• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkBitmap.h"
9 #include "include/core/SkMaskFilter.h"
10 #include "include/core/SkPathBuilder.h"
11 #include "include/core/SkRRect.h"
12 #include "include/core/SkStrokeRec.h"
13 #include "include/core/SkVertices.h"
14 #include "src/core/SkBlurMask.h"
15 #include "src/core/SkGpuBlurUtils.h"
16 #include "src/core/SkMaskFilterBase.h"
17 #include "src/core/SkMathPriv.h"
18 #include "src/core/SkMatrixProvider.h"
19 #include "src/core/SkRRectPriv.h"
20 #include "src/core/SkReadBuffer.h"
21 #include "src/core/SkStringUtils.h"
22 #ifdef SKIA_OHOS
23 #include "src/core/SkSDFFilter.h"
24 #endif
25 #include "src/core/SkWriteBuffer.h"
26 
27 #if SK_SUPPORT_GPU
28 #include "include/gpu/GrRecordingContext.h"
29 #include "src/core/SkRuntimeEffectPriv.h"
30 #include "src/gpu/GrFragmentProcessor.h"
31 #include "src/gpu/GrRecordingContextPriv.h"
32 #include "src/gpu/GrResourceProvider.h"
33 #include "src/gpu/GrShaderCaps.h"
34 #include "src/gpu/GrStyle.h"
35 #include "src/gpu/GrTextureProxy.h"
36 #include "src/gpu/GrThreadSafeCache.h"
37 #include "src/gpu/SkGr.h"
38 #include "src/gpu/effects/GrMatrixEffect.h"
39 #include "src/gpu/effects/GrSkSLFP.h"
40 #include "src/gpu/effects/GrTextureEffect.h"
41 #include "src/gpu/geometry/GrStyledShape.h"
42 #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
43 #include "src/gpu/glsl/GrGLSLProgramDataManager.h"
44 #include "src/gpu/glsl/GrGLSLUniformHandler.h"
45 #if SK_GPU_V1
46 #include "src/gpu/v1/SurfaceDrawContext_v1.h"
47 #endif // SK_GPU_V1
48 #endif // SK_SUPPORT_GPU
49 
50 class SkBlurMaskFilterImpl : public SkMaskFilterBase {
51 public:
52     SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle, bool respectCTM);
53 
54     // overrides from SkMaskFilter
55     SkMask::Format getFormat() const override;
56     bool filterMask(SkMask* dst, const SkMask& src, const SkMatrix&,
57                     SkIPoint* margin) const override;
58 
59 #if SK_SUPPORT_GPU && SK_GPU_V1
60     bool canFilterMaskGPU(const GrStyledShape& shape,
61                           const SkIRect& devSpaceShapeBounds,
62                           const SkIRect& clipBounds,
63                           const SkMatrix& ctm,
64                           SkIRect* maskRect) const override;
65     bool directFilterMaskGPU(GrRecordingContext*,
66                              skgpu::v1::SurfaceDrawContext*,
67                              GrPaint&&,
68                              const GrClip*,
69                              const SkMatrix& viewMatrix,
70                              const GrStyledShape&) const override;
71 
72 #ifdef SKIA_OHOS
73     bool directFilterRRectMaskGPU(GrRecordingContext* context,
74                                   skgpu::v1::SurfaceDrawContext* sdc,
75                                   GrPaint&& paint,
76                                   const GrClip* clip,
77                                   const SkMatrix& viewMatrix,
78                                   const GrStyledShape& shape,
79                                   const SkRRect& srcRRect) const override;
80 
81     bool quick_check_gpu_draw(const SkMatrix& viewMatrix,
82                               SkIRect& devSpaceShapeBounds) const override;
83 
84 #endif // SKIA_OHOS
85 
86     GrSurfaceProxyView filterMaskGPU(GrRecordingContext*,
87                                      GrSurfaceProxyView srcView,
88                                      GrColorType srcColorType,
89                                      SkAlphaType srcAlphaType,
90                                      const SkMatrix& ctm,
91                                      const SkIRect& maskRect) const override;
92 #endif
93 
94     void computeFastBounds(const SkRect&, SkRect*) const override;
95     bool asABlur(BlurRec*) const override;
96 
97 
98 protected:
99     FilterReturn filterRectsToNine(const SkRect[], int count, const SkMatrix&,
100                                    const SkIRect& clipBounds,
101                                    NinePatch*) const override;
102 
103     FilterReturn filterRRectToNine(const SkRRect&, const SkMatrix&,
104                                    const SkIRect& clipBounds,
105                                    NinePatch*) const override;
106 
107     bool filterRectMask(SkMask* dstM, const SkRect& r, const SkMatrix& matrix,
108                         SkIPoint* margin, SkMask::CreateMode createMode) const;
109     bool filterRRectMask(SkMask* dstM, const SkRRect& r, const SkMatrix& matrix,
110                         SkIPoint* margin, SkMask::CreateMode createMode) const;
111 
ignoreXform() const112     bool ignoreXform() const { return !fRespectCTM; }
113 
114 private:
115     SK_FLATTENABLE_HOOKS(SkBlurMaskFilterImpl)
116     // To avoid unseemly allocation requests (esp. for finite platforms like
117     // handset) we limit the radius so something manageable. (as opposed to
118     // a request like 10,000)
119     static const SkScalar kMAX_BLUR_SIGMA;
120 
121     SkScalar    fSigma;
122     SkBlurStyle fBlurStyle;
123     bool        fRespectCTM;
124 
125     SkBlurMaskFilterImpl(SkReadBuffer&);
126     void flatten(SkWriteBuffer&) const override;
127 
computeXformedSigma(const SkMatrix & ctm) const128     SkScalar computeXformedSigma(const SkMatrix& ctm) const {
129         SkScalar xformedSigma = this->ignoreXform() ? fSigma : ctm.mapRadius(fSigma);
130         return std::min(xformedSigma, kMAX_BLUR_SIGMA);
131     }
132 
133     friend class SkBlurMaskFilter;
134 
135     using INHERITED = SkMaskFilter;
136     friend void sk_register_blur_maskfilter_createproc();
137 };
138 
139 const SkScalar SkBlurMaskFilterImpl::kMAX_BLUR_SIGMA = SkIntToScalar(128);
140 
141 ///////////////////////////////////////////////////////////////////////////////
142 
SkBlurMaskFilterImpl(SkScalar sigma,SkBlurStyle style,bool respectCTM)143 SkBlurMaskFilterImpl::SkBlurMaskFilterImpl(SkScalar sigma, SkBlurStyle style, bool respectCTM)
144     : fSigma(sigma)
145     , fBlurStyle(style)
146     , fRespectCTM(respectCTM) {
147     SkASSERT(fSigma > 0);
148     SkASSERT((unsigned)style <= kLastEnum_SkBlurStyle);
149 }
150 
getFormat() const151 SkMask::Format SkBlurMaskFilterImpl::getFormat() const {
152     return SkMask::kA8_Format;
153 }
154 
asABlur(BlurRec * rec) const155 bool SkBlurMaskFilterImpl::asABlur(BlurRec* rec) const {
156     if (this->ignoreXform()) {
157         return false;
158     }
159 
160     if (rec) {
161         rec->fSigma = fSigma;
162         rec->fStyle = fBlurStyle;
163     }
164     return true;
165 }
166 
filterMask(SkMask * dst,const SkMask & src,const SkMatrix & matrix,SkIPoint * margin) const167 bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
168                                       const SkMatrix& matrix,
169                                       SkIPoint* margin) const {
170     SkScalar sigma = this->computeXformedSigma(matrix);
171     return SkBlurMask::BoxBlur(dst, src, sigma, fBlurStyle, margin);
172 }
173 
filterRectMask(SkMask * dst,const SkRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const174 bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,
175                                           const SkMatrix& matrix,
176                                           SkIPoint* margin, SkMask::CreateMode createMode) const {
177     SkScalar sigma = computeXformedSigma(matrix);
178 
179     return SkBlurMask::BlurRect(sigma, dst, r, fBlurStyle, margin, createMode);
180 }
181 
filterRRectMask(SkMask * dst,const SkRRect & r,const SkMatrix & matrix,SkIPoint * margin,SkMask::CreateMode createMode) const182 bool SkBlurMaskFilterImpl::filterRRectMask(SkMask* dst, const SkRRect& r,
183                                           const SkMatrix& matrix,
184                                           SkIPoint* margin, SkMask::CreateMode createMode) const {
185     SkScalar sigma = computeXformedSigma(matrix);
186 
187     return SkBlurMask::BlurRRect(sigma, dst, r, fBlurStyle, margin, createMode);
188 }
189 
190 #include "include/core/SkCanvas.h"
191 
prepare_to_draw_into_mask(const SkRect & bounds,SkMask * mask)192 static bool prepare_to_draw_into_mask(const SkRect& bounds, SkMask* mask) {
193     SkASSERT(mask != nullptr);
194 
195     mask->fBounds = bounds.roundOut();
196     mask->fRowBytes = SkAlign4(mask->fBounds.width());
197     mask->fFormat = SkMask::kA8_Format;
198     const size_t size = mask->computeImageSize();
199     if (size == 0) {
200         return false;
201     }
202     mask->fImage = SkMask::AllocImage(size, SkMask::kZeroInit_Alloc);
203     if (nullptr == mask->fImage) {
204         return false;
205     }
206     return true;
207 }
208 
draw_rrect_into_mask(const SkRRect rrect,SkMask * mask)209 static bool draw_rrect_into_mask(const SkRRect rrect, SkMask* mask) {
210     if (!prepare_to_draw_into_mask(rrect.rect(), mask)) {
211         return false;
212     }
213 
214     // FIXME: This code duplicates code in draw_rects_into_mask, below. Is there a
215     // clean way to share more code?
216     SkBitmap bitmap;
217     bitmap.installMaskPixels(*mask);
218 
219     SkCanvas canvas(bitmap);
220     canvas.translate(-SkIntToScalar(mask->fBounds.left()),
221                      -SkIntToScalar(mask->fBounds.top()));
222 
223     SkPaint paint;
224     paint.setAntiAlias(true);
225     canvas.drawRRect(rrect, paint);
226     return true;
227 }
228 
draw_rects_into_mask(const SkRect rects[],int count,SkMask * mask)229 static bool draw_rects_into_mask(const SkRect rects[], int count, SkMask* mask) {
230     if (!prepare_to_draw_into_mask(rects[0], mask)) {
231         return false;
232     }
233 
234     SkBitmap bitmap;
235     bitmap.installPixels(SkImageInfo::Make(mask->fBounds.width(),
236                                            mask->fBounds.height(),
237                                            kAlpha_8_SkColorType,
238                                            kPremul_SkAlphaType),
239                          mask->fImage, mask->fRowBytes);
240 
241     SkCanvas canvas(bitmap);
242     canvas.translate(-SkIntToScalar(mask->fBounds.left()),
243                      -SkIntToScalar(mask->fBounds.top()));
244 
245     SkPaint paint;
246     paint.setAntiAlias(true);
247 
248     if (1 == count) {
249         canvas.drawRect(rects[0], paint);
250     } else {
251         // todo: do I need a fast way to do this?
252         SkPath path = SkPathBuilder().addRect(rects[0])
253                                      .addRect(rects[1])
254                                      .setFillType(SkPathFillType::kEvenOdd)
255                                      .detach();
256         canvas.drawPath(path, paint);
257     }
258     return true;
259 }
260 
rect_exceeds(const SkRect & r,SkScalar v)261 static bool rect_exceeds(const SkRect& r, SkScalar v) {
262     return r.fLeft < -v || r.fTop < -v || r.fRight > v || r.fBottom > v ||
263            r.width() > v || r.height() > v;
264 }
265 
266 #include "src/core/SkMaskCache.h"
267 
copy_mask_to_cacheddata(SkMask * mask)268 static SkCachedData* copy_mask_to_cacheddata(SkMask* mask) {
269     const size_t size = mask->computeTotalImageSize();
270     SkCachedData* data = SkResourceCache::NewCachedData(size);
271     if (data) {
272         memcpy(data->writable_data(), mask->fImage, size);
273         SkMask::FreeImage(mask->fImage);
274         mask->fImage = (uint8_t*)data->data();
275     }
276     return data;
277 }
278 
find_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)279 static SkCachedData* find_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
280                                        const SkRRect& rrect) {
281     return SkMaskCache::FindAndRef(sigma, style, rrect, mask);
282 }
283 
add_cached_rrect(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRRect & rrect)284 static SkCachedData* add_cached_rrect(SkMask* mask, SkScalar sigma, SkBlurStyle style,
285                                       const SkRRect& rrect) {
286     SkCachedData* cache = copy_mask_to_cacheddata(mask);
287     if (cache) {
288         SkMaskCache::Add(sigma, style, rrect, *mask, cache);
289     }
290     return cache;
291 }
292 
find_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)293 static SkCachedData* find_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
294                                        const SkRect rects[], int count) {
295     return SkMaskCache::FindAndRef(sigma, style, rects, count, mask);
296 }
297 
add_cached_rects(SkMask * mask,SkScalar sigma,SkBlurStyle style,const SkRect rects[],int count)298 static SkCachedData* add_cached_rects(SkMask* mask, SkScalar sigma, SkBlurStyle style,
299                                       const SkRect rects[], int count) {
300     SkCachedData* cache = copy_mask_to_cacheddata(mask);
301     if (cache) {
302         SkMaskCache::Add(sigma, style, rects, count, *mask, cache);
303     }
304     return cache;
305 }
306 
307 static const bool c_analyticBlurRRect{true};
308 
309 SkMaskFilterBase::FilterReturn
filterRRectToNine(const SkRRect & rrect,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const310 SkBlurMaskFilterImpl::filterRRectToNine(const SkRRect& rrect, const SkMatrix& matrix,
311                                         const SkIRect& clipBounds,
312                                         NinePatch* patch) const {
313     SkASSERT(patch != nullptr);
314     switch (rrect.getType()) {
315         case SkRRect::kEmpty_Type:
316             // Nothing to draw.
317             return kFalse_FilterReturn;
318 
319         case SkRRect::kRect_Type:
320             // We should have caught this earlier.
321             SkASSERT(false);
322             [[fallthrough]];
323         case SkRRect::kOval_Type:
324             // The nine patch special case does not handle ovals, and we
325             // already have code for rectangles.
326             return kUnimplemented_FilterReturn;
327 
328         // These three can take advantage of this fast path.
329         case SkRRect::kSimple_Type:
330         case SkRRect::kNinePatch_Type:
331         case SkRRect::kComplex_Type:
332             break;
333     }
334 
335     // TODO: report correct metrics for innerstyle, where we do not grow the
336     // total bounds, but we do need an inset the size of our blur-radius
337     if (kInner_SkBlurStyle == fBlurStyle) {
338         return kUnimplemented_FilterReturn;
339     }
340 
341     // TODO: take clipBounds into account to limit our coordinates up front
342     // for now, just skip too-large src rects (to take the old code path).
343     if (rect_exceeds(rrect.rect(), SkIntToScalar(32767))) {
344         return kUnimplemented_FilterReturn;
345     }
346 
347     SkIPoint margin;
348     SkMask  srcM, dstM;
349     srcM.fBounds = rrect.rect().roundOut();
350     srcM.fFormat = SkMask::kA8_Format;
351     srcM.fRowBytes = 0;
352 
353     bool filterResult = false;
354     if (c_analyticBlurRRect) {
355         // special case for fast round rect blur
356         // don't actually do the blur the first time, just compute the correct size
357         filterResult = this->filterRRectMask(&dstM, rrect, matrix, &margin,
358                                             SkMask::kJustComputeBounds_CreateMode);
359     }
360 
361     if (!filterResult) {
362         filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
363     }
364 
365     if (!filterResult) {
366         return kFalse_FilterReturn;
367     }
368 
369     // Now figure out the appropriate width and height of the smaller round rectangle
370     // to stretch. It will take into account the larger radius per side as well as double
371     // the margin, to account for inner and outer blur.
372     const SkVector& UL = rrect.radii(SkRRect::kUpperLeft_Corner);
373     const SkVector& UR = rrect.radii(SkRRect::kUpperRight_Corner);
374     const SkVector& LR = rrect.radii(SkRRect::kLowerRight_Corner);
375     const SkVector& LL = rrect.radii(SkRRect::kLowerLeft_Corner);
376 
377     const SkScalar leftUnstretched = std::max(UL.fX, LL.fX) + SkIntToScalar(2 * margin.fX);
378     const SkScalar rightUnstretched = std::max(UR.fX, LR.fX) + SkIntToScalar(2 * margin.fX);
379 
380     // Extra space in the middle to ensure an unchanging piece for stretching. Use 3 to cover
381     // any fractional space on either side plus 1 for the part to stretch.
382     const SkScalar stretchSize = SkIntToScalar(3);
383 
384     const SkScalar totalSmallWidth = leftUnstretched + rightUnstretched + stretchSize;
385     if (totalSmallWidth >= rrect.rect().width()) {
386         // There is no valid piece to stretch.
387         return kUnimplemented_FilterReturn;
388     }
389 
390     const SkScalar topUnstretched = std::max(UL.fY, UR.fY) + SkIntToScalar(2 * margin.fY);
391     const SkScalar bottomUnstretched = std::max(LL.fY, LR.fY) + SkIntToScalar(2 * margin.fY);
392 
393     const SkScalar totalSmallHeight = topUnstretched + bottomUnstretched + stretchSize;
394     if (totalSmallHeight >= rrect.rect().height()) {
395         // There is no valid piece to stretch.
396         return kUnimplemented_FilterReturn;
397     }
398 
399     SkRect smallR = SkRect::MakeWH(totalSmallWidth, totalSmallHeight);
400 
401     SkRRect smallRR;
402     SkVector radii[4];
403     radii[SkRRect::kUpperLeft_Corner] = UL;
404     radii[SkRRect::kUpperRight_Corner] = UR;
405     radii[SkRRect::kLowerRight_Corner] = LR;
406     radii[SkRRect::kLowerLeft_Corner] = LL;
407     smallRR.setRectRadii(smallR, radii);
408 
409     const SkScalar sigma = this->computeXformedSigma(matrix);
410     SkCachedData* cache = find_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
411     if (!cache) {
412         bool analyticBlurWorked = false;
413         if (c_analyticBlurRRect) {
414             analyticBlurWorked =
415                 this->filterRRectMask(&patch->fMask, smallRR, matrix, &margin,
416                                       SkMask::kComputeBoundsAndRenderImage_CreateMode);
417         }
418 
419         if (!analyticBlurWorked) {
420             if (!draw_rrect_into_mask(smallRR, &srcM)) {
421                 return kFalse_FilterReturn;
422             }
423 
424             SkAutoMaskFreeImage amf(srcM.fImage);
425 
426             if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
427                 return kFalse_FilterReturn;
428             }
429         }
430         cache = add_cached_rrect(&patch->fMask, sigma, fBlurStyle, smallRR);
431     }
432 
433     patch->fMask.fBounds.offsetTo(0, 0);
434     patch->fOuterRect = dstM.fBounds;
435     patch->fCenter.fX = SkScalarCeilToInt(leftUnstretched) + 1;
436     patch->fCenter.fY = SkScalarCeilToInt(topUnstretched) + 1;
437     SkASSERT(nullptr == patch->fCache);
438     patch->fCache = cache;  // transfer ownership to patch
439     return kTrue_FilterReturn;
440 }
441 
442 // Use the faster analytic blur approach for ninepatch rects
443 static const bool c_analyticBlurNinepatch{true};
444 
445 SkMaskFilterBase::FilterReturn
filterRectsToNine(const SkRect rects[],int count,const SkMatrix & matrix,const SkIRect & clipBounds,NinePatch * patch) const446 SkBlurMaskFilterImpl::filterRectsToNine(const SkRect rects[], int count,
447                                         const SkMatrix& matrix,
448                                         const SkIRect& clipBounds,
449                                         NinePatch* patch) const {
450     if (count < 1 || count > 2) {
451         return kUnimplemented_FilterReturn;
452     }
453 
454     // TODO: report correct metrics for innerstyle, where we do not grow the
455     // total bounds, but we do need an inset the size of our blur-radius
456     if (kInner_SkBlurStyle == fBlurStyle || kOuter_SkBlurStyle == fBlurStyle) {
457         return kUnimplemented_FilterReturn;
458     }
459 
460     // TODO: take clipBounds into account to limit our coordinates up front
461     // for now, just skip too-large src rects (to take the old code path).
462     if (rect_exceeds(rects[0], SkIntToScalar(32767))) {
463         return kUnimplemented_FilterReturn;
464     }
465 
466     SkIPoint margin;
467     SkMask  srcM, dstM;
468     srcM.fBounds = rects[0].roundOut();
469     srcM.fFormat = SkMask::kA8_Format;
470     srcM.fRowBytes = 0;
471 
472     bool filterResult = false;
473     if (count == 1 && c_analyticBlurNinepatch) {
474         // special case for fast rect blur
475         // don't actually do the blur the first time, just compute the correct size
476         filterResult = this->filterRectMask(&dstM, rects[0], matrix, &margin,
477                                             SkMask::kJustComputeBounds_CreateMode);
478     } else {
479         filterResult = this->filterMask(&dstM, srcM, matrix, &margin);
480     }
481 
482     if (!filterResult) {
483         return kFalse_FilterReturn;
484     }
485 
486     /*
487      *  smallR is the smallest version of 'rect' that will still guarantee that
488      *  we get the same blur results on all edges, plus 1 center row/col that is
489      *  representative of the extendible/stretchable edges of the ninepatch.
490      *  Since our actual edge may be fractional we inset 1 more to be sure we
491      *  don't miss any interior blur.
492      *  x is an added pixel of blur, and { and } are the (fractional) edge
493      *  pixels from the original rect.
494      *
495      *   x x { x x .... x x } x x
496      *
497      *  Thus, in this case, we inset by a total of 5 (on each side) beginning
498      *  with our outer-rect (dstM.fBounds)
499      */
500     SkRect smallR[2];
501     SkIPoint center;
502 
503     // +2 is from +1 for each edge (to account for possible fractional edges
504     int smallW = dstM.fBounds.width() - srcM.fBounds.width() + 2;
505     int smallH = dstM.fBounds.height() - srcM.fBounds.height() + 2;
506     SkIRect innerIR;
507 
508     if (1 == count) {
509         innerIR = srcM.fBounds;
510         center.set(smallW, smallH);
511     } else {
512         SkASSERT(2 == count);
513         rects[1].roundIn(&innerIR);
514         center.set(smallW + (innerIR.left() - srcM.fBounds.left()),
515                    smallH + (innerIR.top() - srcM.fBounds.top()));
516     }
517 
518     // +1 so we get a clean, stretchable, center row/col
519     smallW += 1;
520     smallH += 1;
521 
522     // we want the inset amounts to be integral, so we don't change any
523     // fractional phase on the fRight or fBottom of our smallR.
524     const SkScalar dx = SkIntToScalar(innerIR.width() - smallW);
525     const SkScalar dy = SkIntToScalar(innerIR.height() - smallH);
526     if (dx < 0 || dy < 0) {
527         // we're too small, relative to our blur, to break into nine-patch,
528         // so we ask to have our normal filterMask() be called.
529         return kUnimplemented_FilterReturn;
530     }
531 
532     smallR[0].setLTRB(rects[0].left(),       rects[0].top(),
533                       rects[0].right() - dx, rects[0].bottom() - dy);
534     if (smallR[0].width() < 2 || smallR[0].height() < 2) {
535         return kUnimplemented_FilterReturn;
536     }
537     if (2 == count) {
538         smallR[1].setLTRB(rects[1].left(), rects[1].top(),
539                           rects[1].right() - dx, rects[1].bottom() - dy);
540         SkASSERT(!smallR[1].isEmpty());
541     }
542 
543     const SkScalar sigma = this->computeXformedSigma(matrix);
544     SkCachedData* cache = find_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
545     if (!cache) {
546         if (count > 1 || !c_analyticBlurNinepatch) {
547             if (!draw_rects_into_mask(smallR, count, &srcM)) {
548                 return kFalse_FilterReturn;
549             }
550 
551             SkAutoMaskFreeImage amf(srcM.fImage);
552 
553             if (!this->filterMask(&patch->fMask, srcM, matrix, &margin)) {
554                 return kFalse_FilterReturn;
555             }
556         } else {
557             if (!this->filterRectMask(&patch->fMask, smallR[0], matrix, &margin,
558                                       SkMask::kComputeBoundsAndRenderImage_CreateMode)) {
559                 return kFalse_FilterReturn;
560             }
561         }
562         cache = add_cached_rects(&patch->fMask, sigma, fBlurStyle, smallR, count);
563     }
564     patch->fMask.fBounds.offsetTo(0, 0);
565     patch->fOuterRect = dstM.fBounds;
566     patch->fCenter = center;
567     SkASSERT(nullptr == patch->fCache);
568     patch->fCache = cache;  // transfer ownership to patch
569     return kTrue_FilterReturn;
570 }
571 
computeFastBounds(const SkRect & src,SkRect * dst) const572 void SkBlurMaskFilterImpl::computeFastBounds(const SkRect& src,
573                                              SkRect* dst) const {
574     // TODO: if we're doing kInner blur, should we return a different outset?
575     //       i.e. pad == 0 ?
576 
577     SkScalar pad = 3.0f * fSigma;
578 
579     dst->setLTRB(src.fLeft  - pad, src.fTop    - pad,
580                  src.fRight + pad, src.fBottom + pad);
581 }
582 
CreateProc(SkReadBuffer & buffer)583 sk_sp<SkFlattenable> SkBlurMaskFilterImpl::CreateProc(SkReadBuffer& buffer) {
584     const SkScalar sigma = buffer.readScalar();
585     SkBlurStyle style = buffer.read32LE(kLastEnum_SkBlurStyle);
586 
587     uint32_t flags = buffer.read32LE(0x3);  // historically we only recorded 2 bits
588     bool respectCTM = !(flags & 1); // historically we stored ignoreCTM in low bit
589 
590     return SkMaskFilter::MakeBlur((SkBlurStyle)style, sigma, respectCTM);
591 }
592 
flatten(SkWriteBuffer & buffer) const593 void SkBlurMaskFilterImpl::flatten(SkWriteBuffer& buffer) const {
594     buffer.writeScalar(fSigma);
595     buffer.writeUInt(fBlurStyle);
596     buffer.writeUInt(!fRespectCTM); // historically we recorded ignoreCTM
597 }
598 
599 
600 #if SK_SUPPORT_GPU && SK_GPU_V1
601 
602 ///////////////////////////////////////////////////////////////////////////////
603 //  Circle Blur
604 ///////////////////////////////////////////////////////////////////////////////
605 
606 // Computes an unnormalized half kernel (right side). Returns the summation of all the half
607 // kernel values.
make_unnormalized_half_kernel(float * halfKernel,int halfKernelSize,float sigma)608 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) {
609     const float invSigma = 1.f / sigma;
610     const float b = -0.5f * invSigma * invSigma;
611     float tot = 0.0f;
612     // Compute half kernel values at half pixel steps out from the center.
613     float t = 0.5f;
614     for (int i = 0; i < halfKernelSize; ++i) {
615         float value = expf(t * t * b);
616         tot += value;
617         halfKernel[i] = value;
618         t += 1.f;
619     }
620     return tot;
621 }
622 
623 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number
624 // of discrete steps. The half kernel is normalized to sum to 0.5.
make_half_kernel_and_summed_table(float * halfKernel,float * summedHalfKernel,int halfKernelSize,float sigma)625 static void make_half_kernel_and_summed_table(float* halfKernel,
626                                               float* summedHalfKernel,
627                                               int halfKernelSize,
628                                               float sigma) {
629     // The half kernel should sum to 0.5 not 1.0.
630     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma);
631     float sum = 0.f;
632     for (int i = 0; i < halfKernelSize; ++i) {
633         halfKernel[i] /= tot;
634         sum += halfKernel[i];
635         summedHalfKernel[i] = sum;
636     }
637 }
638 
639 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the
640 // origin with radius circleR.
apply_kernel_in_y(float * results,int numSteps,float firstX,float circleR,int halfKernelSize,const float * summedHalfKernelTable)641 void apply_kernel_in_y(float* results,
642                        int numSteps,
643                        float firstX,
644                        float circleR,
645                        int halfKernelSize,
646                        const float* summedHalfKernelTable) {
647     float x = firstX;
648     for (int i = 0; i < numSteps; ++i, x += 1.f) {
649         if (x < -circleR || x > circleR) {
650             results[i] = 0;
651             continue;
652         }
653         float y = sqrtf(circleR * circleR - x * x);
654         // In the column at x we exit the circle at +y and -y
655         // The summed table entry j is actually reflects an offset of j + 0.5.
656         y -= 0.5f;
657         int yInt = SkScalarFloorToInt(y);
658         SkASSERT(yInt >= -1);
659         if (y < 0) {
660             results[i] = (y + 0.5f) * summedHalfKernelTable[0];
661         } else if (yInt >= halfKernelSize - 1) {
662             results[i] = 0.5f;
663         } else {
664             float yFrac = y - yInt;
665             results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] +
666                          yFrac * summedHalfKernelTable[yInt + 1];
667         }
668     }
669 }
670 
671 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR.
672 // This relies on having a half kernel computed for the Gaussian and a table of applications of
673 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX +
674 // halfKernel) passed in as yKernelEvaluations.
eval_at(float evalX,float circleR,const float * halfKernel,int halfKernelSize,const float * yKernelEvaluations)675 static uint8_t eval_at(float evalX,
676                        float circleR,
677                        const float* halfKernel,
678                        int halfKernelSize,
679                        const float* yKernelEvaluations) {
680     float acc = 0;
681 
682     float x = evalX - halfKernelSize;
683     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
684         if (x < -circleR || x > circleR) {
685             continue;
686         }
687         float verticalEval = yKernelEvaluations[i];
688         acc += verticalEval * halfKernel[halfKernelSize - i - 1];
689     }
690     for (int i = 0; i < halfKernelSize; ++i, x += 1.f) {
691         if (x < -circleR || x > circleR) {
692             continue;
693         }
694         float verticalEval = yKernelEvaluations[i + halfKernelSize];
695         acc += verticalEval * halfKernel[i];
696     }
697     // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about
698     // the x axis).
699     return SkUnitScalarClampToByte(2.f * acc);
700 }
701 
702 // This function creates a profile of a blurred circle. It does this by computing a kernel for
703 // half the Gaussian and a matching summed area table. The summed area table is used to compute
704 // an array of vertical applications of the half kernel to the circle along the x axis. The
705 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is
706 // the size of the profile being computed. Then for each of the n profile entries we walk out k
707 // steps in each horizontal direction multiplying the corresponding y evaluation by the half
708 // kernel entry and sum these values to compute the profile entry.
create_circle_profile(uint8_t * weights,float sigma,float circleR,int profileTextureWidth)709 static void create_circle_profile(uint8_t* weights,
710                                   float sigma,
711                                   float circleR,
712                                   int profileTextureWidth) {
713     const int numSteps = profileTextureWidth;
714 
715     // The full kernel is 6 sigmas wide.
716     int halfKernelSize = SkScalarCeilToInt(6.0f * sigma);
717     // round up to next multiple of 2 and then divide by 2
718     halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1;
719 
720     // Number of x steps at which to apply kernel in y to cover all the profile samples in x.
721     int numYSteps = numSteps + 2 * halfKernelSize;
722 
723     SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps);
724     float* halfKernel = bulkAlloc.get();
725     float* summedKernel = bulkAlloc.get() + halfKernelSize;
726     float* yEvals = bulkAlloc.get() + 2 * halfKernelSize;
727     make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma);
728 
729     float firstX = -halfKernelSize + 0.5f;
730     apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel);
731 
732     for (int i = 0; i < numSteps - 1; ++i) {
733         float evalX = i + 0.5f;
734         weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i);
735     }
736     // Ensure the tail of the Gaussian goes to zero.
737     weights[numSteps - 1] = 0;
738 }
739 
create_half_plane_profile(uint8_t * profile,int profileWidth)740 static void create_half_plane_profile(uint8_t* profile, int profileWidth) {
741     SkASSERT(!(profileWidth & 0x1));
742     // The full kernel is 6 sigmas wide.
743     float sigma = profileWidth / 6.f;
744     int halfKernelSize = profileWidth / 2;
745 
746     SkAutoTArray<float> halfKernel(halfKernelSize);
747 
748     // The half kernel should sum to 0.5.
749     const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, sigma);
750     float sum = 0.f;
751     // Populate the profile from the right edge to the middle.
752     for (int i = 0; i < halfKernelSize; ++i) {
753         halfKernel[halfKernelSize - i - 1] /= tot;
754         sum += halfKernel[halfKernelSize - i - 1];
755         profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum);
756     }
757     // Populate the profile from the middle to the left edge (by flipping the half kernel and
758     // continuing the summation).
759     for (int i = 0; i < halfKernelSize; ++i) {
760         sum += halfKernel[i];
761         profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum);
762     }
763     // Ensure tail goes to 0.
764     profile[profileWidth - 1] = 0;
765 }
766 
create_profile_effect(GrRecordingContext * rContext,const SkRect & circle,float sigma,float * solidRadius,float * textureRadius)767 static std::unique_ptr<GrFragmentProcessor> create_profile_effect(GrRecordingContext* rContext,
768                                                                   const SkRect& circle,
769                                                                   float sigma,
770                                                                   float* solidRadius,
771                                                                   float* textureRadius) {
772     float circleR = circle.width() / 2.0f;
773     if (!sk_float_isfinite(circleR) || circleR < SK_ScalarNearlyZero) {
774         return nullptr;
775     }
776 
777     auto threadSafeCache = rContext->priv().threadSafeCache();
778 
779     // Profile textures are cached by the ratio of sigma to circle radius and by the size of the
780     // profile texture (binned by powers of 2).
781     SkScalar sigmaToCircleRRatio = sigma / circleR;
782     // When sigma is really small this becomes a equivalent to convolving a Gaussian with a
783     // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the
784     // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet
785     // implemented this latter optimization.
786     sigmaToCircleRRatio = std::min(sigmaToCircleRRatio, 8.f);
787     SkFixed sigmaToCircleRRatioFixed;
788     static const SkScalar kHalfPlaneThreshold = 0.1f;
789     bool useHalfPlaneApprox = false;
790     if (sigmaToCircleRRatio <= kHalfPlaneThreshold) {
791         useHalfPlaneApprox = true;
792         sigmaToCircleRRatioFixed = 0;
793         *solidRadius = circleR - 3 * sigma;
794         *textureRadius = 6 * sigma;
795     } else {
796         // Convert to fixed point for the key.
797         sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio);
798         // We shave off some bits to reduce the number of unique entries. We could probably
799         // shave off more than we do.
800         sigmaToCircleRRatioFixed &= ~0xff;
801         sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed);
802         sigma = circleR * sigmaToCircleRRatio;
803         *solidRadius = 0;
804         *textureRadius = circleR + 3 * sigma;
805     }
806 
807     static constexpr int kProfileTextureWidth = 512;
808     // This would be kProfileTextureWidth/textureRadius if it weren't for the fact that we do
809     // the calculation of the profile coord in a coord space that has already been scaled by
810     // 1 / textureRadius. This is done to avoid overflow in length().
811     SkMatrix texM = SkMatrix::Scale(kProfileTextureWidth, 1.f);
812 
813     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
814     GrUniqueKey key;
815     GrUniqueKey::Builder builder(&key, kDomain, 1, "1-D Circular Blur");
816     builder[0] = sigmaToCircleRRatioFixed;
817     builder.finish();
818 
819     GrSurfaceProxyView profileView = threadSafeCache->find(key);
820     if (profileView) {
821         SkASSERT(profileView.asTextureProxy());
822         SkASSERT(profileView.origin() == kTopLeft_GrSurfaceOrigin);
823         return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
824     }
825 
826     SkBitmap bm;
827     if (!bm.tryAllocPixels(SkImageInfo::MakeA8(kProfileTextureWidth, 1))) {
828         return nullptr;
829     }
830 
831     if (useHalfPlaneApprox) {
832         create_half_plane_profile(bm.getAddr8(0, 0), kProfileTextureWidth);
833     } else {
834         // Rescale params to the size of the texture we're creating.
835         SkScalar scale = kProfileTextureWidth / *textureRadius;
836         create_circle_profile(
837                 bm.getAddr8(0, 0), sigma * scale, circleR * scale, kProfileTextureWidth);
838     }
839     bm.setImmutable();
840 
841     profileView = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bm));
842     if (!profileView) {
843         return nullptr;
844     }
845 
846     profileView = threadSafeCache->add(key, profileView);
847     return GrTextureEffect::Make(std::move(profileView), kPremul_SkAlphaType, texM);
848 }
849 
make_circle_blur(GrRecordingContext * context,const SkRect & circle,float sigma)850 static std::unique_ptr<GrFragmentProcessor> make_circle_blur(GrRecordingContext* context,
851                                                              const SkRect& circle,
852                                                              float sigma) {
853     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(sigma)) {
854         return nullptr;
855     }
856 
857     float solidRadius;
858     float textureRadius;
859     std::unique_ptr<GrFragmentProcessor> profile =
860             create_profile_effect(context, circle, sigma, &solidRadius, &textureRadius);
861     if (!profile) {
862         return nullptr;
863     }
864 
865     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
866         uniform shader blurProfile;
867         uniform float4 circleData;
868 
869         half4 main(float2 xy, half4 inColor) {
870             // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need
871             // to rearrange to avoid passing large values to length() that would overflow.
872             half4 halfCircleData = circleData;
873             half2 vec = (sk_FragCoord.xy - halfCircleData.xy) * circleData.w;
874             half dist = length(vec) + (0.5 - halfCircleData.z) * halfCircleData.w;
875             return inColor * blurProfile.eval(half2(dist, 0.5)).a;
876         }
877     )");
878 
879     SkV4 circleData = {circle.centerX(), circle.centerY(), solidRadius, 1.f / textureRadius};
880     return GrSkSLFP::Make(effect, "CircleBlur", /*inputFP=*/nullptr,
881                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
882                           "blurProfile", GrSkSLFP::IgnoreOptFlags(std::move(profile)),
883                           "circleData", circleData);
884 }
885 
886 ///////////////////////////////////////////////////////////////////////////////
887 //  Rect Blur
888 ///////////////////////////////////////////////////////////////////////////////
889 
make_rect_integral_fp(GrRecordingContext * rContext,float sixSigma)890 static std::unique_ptr<GrFragmentProcessor> make_rect_integral_fp(GrRecordingContext* rContext,
891                                                                   float sixSigma) {
892     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(sixSigma / 6.f));
893     auto threadSafeCache = rContext->priv().threadSafeCache();
894 
895     int width = SkGpuBlurUtils::CreateIntegralTable(sixSigma, nullptr);
896 
897     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
898     GrUniqueKey key;
899     GrUniqueKey::Builder builder(&key, kDomain, 1, "Rect Blur Mask");
900     builder[0] = width;
901     builder.finish();
902 
903     SkMatrix m = SkMatrix::Scale(width / sixSigma, 1.f);
904 
905     GrSurfaceProxyView view = threadSafeCache->find(key);
906 
907     if (view) {
908         SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
909         return GrTextureEffect::Make(
910                 std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
911     }
912 
913     SkBitmap bitmap;
914     if (!SkGpuBlurUtils::CreateIntegralTable(sixSigma, &bitmap)) {
915         return {};
916     }
917 
918     view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bitmap));
919     if (!view) {
920         return {};
921     }
922 
923     view = threadSafeCache->add(key, view);
924 
925     SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin);
926     return GrTextureEffect::Make(
927             std::move(view), kPremul_SkAlphaType, m, GrSamplerState::Filter::kLinear);
928 }
929 
make_rect_blur(GrRecordingContext * context,const GrShaderCaps & caps,const SkRect & srcRect,const SkMatrix & viewMatrix,float transformedSigma)930 static std::unique_ptr<GrFragmentProcessor> make_rect_blur(GrRecordingContext* context,
931                                                            const GrShaderCaps& caps,
932                                                            const SkRect& srcRect,
933                                                            const SkMatrix& viewMatrix,
934                                                            float transformedSigma) {
935     SkASSERT(viewMatrix.preservesRightAngles());
936     SkASSERT(srcRect.isSorted());
937 
938     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(transformedSigma)) {
939         // No need to blur the rect
940         return nullptr;
941     }
942 
943     SkMatrix invM;
944     SkRect rect;
945     if (viewMatrix.rectStaysRect()) {
946         invM = SkMatrix::I();
947         // We can do everything in device space when the src rect projects to a rect in device space
948         SkAssertResult(viewMatrix.mapRect(&rect, srcRect));
949     } else {
950         // The view matrix may scale, perhaps anisotropically. But we want to apply our device space
951         // "transformedSigma" to the delta of frag coord from the rect edges. Factor out the scaling
952         // to define a space that is purely rotation/translation from device space (and scale from
953         // src space) We'll meet in the middle: pre-scale the src rect to be in this space and then
954         // apply the inverse of the rotation/translation portion to the frag coord.
955         SkMatrix m;
956         SkSize scale;
957         if (!viewMatrix.decomposeScale(&scale, &m)) {
958             return nullptr;
959         }
960         if (!m.invert(&invM)) {
961             return nullptr;
962         }
963         rect = {srcRect.left() * scale.width(),
964                 srcRect.top() * scale.height(),
965                 srcRect.right() * scale.width(),
966                 srcRect.bottom() * scale.height()};
967     }
968 
969     if (!caps.floatIs32Bits()) {
970         // We promote the math that gets us into the Gaussian space to full float when the rect
971         // coords are large. If we don't have full float then fail. We could probably clip the rect
972         // to an outset device bounds instead.
973         if (SkScalarAbs(rect.fLeft) > 16000.f || SkScalarAbs(rect.fTop) > 16000.f ||
974             SkScalarAbs(rect.fRight) > 16000.f || SkScalarAbs(rect.fBottom) > 16000.f) {
975             return nullptr;
976         }
977     }
978 
979     const float sixSigma = 6 * transformedSigma;
980     std::unique_ptr<GrFragmentProcessor> integral = make_rect_integral_fp(context, sixSigma);
981     if (!integral) {
982         return nullptr;
983     }
984 
985     // In the fast variant we think of the midpoint of the integral texture as aligning with the
986     // closest rect edge both in x and y. To simplify texture coord calculation we inset the rect so
987     // that the edge of the inset rect corresponds to t = 0 in the texture. It actually simplifies
988     // things a bit in the !isFast case, too.
989     float threeSigma = sixSigma / 2;
990     SkRect insetRect = {rect.left() + threeSigma,
991                         rect.top() + threeSigma,
992                         rect.right() - threeSigma,
993                         rect.bottom() - threeSigma};
994 
995     // In our fast variant we find the nearest horizontal and vertical edges and for each do a
996     // lookup in the integral texture for each and multiply them. When the rect is less than 6 sigma
997     // wide then things aren't so simple and we have to consider both the left and right edge of the
998     // rectangle (and similar in y).
999     bool isFast = insetRect.isSorted();
1000 
1001     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
1002         // Effect that is a LUT for integral of normal distribution. The value at x:[0,6*sigma] is
1003         // the integral from -inf to (3*sigma - x). I.e. x is mapped from [0, 6*sigma] to
1004         // [3*sigma to -3*sigma]. The flip saves a reversal in the shader.
1005         uniform shader integral;
1006 
1007         uniform float4 rect;
1008         uniform int isFast;  // specialized
1009 
1010         half4 main(float2 pos, half4 inColor) {
1011             half xCoverage, yCoverage;
1012             if (bool(isFast)) {
1013                 // Get the smaller of the signed distance from the frag coord to the left and right
1014                 // edges and similar for y.
1015                 // The integral texture goes "backwards" (from 3*sigma to -3*sigma), So, the below
1016                 // computations align the left edge of the integral texture with the inset rect's
1017                 // edge extending outward 6 * sigma from the inset rect.
1018                 half2 xy = max(half2(rect.LT - pos), half2(pos - rect.RB));
1019                 xCoverage = integral.eval(half2(xy.x, 0.5)).a;
1020                 yCoverage = integral.eval(half2(xy.y, 0.5)).a;
1021             } else {
1022                 // We just consider just the x direction here. In practice we compute x and y
1023                 // separately and multiply them together.
1024                 // We define our coord system so that the point at which we're evaluating a kernel
1025                 // defined by the normal distribution (K) at 0. In this coord system let L be left
1026                 // edge and R be the right edge of the rectangle.
1027                 // We can calculate C by integrating K with the half infinite ranges outside the
1028                 // L to R range and subtracting from 1:
1029                 //   C = 1 - <integral of K from from -inf to  L> - <integral of K from R to inf>
1030                 // K is symmetric about x=0 so:
1031                 //   C = 1 - <integral of K from from -inf to  L> - <integral of K from -inf to -R>
1032 
1033                 // The integral texture goes "backwards" (from 3*sigma to -3*sigma) which is
1034                 // factored in to the below calculations.
1035                 // Also, our rect uniform was pre-inset by 3 sigma from the actual rect being
1036                 // blurred, also factored in.
1037                 half4 rect = half4(half2(rect.LT - pos), half2(pos - rect.RB));
1038                 xCoverage = 1 - integral.eval(half2(rect.L, 0.5)).a
1039                               - integral.eval(half2(rect.R, 0.5)).a;
1040                 yCoverage = 1 - integral.eval(half2(rect.T, 0.5)).a
1041                               - integral.eval(half2(rect.B, 0.5)).a;
1042             }
1043             return inColor * xCoverage * yCoverage;
1044         }
1045     )");
1046 
1047     std::unique_ptr<GrFragmentProcessor> fp =
1048             GrSkSLFP::Make(effect, "RectBlur", /*inputFP=*/nullptr,
1049                            GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1050                            "integral", GrSkSLFP::IgnoreOptFlags(std::move(integral)),
1051                            "rect", insetRect,
1052                            "isFast", GrSkSLFP::Specialize<int>(isFast));
1053     if (!invM.isIdentity()) {
1054         fp = GrMatrixEffect::Make(invM, std::move(fp));
1055     }
1056     return GrFragmentProcessor::DeviceSpace(std::move(fp));
1057 }
1058 
1059 ///////////////////////////////////////////////////////////////////////////////
1060 //  RRect Blur
1061 ///////////////////////////////////////////////////////////////////////////////
1062 
1063 static constexpr auto kBlurredRRectMaskOrigin = kTopLeft_GrSurfaceOrigin;
1064 
make_blurred_rrect_key(GrUniqueKey * key,const SkRRect & rrectToDraw,float xformedSigma)1065 static void make_blurred_rrect_key(GrUniqueKey* key,
1066                                    const SkRRect& rrectToDraw,
1067                                    float xformedSigma) {
1068     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1069     static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
1070 
1071     GrUniqueKey::Builder builder(key, kDomain, 9, "RoundRect Blur Mask");
1072     builder[0] = SkScalarCeilToInt(xformedSigma - 1 / 6.0f);
1073 
1074     int index = 1;
1075     // TODO: this is overkill for _simple_ circular rrects
1076     for (auto c : {SkRRect::kUpperLeft_Corner,
1077                    SkRRect::kUpperRight_Corner,
1078                    SkRRect::kLowerRight_Corner,
1079                    SkRRect::kLowerLeft_Corner}) {
1080         SkASSERT(SkScalarIsInt(rrectToDraw.radii(c).fX) && SkScalarIsInt(rrectToDraw.radii(c).fY));
1081         builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fX);
1082         builder[index++] = SkScalarCeilToInt(rrectToDraw.radii(c).fY);
1083     }
1084     builder.finish();
1085 }
1086 
fillin_view_on_gpu(GrDirectContext * dContext,const GrSurfaceProxyView & lazyView,sk_sp<GrThreadSafeCache::Trampoline> trampoline,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1087 static bool fillin_view_on_gpu(GrDirectContext* dContext,
1088                                const GrSurfaceProxyView& lazyView,
1089                                sk_sp<GrThreadSafeCache::Trampoline> trampoline,
1090                                const SkRRect& rrectToDraw,
1091                                const SkISize& dimensions,
1092                                float xformedSigma) {
1093 #if SK_GPU_V1
1094     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1095 
1096     // We cache blur masks. Use default surface props here so we can use the same cached mask
1097     // regardless of the final dst surface.
1098     SkSurfaceProps defaultSurfaceProps;
1099 
1100     std::unique_ptr<skgpu::v1::SurfaceDrawContext> sdc =
1101             skgpu::v1::SurfaceDrawContext::MakeWithFallback(dContext,
1102                                                             GrColorType::kAlpha_8,
1103                                                             nullptr,
1104                                                             SkBackingFit::kExact,
1105                                                             dimensions,
1106                                                             defaultSurfaceProps,
1107                                                             1,
1108                                                             GrMipmapped::kNo,
1109                                                             GrProtected::kNo,
1110                                                             kBlurredRRectMaskOrigin);
1111     if (!sdc) {
1112         return false;
1113     }
1114 
1115     GrPaint paint;
1116 
1117     sdc->clear(SK_PMColor4fTRANSPARENT);
1118     sdc->drawRRect(nullptr,
1119                    std::move(paint),
1120                    GrAA::kYes,
1121                    SkMatrix::I(),
1122                    rrectToDraw,
1123                    GrStyle::SimpleFill());
1124 
1125     GrSurfaceProxyView srcView = sdc->readSurfaceView();
1126     SkASSERT(srcView.asTextureProxy());
1127     auto rtc2 = SkGpuBlurUtils::GaussianBlur(dContext,
1128                                              std::move(srcView),
1129                                              sdc->colorInfo().colorType(),
1130                                              sdc->colorInfo().alphaType(),
1131                                              nullptr,
1132                                              SkIRect::MakeSize(dimensions),
1133                                              SkIRect::MakeSize(dimensions),
1134                                              xformedSigma,
1135                                              xformedSigma,
1136                                              SkTileMode::kClamp,
1137                                              SkBackingFit::kExact);
1138     if (!rtc2 || !rtc2->readSurfaceView()) {
1139         return false;
1140     }
1141 
1142     auto view = rtc2->readSurfaceView();
1143     SkASSERT(view.swizzle() == lazyView.swizzle());
1144     SkASSERT(view.origin() == lazyView.origin());
1145     trampoline->fProxy = view.asTextureProxyRef();
1146 
1147     return true;
1148 #else
1149     return false;
1150 #endif
1151 }
1152 
1153 // Evaluate the vertical blur at the specified 'y' value given the location of the top of the
1154 // rrect.
eval_V(float top,int y,const uint8_t * integral,int integralSize,float sixSigma)1155 static uint8_t eval_V(float top, int y, const uint8_t* integral, int integralSize, float sixSigma) {
1156     if (top < 0) {
1157         return 0;  // an empty column
1158     }
1159 
1160     float fT = (top - y - 0.5f) * (integralSize / sixSigma);
1161     if (fT < 0) {
1162         return 255;
1163     } else if (fT >= integralSize - 1) {
1164         return 0;
1165     }
1166 
1167     int lower = (int)fT;
1168     float frac = fT - lower;
1169 
1170     SkASSERT(lower + 1 < integralSize);
1171 
1172     return integral[lower] * (1.0f - frac) + integral[lower + 1] * frac;
1173 }
1174 
1175 // Apply a gaussian 'kernel' horizontally at the specified 'x', 'y' location.
eval_H(int x,int y,const std::vector<float> & topVec,const float * kernel,int kernelSize,const uint8_t * integral,int integralSize,float sixSigma)1176 static uint8_t eval_H(int x,
1177                       int y,
1178                       const std::vector<float>& topVec,
1179                       const float* kernel,
1180                       int kernelSize,
1181                       const uint8_t* integral,
1182                       int integralSize,
1183                       float sixSigma) {
1184     SkASSERT(0 <= x && x < (int)topVec.size());
1185     SkASSERT(kernelSize % 2);
1186 
1187     float accum = 0.0f;
1188 
1189     int xSampleLoc = x - (kernelSize / 2);
1190     for (int i = 0; i < kernelSize; ++i, ++xSampleLoc) {
1191         if (xSampleLoc < 0 || xSampleLoc >= (int)topVec.size()) {
1192             continue;
1193         }
1194 
1195         accum += kernel[i] * eval_V(topVec[xSampleLoc], y, integral, integralSize, sixSigma);
1196     }
1197 
1198     return accum + 0.5f;
1199 }
1200 
1201 // Create a cpu-side blurred-rrect mask that is close to the version the gpu would've produced.
1202 // The match needs to be close bc the cpu- and gpu-generated version must be interchangeable.
create_mask_on_cpu(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1203 static GrSurfaceProxyView create_mask_on_cpu(GrRecordingContext* rContext,
1204                                              const SkRRect& rrectToDraw,
1205                                              const SkISize& dimensions,
1206                                              float xformedSigma) {
1207     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1208     int radius = SkGpuBlurUtils::SigmaRadius(xformedSigma);
1209     int kernelSize = 2 * radius + 1;
1210 
1211     SkASSERT(kernelSize % 2);
1212     SkASSERT(dimensions.width() % 2);
1213     SkASSERT(dimensions.height() % 2);
1214 
1215     SkVector radii = rrectToDraw.getSimpleRadii();
1216     SkASSERT(SkScalarNearlyEqual(radii.fX, radii.fY));
1217 
1218     const int halfWidthPlus1 = (dimensions.width() / 2) + 1;
1219     const int halfHeightPlus1 = (dimensions.height() / 2) + 1;
1220 
1221     std::unique_ptr<float[]> kernel(new float[kernelSize]);
1222 
1223     SkGpuBlurUtils::Compute1DGaussianKernel(kernel.get(), xformedSigma, radius);
1224 
1225     SkBitmap integral;
1226     if (!SkGpuBlurUtils::CreateIntegralTable(6 * xformedSigma, &integral)) {
1227         return {};
1228     }
1229 
1230     SkBitmap result;
1231     if (!result.tryAllocPixels(SkImageInfo::MakeA8(dimensions.width(), dimensions.height()))) {
1232         return {};
1233     }
1234 
1235     std::vector<float> topVec;
1236     topVec.reserve(dimensions.width());
1237     for (int x = 0; x < dimensions.width(); ++x) {
1238         if (x < rrectToDraw.rect().fLeft || x > rrectToDraw.rect().fRight) {
1239             topVec.push_back(-1);
1240         } else {
1241             if (x + 0.5f < rrectToDraw.rect().fLeft + radii.fX) {  // in the circular section
1242                 float xDist = rrectToDraw.rect().fLeft + radii.fX - x - 0.5f;
1243                 float h = sqrtf(radii.fX * radii.fX - xDist * xDist);
1244                 SkASSERT(0 <= h && h < radii.fY);
1245                 topVec.push_back(rrectToDraw.rect().fTop + radii.fX - h + 3 * xformedSigma);
1246             } else {
1247                 topVec.push_back(rrectToDraw.rect().fTop + 3 * xformedSigma);
1248             }
1249         }
1250     }
1251 
1252     for (int y = 0; y < halfHeightPlus1; ++y) {
1253         uint8_t* scanline = result.getAddr8(0, y);
1254 
1255         for (int x = 0; x < halfWidthPlus1; ++x) {
1256             scanline[x] = eval_H(x,
1257                                  y,
1258                                  topVec,
1259                                  kernel.get(),
1260                                  kernelSize,
1261                                  integral.getAddr8(0, 0),
1262                                  integral.width(),
1263                                  6 * xformedSigma);
1264             scanline[dimensions.width() - x - 1] = scanline[x];
1265         }
1266 
1267         memcpy(result.getAddr8(0, dimensions.height() - y - 1), scanline, result.rowBytes());
1268     }
1269 
1270     result.setImmutable();
1271 
1272     auto view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, result));
1273     if (!view) {
1274         return {};
1275     }
1276 
1277     SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1278     return view;
1279 }
1280 
find_or_create_rrect_blur_mask_fp(GrRecordingContext * rContext,const SkRRect & rrectToDraw,const SkISize & dimensions,float xformedSigma)1281 static std::unique_ptr<GrFragmentProcessor> find_or_create_rrect_blur_mask_fp(
1282         GrRecordingContext* rContext,
1283         const SkRRect& rrectToDraw,
1284         const SkISize& dimensions,
1285         float xformedSigma) {
1286     SkASSERT(!SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma));
1287     GrUniqueKey key;
1288     make_blurred_rrect_key(&key, rrectToDraw, xformedSigma);
1289 
1290     auto threadSafeCache = rContext->priv().threadSafeCache();
1291 
1292     // It seems like we could omit this matrix and modify the shader code to not normalize
1293     // the coords used to sample the texture effect. However, the "proxyDims" value in the
1294     // shader is not always the actual the proxy dimensions. This is because 'dimensions' here
1295     // was computed using integer corner radii as determined in
1296     // SkComputeBlurredRRectParams whereas the shader code uses the float radius to compute
1297     // 'proxyDims'. Why it draws correctly with these unequal values is a mystery for the ages.
1298     auto m = SkMatrix::Scale(dimensions.width(), dimensions.height());
1299 
1300     GrSurfaceProxyView view;
1301 
1302     if (GrDirectContext* dContext = rContext->asDirectContext()) {
1303         // The gpu thread gets priority over the recording threads. If the gpu thread is first,
1304         // it crams a lazy proxy into the cache and then fills it in later.
1305         auto [lazyView, trampoline] = GrThreadSafeCache::CreateLazyView(dContext,
1306                                                                         GrColorType::kAlpha_8,
1307                                                                         dimensions,
1308                                                                         kBlurredRRectMaskOrigin,
1309                                                                         SkBackingFit::kExact);
1310         if (!lazyView) {
1311             return nullptr;
1312         }
1313 
1314         view = threadSafeCache->findOrAdd(key, lazyView);
1315         if (view != lazyView) {
1316             SkASSERT(view.asTextureProxy());
1317             SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1318             return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1319         }
1320 
1321         if (!fillin_view_on_gpu(dContext,
1322                                 lazyView,
1323                                 std::move(trampoline),
1324                                 rrectToDraw,
1325                                 dimensions,
1326                                 xformedSigma)) {
1327             // In this case something has gone disastrously wrong so set up to drop the draw
1328             // that needed this resource and reduce future pollution of the cache.
1329             threadSafeCache->remove(key);
1330             return nullptr;
1331         }
1332     } else {
1333         view = threadSafeCache->find(key);
1334         if (view) {
1335             SkASSERT(view.asTextureProxy());
1336             SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1337             return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1338         }
1339 
1340         view = create_mask_on_cpu(rContext, rrectToDraw, dimensions, xformedSigma);
1341         if (!view) {
1342             return nullptr;
1343         }
1344 
1345         view = threadSafeCache->add(key, view);
1346     }
1347 
1348     SkASSERT(view.asTextureProxy());
1349     SkASSERT(view.origin() == kBlurredRRectMaskOrigin);
1350     return GrTextureEffect::Make(std::move(view), kPremul_SkAlphaType, m);
1351 }
1352 
make_rrect_blur(GrRecordingContext * context,float sigma,float xformedSigma,const SkRRect & srcRRect,const SkRRect & devRRect)1353 static std::unique_ptr<GrFragmentProcessor> make_rrect_blur(GrRecordingContext* context,
1354                                                             float sigma,
1355                                                             float xformedSigma,
1356                                                             const SkRRect& srcRRect,
1357                                                             const SkRRect& devRRect) {
1358     // Should've been caught up-stream
1359 #ifdef SK_DEBUG
1360     SkASSERTF(!SkRRectPriv::IsCircle(devRRect),
1361               "Unexpected circle. %d\n\t%s\n\t%s",
1362               SkRRectPriv::IsCircle(srcRRect),
1363               srcRRect.dumpToString(true).c_str(),
1364               devRRect.dumpToString(true).c_str());
1365     SkASSERTF(!devRRect.isRect(),
1366               "Unexpected rect. %d\n\t%s\n\t%s",
1367               srcRRect.isRect(),
1368               srcRRect.dumpToString(true).c_str(),
1369               devRRect.dumpToString(true).c_str());
1370 #endif
1371 
1372     // TODO: loosen this up
1373     if (!SkRRectPriv::IsSimpleCircular(devRRect)) {
1374         return nullptr;
1375     }
1376 
1377     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1378         return nullptr;
1379     }
1380 
1381     // Make sure we can successfully ninepatch this rrect -- the blur sigma has to be sufficiently
1382     // small relative to both the size of the corner radius and the width (and height) of the rrect.
1383     SkRRect rrectToDraw;
1384     SkISize dimensions;
1385     SkScalar ignored[SkGpuBlurUtils::kBlurRRectMaxDivisions];
1386 
1387     bool ninePatchable = SkGpuBlurUtils::ComputeBlurredRRectParams(srcRRect,
1388                                                                    devRRect,
1389                                                                    sigma,
1390                                                                    xformedSigma,
1391                                                                    &rrectToDraw,
1392                                                                    &dimensions,
1393                                                                    ignored,
1394                                                                    ignored,
1395                                                                    ignored,
1396                                                                    ignored);
1397     if (!ninePatchable) {
1398         return nullptr;
1399     }
1400 
1401     std::unique_ptr<GrFragmentProcessor> maskFP =
1402             find_or_create_rrect_blur_mask_fp(context, rrectToDraw, dimensions, xformedSigma);
1403     if (!maskFP) {
1404         return nullptr;
1405     }
1406 
1407     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
1408         uniform shader ninePatchFP;
1409 
1410         uniform half cornerRadius;
1411         uniform float4 proxyRect;
1412         uniform half blurRadius;
1413 
1414         half4 main(float2 xy, half4 inColor) {
1415             // Warp the fragment position to the appropriate part of the 9-patch blur texture by
1416             // snipping out the middle section of the proxy rect.
1417             float2 translatedFragPosFloat = sk_FragCoord.xy - proxyRect.LT;
1418             float2 proxyCenter = (proxyRect.RB - proxyRect.LT) * 0.5;
1419             half edgeSize = 2.0 * blurRadius + cornerRadius + 0.5;
1420 
1421             // Position the fragment so that (0, 0) marks the center of the proxy rectangle.
1422             // Negative coordinates are on the left/top side and positive numbers are on the
1423             // right/bottom.
1424             translatedFragPosFloat -= proxyCenter;
1425 
1426             // Temporarily strip off the fragment's sign. x/y are now strictly increasing as we
1427             // move away from the center.
1428             half2 fragDirection = half2(sign(translatedFragPosFloat));
1429             translatedFragPosFloat = abs(translatedFragPosFloat);
1430 
1431             // Our goal is to snip out the "middle section" of the proxy rect (everything but the
1432             // edge). We've repositioned our fragment position so that (0, 0) is the centerpoint
1433             // and x/y are always positive, so we can subtract here and interpret negative results
1434             // as being within the middle section.
1435             half2 translatedFragPosHalf = half2(translatedFragPosFloat - (proxyCenter - edgeSize));
1436 
1437             // Remove the middle section by clamping to zero.
1438             translatedFragPosHalf = max(translatedFragPosHalf, 0);
1439 
1440             // Reapply the fragment's sign, so that negative coordinates once again mean left/top
1441             // side and positive means bottom/right side.
1442             translatedFragPosHalf *= fragDirection;
1443 
1444             // Offset the fragment so that (0, 0) marks the upper-left again, instead of the center
1445             // point.
1446             translatedFragPosHalf += half2(edgeSize);
1447 
1448             half2 proxyDims = half2(2.0 * edgeSize);
1449             half2 texCoord = translatedFragPosHalf / proxyDims;
1450 
1451             return inColor * ninePatchFP.eval(texCoord).a;
1452         }
1453     )");
1454 
1455     float cornerRadius = SkRRectPriv::GetSimpleRadii(devRRect).fX;
1456     float blurRadius = 3.f * SkScalarCeilToScalar(xformedSigma - 1 / 6.0f);
1457     SkRect proxyRect = devRRect.getBounds().makeOutset(blurRadius, blurRadius);
1458 
1459     return GrSkSLFP::Make(effect, "RRectBlur", /*inputFP=*/nullptr,
1460                           GrSkSLFP::OptFlags::kCompatibleWithCoverageAsAlpha,
1461                           "ninePatchFP", GrSkSLFP::IgnoreOptFlags(std::move(maskFP)),
1462                           "cornerRadius", cornerRadius,
1463                           "proxyRect", proxyRect,
1464                           "blurRadius", blurRadius);
1465 }
1466 
1467 #ifdef SKIA_OHOS
make_simple_rrect_sdf(GrRecordingContext * context,GrPaint & paint,float sdfRadius,const SkRRect & srcRRect)1468 static std::unique_ptr<GrFragmentProcessor> make_simple_rrect_sdf(GrRecordingContext* context,
1469                                                                   GrPaint& paint,
1470                                                                   float sdfRadius,
1471                                                                   const SkRRect& srcRRect)
1472 {
1473     SkPMColor4f origColor = paint.getColor4f();
1474     SkV2 wh = {srcRRect.width(), srcRRect.height()};
1475     SkVector rr = srcRRect.getSimpleRadii();
1476     float r = rr.x();
1477 
1478     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
1479         uniform half sdfRadius;
1480         uniform vec2 wh;
1481         uniform half r;
1482 
1483         half4 main(float2 pos) {
1484             vec2 a = vec2(wh.x / 2, wh.y / 2);
1485             vec2 q = abs(pos)-a + r;
1486             float d = length(max(q, 0.0)) + min(max(q.x, q.y), 0.0) - r;
1487             float temp = smoothstep(sdfRadius/2, -sdfRadius/2, d);
1488             float xfactor = floor(mod(q.x, 2.0));
1489             float yfactor = floor(mod(q.y, 2.0));
1490             float base = 3.0 * xfactor + 2.0 * yfactor - 4.0 * xfactor * yfactor;
1491             float bayer = base/4.0 - 0.46875;
1492             float alpha = d < sdfRadius/2 ? temp + bayer/16 : temp;
1493             return half4(alpha);
1494         }
1495     )");
1496 
1497     std::unique_ptr<GrFragmentProcessor> fp =
1498             GrSkSLFP::Make(effect, "SimpleRRectSDF", nullptr,
1499                            origColor.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
1500                                                 : GrSkSLFP::OptFlags::kNone,
1501                            "sdfRadius", sdfRadius, "wh", wh, "r", r);
1502 
1503     if (!fp) {
1504         return nullptr;
1505     }
1506 
1507     SkMatrix matrix;
1508     matrix.setTranslateX(- srcRRect.rect().fLeft - srcRRect.width() * SK_ScalarHalf);
1509     matrix.setTranslateY(- srcRRect.rect().fTop - srcRRect.height() * SK_ScalarHalf);
1510 
1511     auto paintFP = GrMatrixEffect::Make(matrix, std::move(fp));
1512 
1513     return paintFP;
1514 }
1515 
1516 
make_complex_rrect_sdf(GrRecordingContext * context,GrPaint & paint,float sdfRadius,const SkRRect & srcRRect)1517 static std::unique_ptr<GrFragmentProcessor> make_complex_rrect_sdf(GrRecordingContext* context,
1518                                                                    GrPaint& paint,
1519                                                                    float sdfRadius,
1520                                                                    const SkRRect& srcRRect)
1521 {
1522     SkPMColor4f origColor = paint.getColor4f();
1523     SkV2 wh = {srcRRect.width(), srcRRect.height()};
1524     SkVector rr = srcRRect.getSimpleRadii();
1525     SkVector rr3 = srcRRect.radii(SkRRect::Corner::kLowerLeft_Corner);
1526     float r = rr.x();
1527     float r3 = rr3.x();
1528 
1529     static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForShader, R"(
1530         uniform half sdfRadius;
1531         uniform vec2 wh;
1532         uniform half r0;
1533         uniform half r3;
1534 
1535         half4 main(float2 pos) {
1536             vec2 a = vec2(wh.x / 2, wh.y / 2);
1537             half r = (pos.y < 0.0) ? r0 : r3;
1538             vec2 q = abs(pos) - a + r;
1539             float d = length(max(q, 0.0)) + min(max(q.x, q.y), 0.0) - r;
1540             float temp = smoothstep(sdfRadius/2, -sdfRadius/2, d);
1541             float xfactor = floor(mod(q.x, 2.0));
1542             float yfactor = floor(mod(q.y, 2.0));
1543             float base = 3.0 * xfactor + 2.0 * yfactor - 4.0 * xfactor * yfactor;
1544             float bayer = base/4.0 - 0.46875;
1545             float alpha = d < sdfRadius/2 ? temp + bayer/16 : temp;
1546             return half4(alpha);
1547         }
1548     )");
1549 
1550     std::unique_ptr<GrFragmentProcessor> fp =
1551             GrSkSLFP::Make(effect, "ComplexRRectSDF", nullptr,
1552                            origColor.isOpaque() ? GrSkSLFP::OptFlags::kPreservesOpaqueInput
1553                                                 : GrSkSLFP::OptFlags::kNone,
1554                            "sdfRadius", sdfRadius, "wh", wh, "r0", r, "r3", r3);
1555 
1556     if (!fp) {
1557         return nullptr;
1558     }
1559 
1560     SkMatrix matrix;
1561     matrix.setTranslateX(- srcRRect.rect().fLeft - srcRRect.width() * SK_ScalarHalf);
1562     matrix.setTranslateY(- srcRRect.rect().fTop - srcRRect.height() * SK_ScalarHalf);
1563 
1564     auto paintFP = GrMatrixEffect::Make(matrix, std::move(fp));
1565 
1566     return paintFP;
1567 }
1568 #endif // SKIA_OHOS
1569 
1570 ///////////////////////////////////////////////////////////////////////////////
1571 
directFilterMaskGPU(GrRecordingContext * context,skgpu::v1::SurfaceDrawContext * sdc,GrPaint && paint,const GrClip * clip,const SkMatrix & viewMatrix,const GrStyledShape & shape) const1572 bool SkBlurMaskFilterImpl::directFilterMaskGPU(GrRecordingContext* context,
1573                                                skgpu::v1::SurfaceDrawContext* sdc,
1574                                                GrPaint&& paint,
1575                                                const GrClip* clip,
1576                                                const SkMatrix& viewMatrix,
1577                                                const GrStyledShape& shape) const {
1578     SkASSERT(sdc);
1579 
1580     if (fBlurStyle != kNormal_SkBlurStyle) {
1581         return false;
1582     }
1583 
1584     // TODO: we could handle blurred stroked circles
1585     if (!shape.style().isSimpleFill()) {
1586         return false;
1587     }
1588 
1589     SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
1590     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1591         sdc->drawShape(clip, std::move(paint), GrAA::kYes, viewMatrix, GrStyledShape(shape));
1592         return true;
1593     }
1594 
1595     SkRRect srcRRect;
1596     bool inverted;
1597     if (!shape.asRRect(&srcRRect, nullptr, nullptr, &inverted) || inverted) {
1598         return false;
1599     }
1600 
1601     std::unique_ptr<GrFragmentProcessor> fp;
1602 
1603     SkRRect devRRect;
1604     bool devRRectIsValid = srcRRect.transform(viewMatrix, &devRRect);
1605 
1606     bool devRRectIsCircle = devRRectIsValid && SkRRectPriv::IsCircle(devRRect);
1607 
1608     bool canBeRect = srcRRect.isRect() && viewMatrix.preservesRightAngles();
1609     bool canBeCircle = (SkRRectPriv::IsCircle(srcRRect) && viewMatrix.isSimilarity()) ||
1610                        devRRectIsCircle;
1611 
1612     if (canBeRect || canBeCircle) {
1613         if (canBeRect) {
1614             fp = make_rect_blur(context, *context->priv().caps()->shaderCaps(),
1615                                 srcRRect.rect(), viewMatrix, xformedSigma);
1616         } else {
1617             SkRect devBounds;
1618             if (devRRectIsCircle) {
1619                 devBounds = devRRect.getBounds();
1620             } else {
1621                 SkPoint center = {srcRRect.getBounds().centerX(), srcRRect.getBounds().centerY()};
1622                 viewMatrix.mapPoints(&center, 1);
1623                 SkScalar radius = viewMatrix.mapVector(0, srcRRect.width()/2.f).length();
1624                 devBounds = {center.x() - radius,
1625                              center.y() - radius,
1626                              center.x() + radius,
1627                              center.y() + radius};
1628             }
1629             fp = make_circle_blur(context, devBounds, xformedSigma);
1630         }
1631 
1632         if (!fp) {
1633             return false;
1634         }
1635 
1636         SkRect srcProxyRect = srcRRect.rect();
1637         // Determine how much to outset the src rect to ensure we hit pixels within three sigma.
1638         SkScalar outsetX = 3.0f*xformedSigma;
1639         SkScalar outsetY = 3.0f*xformedSigma;
1640         if (viewMatrix.isScaleTranslate()) {
1641             outsetX /= SkScalarAbs(viewMatrix.getScaleX());
1642             outsetY /= SkScalarAbs(viewMatrix.getScaleY());
1643         } else {
1644             SkSize scale;
1645             if (!viewMatrix.decomposeScale(&scale, nullptr)) {
1646                 return false;
1647             }
1648             outsetX /= scale.width();
1649             outsetY /= scale.height();
1650         }
1651         srcProxyRect.outset(outsetX, outsetY);
1652 
1653         paint.setCoverageFragmentProcessor(std::move(fp));
1654         sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1655         return true;
1656     }
1657     if (!viewMatrix.isScaleTranslate()) {
1658         return false;
1659     }
1660     if (!devRRectIsValid || !SkRRectPriv::AllCornersCircular(devRRect)) {
1661         return false;
1662     }
1663 
1664     fp = make_rrect_blur(context, fSigma, xformedSigma, srcRRect, devRRect);
1665     if (!fp) {
1666         return false;
1667     }
1668 
1669     if (!this->ignoreXform()) {
1670         SkRect srcProxyRect = srcRRect.rect();
1671         srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma);
1672         paint.setCoverageFragmentProcessor(std::move(fp));
1673         sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1674     } else {
1675         SkMatrix inverse;
1676         if (!viewMatrix.invert(&inverse)) {
1677             return false;
1678         }
1679 
1680         SkIRect proxyBounds;
1681         float extra=3.f*SkScalarCeilToScalar(xformedSigma-1/6.0f);
1682         devRRect.rect().makeOutset(extra, extra).roundOut(&proxyBounds);
1683 
1684         paint.setCoverageFragmentProcessor(std::move(fp));
1685         sdc->fillPixelsWithLocalMatrix(clip, std::move(paint), proxyBounds, inverse);
1686     }
1687     return true;
1688 }
1689 
1690 #ifdef SKIA_OHOS
directFilterRRectMaskGPU(GrRecordingContext * context,skgpu::v1::SurfaceDrawContext * sdc,GrPaint && paint,const GrClip * clip,const SkMatrix & viewMatrix,const GrStyledShape & shape,const SkRRect & srcRRect) const1691 bool SkBlurMaskFilterImpl::directFilterRRectMaskGPU(GrRecordingContext* context,
1692                                                     skgpu::v1::SurfaceDrawContext* sdc,
1693                                                     GrPaint&& paint,
1694                                                     const GrClip* clip,
1695                                                     const SkMatrix& viewMatrix,
1696                                                     const GrStyledShape& shape,
1697                                                     const SkRRect& srcRRect) const
1698 {
1699     SkASSERT(sdc);
1700 
1701     if (fBlurStyle != kNormal_SkBlurStyle) {
1702         return false;
1703     }
1704 
1705     if (!shape.style().isSimpleFill()) {
1706         return false;
1707     }
1708 
1709     SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
1710     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1711         sdc->drawShape(clip, std::move(paint), GrAA::kYes, viewMatrix, GrStyledShape(shape));
1712         return true;
1713     }
1714 
1715     std::unique_ptr<GrFragmentProcessor> fp;
1716 
1717     SkRRect devRRect;
1718     srcRRect.transform(viewMatrix, &devRRect);
1719 
1720     constexpr float kSigma_Factor = 3.f;
1721     float sdfRadius = kSigma_Factor * fSigma;
1722     if (SDFBlur::isSimpleRRectSDF(srcRRect)) {
1723         fp = make_simple_rrect_sdf(context, paint, sdfRadius, srcRRect);
1724     } else if (SDFBlur::isComplexRRectSDF(srcRRect)) {
1725         fp = make_complex_rrect_sdf(context, paint, sdfRadius, srcRRect);
1726     } else {
1727         return false;
1728     }
1729 
1730     if (!fp) {
1731         return false;
1732     }
1733 
1734     if (!this->ignoreXform()) {
1735         SkRect srcProxyRect = srcRRect.rect();
1736         srcProxyRect.outset(3.0f*fSigma, 3.0f*fSigma);
1737         paint.setCoverageFragmentProcessor(std::move(fp));
1738         sdc->drawRect(clip, std::move(paint), GrAA::kNo, viewMatrix, srcProxyRect);
1739     } else {
1740         SkMatrix inverse;
1741         if (!viewMatrix.invert(&inverse)) {
1742             return false;
1743         }
1744 
1745         SkIRect proxyBounds;
1746         float extra = 3.f * SkScalarCeilToScalar(xformedSigma - 1 / 6.0f);
1747         devRRect.rect().makeOutset(extra, extra).roundOut(&proxyBounds);
1748 
1749         paint.setCoverageFragmentProcessor(std::move(fp));
1750         sdc->fillPixelsWithLocalMatrix(clip, std::move(paint), proxyBounds, inverse);
1751     }
1752     return true;
1753 }
1754 #endif // SKIA_OHOS
1755 
canFilterMaskGPU(const GrStyledShape & shape,const SkIRect & devSpaceShapeBounds,const SkIRect & clipBounds,const SkMatrix & ctm,SkIRect * maskRect) const1756 bool SkBlurMaskFilterImpl::canFilterMaskGPU(const GrStyledShape& shape,
1757                                             const SkIRect& devSpaceShapeBounds,
1758                                             const SkIRect& clipBounds,
1759                                             const SkMatrix& ctm,
1760                                             SkIRect* maskRect) const {
1761     SkScalar xformedSigma = this->computeXformedSigma(ctm);
1762     if (SkGpuBlurUtils::IsEffectivelyZeroSigma(xformedSigma)) {
1763         *maskRect = devSpaceShapeBounds;
1764         return maskRect->intersect(clipBounds);
1765     }
1766 
1767     if (maskRect) {
1768         float sigma3 = 3 * SkScalarToFloat(xformedSigma);
1769 
1770         // Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
1771         SkIRect clipRect = clipBounds.makeOutset(sigma3, sigma3);
1772         SkIRect srcRect = devSpaceShapeBounds.makeOutset(sigma3, sigma3);
1773 
1774         if (!srcRect.intersect(clipRect)) {
1775             srcRect.setEmpty();
1776         }
1777         *maskRect = srcRect;
1778     }
1779 
1780     // We prefer to blur paths with small blur radii on the CPU.
1781     static const SkScalar kMIN_GPU_BLUR_SIZE  = SkIntToScalar(64);
1782     static const SkScalar kMIN_GPU_BLUR_SIGMA = SkIntToScalar(32);
1783 
1784     if (devSpaceShapeBounds.width() <= kMIN_GPU_BLUR_SIZE &&
1785         devSpaceShapeBounds.height() <= kMIN_GPU_BLUR_SIZE &&
1786         xformedSigma <= kMIN_GPU_BLUR_SIGMA) {
1787         return false;
1788     }
1789 
1790     return true;
1791 }
1792 
filterMaskGPU(GrRecordingContext * context,GrSurfaceProxyView srcView,GrColorType srcColorType,SkAlphaType srcAlphaType,const SkMatrix & ctm,const SkIRect & maskRect) const1793 GrSurfaceProxyView SkBlurMaskFilterImpl::filterMaskGPU(GrRecordingContext* context,
1794                                                        GrSurfaceProxyView srcView,
1795                                                        GrColorType srcColorType,
1796                                                        SkAlphaType srcAlphaType,
1797                                                        const SkMatrix& ctm,
1798                                                        const SkIRect& maskRect) const {
1799     // 'maskRect' isn't snapped to the UL corner but the mask in 'src' is.
1800     const SkIRect clipRect = SkIRect::MakeWH(maskRect.width(), maskRect.height());
1801 
1802     SkScalar xformedSigma = this->computeXformedSigma(ctm);
1803 
1804     // If we're doing a normal blur, we can clobber the pathTexture in the
1805     // gaussianBlur.  Otherwise, we need to save it for later compositing.
1806     bool isNormalBlur = (kNormal_SkBlurStyle == fBlurStyle);
1807     auto srcBounds = SkIRect::MakeSize(srcView.proxy()->dimensions());
1808     auto surfaceDrawContext = SkGpuBlurUtils::GaussianBlur(context,
1809                                                             srcView,
1810                                                             srcColorType,
1811                                                             srcAlphaType,
1812                                                             nullptr,
1813                                                             clipRect,
1814                                                             srcBounds,
1815                                                             xformedSigma,
1816                                                             xformedSigma,
1817                                                             SkTileMode::kClamp);
1818     if (!surfaceDrawContext || !surfaceDrawContext->asTextureProxy()) {
1819         return {};
1820     }
1821 
1822     if (!isNormalBlur) {
1823         GrPaint paint;
1824         // Blend pathTexture over blurTexture.
1825         paint.setCoverageFragmentProcessor(GrTextureEffect::Make(std::move(srcView), srcAlphaType));
1826         if (kInner_SkBlurStyle == fBlurStyle) {
1827             // inner:  dst = dst * src
1828             paint.setCoverageSetOpXPFactory(SkRegion::kIntersect_Op);
1829         } else if (kSolid_SkBlurStyle == fBlurStyle) {
1830             // solid:  dst = src + dst - src * dst
1831             //             = src + (1 - src) * dst
1832             paint.setCoverageSetOpXPFactory(SkRegion::kUnion_Op);
1833         } else if (kOuter_SkBlurStyle == fBlurStyle) {
1834             // outer:  dst = dst * (1 - src)
1835             //             = 0 * src + (1 - src) * dst
1836             paint.setCoverageSetOpXPFactory(SkRegion::kDifference_Op);
1837         } else {
1838             paint.setCoverageSetOpXPFactory(SkRegion::kReplace_Op);
1839         }
1840 
1841         surfaceDrawContext->fillPixelsWithLocalMatrix(nullptr, std::move(paint), clipRect,
1842                                                       SkMatrix::I());
1843     }
1844 
1845     return surfaceDrawContext->readSurfaceView();
1846 }
1847 
1848 #endif // SK_SUPPORT_GPU && SK_GPU_V1
1849 
sk_register_blur_maskfilter_createproc()1850 void sk_register_blur_maskfilter_createproc() { SK_REGISTER_FLATTENABLE(SkBlurMaskFilterImpl); }
1851 
MakeBlur(SkBlurStyle style,SkScalar sigma,bool respectCTM)1852 sk_sp<SkMaskFilter> SkMaskFilter::MakeBlur(SkBlurStyle style, SkScalar sigma, bool respectCTM) {
1853     if (SkScalarIsFinite(sigma) && sigma > 0) {
1854         return sk_sp<SkMaskFilter>(new SkBlurMaskFilterImpl(sigma, style, respectCTM));
1855     }
1856     return nullptr;
1857 }
1858 
1859 #ifdef SKIA_OHOS
quick_check_gpu_draw(const SkMatrix & viewMatrix,SkIRect & devSpaceShapeBounds) const1860 bool SkBlurMaskFilterImpl::quick_check_gpu_draw(const SkMatrix& viewMatrix,
1861                                                 SkIRect& devSpaceShapeBounds) const {
1862     SkScalar xformedSigma = this->computeXformedSigma(viewMatrix);
1863 
1864     // According to the advice in skia, We prefer to blur paths with small blur radii on the CPU.
1865     static const SkScalar SKIA_MIN_GPU_BLUR_SIZE = SkIntToScalar(64);
1866     static const SkScalar SKIA_GPU_BLUR_SIGMA = SkIntToScalar(32);
1867 
1868     if (devSpaceShapeBounds.width() <= SKIA_MIN_GPU_BLUR_SIZE &&
1869         devSpaceShapeBounds.height() <= SKIA_MIN_GPU_BLUR_SIZE &&
1870         xformedSigma <= SKIA_GPU_BLUR_SIGMA) {
1871         return false;
1872     }
1873     return true;
1874 }
1875 #endif // SKIA_OHOS