• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/geometry/GrTriangulator.h"
9 
10 #include "src/gpu/BufferWriter.h"
11 #include "src/gpu/GrEagerVertexAllocator.h"
12 #include "src/gpu/geometry/GrPathUtils.h"
13 
14 #include "src/core/SkGeometry.h"
15 #include "src/core/SkPointPriv.h"
16 
17 #include <algorithm>
18 
19 
20 #if TRIANGULATOR_LOGGING
21 #define TESS_LOG printf
22 #define DUMP_MESH(M) (M).dump()
23 #else
24 #define TESS_LOG(...)
25 #define DUMP_MESH(M)
26 #endif
27 
28 using EdgeType = GrTriangulator::EdgeType;
29 using Vertex = GrTriangulator::Vertex;
30 using VertexList = GrTriangulator::VertexList;
31 using Line = GrTriangulator::Line;
32 using Edge = GrTriangulator::Edge;
33 using EdgeList = GrTriangulator::EdgeList;
34 using Poly = GrTriangulator::Poly;
35 using MonotonePoly = GrTriangulator::MonotonePoly;
36 using Comparator = GrTriangulator::Comparator;
37 
38 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)39 static void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
40     t->*Prev = prev;
41     t->*Next = next;
42     if (prev) {
43         prev->*Next = t;
44     } else if (head) {
45         *head = t;
46     }
47     if (next) {
48         next->*Prev = t;
49     } else if (tail) {
50         *tail = t;
51     }
52 }
53 
54 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)55 static void list_remove(T* t, T** head, T** tail) {
56     if (t->*Prev) {
57         t->*Prev->*Next = t->*Next;
58     } else if (head) {
59         *head = t->*Next;
60     }
61     if (t->*Next) {
62         t->*Next->*Prev = t->*Prev;
63     } else if (tail) {
64         *tail = t->*Prev;
65     }
66     t->*Prev = t->*Next = nullptr;
67 }
68 
69 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
70 
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)71 static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
72     return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
73 }
74 
sweep_lt_vert(const SkPoint & a,const SkPoint & b)75 static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
76     return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
77 }
78 
sweep_lt(const SkPoint & a,const SkPoint & b) const79 bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const {
80     return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
81 }
82 
emit_vertex(Vertex * v,bool emitCoverage,void * data)83 static inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) {
84     skgpu::VertexWriter verts{data};
85     verts << v->fPoint;
86 
87     if (emitCoverage) {
88         verts << GrNormalizeByteToFloat(v->fAlpha);
89     }
90 
91     return verts.ptr();
92 }
93 
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,void * data)94 static void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) {
95     TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
96     TESS_LOG("              %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
97     TESS_LOG("              %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
98 #if TESSELLATOR_WIREFRAME
99     data = emit_vertex(v0, emitCoverage, data);
100     data = emit_vertex(v1, emitCoverage, data);
101     data = emit_vertex(v1, emitCoverage, data);
102     data = emit_vertex(v2, emitCoverage, data);
103     data = emit_vertex(v2, emitCoverage, data);
104     data = emit_vertex(v0, emitCoverage, data);
105 #else
106     data = emit_vertex(v0, emitCoverage, data);
107     data = emit_vertex(v1, emitCoverage, data);
108     data = emit_vertex(v2, emitCoverage, data);
109 #endif
110     return data;
111 }
112 
insert(Vertex * v,Vertex * prev,Vertex * next)113 void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) {
114     list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
115 }
116 
remove(Vertex * v)117 void GrTriangulator::VertexList::remove(Vertex* v) {
118     list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
119 }
120 
121 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
122 
round(SkPoint * p)123 static inline void round(SkPoint* p) {
124     p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
125     p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
126 }
127 
double_to_clamped_scalar(double d)128 static inline SkScalar double_to_clamped_scalar(double d) {
129     // Clamps large values to what's finitely representable when cast back to a float.
130     static const double kMaxLimit = (double) SK_ScalarMax;
131     // It's not perfect, but a using a value larger than float_min helps protect from denormalized
132     // values and ill-conditions in intermediate calculations on coordinates.
133     static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min();
134     if (std::abs(d) < kNearZeroLimit) {
135         d = 0.f;
136     }
137     return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit)));
138 }
139 
intersect(const Line & other,SkPoint * point) const140 bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const {
141     double denom = fA * other.fB - fB * other.fA;
142     if (denom == 0.0) {
143         return false;
144     }
145     double scale = 1.0 / denom;
146     point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
147     point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
148      round(point);
149     return point->isFinite();
150 }
151 
152 // If the edge's vertices differ by many orders of magnitude, the computed line equation can have
153 // significant error in its distance and intersection tests. To avoid this, we recursively subdivide
154 // long edges and effectively perform a binary search to perform a more accurate intersection test.
edge_line_needs_recursion(const SkPoint & p0,const SkPoint & p1)155 static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) {
156     // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate
157     // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with
158     // very large coordinates.
159     int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) -
160                             (std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX)));
161     int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) -
162                             (std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY)));
163     // Differ by more than 2^20, or roughly a factor of one million.
164     return expDiffX > 20 || expDiffY > 20;
165 }
166 
recursive_edge_intersect(const Line & u,SkPoint u0,SkPoint u1,const Line & v,SkPoint v0,SkPoint v1,SkPoint * p,double * s,double * t)167 static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1,
168                                      const Line& v, SkPoint v0, SkPoint v1,
169                                      SkPoint* p, double* s, double* t) {
170     // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the
171     // two line segments cannot intersect in their domain (even if the lines themselves might).
172     // - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines
173     //   appear as empty rects, which then never "intersect" according to SkRect.
174     if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) ||
175         std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) ||
176         std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) ||
177         std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) {
178         return false;
179     }
180 
181     // Compute intersection based on current segment vertices; if an intersection is found but the
182     // vertices differ too much in magnitude, we recurse using the midpoint of the segment to
183     // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude
184     // line reports no intersection but there is one).
185     double denom = u.fA * v.fB - u.fB * v.fA;
186     if (denom == 0.0) {
187         return false;
188     }
189     double dx = static_cast<double>(v0.fX) - u0.fX;
190     double dy = static_cast<double>(v0.fY) - u0.fY;
191     double sNumer = dy * v.fB + dx * v.fA;
192     double tNumer = dy * u.fB + dx * u.fA;
193     // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
194     // This saves us doing the divide below unless absolutely necessary.
195     if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
196                     : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
197         return false;
198     }
199 
200     *s = sNumer / denom;
201     *t = tNumer / denom;
202     SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0);
203 
204     const bool uNeedsSplit = edge_line_needs_recursion(u0, u1);
205     const bool vNeedsSplit = edge_line_needs_recursion(v0, v1);
206     if (!uNeedsSplit && !vNeedsSplit) {
207         p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB);
208         p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA);
209         return true;
210     } else {
211         double sScale = 1.0, sShift = 0.0;
212         double tScale = 1.0, tShift = 0.0;
213 
214         if (uNeedsSplit) {
215             SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX),
216                           (float) (0.5 * u0.fY + 0.5 * u1.fY)};
217             sScale = 0.5;
218             if (*s >= 0.5) {
219                 u1 = uM;
220                 sShift = 0.5;
221             } else {
222                 u0 = uM;
223             }
224         }
225         if (vNeedsSplit) {
226             SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX),
227                           (float) (0.5 * v0.fY + 0.5 * v1.fY)};
228             tScale = 0.5;
229             if (*t >= 0.5) {
230                 v1 = vM;
231                 tShift = 0.5;
232             } else {
233                 v0 = vM;
234             }
235         }
236 
237         // Just recompute both lines, even if only one was split; we're already in a slow path.
238         if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) {
239             // Adjust s and t back to full range
240             *s = sScale * (*s) + sShift;
241             *t = tScale * (*t) + tShift;
242             return true;
243         } else {
244             // False positive
245             return false;
246         }
247     }
248 }
249 
intersect(const Edge & other,SkPoint * p,uint8_t * alpha) const250 bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const {
251     TESS_LOG("intersecting %g -> %g with %g -> %g\n",
252              fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID);
253     if (fTop == other.fTop || fBottom == other.fBottom ||
254         fTop == other.fBottom || fBottom == other.fTop) {
255         // If the two edges share a vertex by construction, they have already been split and
256         // shouldn't be considered "intersecting" anymore.
257         return false;
258     }
259 
260     double s, t; // needed to interpolate vertex alpha
261     const bool intersects = recursive_edge_intersect(
262             fLine, fTop->fPoint, fBottom->fPoint,
263             other.fLine, other.fTop->fPoint, other.fBottom->fPoint,
264             p, &s, &t);
265     if (!intersects) {
266         return false;
267     }
268 
269     if (alpha) {
270         if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) {
271             // If the intersection is on any interior edge, it needs to stay fully opaque or later
272             // triangulation could leech transparency into the inner fill region.
273             *alpha = 255;
274         } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) {
275             // Trivially, the intersection will be fully transparent since since it is by
276             // construction on the outer edge.
277             *alpha = 0;
278         } else {
279             // Could be two connectors crossing, or a connector crossing an outer edge.
280             // Take the max interpolated alpha
281             SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector);
282             *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha,
283                               (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha);
284         }
285     }
286     return true;
287 }
288 
insert(Edge * edge,Edge * prev,Edge * next)289 void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) {
290     list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
291 }
292 
remove(Edge * edge)293 void GrTriangulator::EdgeList::remove(Edge* edge) {
294     TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
295     SkASSERT(this->contains(edge));
296     list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
297 }
298 
addEdge(Edge * edge)299 void GrTriangulator::MonotonePoly::addEdge(Edge* edge) {
300     if (fSide == kRight_Side) {
301         SkASSERT(!edge->fUsedInRightPoly);
302         list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
303             edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
304         edge->fUsedInRightPoly = true;
305     } else {
306         SkASSERT(!edge->fUsedInLeftPoly);
307         list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
308             edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
309         edge->fUsedInLeftPoly = true;
310     }
311 }
312 
emitMonotonePoly(const MonotonePoly * monotonePoly,void * data) const313 void* GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly, void* data) const {
314     SkASSERT(monotonePoly->fWinding != 0);
315     Edge* e = monotonePoly->fFirstEdge;
316     VertexList vertices;
317     vertices.append(e->fTop);
318     int count = 1;
319     while (e != nullptr) {
320         if (kRight_Side == monotonePoly->fSide) {
321             vertices.append(e->fBottom);
322             e = e->fRightPolyNext;
323         } else {
324             vertices.prepend(e->fBottom);
325             e = e->fLeftPolyNext;
326         }
327         count++;
328     }
329     Vertex* first = vertices.fHead;
330     Vertex* v = first->fNext;
331     while (v != vertices.fTail) {
332         SkASSERT(v && v->fPrev && v->fNext);
333         Vertex* prev = v->fPrev;
334         Vertex* curr = v;
335         Vertex* next = v->fNext;
336         if (count == 3) {
337             return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data);
338         }
339         double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
340         double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
341         double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
342         double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
343         if (ax * by - ay * bx >= 0.0) {
344             data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data);
345             v->fPrev->fNext = v->fNext;
346             v->fNext->fPrev = v->fPrev;
347             count--;
348             if (v->fPrev == first) {
349                 v = v->fNext;
350             } else {
351                 v = v->fPrev;
352             }
353         } else {
354             v = v->fNext;
355         }
356     }
357     return data;
358 }
359 
emitTriangle(Vertex * prev,Vertex * curr,Vertex * next,int winding,void * data) const360 void* GrTriangulator::emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding,
361                                    void* data) const {
362     if (winding > 0) {
363         // Ensure our triangles always wind in the same direction as if the path had been
364         // triangulated as a simple fan (a la red book).
365         std::swap(prev, next);
366     }
367     if (fCollectBreadcrumbTriangles && abs(winding) > 1 &&
368         fPath.getFillType() == SkPathFillType::kWinding) {
369         // The first winding count will come from the actual triangle we emit. The remaining counts
370         // come from the breadcrumb triangle.
371         fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1);
372     }
373     return emit_triangle(prev, curr, next, fEmitCoverage, data);
374 }
375 
Poly(Vertex * v,int winding)376 GrTriangulator::Poly::Poly(Vertex* v, int winding)
377         : fFirstVertex(v)
378         , fWinding(winding)
379         , fHead(nullptr)
380         , fTail(nullptr)
381         , fNext(nullptr)
382         , fPartner(nullptr)
383         , fCount(0)
384 {
385 #if TRIANGULATOR_LOGGING
386     static int gID = 0;
387     fID = gID++;
388     TESS_LOG("*** created Poly %d\n", fID);
389 #endif
390 }
391 
addEdge(Edge * e,Side side,GrTriangulator * tri)392 Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, GrTriangulator* tri) {
393     TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n",
394              e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
395     Poly* partner = fPartner;
396     Poly* poly = this;
397     if (side == kRight_Side) {
398         if (e->fUsedInRightPoly) {
399             return this;
400         }
401     } else {
402         if (e->fUsedInLeftPoly) {
403             return this;
404         }
405     }
406     if (partner) {
407         fPartner = partner->fPartner = nullptr;
408     }
409     if (!fTail) {
410         fHead = fTail = tri->allocateMonotonePoly(e, side, fWinding);
411         fCount += 2;
412     } else if (e->fBottom == fTail->fLastEdge->fBottom) {
413         return poly;
414     } else if (side == fTail->fSide) {
415         fTail->addEdge(e);
416         fCount++;
417     } else {
418         e = tri->allocateEdge(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner);
419         fTail->addEdge(e);
420         fCount++;
421         if (partner) {
422             partner->addEdge(e, side, tri);
423             poly = partner;
424         } else {
425             MonotonePoly* m = tri->allocateMonotonePoly(e, side, fWinding);
426             m->fPrev = fTail;
427             fTail->fNext = m;
428             fTail = m;
429         }
430     }
431     return poly;
432 }
emitPoly(const Poly * poly,void * data) const433 void* GrTriangulator::emitPoly(const Poly* poly, void *data) const {
434     if (poly->fCount < 3) {
435         return data;
436     }
437     TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount);
438     for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) {
439         data = this->emitMonotonePoly(m, data);
440     }
441     return data;
442 }
443 
coincident(const SkPoint & a,const SkPoint & b)444 static bool coincident(const SkPoint& a, const SkPoint& b) {
445     return a == b;
446 }
447 
makePoly(Poly ** head,Vertex * v,int winding) const448 Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const {
449     Poly* poly = fAlloc->make<Poly>(v, winding);
450     poly->fNext = *head;
451     *head = poly;
452     return poly;
453 }
454 
appendPointToContour(const SkPoint & p,VertexList * contour) const455 void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const {
456     Vertex* v = fAlloc->make<Vertex>(p, 255);
457 #if TRIANGULATOR_LOGGING
458     static float gID = 0.0f;
459     v->fID = gID++;
460 #endif
461     contour->append(v);
462 }
463 
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)464 static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
465     SkQuadCoeff quad(pts);
466     SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
467     SkPoint mid = to_point(quad.eval(t));
468     SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
469     if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
470         return 0;
471     }
472     return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
473 }
474 
appendQuadraticToContour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour) const475 void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd,
476                                               VertexList* contour) const {
477     SkQuadCoeff quad(pts);
478     Sk2s aa = quad.fA * quad.fA;
479     SkScalar denom = 2.0f * (aa[0] + aa[1]);
480     Sk2s ab = quad.fA * quad.fB;
481     SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
482     int nPoints = 1;
483     SkScalar u = 1.0f;
484     // Test possible subdivision values only at the point of maximum curvature.
485     // If it passes the flatness metric there, it'll pass everywhere.
486     while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
487         u = 1.0f / nPoints;
488         if (quad_error_at(pts, t, u) < toleranceSqd) {
489             break;
490         }
491         nPoints++;
492     }
493     for (int j = 1; j <= nPoints; j++) {
494         this->appendPointToContour(to_point(quad.eval(j * u)), contour);
495     }
496 }
497 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft) const498 void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
499                                          const SkPoint& p3, SkScalar tolSqd, VertexList* contour,
500                                          int pointsLeft) const {
501     SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
502     SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
503     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
504         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
505         this->appendPointToContour(p3, contour);
506         return;
507     }
508     const SkPoint q[] = {
509         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
510         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
511         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
512     };
513     const SkPoint r[] = {
514         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
515         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
516     };
517     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
518     pointsLeft >>= 1;
519     this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft);
520     this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft);
521 }
522 
523 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
524 
pathToContours(float tolerance,const SkRect & clipBounds,VertexList * contours,bool * isLinear) const525 void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds,
526                                     VertexList* contours, bool* isLinear) const {
527     SkScalar toleranceSqd = tolerance * tolerance;
528     SkPoint pts[4];
529     *isLinear = true;
530     VertexList* contour = contours;
531     SkPath::Iter iter(fPath, false);
532     if (fPath.isInverseFillType()) {
533         SkPoint quad[4];
534         clipBounds.toQuad(quad);
535         for (int i = 3; i >= 0; i--) {
536             this->appendPointToContour(quad[i], contours);
537         }
538         contour++;
539     }
540     SkAutoConicToQuads converter;
541     SkPath::Verb verb;
542     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
543         switch (verb) {
544             case SkPath::kConic_Verb: {
545                 *isLinear = false;
546                 if (toleranceSqd == 0) {
547                     this->appendPointToContour(pts[2], contour);
548                     break;
549                 }
550                 SkScalar weight = iter.conicWeight();
551                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
552                 for (int i = 0; i < converter.countQuads(); ++i) {
553                     this->appendQuadraticToContour(quadPts, toleranceSqd, contour);
554                     quadPts += 2;
555                 }
556                 break;
557             }
558             case SkPath::kMove_Verb:
559                 if (contour->fHead) {
560                     contour++;
561                 }
562                 this->appendPointToContour(pts[0], contour);
563                 break;
564             case SkPath::kLine_Verb: {
565                 this->appendPointToContour(pts[1], contour);
566                 break;
567             }
568             case SkPath::kQuad_Verb: {
569                 *isLinear = false;
570                 if (toleranceSqd == 0) {
571                     this->appendPointToContour(pts[2], contour);
572                     break;
573                 }
574                 this->appendQuadraticToContour(pts, toleranceSqd, contour);
575                 break;
576             }
577             case SkPath::kCubic_Verb: {
578                 *isLinear = false;
579                 if (toleranceSqd == 0) {
580                     this->appendPointToContour(pts[3], contour);
581                     break;
582                 }
583                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
584                 this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
585                                           pointsLeft);
586                 break;
587             }
588             case SkPath::kClose_Verb:
589             case SkPath::kDone_Verb:
590                 break;
591         }
592     }
593 }
594 
apply_fill_type(SkPathFillType fillType,int winding)595 static inline bool apply_fill_type(SkPathFillType fillType, int winding) {
596     switch (fillType) {
597         case SkPathFillType::kWinding:
598             return winding != 0;
599         case SkPathFillType::kEvenOdd:
600             return (winding & 1) != 0;
601         case SkPathFillType::kInverseWinding:
602             return winding == 1;
603         case SkPathFillType::kInverseEvenOdd:
604             return (winding & 1) == 1;
605         default:
606             SkASSERT(false);
607             return false;
608     }
609 }
610 
applyFillType(int winding) const611 bool GrTriangulator::applyFillType(int winding) const {
612     return apply_fill_type(fPath.getFillType(), winding);
613 }
614 
apply_fill_type(SkPathFillType fillType,Poly * poly)615 static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) {
616     return poly && apply_fill_type(fillType, poly->fWinding);
617 }
618 
allocateMonotonePoly(Edge * edge,Side side,int winding)619 MonotonePoly* GrTriangulator::allocateMonotonePoly(Edge* edge, Side side, int winding) {
620     ++fNumMonotonePolys;
621     return fAlloc->make<MonotonePoly>(edge, side, winding);
622 }
623 
allocateEdge(Vertex * top,Vertex * bottom,int winding,EdgeType type)624 Edge* GrTriangulator::allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type) {
625     ++fNumEdges;
626     return fAlloc->make<Edge>(top, bottom, winding, type);
627 }
628 
makeEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c)629 Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type,
630                                const Comparator& c) {
631     SkASSERT(prev->fPoint != next->fPoint);
632     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
633     Vertex* top = winding < 0 ? next : prev;
634     Vertex* bottom = winding < 0 ? prev : next;
635     return this->allocateEdge(top, bottom, winding, type);
636 }
637 
insert(Edge * edge,Edge * prev)638 void EdgeList::insert(Edge* edge, Edge* prev) {
639     TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
640     SkASSERT(!this->contains(edge));
641     Edge* next = prev ? prev->fRight : fHead;
642     this->insert(edge, prev, next);
643 }
644 
FindEnclosingEdges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)645 void GrTriangulator::FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
646     if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
647         *left = v->fFirstEdgeAbove->fLeft;
648         *right = v->fLastEdgeAbove->fRight;
649         return;
650     }
651     Edge* next = nullptr;
652     Edge* prev;
653     for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
654         if (prev->isLeftOf(v)) {
655             break;
656         }
657         next = prev;
658     }
659     *left = prev;
660     *right = next;
661 }
662 
insertAbove(Vertex * v,const Comparator & c)663 void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) {
664     if (fTop->fPoint == fBottom->fPoint ||
665         c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
666         return;
667     }
668     TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID);
669     Edge* prev = nullptr;
670     Edge* next;
671     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
672         if (next->isRightOf(fTop)) {
673             break;
674         }
675         prev = next;
676     }
677     list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
678         this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
679 }
680 
insertBelow(Vertex * v,const Comparator & c)681 void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) {
682     if (fTop->fPoint == fBottom->fPoint ||
683         c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
684         return;
685     }
686     TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID);
687     Edge* prev = nullptr;
688     Edge* next;
689     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
690         if (next->isRightOf(fBottom)) {
691             break;
692         }
693         prev = next;
694     }
695     list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
696         this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
697 }
698 
remove_edge_above(Edge * edge)699 static void remove_edge_above(Edge* edge) {
700     SkASSERT(edge->fTop && edge->fBottom);
701     TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
702              edge->fBottom->fID);
703     list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
704         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
705 }
706 
remove_edge_below(Edge * edge)707 static void remove_edge_below(Edge* edge) {
708     SkASSERT(edge->fTop && edge->fBottom);
709     TESS_LOG("removing edge (%g -> %g) below vertex %g\n",
710              edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID);
711     list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
712         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
713 }
714 
disconnect()715 void GrTriangulator::Edge::disconnect() {
716     remove_edge_above(this);
717     remove_edge_below(this);
718 }
719 
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,const Comparator & c)720 static void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) {
721     if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
722         return;
723     }
724     Vertex* v = *current;
725     TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
726     while (v != dst) {
727         v = v->fPrev;
728         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
729             activeEdges->remove(e);
730         }
731         Edge* leftEdge = v->fLeftEnclosingEdge;
732         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
733             activeEdges->insert(e, leftEdge);
734             leftEdge = e;
735             Vertex* top = e->fTop;
736             if (c.sweep_lt(top->fPoint, dst->fPoint) &&
737                 ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(e->fTop)) ||
738                  (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(e->fTop)))) {
739                 dst = top;
740             }
741         }
742     }
743     *current = v;
744 }
745 
rewind_if_necessary(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c)746 static void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current,
747                                 const Comparator& c) {
748     if (!activeEdges || !current) {
749         return;
750     }
751     Vertex* top = edge->fTop;
752     Vertex* bottom = edge->fBottom;
753     if (edge->fLeft) {
754         Vertex* leftTop = edge->fLeft->fTop;
755         Vertex* leftBottom = edge->fLeft->fBottom;
756         if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
757             rewind(activeEdges, current, leftTop, c);
758         } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
759             rewind(activeEdges, current, top, c);
760         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
761                    !edge->fLeft->isLeftOf(bottom)) {
762             rewind(activeEdges, current, leftTop, c);
763         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
764             rewind(activeEdges, current, top, c);
765         }
766     }
767     if (edge->fRight) {
768         Vertex* rightTop = edge->fRight->fTop;
769         Vertex* rightBottom = edge->fRight->fBottom;
770         if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
771             rewind(activeEdges, current, rightTop, c);
772         } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
773             rewind(activeEdges, current, top, c);
774         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
775                    !edge->fRight->isRightOf(bottom)) {
776             rewind(activeEdges, current, rightTop, c);
777         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
778                    !edge->isLeftOf(rightBottom)) {
779             rewind(activeEdges, current, top, c);
780         }
781     }
782 }
783 
setTop(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const784 void GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
785                             const Comparator& c) const {
786     remove_edge_below(edge);
787     if (fCollectBreadcrumbTriangles) {
788         fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
789                                edge->fWinding);
790     }
791     edge->fTop = v;
792     edge->recompute();
793     edge->insertBelow(v, c);
794     rewind_if_necessary(edge, activeEdges, current, c);
795     this->mergeCollinearEdges(edge, activeEdges, current, c);
796 }
797 
setBottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const798 void GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
799                                const Comparator& c) const {
800     remove_edge_above(edge);
801     if (fCollectBreadcrumbTriangles) {
802         fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
803                                edge->fWinding);
804     }
805     edge->fBottom = v;
806     edge->recompute();
807     edge->insertAbove(v, c);
808     rewind_if_necessary(edge, activeEdges, current, c);
809     this->mergeCollinearEdges(edge, activeEdges, current, c);
810 }
811 
mergeEdgesAbove(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const812 void GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges,
813                                      Vertex** current, const Comparator& c) const {
814     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
815         TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
816                  edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
817                  edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
818         rewind(activeEdges, current, edge->fTop, c);
819         other->fWinding += edge->fWinding;
820         edge->disconnect();
821         edge->fTop = edge->fBottom = nullptr;
822     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
823         rewind(activeEdges, current, edge->fTop, c);
824         other->fWinding += edge->fWinding;
825         this->setBottom(edge, other->fTop, activeEdges, current, c);
826     } else {
827         rewind(activeEdges, current, other->fTop, c);
828         edge->fWinding += other->fWinding;
829         this->setBottom(other, edge->fTop, activeEdges, current, c);
830     }
831 }
832 
mergeEdgesBelow(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const833 void GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges,
834                                      Vertex** current, const Comparator& c) const {
835     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
836         TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
837                  edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
838                  edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
839         rewind(activeEdges, current, edge->fTop, c);
840         other->fWinding += edge->fWinding;
841         edge->disconnect();
842         edge->fTop = edge->fBottom = nullptr;
843     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
844         rewind(activeEdges, current, other->fTop, c);
845         edge->fWinding += other->fWinding;
846         this->setTop(other, edge->fBottom, activeEdges, current, c);
847     } else {
848         rewind(activeEdges, current, edge->fTop, c);
849         other->fWinding += edge->fWinding;
850         this->setTop(edge, other->fBottom, activeEdges, current, c);
851     }
852 }
853 
top_collinear(Edge * left,Edge * right)854 static bool top_collinear(Edge* left, Edge* right) {
855     if (!left || !right) {
856         return false;
857     }
858     return left->fTop->fPoint == right->fTop->fPoint ||
859            !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
860 }
861 
bottom_collinear(Edge * left,Edge * right)862 static bool bottom_collinear(Edge* left, Edge* right) {
863     if (!left || !right) {
864         return false;
865     }
866     return left->fBottom->fPoint == right->fBottom->fPoint ||
867            !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
868 }
869 
mergeCollinearEdges(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const870 void GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
871                                          const Comparator& c) const {
872     for (;;) {
873         if (top_collinear(edge->fPrevEdgeAbove, edge)) {
874             this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
875         } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
876             this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c);
877         } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
878             this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
879         } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
880             this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c);
881         } else {
882             break;
883         }
884     }
885     SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
886     SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
887     SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
888     SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
889 }
890 
splitEdge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c)891 bool GrTriangulator::splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
892                                const Comparator& c) {
893     if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
894         return false;
895     }
896     TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
897              edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY);
898     Vertex* top;
899     Vertex* bottom;
900     int winding = edge->fWinding;
901     // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between"
902     // the segment end points according to c. This is equivalent to p0 < v < p1.  Unfortunately, if
903     // v was clamped/rounded this relation doesn't always hold.
904     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
905         // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on
906         // the new edge so that it winds as if it were p0->v.
907         top = v;
908         bottom = edge->fTop;
909         winding *= -1;
910         this->setTop(edge, v, activeEdges, current, c);
911     } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
912         // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on
913         // the new edge so that it winds as if it were v->p1.
914         top = edge->fBottom;
915         bottom = v;
916         winding *= -1;
917         this->setBottom(edge, v, activeEdges, current, c);
918     } else {
919         // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding
920         // is valid for both edges.
921         top = v;
922         bottom = edge->fBottom;
923         this->setBottom(edge, v, activeEdges, current, c);
924     }
925     Edge* newEdge = this->allocateEdge(top, bottom, winding, edge->fType);
926     newEdge->insertBelow(top, c);
927     newEdge->insertAbove(bottom, c);
928     this->mergeCollinearEdges(newEdge, activeEdges, current, c);
929     return true;
930 }
931 
intersectEdgePair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,const Comparator & c)932 bool GrTriangulator::intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges,
933                                        Vertex** current, const Comparator& c) {
934     if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
935         return false;
936     }
937     if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
938         return false;
939     }
940     if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
941         if (!left->isLeftOf(right->fTop)) {
942             rewind(activeEdges, current, right->fTop, c);
943             return this->splitEdge(left, right->fTop, activeEdges, current, c);
944         }
945     } else {
946         if (!right->isRightOf(left->fTop)) {
947             rewind(activeEdges, current, left->fTop, c);
948             return this->splitEdge(right, left->fTop, activeEdges, current, c);
949         }
950     }
951     if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
952         if (!left->isLeftOf(right->fBottom)) {
953             rewind(activeEdges, current, right->fBottom, c);
954             return this->splitEdge(left, right->fBottom, activeEdges, current, c);
955         }
956     } else {
957         if (!right->isRightOf(left->fBottom)) {
958             rewind(activeEdges, current, left->fBottom, c);
959             return this->splitEdge(right, left->fBottom, activeEdges, current, c);
960         }
961     }
962     return false;
963 }
964 
makeConnectingEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c,int windingScale)965 Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type,
966                                          const Comparator& c, int windingScale) {
967     if (!prev || !next || prev->fPoint == next->fPoint) {
968         return nullptr;
969     }
970     Edge* edge = this->makeEdge(prev, next, type, c);
971     edge->insertBelow(edge->fTop, c);
972     edge->insertAbove(edge->fBottom, c);
973     edge->fWinding *= windingScale;
974     this->mergeCollinearEdges(edge, nullptr, nullptr, c);
975     return edge;
976 }
977 
mergeVertices(Vertex * src,Vertex * dst,VertexList * mesh,const Comparator & c) const978 void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh,
979                                    const Comparator& c) const {
980     TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n",
981              src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID);
982     dst->fAlpha = std::max(src->fAlpha, dst->fAlpha);
983     if (src->fPartner) {
984         src->fPartner->fPartner = dst;
985     }
986     while (Edge* edge = src->fFirstEdgeAbove) {
987         this->setBottom(edge, dst, nullptr, nullptr, c);
988     }
989     while (Edge* edge = src->fFirstEdgeBelow) {
990         this->setTop(edge, dst, nullptr, nullptr, c);
991     }
992     mesh->remove(src);
993     dst->fSynthetic = true;
994 }
995 
makeSortedVertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,const Comparator & c) const996 Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
997                                          Vertex* reference, const Comparator& c) const {
998     Vertex* prevV = reference;
999     while (prevV && c.sweep_lt(p, prevV->fPoint)) {
1000         prevV = prevV->fPrev;
1001     }
1002     Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
1003     while (nextV && c.sweep_lt(nextV->fPoint, p)) {
1004         prevV = nextV;
1005         nextV = nextV->fNext;
1006     }
1007     Vertex* v;
1008     if (prevV && coincident(prevV->fPoint, p)) {
1009         v = prevV;
1010     } else if (nextV && coincident(nextV->fPoint, p)) {
1011         v = nextV;
1012     } else {
1013         v = fAlloc->make<Vertex>(p, alpha);
1014 #if TRIANGULATOR_LOGGING
1015         if (!prevV) {
1016             v->fID = mesh->fHead->fID - 1.0f;
1017         } else if (!nextV) {
1018             v->fID = mesh->fTail->fID + 1.0f;
1019         } else {
1020             v->fID = (prevV->fID + nextV->fID) * 0.5f;
1021         }
1022 #endif
1023         mesh->insert(v, prevV, nextV);
1024     }
1025     return v;
1026 }
1027 
1028 // Clamps x and y coordinates independently, so the returned point will lie within the bounding
1029 // box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering
1030 // imposed by 'c').
clamp(SkPoint p,SkPoint min,SkPoint max,const Comparator & c)1031 static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) {
1032     if (c.fDirection == Comparator::Direction::kHorizontal) {
1033         // With horizontal sorting, we know min.x <= max.x, but there's no relation between
1034         // Y components unless min.x == max.x.
1035         return {SkTPin(p.fX, min.fX, max.fX),
1036                 min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY)
1037                                 : SkTPin(p.fY, max.fY, min.fY)};
1038     } else {
1039         // And with vertical sorting, we know Y's relation but not necessarily X's.
1040         return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX)
1041                                 : SkTPin(p.fX, max.fX, min.fX),
1042                 SkTPin(p.fY, min.fY, max.fY)};
1043     }
1044 }
1045 
computeBisector(Edge * edge1,Edge * edge2,Vertex * v) const1046 void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const {
1047     SkASSERT(fEmitCoverage);  // Edge-AA only!
1048     Line line1 = edge1->fLine;
1049     Line line2 = edge2->fLine;
1050     line1.normalize();
1051     line2.normalize();
1052     double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
1053     if (cosAngle > 0.999) {
1054         return;
1055     }
1056     line1.fC += edge1->fWinding > 0 ? -1 : 1;
1057     line2.fC += edge2->fWinding > 0 ? -1 : 1;
1058     SkPoint p;
1059     if (line1.intersect(line2, &p)) {
1060         uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0;
1061         v->fPartner = fAlloc->make<Vertex>(p, alpha);
1062         TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
1063     }
1064 }
1065 
checkForIntersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,const Comparator & c)1066 bool GrTriangulator::checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges,
1067                                           Vertex** current, VertexList* mesh,
1068                                           const Comparator& c) {
1069     if (!left || !right) {
1070         return false;
1071     }
1072     SkPoint p;
1073     uint8_t alpha;
1074     if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
1075         Vertex* v;
1076         TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1077         Vertex* top = *current;
1078         // If the intersection point is above the current vertex, rewind to the vertex above the
1079         // intersection.
1080         while (top && c.sweep_lt(p, top->fPoint)) {
1081             top = top->fPrev;
1082         }
1083 
1084         // Always clamp the intersection to lie between the vertices of each segment, since
1085         // in theory that's where the intersection is, but in reality, floating point error may
1086         // have computed an intersection beyond a vertex's component(s).
1087         p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
1088         p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
1089 
1090         if (coincident(p, left->fTop->fPoint)) {
1091             v = left->fTop;
1092         } else if (coincident(p, left->fBottom->fPoint)) {
1093             v = left->fBottom;
1094         } else if (coincident(p, right->fTop->fPoint)) {
1095             v = right->fTop;
1096         } else if (coincident(p, right->fBottom->fPoint)) {
1097             v = right->fBottom;
1098         } else {
1099             v = this->makeSortedVertex(p, alpha, mesh, top, c);
1100             if (left->fTop->fPartner) {
1101                 SkASSERT(fEmitCoverage);  // Edge-AA only!
1102                 v->fSynthetic = true;
1103                 this->computeBisector(left, right, v);
1104             }
1105         }
1106         rewind(activeEdges, current, top ? top : v, c);
1107         this->splitEdge(left, v, activeEdges, current, c);
1108         this->splitEdge(right, v, activeEdges, current, c);
1109         v->fAlpha = std::max(v->fAlpha, alpha);
1110         return true;
1111     }
1112     return this->intersectEdgePair(left, right, activeEdges, current, c);
1113 }
1114 
sanitizeContours(VertexList * contours,int contourCnt) const1115 void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const {
1116     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1117         SkASSERT(contour->fHead);
1118         Vertex* prev = contour->fTail;
1119         prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX);
1120         prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY);
1121         if (fRoundVerticesToQuarterPixel) {
1122             round(&prev->fPoint);
1123         }
1124         for (Vertex* v = contour->fHead; v;) {
1125             v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX);
1126             v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY);
1127             if (fRoundVerticesToQuarterPixel) {
1128                 round(&v->fPoint);
1129             }
1130             Vertex* next = v->fNext;
1131             Vertex* nextWrap = next ? next : contour->fHead;
1132             if (coincident(prev->fPoint, v->fPoint)) {
1133                 TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1134                 contour->remove(v);
1135             } else if (!v->fPoint.isFinite()) {
1136                 TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1137                 contour->remove(v);
1138             } else if (!fPreserveCollinearVertices &&
1139                        Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1140                 TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1141                 contour->remove(v);
1142             } else {
1143                 prev = v;
1144             }
1145             v = next;
1146         }
1147     }
1148 }
1149 
mergeCoincidentVertices(VertexList * mesh,const Comparator & c) const1150 bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const {
1151     if (!mesh->fHead) {
1152         return false;
1153     }
1154     bool merged = false;
1155     for (Vertex* v = mesh->fHead->fNext; v;) {
1156         Vertex* next = v->fNext;
1157         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1158             v->fPoint = v->fPrev->fPoint;
1159         }
1160         if (coincident(v->fPrev->fPoint, v->fPoint)) {
1161             this->mergeVertices(v, v->fPrev, mesh, c);
1162             merged = true;
1163         }
1164         v = next;
1165     }
1166     return merged;
1167 }
1168 
1169 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1170 
buildEdges(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1171 void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
1172                                 const Comparator& c) {
1173     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1174         Vertex* prev = contour->fTail;
1175         for (Vertex* v = contour->fHead; v;) {
1176             Vertex* next = v->fNext;
1177             this->makeConnectingEdge(prev, v, EdgeType::kInner, c);
1178             mesh->append(v);
1179             prev = v;
1180             v = next;
1181         }
1182     }
1183 }
1184 
1185 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1186 static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1187     Vertex* a = front->fHead;
1188     Vertex* b = back->fHead;
1189     while (a && b) {
1190         if (sweep_lt(a->fPoint, b->fPoint)) {
1191             front->remove(a);
1192             result->append(a);
1193             a = front->fHead;
1194         } else {
1195             back->remove(b);
1196             result->append(b);
1197             b = back->fHead;
1198         }
1199     }
1200     result->append(*front);
1201     result->append(*back);
1202 }
1203 
SortedMerge(VertexList * front,VertexList * back,VertexList * result,const Comparator & c)1204 void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result,
1205                                  const Comparator& c) {
1206     if (c.fDirection == Comparator::Direction::kHorizontal) {
1207         sorted_merge<sweep_lt_horiz>(front, back, result);
1208     } else {
1209         sorted_merge<sweep_lt_vert>(front, back, result);
1210     }
1211 #if TRIANGULATOR_LOGGING
1212     float id = 0.0f;
1213     for (Vertex* v = result->fHead; v; v = v->fNext) {
1214         v->fID = id++;
1215     }
1216 #endif
1217 }
1218 
1219 // Stage 3: sort the vertices by increasing sweep direction.
1220 
1221 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1222 static void merge_sort(VertexList* vertices) {
1223     Vertex* slow = vertices->fHead;
1224     if (!slow) {
1225         return;
1226     }
1227     Vertex* fast = slow->fNext;
1228     if (!fast) {
1229         return;
1230     }
1231     do {
1232         fast = fast->fNext;
1233         if (fast) {
1234             fast = fast->fNext;
1235             slow = slow->fNext;
1236         }
1237     } while (fast);
1238     VertexList front(vertices->fHead, slow);
1239     VertexList back(slow->fNext, vertices->fTail);
1240     front.fTail->fNext = back.fHead->fPrev = nullptr;
1241 
1242     merge_sort<sweep_lt>(&front);
1243     merge_sort<sweep_lt>(&back);
1244 
1245     vertices->fHead = vertices->fTail = nullptr;
1246     sorted_merge<sweep_lt>(&front, &back, vertices);
1247 }
1248 
1249 #if TRIANGULATOR_LOGGING
dump() const1250 void VertexList::dump() const {
1251     for (Vertex* v = fHead; v; v = v->fNext) {
1252         TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1253         if (Vertex* p = v->fPartner) {
1254             TESS_LOG(", partner %g (%g, %g) alpha %d\n",
1255                     p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1256         } else {
1257             TESS_LOG(", null partner\n");
1258         }
1259         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1260             TESS_LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1261         }
1262         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1263             TESS_LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1264         }
1265     }
1266 }
1267 #endif
1268 
1269 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,const Comparator & c)1270 static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) {
1271     if (!left || !right) {
1272         return;
1273     }
1274     if (left->fTop == right->fTop) {
1275         SkASSERT(left->isLeftOf(right->fBottom));
1276         SkASSERT(right->isRightOf(left->fBottom));
1277     } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1278         SkASSERT(left->isLeftOf(right->fTop));
1279     } else {
1280         SkASSERT(right->isRightOf(left->fTop));
1281     }
1282     if (left->fBottom == right->fBottom) {
1283         SkASSERT(left->isLeftOf(right->fTop));
1284         SkASSERT(right->isRightOf(left->fTop));
1285     } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1286         SkASSERT(left->isLeftOf(right->fBottom));
1287     } else {
1288         SkASSERT(right->isRightOf(left->fBottom));
1289     }
1290 }
1291 
validate_edge_list(EdgeList * edges,const Comparator & c)1292 static void validate_edge_list(EdgeList* edges, const Comparator& c) {
1293     Edge* left = edges->fHead;
1294     if (!left) {
1295         return;
1296     }
1297     for (Edge* right = left->fRight; right; right = right->fRight) {
1298         validate_edge_pair(left, right, c);
1299         left = right;
1300     }
1301 }
1302 #endif
1303 
1304 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1305 
simplify(VertexList * mesh,const Comparator & c)1306 GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh,
1307                                                         const Comparator& c) {
1308     TESS_LOG("simplifying complex polygons\n");
1309 
1310     int initialNumEdges = fNumEdges;
1311 
1312     EdgeList activeEdges;
1313     auto result = SimplifyResult::kAlreadySimple;
1314     for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1315         if (!v->isConnected()) {
1316             continue;
1317         }
1318 
1319         // The max increase across all skps, svgs and gms with only the triangulating and SW path
1320         // renderers enabled and with the triangulator's maxVerbCount set to the Chrome value is
1321         // 17x.
1322         if (fNumEdges > 170*initialNumEdges) {
1323             return SimplifyResult::kFailed;
1324         }
1325 
1326         Edge* leftEnclosingEdge;
1327         Edge* rightEnclosingEdge;
1328         bool restartChecks;
1329         do {
1330             TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n",
1331                      v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1332             restartChecks = false;
1333             FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1334             v->fLeftEnclosingEdge = leftEnclosingEdge;
1335             v->fRightEnclosingEdge = rightEnclosingEdge;
1336             if (v->fFirstEdgeBelow) {
1337                 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1338                     if (this->checkForIntersection(
1339                             leftEnclosingEdge, edge, &activeEdges, &v, mesh, c) ||
1340                         this->checkForIntersection(
1341                             edge, rightEnclosingEdge, &activeEdges, &v, mesh, c)) {
1342                         result = SimplifyResult::kFoundSelfIntersection;
1343                         restartChecks = true;
1344                         break;
1345                     }
1346                 }
1347             } else {
1348                 if (this->checkForIntersection(leftEnclosingEdge, rightEnclosingEdge, &activeEdges,
1349                                                &v, mesh, c)) {
1350                     result = SimplifyResult::kFoundSelfIntersection;
1351                     restartChecks = true;
1352                 }
1353 
1354             }
1355         } while (restartChecks);
1356 #ifdef SK_DEBUG
1357         validate_edge_list(&activeEdges, c);
1358 #endif
1359         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1360             activeEdges.remove(e);
1361         }
1362         Edge* leftEdge = leftEnclosingEdge;
1363         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1364             activeEdges.insert(e, leftEdge);
1365             leftEdge = e;
1366         }
1367     }
1368     SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1369     return result;
1370 }
1371 
1372 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1373 
tessellate(const VertexList & vertices,const Comparator &)1374 std::tuple<Poly*, bool> GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) {
1375     TESS_LOG("\ntessellating simple polygons\n");
1376     EdgeList activeEdges;
1377     Poly* polys = nullptr;
1378     for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1379         if (!v->isConnected()) {
1380             continue;
1381         }
1382 #if TRIANGULATOR_LOGGING
1383         TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1384 #endif
1385         Edge* leftEnclosingEdge;
1386         Edge* rightEnclosingEdge;
1387         FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1388         Poly* leftPoly;
1389         Poly* rightPoly;
1390         if (v->fFirstEdgeAbove) {
1391             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1392             rightPoly = v->fLastEdgeAbove->fRightPoly;
1393         } else {
1394             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1395             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1396         }
1397 #if TRIANGULATOR_LOGGING
1398         TESS_LOG("edges above:\n");
1399         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1400             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1401                      e->fTop->fID, e->fBottom->fID,
1402                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1403                      e->fRightPoly ? e->fRightPoly->fID : -1);
1404         }
1405         TESS_LOG("edges below:\n");
1406         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1407             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1408                      e->fTop->fID, e->fBottom->fID,
1409                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1410                      e->fRightPoly ? e->fRightPoly->fID : -1);
1411         }
1412 #endif
1413         if (v->fFirstEdgeAbove) {
1414             if (leftPoly) {
1415                 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, this);
1416             }
1417             if (rightPoly) {
1418                 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, this);
1419             }
1420             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1421                 Edge* rightEdge = e->fNextEdgeAbove;
1422                 activeEdges.remove(e);
1423                 if (e->fRightPoly) {
1424                     e->fRightPoly->addEdge(e, kLeft_Side, this);
1425                 }
1426                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1427                     rightEdge->fLeftPoly->addEdge(e, kRight_Side, this);
1428                 }
1429             }
1430             activeEdges.remove(v->fLastEdgeAbove);
1431             if (!v->fFirstEdgeBelow) {
1432                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1433                     SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1434                     rightPoly->fPartner = leftPoly;
1435                     leftPoly->fPartner = rightPoly;
1436                 }
1437             }
1438         }
1439         if (v->fFirstEdgeBelow) {
1440             if (!v->fFirstEdgeAbove) {
1441                 if (leftPoly && rightPoly) {
1442                     if (leftPoly == rightPoly) {
1443                         if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) {
1444                             leftPoly = this->makePoly(&polys, leftPoly->lastVertex(),
1445                                                       leftPoly->fWinding);
1446                             leftEnclosingEdge->fRightPoly = leftPoly;
1447                         } else {
1448                             rightPoly = this->makePoly(&polys, rightPoly->lastVertex(),
1449                                                        rightPoly->fWinding);
1450                             rightEnclosingEdge->fLeftPoly = rightPoly;
1451                         }
1452                     }
1453                     Edge* join = this->allocateEdge(leftPoly->lastVertex(), v, 1, EdgeType::kInner);
1454                     leftPoly = leftPoly->addEdge(join, kRight_Side, this);
1455                     rightPoly = rightPoly->addEdge(join, kLeft_Side, this);
1456                 }
1457             }
1458             Edge* leftEdge = v->fFirstEdgeBelow;
1459             leftEdge->fLeftPoly = leftPoly;
1460             activeEdges.insert(leftEdge, leftEnclosingEdge);
1461             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1462                  rightEdge = rightEdge->fNextEdgeBelow) {
1463                 activeEdges.insert(rightEdge, leftEdge);
1464                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1465                 winding += leftEdge->fWinding;
1466                 if (winding != 0) {
1467                     Poly* poly = this->makePoly(&polys, v, winding);
1468                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1469                 }
1470                 leftEdge = rightEdge;
1471             }
1472             v->fLastEdgeBelow->fRightPoly = rightPoly;
1473         }
1474 #if TRIANGULATOR_LOGGING
1475         TESS_LOG("\nactive edges:\n");
1476         for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1477             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1478                      e->fTop->fID, e->fBottom->fID,
1479                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1480                      e->fRightPoly ? e->fRightPoly->fID : -1);
1481         }
1482 #endif
1483     }
1484     return { polys, true };
1485 }
1486 
1487 // This is a driver function that calls stages 2-5 in turn.
1488 
contoursToMesh(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1489 void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
1490                                     const Comparator& c) {
1491 #if TRIANGULATOR_LOGGING
1492     for (int i = 0; i < contourCnt; ++i) {
1493         Vertex* v = contours[i].fHead;
1494         SkASSERT(v);
1495         TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1496         for (v = v->fNext; v; v = v->fNext) {
1497             TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1498         }
1499     }
1500 #endif
1501     this->sanitizeContours(contours, contourCnt);
1502     this->buildEdges(contours, contourCnt, mesh, c);
1503 }
1504 
SortMesh(VertexList * vertices,const Comparator & c)1505 void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) {
1506     if (!vertices || !vertices->fHead) {
1507         return;
1508     }
1509 
1510     // Sort vertices in Y (secondarily in X).
1511     if (c.fDirection == Comparator::Direction::kHorizontal) {
1512         merge_sort<sweep_lt_horiz>(vertices);
1513     } else {
1514         merge_sort<sweep_lt_vert>(vertices);
1515     }
1516 #if TRIANGULATOR_LOGGING
1517     for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1518         static float gID = 0.0f;
1519         v->fID = gID++;
1520     }
1521 #endif
1522 }
1523 
contoursToPolys(VertexList * contours,int contourCnt)1524 std::tuple<Poly*, bool> GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) {
1525     const SkRect& pathBounds = fPath.getBounds();
1526     Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1527                                                           : Comparator::Direction::kVertical);
1528     VertexList mesh;
1529     this->contoursToMesh(contours, contourCnt, &mesh, c);
1530     TESS_LOG("\ninitial mesh:\n");
1531     DUMP_MESH(mesh);
1532     SortMesh(&mesh, c);
1533     TESS_LOG("\nsorted mesh:\n");
1534     DUMP_MESH(mesh);
1535     this->mergeCoincidentVertices(&mesh, c);
1536     TESS_LOG("\nsorted+merged mesh:\n");
1537     DUMP_MESH(mesh);
1538     auto result = this->simplify(&mesh, c);
1539     if (result == SimplifyResult::kFailed) {
1540         return { nullptr, false };
1541     }
1542     TESS_LOG("\nsimplified mesh:\n");
1543     DUMP_MESH(mesh);
1544     return this->tessellate(mesh, c);
1545 }
1546 
1547 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polysToTriangles(Poly * polys,void * data,SkPathFillType overrideFillType) const1548 void* GrTriangulator::polysToTriangles(Poly* polys, void* data,
1549                                        SkPathFillType overrideFillType) const {
1550     for (Poly* poly = polys; poly; poly = poly->fNext) {
1551         if (apply_fill_type(overrideFillType, poly)) {
1552             data = this->emitPoly(poly, data);
1553         }
1554     }
1555     return data;
1556 }
1557 
get_contour_count(const SkPath & path,SkScalar tolerance)1558 static int get_contour_count(const SkPath& path, SkScalar tolerance) {
1559     // We could theoretically be more aggressive about not counting empty contours, but we need to
1560     // actually match the exact number of contour linked lists the tessellator will create later on.
1561     int contourCnt = 1;
1562     bool hasPoints = false;
1563 
1564     SkPath::Iter iter(path, false);
1565     SkPath::Verb verb;
1566     SkPoint pts[4];
1567     bool first = true;
1568     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
1569         switch (verb) {
1570             case SkPath::kMove_Verb:
1571                 if (!first) {
1572                     ++contourCnt;
1573                 }
1574                 [[fallthrough]];
1575             case SkPath::kLine_Verb:
1576             case SkPath::kConic_Verb:
1577             case SkPath::kQuad_Verb:
1578             case SkPath::kCubic_Verb:
1579                 hasPoints = true;
1580                 break;
1581             default:
1582                 break;
1583         }
1584         first = false;
1585     }
1586     if (!hasPoints) {
1587         return 0;
1588     }
1589     return contourCnt;
1590 }
1591 
pathToPolys(float tolerance,const SkRect & clipBounds,bool * isLinear)1592 std::tuple<Poly*, bool> GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) {
1593     int contourCnt = get_contour_count(fPath, tolerance);
1594     if (contourCnt <= 0) {
1595         *isLinear = true;
1596         return { nullptr, true };
1597     }
1598 
1599     if (SkPathFillType_IsInverse(fPath.getFillType())) {
1600         contourCnt++;
1601     }
1602     std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1603 
1604     this->pathToContours(tolerance, clipBounds, contours.get(), isLinear);
1605     return this->contoursToPolys(contours.get(), contourCnt);
1606 }
1607 
CountPoints(Poly * polys,SkPathFillType overrideFillType)1608 int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) {
1609     int64_t count = 0;
1610     for (Poly* poly = polys; poly; poly = poly->fNext) {
1611         if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) {
1612             count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3);
1613         }
1614     }
1615     return count;
1616 }
1617 
1618 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1619 
polysToTriangles(Poly * polys,GrEagerVertexAllocator * vertexAllocator) const1620 int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const {
1621     int64_t count64 = CountPoints(polys, fPath.getFillType());
1622     if (0 == count64 || count64 > SK_MaxS32) {
1623         return 0;
1624     }
1625     int count = count64;
1626 
1627     size_t vertexStride = sizeof(SkPoint);
1628     if (fEmitCoverage) {
1629         vertexStride += sizeof(float);
1630     }
1631     void* verts = vertexAllocator->lock(vertexStride, count);
1632     if (!verts) {
1633         SkDebugf("Could not allocate vertices\n");
1634         return 0;
1635     }
1636 
1637     TESS_LOG("emitting %d verts\n", count);
1638     void* end = this->polysToTriangles(polys, verts, fPath.getFillType());
1639 
1640     int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts))
1641                                        / vertexStride);
1642     SkASSERT(actualCount <= count);
1643     vertexAllocator->unlock(actualCount);
1644     return actualCount;
1645 }
1646