1 /* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef GrTriangulator_DEFINED 9 #define GrTriangulator_DEFINED 10 11 #include "include/core/SkPath.h" 12 #include "include/core/SkPoint.h" 13 #include "include/private/SkColorData.h" 14 #include "src/core/SkArenaAlloc.h" 15 #include "src/gpu/GrColor.h" 16 17 class GrEagerVertexAllocator; 18 struct SkRect; 19 20 #define TRIANGULATOR_LOGGING 0 21 #define TRIANGULATOR_WIREFRAME 0 22 23 /** 24 * Provides utility functions for converting paths to a collection of triangles. 25 */ 26 class SK_API GrTriangulator { 27 public: 28 constexpr static int kArenaDefaultChunkSize = 16 * 1024; 29 PathToTriangles(const SkPath & path,SkScalar tolerance,const SkRect & clipBounds,GrEagerVertexAllocator * vertexAllocator,bool * isLinear)30 static int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, 31 GrEagerVertexAllocator* vertexAllocator, bool* isLinear) { 32 if (!path.isFinite()) { 33 return 0; 34 } 35 SkArenaAlloc alloc(kArenaDefaultChunkSize); 36 GrTriangulator triangulator(path, &alloc); 37 auto [ polys, success ] = triangulator.pathToPolys(tolerance, clipBounds, isLinear); 38 if (!success) { 39 return 0; 40 } 41 int count = triangulator.polysToTriangles(polys, vertexAllocator); 42 return count; 43 } 44 45 // Enums used by GrTriangulator internals. 46 typedef enum { kLeft_Side, kRight_Side } Side; 47 enum class EdgeType { kInner, kOuter, kConnector }; 48 49 // Structs used by GrTriangulator internals. 50 struct Vertex; 51 struct VertexList; 52 struct Line; 53 struct Edge; 54 struct EdgeList; 55 struct MonotonePoly; 56 struct Poly; 57 struct Comparator; 58 59 protected: GrTriangulator(const SkPath & path,SkArenaAlloc * alloc)60 GrTriangulator(const SkPath& path, SkArenaAlloc* alloc) : fPath(path), fAlloc(alloc) {} ~GrTriangulator()61 virtual ~GrTriangulator() {} 62 63 // There are six stages to the basic algorithm: 64 // 65 // 1) Linearize the path contours into piecewise linear segments: 66 void pathToContours(float tolerance, const SkRect& clipBounds, VertexList* contours, 67 bool* isLinear) const; 68 69 // 2) Build a mesh of edges connecting the vertices: 70 void contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh, 71 const Comparator&); 72 73 // 3) Sort the vertices in Y (and secondarily in X): 74 static void SortedMerge(VertexList* front, VertexList* back, VertexList* result, 75 const Comparator&); 76 static void SortMesh(VertexList* vertices, const Comparator&); 77 78 // 4) Simplify the mesh by inserting new vertices at intersecting edges: 79 enum class SimplifyResult { 80 kFailed, 81 kAlreadySimple, 82 kFoundSelfIntersection 83 }; 84 85 SimplifyResult SK_WARN_UNUSED_RESULT simplify(VertexList* mesh, const Comparator&); 86 87 // 5) Tessellate the simplified mesh into monotone polygons: 88 virtual std::tuple<Poly*, bool> tessellate(const VertexList& vertices, const Comparator&); 89 90 // 6) Triangulate the monotone polygons directly into a vertex buffer: 91 void* polysToTriangles(Poly* polys, void* data, SkPathFillType overrideFillType) const; 92 93 // The vertex sorting in step (3) is a merge sort, since it plays well with the linked list 94 // of vertices (and the necessity of inserting new vertices on intersection). 95 // 96 // Stages (4) and (5) use an active edge list -- a list of all edges for which the 97 // sweep line has crossed the top vertex, but not the bottom vertex. It's sorted 98 // left-to-right based on the point where both edges are active (when both top vertices 99 // have been seen, so the "lower" top vertex of the two). If the top vertices are equal 100 // (shared), it's sorted based on the last point where both edges are active, so the 101 // "upper" bottom vertex. 102 // 103 // The most complex step is the simplification (4). It's based on the Bentley-Ottman 104 // line-sweep algorithm, but due to floating point inaccuracy, the intersection points are 105 // not exact and may violate the mesh topology or active edge list ordering. We 106 // accommodate this by adjusting the topology of the mesh and AEL to match the intersection 107 // points. This occurs in two ways: 108 // 109 // A) Intersections may cause a shortened edge to no longer be ordered with respect to its 110 // neighbouring edges at the top or bottom vertex. This is handled by merging the 111 // edges (mergeCollinearVertices()). 112 // B) Intersections may cause an edge to violate the left-to-right ordering of the 113 // active edge list. This is handled by detecting potential violations and rewinding 114 // the active edge list to the vertex before they occur (rewind() during merging, 115 // rewind_if_necessary() during splitting). 116 // 117 // The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and 118 // Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it 119 // currently uses a linked list for the active edge list, rather than a 2-3 tree as the 120 // paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also 121 // become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) 122 // insertions and removals was greater than the cost of infrequent O(N) lookups with the 123 // linked list implementation. With the latter, all removals are O(1), and most insertions 124 // are O(1), since we know the adjacent edge in the active edge list based on the topology. 125 // Only type 2 vertices (see paper) require the O(N) lookups, and these are much less 126 // frequent. There may be other data structures worth investigating, however. 127 // 128 // Note that the orientation of the line sweep algorithms is determined by the aspect ratio of 129 // the path bounds. When the path is taller than it is wide, we sort vertices based on 130 // increasing Y coordinate, and secondarily by increasing X coordinate. When the path is wider 131 // than it is tall, we sort by increasing X coordinate, but secondarily by *decreasing* Y 132 // coordinate. This is so that the "left" and "right" orientation in the code remains correct 133 // (edges to the left are increasing in Y; edges to the right are decreasing in Y). That is, the 134 // setting rotates 90 degrees counterclockwise, rather that transposing. 135 136 // Additional helpers and driver functions. 137 void* emitMonotonePoly(const MonotonePoly*, void* data) const; 138 void* emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding, void* data) const; 139 void* emitPoly(const Poly*, void *data) const; 140 Poly* makePoly(Poly** head, Vertex* v, int winding) const; 141 void appendPointToContour(const SkPoint& p, VertexList* contour) const; 142 void appendQuadraticToContour(const SkPoint[3], SkScalar toleranceSqd, 143 VertexList* contour) const; 144 void generateCubicPoints(const SkPoint&, const SkPoint&, const SkPoint&, const SkPoint&, 145 SkScalar tolSqd, VertexList* contour, int pointsLeft) const; 146 bool applyFillType(int winding) const; 147 MonotonePoly* allocateMonotonePoly(Edge* edge, Side side, int winding); 148 Edge* allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type); 149 Edge* makeEdge(Vertex* prev, Vertex* next, EdgeType type, const Comparator&); 150 void setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 151 const Comparator&) const; 152 void setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 153 const Comparator&) const; 154 void mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, 155 const Comparator&) const; 156 void mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges, Vertex** current, 157 const Comparator&) const; 158 Edge* makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType, const Comparator&, 159 int windingScale = 1); 160 void mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh, const Comparator&) const; 161 static void FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right); 162 void mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current, 163 const Comparator&) const; 164 bool splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 165 const Comparator&); 166 bool intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, 167 const Comparator&); 168 Vertex* makeSortedVertex(const SkPoint&, uint8_t alpha, VertexList* mesh, Vertex* reference, 169 const Comparator&) const; 170 void computeBisector(Edge* edge1, Edge* edge2, Vertex*) const; 171 bool checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges, Vertex** current, 172 VertexList* mesh, const Comparator&); 173 void sanitizeContours(VertexList* contours, int contourCnt) const; 174 bool mergeCoincidentVertices(VertexList* mesh, const Comparator&) const; 175 void buildEdges(VertexList* contours, int contourCnt, VertexList* mesh, 176 const Comparator&); 177 std::tuple<Poly*, bool> contoursToPolys(VertexList* contours, int contourCnt); 178 std::tuple<Poly*, bool> pathToPolys(float tolerance, const SkRect& clipBounds, 179 bool* isLinear); 180 static int64_t CountPoints(Poly* polys, SkPathFillType overrideFillType); 181 int polysToTriangles(Poly*, GrEagerVertexAllocator*) const; 182 183 // FIXME: fPath should be plumbed through function parameters instead. 184 const SkPath fPath; 185 SkArenaAlloc* const fAlloc; 186 int fNumMonotonePolys = 0; 187 int fNumEdges = 0; 188 189 // Internal control knobs. 190 bool fRoundVerticesToQuarterPixel = false; 191 bool fEmitCoverage = false; 192 bool fPreserveCollinearVertices = false; 193 bool fCollectBreadcrumbTriangles = false; 194 195 // The breadcrumb triangles serve as a glue that erases T-junctions between a path's outer 196 // curves and its inner polygon triangulation. Drawing a path's outer curves, breadcrumb 197 // triangles, and inner polygon triangulation all together into the stencil buffer has the same 198 // identical rasterized effect as stenciling a classic Redbook fan. 199 // 200 // The breadcrumb triangles track all the edge splits that led from the original inner polygon 201 // edges to the final triangulation. Every time an edge splits, we emit a razor-thin breadcrumb 202 // triangle consisting of the edge's original endpoints and the split point. (We also add 203 // supplemental breadcrumb triangles to areas where abs(winding) > 1.) 204 // 205 // a 206 // / 207 // / 208 // / 209 // x <- Edge splits at x. New breadcrumb triangle is: [a, b, x]. 210 // / 211 // / 212 // b 213 // 214 // The opposite-direction shared edges between the triangulation and breadcrumb triangles should 215 // all cancel out, leaving just the set of edges from the original polygon. 216 class BreadcrumbTriangleList { 217 public: 218 struct Node { NodeNode219 Node(SkPoint a, SkPoint b, SkPoint c) : fPts{a, b, c} {} 220 SkPoint fPts[3]; 221 Node* fNext = nullptr; 222 }; head()223 const Node* head() const { return fHead; } count()224 int count() const { return fCount; } 225 append(SkArenaAlloc * alloc,SkPoint a,SkPoint b,SkPoint c,int winding)226 void append(SkArenaAlloc* alloc, SkPoint a, SkPoint b, SkPoint c, int winding) { 227 if (a == b || a == c || b == c || winding == 0) { 228 return; 229 } 230 if (winding < 0) { 231 std::swap(a, b); 232 winding = -winding; 233 } 234 for (int i = 0; i < winding; ++i) { 235 SkASSERT(fTail && !(*fTail)); 236 *fTail = alloc->make<Node>(a, b, c); 237 fTail = &(*fTail)->fNext; 238 } 239 fCount += winding; 240 } 241 concat(BreadcrumbTriangleList && list)242 void concat(BreadcrumbTriangleList&& list) { 243 SkASSERT(fTail && !(*fTail)); 244 if (list.fHead) { 245 *fTail = list.fHead; 246 fTail = list.fTail; 247 fCount += list.fCount; 248 list.fHead = nullptr; 249 list.fTail = &list.fHead; 250 list.fCount = 0; 251 } 252 } 253 254 private: 255 Node* fHead = nullptr; 256 Node** fTail = &fHead; 257 int fCount = 0; 258 }; 259 260 mutable BreadcrumbTriangleList fBreadcrumbList; 261 }; 262 263 /** 264 * Vertices are used in three ways: first, the path contours are converted into a 265 * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices 266 * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing 267 * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid 268 * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of 269 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since 270 * an individual Vertex from the path mesh may belong to multiple 271 * MonotonePolys, so the original Vertices cannot be re-used. 272 */ 273 274 struct GrTriangulator::Vertex { VertexVertex275 Vertex(const SkPoint& point, uint8_t alpha) 276 : fPoint(point), fPrev(nullptr), fNext(nullptr) 277 , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr) 278 , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr) 279 , fLeftEnclosingEdge(nullptr), fRightEnclosingEdge(nullptr) 280 , fPartner(nullptr) 281 , fAlpha(alpha) 282 , fSynthetic(false) 283 #if TRIANGULATOR_LOGGING 284 , fID (-1.0f) 285 #endif 286 {} 287 SkPoint fPoint; // Vertex position 288 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices. 289 Vertex* fNext; // " 290 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. 291 Edge* fLastEdgeAbove; // " 292 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. 293 Edge* fLastEdgeBelow; // " 294 Edge* fLeftEnclosingEdge; // Nearest edge in the AEL left of this vertex. 295 Edge* fRightEnclosingEdge; // Nearest edge in the AEL right of this vertex. 296 Vertex* fPartner; // Corresponding inner or outer vertex (for AA). 297 uint8_t fAlpha; 298 bool fSynthetic; // Is this a synthetic vertex? 299 #if TRIANGULATOR_LOGGING 300 float fID; // Identifier used for logging. 301 #endif isConnectedVertex302 bool isConnected() const { return this->fFirstEdgeAbove || this->fFirstEdgeBelow; } 303 }; 304 305 struct GrTriangulator::VertexList { VertexListVertexList306 VertexList() : fHead(nullptr), fTail(nullptr) {} VertexListVertexList307 VertexList(Vertex* head, Vertex* tail) : fHead(head), fTail(tail) {} 308 Vertex* fHead; 309 Vertex* fTail; 310 void insert(Vertex* v, Vertex* prev, Vertex* next); appendVertexList311 void append(Vertex* v) { insert(v, fTail, nullptr); } appendVertexList312 void append(const VertexList& list) { 313 if (!list.fHead) { 314 return; 315 } 316 if (fTail) { 317 fTail->fNext = list.fHead; 318 list.fHead->fPrev = fTail; 319 } else { 320 fHead = list.fHead; 321 } 322 fTail = list.fTail; 323 } prependVertexList324 void prepend(Vertex* v) { insert(v, nullptr, fHead); } 325 void remove(Vertex* v); closeVertexList326 void close() { 327 if (fHead && fTail) { 328 fTail->fNext = fHead; 329 fHead->fPrev = fTail; 330 } 331 } 332 #if TRIANGULATOR_LOGGING 333 void dump() const; 334 #endif 335 }; 336 337 // A line equation in implicit form. fA * x + fB * y + fC = 0, for all points (x, y) on the line. 338 struct GrTriangulator::Line { LineLine339 Line(double a, double b, double c) : fA(a), fB(b), fC(c) {} LineLine340 Line(Vertex* p, Vertex* q) : Line(p->fPoint, q->fPoint) {} LineLine341 Line(const SkPoint& p, const SkPoint& q) 342 : fA(static_cast<double>(q.fY) - p.fY) // a = dY 343 , fB(static_cast<double>(p.fX) - q.fX) // b = -dX 344 , fC(static_cast<double>(p.fY) * q.fX - // c = cross(q, p) 345 static_cast<double>(p.fX) * q.fY) {} distLine346 double dist(const SkPoint& p) const { return fA * p.fX + fB * p.fY + fC; } 347 Line operator*(double v) const { return Line(fA * v, fB * v, fC * v); } magSqLine348 double magSq() const { return fA * fA + fB * fB; } normalizeLine349 void normalize() { 350 double len = sqrt(this->magSq()); 351 if (len == 0.0) { 352 return; 353 } 354 double scale = 1.0f / len; 355 fA *= scale; 356 fB *= scale; 357 fC *= scale; 358 } nearParallelLine359 bool nearParallel(const Line& o) const { 360 return fabs(o.fA - fA) < 0.00001 && fabs(o.fB - fB) < 0.00001; 361 } 362 363 // Compute the intersection of two (infinite) Lines. 364 bool intersect(const Line& other, SkPoint* point) const; 365 double fA, fB, fC; 366 }; 367 368 /** 369 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and 370 * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf(). 371 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating 372 * point). For speed, that case is only tested by the callers that require it (e.g., 373 * rewind_if_necessary()). Edges also handle checking for intersection with other edges. 374 * Currently, this converts the edges to the parametric form, in order to avoid doing a division 375 * until an intersection has been confirmed. This is slightly slower in the "found" case, but 376 * a lot faster in the "not found" case. 377 * 378 * The coefficients of the line equation stored in double precision to avoid catastrophic 379 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is 380 * correct in float, since it's a polynomial of degree 2. The intersect() function, being 381 * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its 382 * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of 383 * this file). 384 */ 385 386 struct GrTriangulator::Edge { EdgeEdge387 Edge(Vertex* top, Vertex* bottom, int winding, EdgeType type) 388 : fWinding(winding) 389 , fTop(top) 390 , fBottom(bottom) 391 , fType(type) 392 , fLeft(nullptr) 393 , fRight(nullptr) 394 , fPrevEdgeAbove(nullptr) 395 , fNextEdgeAbove(nullptr) 396 , fPrevEdgeBelow(nullptr) 397 , fNextEdgeBelow(nullptr) 398 , fLeftPoly(nullptr) 399 , fRightPoly(nullptr) 400 , fLeftPolyPrev(nullptr) 401 , fLeftPolyNext(nullptr) 402 , fRightPolyPrev(nullptr) 403 , fRightPolyNext(nullptr) 404 , fUsedInLeftPoly(false) 405 , fUsedInRightPoly(false) 406 , fLine(top, bottom) { 407 } 408 int fWinding; // 1 == edge goes downward; -1 = edge goes upward. 409 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt). 410 Vertex* fBottom; // The bottom vertex in vertex-sort-order. 411 EdgeType fType; 412 Edge* fLeft; // The linked list of edges in the active edge list. 413 Edge* fRight; // " 414 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above". 415 Edge* fNextEdgeAbove; // " 416 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". 417 Edge* fNextEdgeBelow; // " 418 Poly* fLeftPoly; // The Poly to the left of this edge, if any. 419 Poly* fRightPoly; // The Poly to the right of this edge, if any. 420 Edge* fLeftPolyPrev; 421 Edge* fLeftPolyNext; 422 Edge* fRightPolyPrev; 423 Edge* fRightPolyNext; 424 bool fUsedInLeftPoly; 425 bool fUsedInRightPoly; 426 Line fLine; 427 distEdge428 double dist(const SkPoint& p) const { 429 // Coerce points coincident with the vertices to have dist = 0, since converting from 430 // a double intersection point back to float storage might construct a point that's no 431 // longer on the ideal line. 432 return (p == fTop->fPoint || p == fBottom->fPoint) ? 0.0 : fLine.dist(p); 433 } isRightOfEdge434 bool isRightOf(Vertex* v) const { return this->dist(v->fPoint) < 0.0; } isLeftOfEdge435 bool isLeftOf(Vertex* v) const { return this->dist(v->fPoint) > 0.0; } recomputeEdge436 void recompute() { fLine = Line(fTop, fBottom); } 437 void insertAbove(Vertex*, const Comparator&); 438 void insertBelow(Vertex*, const Comparator&); 439 void disconnect(); 440 bool intersect(const Edge& other, SkPoint* p, uint8_t* alpha = nullptr) const; 441 }; 442 443 struct GrTriangulator::EdgeList { EdgeListEdgeList444 EdgeList() : fHead(nullptr), fTail(nullptr) {} 445 Edge* fHead; 446 Edge* fTail; 447 void insert(Edge* edge, Edge* prev, Edge* next); 448 void insert(Edge* edge, Edge* prev); appendEdgeList449 void append(Edge* e) { insert(e, fTail, nullptr); } 450 void remove(Edge* edge); removeAllEdgeList451 void removeAll() { 452 while (fHead) { 453 this->remove(fHead); 454 } 455 } closeEdgeList456 void close() { 457 if (fHead && fTail) { 458 fTail->fRight = fHead; 459 fHead->fLeft = fTail; 460 } 461 } containsEdgeList462 bool contains(Edge* edge) const { return edge->fLeft || edge->fRight || fHead == edge; } 463 }; 464 465 struct GrTriangulator::MonotonePoly { MonotonePolyMonotonePoly466 MonotonePoly(Edge* edge, Side side, int winding) 467 : fSide(side) 468 , fFirstEdge(nullptr) 469 , fLastEdge(nullptr) 470 , fPrev(nullptr) 471 , fNext(nullptr) 472 , fWinding(winding) { 473 this->addEdge(edge); 474 } 475 Side fSide; 476 Edge* fFirstEdge; 477 Edge* fLastEdge; 478 MonotonePoly* fPrev; 479 MonotonePoly* fNext; 480 int fWinding; 481 void addEdge(Edge*); 482 }; 483 484 struct GrTriangulator::Poly { 485 Poly(Vertex* v, int winding); 486 487 Poly* addEdge(Edge* e, Side side, GrTriangulator*); lastVertexPoly488 Vertex* lastVertex() const { return fTail ? fTail->fLastEdge->fBottom : fFirstVertex; } 489 Vertex* fFirstVertex; 490 int fWinding; 491 MonotonePoly* fHead; 492 MonotonePoly* fTail; 493 Poly* fNext; 494 Poly* fPartner; 495 int fCount; 496 #if TRIANGULATOR_LOGGING 497 int fID; 498 #endif 499 }; 500 501 struct GrTriangulator::Comparator { 502 enum class Direction { kVertical, kHorizontal }; ComparatorComparator503 Comparator(Direction direction) : fDirection(direction) {} 504 bool sweep_lt(const SkPoint& a, const SkPoint& b) const; 505 Direction fDirection; 506 }; 507 508 #endif 509