1 /*
2 * Copyright 2021 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/lex/DFA.h"
9 #include "src/sksl/lex/TransitionTable.h"
10
11 #include <algorithm>
12 #include <array>
13 #include <bitset>
14 #include <cassert>
15 #include <cmath>
16 #include <unordered_map>
17 #include <unordered_set>
18 #include <vector>
19
20 namespace {
21
22 // The number of bits to use per entry in our compact transition table. This is customizable:
23 // - 1-bit: reasonable in theory. Doesn't actually pack many slices.
24 // - 2-bit: best fit for our data. Packs extremely well.
25 // - 4-bit: packs all but one slice, but doesn't save as much space overall.
26 // - 8-bit: way too large (an 8-bit LUT plus an 8-bit data table is as big as a 16-bit table)
27 // Other values don't divide cleanly into a byte and do not work.
28 constexpr int kNumBits = 2;
29
30 // These values are derived from kNumBits and shouldn't need to change.
31 constexpr int kNumValues = (1 << kNumBits) - 1;
32 constexpr int kDataPerByte = 8 / kNumBits;
33
34 enum IndexType {
35 kZero = 0,
36 kFullEntry,
37 kCompactEntry,
38 };
39 struct IndexEntry {
40 IndexType type;
41 int pos;
42 };
43 struct CompactEntry {
44 std::array<int, kNumValues> v = {};
45 std::vector<int> data;
46 };
47 struct FullEntry {
48 std::vector<int> data;
49 };
50
51 using TransitionSet = std::unordered_set<int>;
52
add_compact_entry(const TransitionSet & transitionSet,const std::vector<int> & data,std::vector<CompactEntry> * entries)53 static int add_compact_entry(const TransitionSet& transitionSet,
54 const std::vector<int>& data,
55 std::vector<CompactEntry>* entries) {
56 // Create a compact entry with the unique values from the transition set, padded out with zeros
57 // and sorted.
58 CompactEntry result{};
59 assert(transitionSet.size() <= result.v.size());
60 std::copy(transitionSet.begin(), transitionSet.end(), result.v.begin());
61 std::sort(result.v.begin(), result.v.end());
62
63 // Create a mapping from real values to small values. (0 -> 0, v[0] -> 1, v[1] -> 2, v[2] -> 3)
64 std::unordered_map<int, int> translationTable;
65 for (size_t index = 0; index < result.v.size(); ++index) {
66 translationTable[result.v[index]] = 1 + index;
67 }
68 translationTable[0] = 0;
69
70 // Convert the real values into small values.
71 for (size_t index = 0; index < data.size(); ++index) {
72 int value = data[index];
73 assert(translationTable.find(value) != translationTable.end());
74 result.data.push_back(translationTable[value]);
75 }
76
77 // Look for an existing entry that exactly matches this one.
78 for (size_t index = 0; index < entries->size(); ++index) {
79 if (entries->at(index).v == result.v && entries->at(index).data == result.data) {
80 return index;
81 }
82 }
83
84 // Add this as a new entry.
85 entries->push_back(std::move(result));
86 return (int)(entries->size() - 1);
87 }
88
add_full_entry(const TransitionSet & transitionMap,const std::vector<int> & data,std::vector<FullEntry> * entries)89 static int add_full_entry(const TransitionSet& transitionMap,
90 const std::vector<int>& data,
91 std::vector<FullEntry>* entries) {
92 // Create a full entry with this data.
93 FullEntry result{};
94 result.data = std::vector<int>(data.begin(), data.end());
95
96 // Look for an existing entry that exactly matches this one.
97 for (size_t index = 0; index < entries->size(); ++index) {
98 if (entries->at(index).data == result.data) {
99 return index;
100 }
101 }
102
103 // Add this as a new entry.
104 entries->push_back(std::move(result));
105 return (int)(entries->size() - 1);
106 }
107
108 } // namespace
109
WriteTransitionTable(std::ofstream & out,const DFA & dfa,size_t states)110 void WriteTransitionTable(std::ofstream& out, const DFA& dfa, size_t states) {
111 int numTransitions = dfa.fTransitions.size();
112
113 // Assemble our compact and full data tables, and an index into them.
114 std::vector<CompactEntry> compactEntries;
115 std::vector<FullEntry> fullEntries;
116 std::vector<IndexEntry> indices;
117 for (size_t s = 0; s < states; ++s) {
118 // Copy all the transitions for this state into a flat array, and into a histogram (counting
119 // the number of unique state-transition values). Most states only transition to a few
120 // possible new states.
121 TransitionSet transitionSet;
122 std::vector<int> data(numTransitions);
123 for (int t = 0; t < numTransitions; ++t) {
124 if ((size_t) t < dfa.fTransitions.size() && s < dfa.fTransitions[t].size()) {
125 int value = dfa.fTransitions[t][s];
126 assert(value >= 0 && value < (int)states);
127 data[t] = value;
128 transitionSet.insert(value);
129 }
130 }
131
132 transitionSet.erase(0);
133 if (transitionSet.empty()) {
134 // This transition table was completely empty (every value was zero). No data needed;
135 // zero pages are handled as a special index type.
136 indices.push_back(IndexEntry{kZero, 0});
137 } else if (transitionSet.size() <= kNumValues) {
138 // This table only contained a small number of unique nonzero values.
139 // Use a compact representation that squishes each value down to a few bits.
140 int index = add_compact_entry(transitionSet, data, &compactEntries);
141 indices.push_back(IndexEntry{kCompactEntry, index});
142 } else {
143 // This table contained a large number of values. We can't compact it.
144 int index = add_full_entry(transitionSet, data, &fullEntries);
145 indices.push_back(IndexEntry{kFullEntry, index});
146 }
147 }
148
149 // Find the largest value for each compact-entry slot.
150 int maxValue[kNumValues] = {};
151 for (const CompactEntry& entry : compactEntries) {
152 for (int index=0; index < kNumValues; ++index) {
153 maxValue[index] = std::max(maxValue[index], entry.v[index]);
154 }
155 }
156
157 // Emit all the structs our transition table will use.
158 out << "struct IndexEntry {\n"
159 << " uint16_t type : 2;\n"
160 << " uint16_t pos : 14;\n"
161 << "};\n"
162 << "struct FullEntry {\n"
163 << " State data[" << numTransitions << "];\n"
164 << "};\n";
165
166 // Emit the compact-entry structure; minimize the number of bits needed per value.
167 out << "struct CompactEntry {\n";
168 for (int index=0; index < kNumValues; ++index) {
169 if (maxValue[index] > 0) {
170 out << " State v" << index << " : " << int(std::ceil(std::log2(maxValue[index])))
171 << ";\n";
172 }
173 }
174
175 out << " uint8_t data[" << std::ceil(float(numTransitions) / float(kDataPerByte)) << "];\n"
176 << "};\n";
177
178 // Emit the full-table data.
179 out << "static constexpr FullEntry kFull[] = {\n";
180 for (const FullEntry& entry : fullEntries) {
181 out << " {";
182 for (int value : entry.data) {
183 out << value << ", ";
184 }
185 out << "},\n";
186 }
187 out << "};\n";
188
189 // Emit the compact-table data.
190 out << "static constexpr CompactEntry kCompact[] = {\n";
191 for (const CompactEntry& entry : compactEntries) {
192 out << " {";
193 for (int index=0; index < kNumValues; ++index) {
194 if (maxValue[index] > 0) {
195 out << entry.v[index] << ", ";
196 }
197 }
198 out << "{";
199 unsigned int shiftBits = 0, combinedBits = 0;
200 for (int index = 0; index < numTransitions; index++) {
201 combinedBits |= entry.data[index] << shiftBits;
202 shiftBits += kNumBits;
203 assert(shiftBits <= 8);
204 if (shiftBits == 8) {
205 out << combinedBits << ", ";
206 shiftBits = 0;
207 combinedBits = 0;
208 }
209 }
210 if (shiftBits > 0) {
211 // Flush any partial values.
212 out << combinedBits;
213 }
214 out << "}},\n";
215 }
216 out << "};\n"
217 << "static constexpr IndexEntry kIndices[] = {\n";
218 for (const IndexEntry& entry : indices) {
219 out << " {" << entry.type << ", " << entry.pos << "},\n";
220 }
221 out << "};\n"
222 << "State get_transition(int transition, int state) {\n"
223 << " IndexEntry index = kIndices[state];\n"
224 << " if (index.type == 0) { return 0; }\n"
225 << " if (index.type == 1) { return kFull[index.pos].data[transition]; }\n"
226 << " const CompactEntry& entry = kCompact[index.pos];\n"
227 << " int value = entry.data[transition >> " << std::log2(kDataPerByte) << "];\n"
228 << " value >>= " << kNumBits << " * (transition & " << kDataPerByte - 1 << ");\n"
229 << " value &= " << kNumValues << ";\n"
230 << " State table[] = {0";
231
232 for (int index=0; index < kNumValues; ++index) {
233 if (maxValue[index] > 0) {
234 out << ", entry.v" << index;
235 } else {
236 out << ", 0";
237 }
238 }
239
240 out << "};\n"
241 << " return table[value];\n"
242 << "}\n";
243 }
244