussianColorFilter and then modulate the
755 // grayscale result of that against our 'color' param.
756 paint.setColorFilter(
757 SkColorFilters::Blend(rec.fSpotColor,
758 SkBlendMode::kModulate)->makeComposed(
759 SkColorFilterPriv::MakeGaussian()));
760 // The vertex colors for a tesselated shadow polygon are always either opaque black
761 // or transparent and their real contribution to the final blended color is via
762 // their alpha. We can skip expensive per-vertex color conversion for this.
763 this->drawVertices(vertices.get(),
764 SkBlender::Mode(SkBlendMode::kModulate),
765 paint,
766 /*skipColorXform=*/true);
767 success = true;
768 }
769 }
770
771 if (!success && !useBlur) {
772 SpotVerticesFactory factory;
773 factory.fOccluderHeight = zPlaneParams.fZ;
774 factory.fDevLightPos = devLightPos;
775 factory.fLightRadius = lightRadius;
776
777 SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
778 factory.fLocalCenter = center;
779 viewMatrix.mapPoints(¢er, 1);
780 SkScalar radius, scale;
781 if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) {
782 SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX,
783 devLightPos.fY, devLightPos.fZ,
784 lightRadius, &radius, &scale,
785 &factory.fOffset);
786 } else {
787 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
788 devLightPos.fY - center.fY, devLightPos.fZ,
789 lightRadius, &radius, &scale, &factory.fOffset,
790 rec.isLimitElevation);
791 }
792
793 SkRect devBounds;
794 viewMatrix.mapRect(&devBounds, path.getBounds());
795 if (transparent ||
796 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
797 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
798 // if the translation of the shadow is big enough we're going to end up
799 // filling the entire umbra, we can treat these as all the same
800 if (directional) {
801 factory.fOccluderType =
802 SpotVerticesFactory::OccluderType::kDirectionalTransparent;
803 } else {
804 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
805 }
806 } else if (directional) {
807 factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional;
808 } else if (factory.fOffset.length()*scale + scale < radius) {
809 // if we don't translate more than the blur distance, can assume umbra is covered
810 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra;
811 } else if (path.isConvex()) {
812 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra;
813 } else {
814 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
815 }
816 // need to add this after we classify the shadow
817 factory.fOffset.fX += viewMatrix.getTranslateX();
818 factory.fOffset.fY += viewMatrix.getTranslateY();
819
820 SkColor color = rec.fSpotColor;
821 #ifdef DEBUG_SHADOW_CHECKS
822 switch (factory.fOccluderType) {
823 case SpotVerticesFactory::OccluderType::kPointTransparent:
824 color = 0xFFD2B48C; // tan for transparent
825 break;
826 case SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra:
827 color = 0xFFFFA500; // orange for opaque
828 break;
829 case SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra:
830 color = 0xFFE5E500; // corn yellow for covered
831 break;
832 case SpotVerticesFactory::OccluderType::kDirectional:
833 case SpotVerticesFactory::OccluderType::kDirectionalTransparent:
834 color = 0xFF550000; // dark red for directional
835 break;
836 }
837 #endif
838 success = draw_shadow(factory, drawVertsProc, shadowedPath, color, rec.isLimitElevation);
839 }
840 #endif // !defined(SK_ENABLE_OPTIMIZE_SIZE)
841
842 // All else has failed, draw with blur
843 if (!success) {
844 SkMatrix shadowMatrix;
845 SkScalar radius;
846 if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
847 viewMatrix, zPlaneParams,
848 path.getBounds(), directional,
849 &shadowMatrix, &radius, rec.isLimitElevation)) {
850 return;
851 }
852 SkAutoDeviceTransformRestore adr2(this, shadowMatrix);
853
854 SkPaint paint;
855 paint.setColor(rec.fSpotColor);
856 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
857 bool respectCTM = false;
858 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
859 this->drawPath(path, paint);
860 }
861 }
862 }
863