• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the lossless encoder.
11 //
12 // Author: Vikas Arora (vikaas.arora@gmail.com)
13 //
14 
15 #include <assert.h>
16 #include <stdlib.h>
17 
18 #include "src/enc/backward_references_enc.h"
19 #include "src/enc/histogram_enc.h"
20 #include "src/enc/vp8i_enc.h"
21 #include "src/enc/vp8li_enc.h"
22 #include "src/dsp/lossless.h"
23 #include "src/dsp/lossless_common.h"
24 #include "src/utils/bit_writer_utils.h"
25 #include "src/utils/huffman_encode_utils.h"
26 #include "src/utils/utils.h"
27 #include "src/webp/format_constants.h"
28 
29 // Maximum number of histogram images (sub-blocks).
30 #define MAX_HUFF_IMAGE_SIZE       2600
31 
32 // Palette reordering for smaller sum of deltas (and for smaller storage).
33 
PaletteCompareColorsForQsort(const void * p1,const void * p2)34 static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
35   const uint32_t a = WebPMemToUint32((uint8_t*)p1);
36   const uint32_t b = WebPMemToUint32((uint8_t*)p2);
37   assert(a != b);
38   return (a < b) ? -1 : 1;
39 }
40 
PaletteComponentDistance(uint32_t v)41 static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
42   return (v <= 128) ? v : (256 - v);
43 }
44 
45 // Computes a value that is related to the entropy created by the
46 // palette entry diff.
47 //
48 // Note that the last & 0xff is a no-operation in the next statement, but
49 // removed by most compilers and is here only for regularity of the code.
PaletteColorDistance(uint32_t col1,uint32_t col2)50 static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
51   const uint32_t diff = VP8LSubPixels(col1, col2);
52   const int kMoreWeightForRGBThanForAlpha = 9;
53   uint32_t score;
54   score =  PaletteComponentDistance((diff >>  0) & 0xff);
55   score += PaletteComponentDistance((diff >>  8) & 0xff);
56   score += PaletteComponentDistance((diff >> 16) & 0xff);
57   score *= kMoreWeightForRGBThanForAlpha;
58   score += PaletteComponentDistance((diff >> 24) & 0xff);
59   return score;
60 }
61 
SwapColor(uint32_t * const col1,uint32_t * const col2)62 static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
63   const uint32_t tmp = *col1;
64   *col1 = *col2;
65   *col2 = tmp;
66 }
67 
SearchColorNoIdx(const uint32_t sorted[],uint32_t color,int num_colors)68 static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
69                                         int num_colors) {
70   int low = 0, hi = num_colors;
71   if (sorted[low] == color) return low;  // loop invariant: sorted[low] != color
72   while (1) {
73     const int mid = (low + hi) >> 1;
74     if (sorted[mid] == color) {
75       return mid;
76     } else if (sorted[mid] < color) {
77       low = mid;
78     } else {
79       hi = mid;
80     }
81   }
82   assert(0);
83   return 0;
84 }
85 
86 // The palette has been sorted by alpha. This function checks if the other
87 // components of the palette have a monotonic development with regards to
88 // position in the palette. If all have monotonic development, there is
89 // no benefit to re-organize them greedily. A monotonic development
90 // would be spotted in green-only situations (like lossy alpha) or gray-scale
91 // images.
PaletteHasNonMonotonousDeltas(const uint32_t * const palette,int num_colors)92 static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
93                                          int num_colors) {
94   uint32_t predict = 0x000000;
95   int i;
96   uint8_t sign_found = 0x00;
97   for (i = 0; i < num_colors; ++i) {
98     const uint32_t diff = VP8LSubPixels(palette[i], predict);
99     const uint8_t rd = (diff >> 16) & 0xff;
100     const uint8_t gd = (diff >>  8) & 0xff;
101     const uint8_t bd = (diff >>  0) & 0xff;
102     if (rd != 0x00) {
103       sign_found |= (rd < 0x80) ? 1 : 2;
104     }
105     if (gd != 0x00) {
106       sign_found |= (gd < 0x80) ? 8 : 16;
107     }
108     if (bd != 0x00) {
109       sign_found |= (bd < 0x80) ? 64 : 128;
110     }
111     predict = palette[i];
112   }
113   return (sign_found & (sign_found << 1)) != 0;  // two consequent signs.
114 }
115 
PaletteSortMinimizeDeltas(const uint32_t * const palette_sorted,int num_colors,uint32_t * const palette)116 static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
117                                       int num_colors, uint32_t* const palette) {
118   uint32_t predict = 0x00000000;
119   int i, k;
120   memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
121   if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
122   // Find greedily always the closest color of the predicted color to minimize
123   // deltas in the palette. This reduces storage needs since the
124   // palette is stored with delta encoding.
125   for (i = 0; i < num_colors; ++i) {
126     int best_ix = i;
127     uint32_t best_score = ~0U;
128     for (k = i; k < num_colors; ++k) {
129       const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
130       if (best_score > cur_score) {
131         best_score = cur_score;
132         best_ix = k;
133       }
134     }
135     SwapColor(&palette[best_ix], &palette[i]);
136     predict = palette[i];
137   }
138 }
139 
140 // Sort palette in increasing order and prepare an inverse mapping array.
PrepareMapToPalette(const uint32_t palette[],uint32_t num_colors,uint32_t sorted[],uint32_t idx_map[])141 static void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
142                                 uint32_t sorted[], uint32_t idx_map[]) {
143   uint32_t i;
144   memcpy(sorted, palette, num_colors * sizeof(*sorted));
145   qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
146   for (i = 0; i < num_colors; ++i) {
147     idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
148   }
149 }
150 
151 // -----------------------------------------------------------------------------
152 // Modified Zeng method from "A Survey on Palette Reordering
153 // Methods for Improving the Compression of Color-Indexed Images" by Armando J.
154 // Pinho and Antonio J. R. Neves.
155 
156 // Finds the biggest cooccurrence in the matrix.
CoOccurrenceFindMax(const uint32_t * const cooccurrence,uint32_t num_colors,uint8_t * const c1,uint8_t * const c2)157 static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
158                                 uint32_t num_colors, uint8_t* const c1,
159                                 uint8_t* const c2) {
160   // Find the index that is most frequently located adjacent to other
161   // (different) indexes.
162   uint32_t best_sum = 0u;
163   uint32_t i, j, best_cooccurrence;
164   *c1 = 0u;
165   for (i = 0; i < num_colors; ++i) {
166     uint32_t sum = 0;
167     for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
168     if (sum > best_sum) {
169       best_sum = sum;
170       *c1 = i;
171     }
172   }
173   // Find the index that is most frequently found adjacent to *c1.
174   *c2 = 0u;
175   best_cooccurrence = 0u;
176   for (i = 0; i < num_colors; ++i) {
177     if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
178       best_cooccurrence = cooccurrence[*c1 * num_colors + i];
179       *c2 = i;
180     }
181   }
182   assert(*c1 != *c2);
183 }
184 
185 // Builds the cooccurrence matrix
CoOccurrenceBuild(const WebPPicture * const pic,const uint32_t * const palette,uint32_t num_colors,uint32_t * cooccurrence)186 static WebPEncodingError CoOccurrenceBuild(const WebPPicture* const pic,
187                                            const uint32_t* const palette,
188                                            uint32_t num_colors,
189                                            uint32_t* cooccurrence) {
190   uint32_t *lines, *line_top, *line_current, *line_tmp;
191   int x, y;
192   const uint32_t* src = pic->argb;
193   uint32_t prev_pix = ~src[0];
194   uint32_t prev_idx = 0u;
195   uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
196   uint32_t palette_sorted[MAX_PALETTE_SIZE];
197   lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
198   if (lines == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
199   line_top = &lines[0];
200   line_current = &lines[pic->width];
201   PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
202   for (y = 0; y < pic->height; ++y) {
203     for (x = 0; x < pic->width; ++x) {
204       const uint32_t pix = src[x];
205       if (pix != prev_pix) {
206         prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
207         prev_pix = pix;
208       }
209       line_current[x] = prev_idx;
210       // 4-connectivity is what works best as mentioned in "On the relation
211       // between Memon's and the modified Zeng's palette reordering methods".
212       if (x > 0 && prev_idx != line_current[x - 1]) {
213         const uint32_t left_idx = line_current[x - 1];
214         ++cooccurrence[prev_idx * num_colors + left_idx];
215         ++cooccurrence[left_idx * num_colors + prev_idx];
216       }
217       if (y > 0 && prev_idx != line_top[x]) {
218         const uint32_t top_idx = line_top[x];
219         ++cooccurrence[prev_idx * num_colors + top_idx];
220         ++cooccurrence[top_idx * num_colors + prev_idx];
221       }
222     }
223     line_tmp = line_top;
224     line_top = line_current;
225     line_current = line_tmp;
226     src += pic->argb_stride;
227   }
228   WebPSafeFree(lines);
229   return VP8_ENC_OK;
230 }
231 
232 struct Sum {
233   uint8_t index;
234   uint32_t sum;
235 };
236 
237 // Implements the modified Zeng method from "A Survey on Palette Reordering
238 // Methods for Improving the Compression of Color-Indexed Images" by Armando J.
239 // Pinho and Antonio J. R. Neves.
PaletteSortModifiedZeng(const WebPPicture * const pic,const uint32_t * const palette_sorted,uint32_t num_colors,uint32_t * const palette)240 static WebPEncodingError PaletteSortModifiedZeng(
241     const WebPPicture* const pic, const uint32_t* const palette_sorted,
242     uint32_t num_colors, uint32_t* const palette) {
243   uint32_t i, j, ind;
244   uint8_t remapping[MAX_PALETTE_SIZE];
245   uint32_t* cooccurrence;
246   struct Sum sums[MAX_PALETTE_SIZE];
247   uint32_t first, last;
248   uint32_t num_sums;
249   // TODO(vrabaud) check whether one color images should use palette or not.
250   if (num_colors <= 1) return VP8_ENC_OK;
251   // Build the co-occurrence matrix.
252   cooccurrence =
253       (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
254   if (cooccurrence == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
255   if (CoOccurrenceBuild(pic, palette_sorted, num_colors, cooccurrence) !=
256       VP8_ENC_OK) {
257     WebPSafeFree(cooccurrence);
258     return VP8_ENC_ERROR_OUT_OF_MEMORY;
259   }
260 
261   // Initialize the mapping list with the two best indices.
262   CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
263 
264   // We need to append and prepend to the list of remapping. To this end, we
265   // actually define the next start/end of the list as indices in a vector (with
266   // a wrap around when the end is reached).
267   first = 0;
268   last = 1;
269   num_sums = num_colors - 2;  // -2 because we know the first two values
270   if (num_sums > 0) {
271     // Initialize the sums with the first two remappings and find the best one
272     struct Sum* best_sum = &sums[0];
273     best_sum->index = 0u;
274     best_sum->sum = 0u;
275     for (i = 0, j = 0; i < num_colors; ++i) {
276       if (i == remapping[0] || i == remapping[1]) continue;
277       sums[j].index = i;
278       sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
279                     cooccurrence[i * num_colors + remapping[1]];
280       if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
281       ++j;
282     }
283 
284     while (num_sums > 0) {
285       const uint8_t best_index = best_sum->index;
286       // Compute delta to know if we need to prepend or append the best index.
287       int32_t delta = 0;
288       const int32_t n = num_colors - num_sums;
289       for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
290         const uint16_t l_j = remapping[(ind + j) % num_colors];
291         delta += (n - 1 - 2 * (int32_t)j) *
292                  (int32_t)cooccurrence[best_index * num_colors + l_j];
293       }
294       if (delta > 0) {
295         first = (first == 0) ? num_colors - 1 : first - 1;
296         remapping[first] = best_index;
297       } else {
298         ++last;
299         remapping[last] = best_index;
300       }
301       // Remove best_sum from sums.
302       *best_sum = sums[num_sums - 1];
303       --num_sums;
304       // Update all the sums and find the best one.
305       best_sum = &sums[0];
306       for (i = 0; i < num_sums; ++i) {
307         sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
308         if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
309       }
310     }
311   }
312   assert((last + 1) % num_colors == first);
313   WebPSafeFree(cooccurrence);
314 
315   // Re-map the palette.
316   for (i = 0; i < num_colors; ++i) {
317     palette[i] = palette_sorted[remapping[(first + i) % num_colors]];
318   }
319   return VP8_ENC_OK;
320 }
321 
322 // -----------------------------------------------------------------------------
323 // Palette
324 
325 // These five modes are evaluated and their respective entropy is computed.
326 typedef enum {
327   kDirect = 0,
328   kSpatial = 1,
329   kSubGreen = 2,
330   kSpatialSubGreen = 3,
331   kPalette = 4,
332   kPaletteAndSpatial = 5,
333   kNumEntropyIx = 6
334 } EntropyIx;
335 
336 typedef enum {
337   kSortedDefault = 0,
338   kMinimizeDelta = 1,
339   kModifiedZeng = 2,
340   kUnusedPalette = 3,
341 } PaletteSorting;
342 
343 typedef enum {
344   kHistoAlpha = 0,
345   kHistoAlphaPred,
346   kHistoGreen,
347   kHistoGreenPred,
348   kHistoRed,
349   kHistoRedPred,
350   kHistoBlue,
351   kHistoBluePred,
352   kHistoRedSubGreen,
353   kHistoRedPredSubGreen,
354   kHistoBlueSubGreen,
355   kHistoBluePredSubGreen,
356   kHistoPalette,
357   kHistoTotal  // Must be last.
358 } HistoIx;
359 
AddSingleSubGreen(int p,uint32_t * const r,uint32_t * const b)360 static void AddSingleSubGreen(int p, uint32_t* const r, uint32_t* const b) {
361   const int green = p >> 8;  // The upper bits are masked away later.
362   ++r[((p >> 16) - green) & 0xff];
363   ++b[((p >>  0) - green) & 0xff];
364 }
365 
AddSingle(uint32_t p,uint32_t * const a,uint32_t * const r,uint32_t * const g,uint32_t * const b)366 static void AddSingle(uint32_t p,
367                       uint32_t* const a, uint32_t* const r,
368                       uint32_t* const g, uint32_t* const b) {
369   ++a[(p >> 24) & 0xff];
370   ++r[(p >> 16) & 0xff];
371   ++g[(p >>  8) & 0xff];
372   ++b[(p >>  0) & 0xff];
373 }
374 
HashPix(uint32_t pix)375 static WEBP_INLINE uint32_t HashPix(uint32_t pix) {
376   // Note that masking with 0xffffffffu is for preventing an
377   // 'unsigned int overflow' warning. Doesn't impact the compiled code.
378   return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24;
379 }
380 
AnalyzeEntropy(const uint32_t * argb,int width,int height,int argb_stride,int use_palette,int palette_size,int transform_bits,EntropyIx * const min_entropy_ix,int * const red_and_blue_always_zero)381 static int AnalyzeEntropy(const uint32_t* argb,
382                           int width, int height, int argb_stride,
383                           int use_palette,
384                           int palette_size, int transform_bits,
385                           EntropyIx* const min_entropy_ix,
386                           int* const red_and_blue_always_zero) {
387   // Allocate histogram set with cache_bits = 0.
388   uint32_t* histo;
389 
390   if (use_palette && palette_size <= 16) {
391     // In the case of small palettes, we pack 2, 4 or 8 pixels together. In
392     // practice, small palettes are better than any other transform.
393     *min_entropy_ix = kPalette;
394     *red_and_blue_always_zero = 1;
395     return 1;
396   }
397   histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256);
398   if (histo != NULL) {
399     int i, x, y;
400     const uint32_t* prev_row = NULL;
401     const uint32_t* curr_row = argb;
402     uint32_t pix_prev = argb[0];  // Skip the first pixel.
403     for (y = 0; y < height; ++y) {
404       for (x = 0; x < width; ++x) {
405         const uint32_t pix = curr_row[x];
406         const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev);
407         pix_prev = pix;
408         if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) {
409           continue;
410         }
411         AddSingle(pix,
412                   &histo[kHistoAlpha * 256],
413                   &histo[kHistoRed * 256],
414                   &histo[kHistoGreen * 256],
415                   &histo[kHistoBlue * 256]);
416         AddSingle(pix_diff,
417                   &histo[kHistoAlphaPred * 256],
418                   &histo[kHistoRedPred * 256],
419                   &histo[kHistoGreenPred * 256],
420                   &histo[kHistoBluePred * 256]);
421         AddSingleSubGreen(pix,
422                           &histo[kHistoRedSubGreen * 256],
423                           &histo[kHistoBlueSubGreen * 256]);
424         AddSingleSubGreen(pix_diff,
425                           &histo[kHistoRedPredSubGreen * 256],
426                           &histo[kHistoBluePredSubGreen * 256]);
427         {
428           // Approximate the palette by the entropy of the multiplicative hash.
429           const uint32_t hash = HashPix(pix);
430           ++histo[kHistoPalette * 256 + hash];
431         }
432       }
433       prev_row = curr_row;
434       curr_row += argb_stride;
435     }
436     {
437       double entropy_comp[kHistoTotal];
438       double entropy[kNumEntropyIx];
439       int k;
440       int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen;
441       int j;
442       // Let's add one zero to the predicted histograms. The zeros are removed
443       // too efficiently by the pix_diff == 0 comparison, at least one of the
444       // zeros is likely to exist.
445       ++histo[kHistoRedPredSubGreen * 256];
446       ++histo[kHistoBluePredSubGreen * 256];
447       ++histo[kHistoRedPred * 256];
448       ++histo[kHistoGreenPred * 256];
449       ++histo[kHistoBluePred * 256];
450       ++histo[kHistoAlphaPred * 256];
451 
452       for (j = 0; j < kHistoTotal; ++j) {
453         entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256);
454       }
455       entropy[kDirect] = entropy_comp[kHistoAlpha] +
456           entropy_comp[kHistoRed] +
457           entropy_comp[kHistoGreen] +
458           entropy_comp[kHistoBlue];
459       entropy[kSpatial] = entropy_comp[kHistoAlphaPred] +
460           entropy_comp[kHistoRedPred] +
461           entropy_comp[kHistoGreenPred] +
462           entropy_comp[kHistoBluePred];
463       entropy[kSubGreen] = entropy_comp[kHistoAlpha] +
464           entropy_comp[kHistoRedSubGreen] +
465           entropy_comp[kHistoGreen] +
466           entropy_comp[kHistoBlueSubGreen];
467       entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] +
468           entropy_comp[kHistoRedPredSubGreen] +
469           entropy_comp[kHistoGreenPred] +
470           entropy_comp[kHistoBluePredSubGreen];
471       entropy[kPalette] = entropy_comp[kHistoPalette];
472 
473       // When including transforms, there is an overhead in bits from
474       // storing them. This overhead is small but matters for small images.
475       // For spatial, there are 14 transformations.
476       entropy[kSpatial] += VP8LSubSampleSize(width, transform_bits) *
477                            VP8LSubSampleSize(height, transform_bits) *
478                            VP8LFastLog2(14);
479       // For color transforms: 24 as only 3 channels are considered in a
480       // ColorTransformElement.
481       entropy[kSpatialSubGreen] += VP8LSubSampleSize(width, transform_bits) *
482                                    VP8LSubSampleSize(height, transform_bits) *
483                                    VP8LFastLog2(24);
484       // For palettes, add the cost of storing the palette.
485       // We empirically estimate the cost of a compressed entry as 8 bits.
486       // The palette is differential-coded when compressed hence a much
487       // lower cost than sizeof(uint32_t)*8.
488       entropy[kPalette] += palette_size * 8;
489 
490       *min_entropy_ix = kDirect;
491       for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) {
492         if (entropy[*min_entropy_ix] > entropy[k]) {
493           *min_entropy_ix = (EntropyIx)k;
494         }
495       }
496       assert((int)*min_entropy_ix <= last_mode_to_analyze);
497       *red_and_blue_always_zero = 1;
498       // Let's check if the histogram of the chosen entropy mode has
499       // non-zero red and blue values. If all are zero, we can later skip
500       // the cross color optimization.
501       {
502         static const uint8_t kHistoPairs[5][2] = {
503           { kHistoRed, kHistoBlue },
504           { kHistoRedPred, kHistoBluePred },
505           { kHistoRedSubGreen, kHistoBlueSubGreen },
506           { kHistoRedPredSubGreen, kHistoBluePredSubGreen },
507           { kHistoRed, kHistoBlue }
508         };
509         const uint32_t* const red_histo =
510             &histo[256 * kHistoPairs[*min_entropy_ix][0]];
511         const uint32_t* const blue_histo =
512             &histo[256 * kHistoPairs[*min_entropy_ix][1]];
513         for (i = 1; i < 256; ++i) {
514           if ((red_histo[i] | blue_histo[i]) != 0) {
515             *red_and_blue_always_zero = 0;
516             break;
517           }
518         }
519       }
520     }
521     WebPSafeFree(histo);
522     return 1;
523   } else {
524     return 0;
525   }
526 }
527 
GetHistoBits(int method,int use_palette,int width,int height)528 static int GetHistoBits(int method, int use_palette, int width, int height) {
529   // Make tile size a function of encoding method (Range: 0 to 6).
530   int histo_bits = (use_palette ? 9 : 7) - method;
531   while (1) {
532     const int huff_image_size = VP8LSubSampleSize(width, histo_bits) *
533                                 VP8LSubSampleSize(height, histo_bits);
534     if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break;
535     ++histo_bits;
536   }
537   return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS :
538          (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits;
539 }
540 
GetTransformBits(int method,int histo_bits)541 static int GetTransformBits(int method, int histo_bits) {
542   const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5;
543   const int res =
544       (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits;
545   assert(res <= MAX_TRANSFORM_BITS);
546   return res;
547 }
548 
549 // Set of parameters to be used in each iteration of the cruncher.
550 #define CRUNCH_SUBCONFIGS_MAX 2
551 typedef struct {
552   int lz77_;
553   int do_no_cache_;
554 } CrunchSubConfig;
555 typedef struct {
556   int entropy_idx_;
557   PaletteSorting palette_sorting_type_;
558   CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX];
559   int sub_configs_size_;
560 } CrunchConfig;
561 
562 // +2 because we add a palette sorting configuration for kPalette and
563 // kPaletteAndSpatial.
564 #define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2)
565 
EncoderAnalyze(VP8LEncoder * const enc,CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],int * const crunch_configs_size,int * const red_and_blue_always_zero)566 static int EncoderAnalyze(VP8LEncoder* const enc,
567                           CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
568                           int* const crunch_configs_size,
569                           int* const red_and_blue_always_zero) {
570   const WebPPicture* const pic = enc->pic_;
571   const int width = pic->width;
572   const int height = pic->height;
573   const WebPConfig* const config = enc->config_;
574   const int method = config->method;
575   const int low_effort = (config->method == 0);
576   int i;
577   int use_palette;
578   int n_lz77s;
579   // If set to 0, analyze the cache with the computed cache value. If 1, also
580   // analyze with no-cache.
581   int do_no_cache = 0;
582   assert(pic != NULL && pic->argb != NULL);
583 
584   // Check whether a palette is possible.
585   enc->palette_size_ = WebPGetColorPalette(pic, enc->palette_sorted_);
586   use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE);
587   if (!use_palette) {
588     enc->palette_size_ = 0;
589   } else {
590     qsort(enc->palette_sorted_, enc->palette_size_,
591           sizeof(*enc->palette_sorted_), PaletteCompareColorsForQsort);
592   }
593 
594   // Empirical bit sizes.
595   enc->histo_bits_ = GetHistoBits(method, use_palette,
596                                   pic->width, pic->height);
597   enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_);
598 
599   if (low_effort) {
600     // AnalyzeEntropy is somewhat slow.
601     crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
602     crunch_configs[0].palette_sorting_type_ =
603         use_palette ? kSortedDefault : kUnusedPalette;
604     n_lz77s = 1;
605     *crunch_configs_size = 1;
606   } else {
607     EntropyIx min_entropy_ix;
608     // Try out multiple LZ77 on images with few colors.
609     n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1;
610     if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette,
611                         enc->palette_size_, enc->transform_bits_,
612                         &min_entropy_ix, red_and_blue_always_zero)) {
613       return 0;
614     }
615     if (method == 6 && config->quality == 100) {
616       do_no_cache = 1;
617       // Go brute force on all transforms.
618       *crunch_configs_size = 0;
619       for (i = 0; i < kNumEntropyIx; ++i) {
620         // We can only apply kPalette or kPaletteAndSpatial if we can indeed use
621         // a palette.
622         if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) {
623           assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
624           crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
625           if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) {
626             crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
627                 kMinimizeDelta;
628             ++*crunch_configs_size;
629             // Also add modified Zeng's method.
630             crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
631             crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
632                 kModifiedZeng;
633           } else {
634             crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
635                 kUnusedPalette;
636           }
637           ++*crunch_configs_size;
638         }
639       }
640     } else {
641       // Only choose the guessed best transform.
642       *crunch_configs_size = 1;
643       crunch_configs[0].entropy_idx_ = min_entropy_ix;
644       crunch_configs[0].palette_sorting_type_ =
645           use_palette ? kMinimizeDelta : kUnusedPalette;
646       if (config->quality >= 75 && method == 5) {
647         // Test with and without color cache.
648         do_no_cache = 1;
649         // If we have a palette, also check in combination with spatial.
650         if (min_entropy_ix == kPalette) {
651           *crunch_configs_size = 2;
652           crunch_configs[1].entropy_idx_ = kPaletteAndSpatial;
653           crunch_configs[1].palette_sorting_type_ = kMinimizeDelta;
654         }
655       }
656     }
657   }
658   // Fill in the different LZ77s.
659   assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX);
660   for (i = 0; i < *crunch_configs_size; ++i) {
661     int j;
662     for (j = 0; j < n_lz77s; ++j) {
663       assert(j < CRUNCH_SUBCONFIGS_MAX);
664       crunch_configs[i].sub_configs_[j].lz77_ =
665           (j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box;
666       crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache;
667     }
668     crunch_configs[i].sub_configs_size_ = n_lz77s;
669   }
670   return 1;
671 }
672 
EncoderInit(VP8LEncoder * const enc)673 static int EncoderInit(VP8LEncoder* const enc) {
674   const WebPPicture* const pic = enc->pic_;
675   const int width = pic->width;
676   const int height = pic->height;
677   const int pix_cnt = width * height;
678   // we round the block size up, so we're guaranteed to have
679   // at most MAX_REFS_BLOCK_PER_IMAGE blocks used:
680   const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1;
681   int i;
682   if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
683 
684   for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
685 
686   return 1;
687 }
688 
689 // Returns false in case of memory error.
GetHuffBitLengthsAndCodes(const VP8LHistogramSet * const histogram_image,HuffmanTreeCode * const huffman_codes)690 static int GetHuffBitLengthsAndCodes(
691     const VP8LHistogramSet* const histogram_image,
692     HuffmanTreeCode* const huffman_codes) {
693   int i, k;
694   int ok = 0;
695   uint64_t total_length_size = 0;
696   uint8_t* mem_buf = NULL;
697   const int histogram_image_size = histogram_image->size;
698   int max_num_symbols = 0;
699   uint8_t* buf_rle = NULL;
700   HuffmanTree* huff_tree = NULL;
701 
702   // Iterate over all histograms and get the aggregate number of codes used.
703   for (i = 0; i < histogram_image_size; ++i) {
704     const VP8LHistogram* const histo = histogram_image->histograms[i];
705     HuffmanTreeCode* const codes = &huffman_codes[5 * i];
706     assert(histo != NULL);
707     for (k = 0; k < 5; ++k) {
708       const int num_symbols =
709           (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) :
710           (k == 4) ? NUM_DISTANCE_CODES : 256;
711       codes[k].num_symbols = num_symbols;
712       total_length_size += num_symbols;
713     }
714   }
715 
716   // Allocate and Set Huffman codes.
717   {
718     uint16_t* codes;
719     uint8_t* lengths;
720     mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size,
721                                        sizeof(*lengths) + sizeof(*codes));
722     if (mem_buf == NULL) goto End;
723 
724     codes = (uint16_t*)mem_buf;
725     lengths = (uint8_t*)&codes[total_length_size];
726     for (i = 0; i < 5 * histogram_image_size; ++i) {
727       const int bit_length = huffman_codes[i].num_symbols;
728       huffman_codes[i].codes = codes;
729       huffman_codes[i].code_lengths = lengths;
730       codes += bit_length;
731       lengths += bit_length;
732       if (max_num_symbols < bit_length) {
733         max_num_symbols = bit_length;
734       }
735     }
736   }
737 
738   buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols);
739   huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols,
740                                            sizeof(*huff_tree));
741   if (buf_rle == NULL || huff_tree == NULL) goto End;
742 
743   // Create Huffman trees.
744   for (i = 0; i < histogram_image_size; ++i) {
745     HuffmanTreeCode* const codes = &huffman_codes[5 * i];
746     VP8LHistogram* const histo = histogram_image->histograms[i];
747     VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0);
748     VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1);
749     VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2);
750     VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3);
751     VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4);
752   }
753   ok = 1;
754  End:
755   WebPSafeFree(huff_tree);
756   WebPSafeFree(buf_rle);
757   if (!ok) {
758     WebPSafeFree(mem_buf);
759     memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes));
760   }
761   return ok;
762 }
763 
StoreHuffmanTreeOfHuffmanTreeToBitMask(VP8LBitWriter * const bw,const uint8_t * code_length_bitdepth)764 static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
765     VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
766   // RFC 1951 will calm you down if you are worried about this funny sequence.
767   // This sequence is tuned from that, but more weighted for lower symbol count,
768   // and more spiking histograms.
769   static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
770     17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
771   };
772   int i;
773   // Throw away trailing zeros:
774   int codes_to_store = CODE_LENGTH_CODES;
775   for (; codes_to_store > 4; --codes_to_store) {
776     if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
777       break;
778     }
779   }
780   VP8LPutBits(bw, codes_to_store - 4, 4);
781   for (i = 0; i < codes_to_store; ++i) {
782     VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3);
783   }
784 }
785 
ClearHuffmanTreeIfOnlyOneSymbol(HuffmanTreeCode * const huffman_code)786 static void ClearHuffmanTreeIfOnlyOneSymbol(
787     HuffmanTreeCode* const huffman_code) {
788   int k;
789   int count = 0;
790   for (k = 0; k < huffman_code->num_symbols; ++k) {
791     if (huffman_code->code_lengths[k] != 0) {
792       ++count;
793       if (count > 1) return;
794     }
795   }
796   for (k = 0; k < huffman_code->num_symbols; ++k) {
797     huffman_code->code_lengths[k] = 0;
798     huffman_code->codes[k] = 0;
799   }
800 }
801 
StoreHuffmanTreeToBitMask(VP8LBitWriter * const bw,const HuffmanTreeToken * const tokens,const int num_tokens,const HuffmanTreeCode * const huffman_code)802 static void StoreHuffmanTreeToBitMask(
803     VP8LBitWriter* const bw,
804     const HuffmanTreeToken* const tokens, const int num_tokens,
805     const HuffmanTreeCode* const huffman_code) {
806   int i;
807   for (i = 0; i < num_tokens; ++i) {
808     const int ix = tokens[i].code;
809     const int extra_bits = tokens[i].extra_bits;
810     VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]);
811     switch (ix) {
812       case 16:
813         VP8LPutBits(bw, extra_bits, 2);
814         break;
815       case 17:
816         VP8LPutBits(bw, extra_bits, 3);
817         break;
818       case 18:
819         VP8LPutBits(bw, extra_bits, 7);
820         break;
821     }
822   }
823 }
824 
825 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreFullHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const tree)826 static void StoreFullHuffmanCode(VP8LBitWriter* const bw,
827                                  HuffmanTree* const huff_tree,
828                                  HuffmanTreeToken* const tokens,
829                                  const HuffmanTreeCode* const tree) {
830   uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 };
831   uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 };
832   const int max_tokens = tree->num_symbols;
833   int num_tokens;
834   HuffmanTreeCode huffman_code;
835   huffman_code.num_symbols = CODE_LENGTH_CODES;
836   huffman_code.code_lengths = code_length_bitdepth;
837   huffman_code.codes = code_length_bitdepth_symbols;
838 
839   VP8LPutBits(bw, 0, 1);
840   num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens);
841   {
842     uint32_t histogram[CODE_LENGTH_CODES] = { 0 };
843     uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 };
844     int i;
845     for (i = 0; i < num_tokens; ++i) {
846       ++histogram[tokens[i].code];
847     }
848 
849     VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code);
850   }
851 
852   StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
853   ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code);
854   {
855     int trailing_zero_bits = 0;
856     int trimmed_length = num_tokens;
857     int write_trimmed_length;
858     int length;
859     int i = num_tokens;
860     while (i-- > 0) {
861       const int ix = tokens[i].code;
862       if (ix == 0 || ix == 17 || ix == 18) {
863         --trimmed_length;   // discount trailing zeros
864         trailing_zero_bits += code_length_bitdepth[ix];
865         if (ix == 17) {
866           trailing_zero_bits += 3;
867         } else if (ix == 18) {
868           trailing_zero_bits += 7;
869         }
870       } else {
871         break;
872       }
873     }
874     write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12);
875     length = write_trimmed_length ? trimmed_length : num_tokens;
876     VP8LPutBits(bw, write_trimmed_length, 1);
877     if (write_trimmed_length) {
878       if (trimmed_length == 2) {
879         VP8LPutBits(bw, 0, 3 + 2);     // nbitpairs=1, trimmed_length=2
880       } else {
881         const int nbits = BitsLog2Floor(trimmed_length - 2);
882         const int nbitpairs = nbits / 2 + 1;
883         assert(trimmed_length > 2);
884         assert(nbitpairs - 1 < 8);
885         VP8LPutBits(bw, nbitpairs - 1, 3);
886         VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2);
887       }
888     }
889     StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code);
890   }
891 }
892 
893 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const huffman_code)894 static void StoreHuffmanCode(VP8LBitWriter* const bw,
895                              HuffmanTree* const huff_tree,
896                              HuffmanTreeToken* const tokens,
897                              const HuffmanTreeCode* const huffman_code) {
898   int i;
899   int count = 0;
900   int symbols[2] = { 0, 0 };
901   const int kMaxBits = 8;
902   const int kMaxSymbol = 1 << kMaxBits;
903 
904   // Check whether it's a small tree.
905   for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) {
906     if (huffman_code->code_lengths[i] != 0) {
907       if (count < 2) symbols[count] = i;
908       ++count;
909     }
910   }
911 
912   if (count == 0) {   // emit minimal tree for empty cases
913     // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0
914     VP8LPutBits(bw, 0x01, 4);
915   } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) {
916     VP8LPutBits(bw, 1, 1);  // Small tree marker to encode 1 or 2 symbols.
917     VP8LPutBits(bw, count - 1, 1);
918     if (symbols[0] <= 1) {
919       VP8LPutBits(bw, 0, 1);  // Code bit for small (1 bit) symbol value.
920       VP8LPutBits(bw, symbols[0], 1);
921     } else {
922       VP8LPutBits(bw, 1, 1);
923       VP8LPutBits(bw, symbols[0], 8);
924     }
925     if (count == 2) {
926       VP8LPutBits(bw, symbols[1], 8);
927     }
928   } else {
929     StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code);
930   }
931 }
932 
WriteHuffmanCode(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index)933 static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw,
934                              const HuffmanTreeCode* const code,
935                              int code_index) {
936   const int depth = code->code_lengths[code_index];
937   const int symbol = code->codes[code_index];
938   VP8LPutBits(bw, symbol, depth);
939 }
940 
WriteHuffmanCodeWithExtraBits(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index,int bits,int n_bits)941 static WEBP_INLINE void WriteHuffmanCodeWithExtraBits(
942     VP8LBitWriter* const bw,
943     const HuffmanTreeCode* const code,
944     int code_index,
945     int bits,
946     int n_bits) {
947   const int depth = code->code_lengths[code_index];
948   const int symbol = code->codes[code_index];
949   VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits);
950 }
951 
StoreImageToBitMask(VP8LBitWriter * const bw,int width,int histo_bits,const VP8LBackwardRefs * const refs,const uint16_t * histogram_symbols,const HuffmanTreeCode * const huffman_codes)952 static WebPEncodingError StoreImageToBitMask(
953     VP8LBitWriter* const bw, int width, int histo_bits,
954     const VP8LBackwardRefs* const refs,
955     const uint16_t* histogram_symbols,
956     const HuffmanTreeCode* const huffman_codes) {
957   const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
958   const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits);
959   // x and y trace the position in the image.
960   int x = 0;
961   int y = 0;
962   int tile_x = x & tile_mask;
963   int tile_y = y & tile_mask;
964   int histogram_ix = histogram_symbols[0];
965   const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix;
966   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
967   while (VP8LRefsCursorOk(&c)) {
968     const PixOrCopy* const v = c.cur_pos;
969     if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) {
970       tile_x = x & tile_mask;
971       tile_y = y & tile_mask;
972       histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize +
973                                        (x >> histo_bits)];
974       codes = huffman_codes + 5 * histogram_ix;
975     }
976     if (PixOrCopyIsLiteral(v)) {
977       static const uint8_t order[] = { 1, 2, 0, 3 };
978       int k;
979       for (k = 0; k < 4; ++k) {
980         const int code = PixOrCopyLiteral(v, order[k]);
981         WriteHuffmanCode(bw, codes + k, code);
982       }
983     } else if (PixOrCopyIsCacheIdx(v)) {
984       const int code = PixOrCopyCacheIdx(v);
985       const int literal_ix = 256 + NUM_LENGTH_CODES + code;
986       WriteHuffmanCode(bw, codes, literal_ix);
987     } else {
988       int bits, n_bits;
989       int code;
990 
991       const int distance = PixOrCopyDistance(v);
992       VP8LPrefixEncode(v->len, &code, &n_bits, &bits);
993       WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits);
994 
995       // Don't write the distance with the extra bits code since
996       // the distance can be up to 18 bits of extra bits, and the prefix
997       // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
998       VP8LPrefixEncode(distance, &code, &n_bits, &bits);
999       WriteHuffmanCode(bw, codes + 4, code);
1000       VP8LPutBits(bw, bits, n_bits);
1001     }
1002     x += PixOrCopyLength(v);
1003     while (x >= width) {
1004       x -= width;
1005       ++y;
1006     }
1007     VP8LRefsCursorNext(&c);
1008   }
1009   return bw->error_ ? VP8_ENC_ERROR_OUT_OF_MEMORY : VP8_ENC_OK;
1010 }
1011 
1012 // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31
EncodeImageNoHuffman(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_array,int width,int height,int quality,int low_effort)1013 static WebPEncodingError EncodeImageNoHuffman(
1014     VP8LBitWriter* const bw, const uint32_t* const argb,
1015     VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs_array,
1016     int width, int height, int quality, int low_effort) {
1017   int i;
1018   int max_tokens = 0;
1019   WebPEncodingError err = VP8_ENC_OK;
1020   VP8LBackwardRefs* refs;
1021   HuffmanTreeToken* tokens = NULL;
1022   HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } };
1023   const uint16_t histogram_symbols[1] = { 0 };    // only one tree, one symbol
1024   int cache_bits = 0;
1025   VP8LHistogramSet* histogram_image = NULL;
1026   HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
1027         3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
1028   if (huff_tree == NULL) {
1029     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1030     goto Error;
1031   }
1032 
1033   // Calculate backward references from ARGB image.
1034   if (!VP8LHashChainFill(hash_chain, quality, argb, width, height,
1035                          low_effort)) {
1036     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1037     goto Error;
1038   }
1039   err = VP8LGetBackwardReferences(
1040       width, height, argb, quality, /*low_effort=*/0, kLZ77Standard | kLZ77RLE,
1041       cache_bits, /*do_no_cache=*/0, hash_chain, refs_array, &cache_bits);
1042   if (err != VP8_ENC_OK) goto Error;
1043   refs = &refs_array[0];
1044   histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
1045   if (histogram_image == NULL) {
1046     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1047     goto Error;
1048   }
1049   VP8LHistogramSetClear(histogram_image);
1050 
1051   // Build histogram image and symbols from backward references.
1052   VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]);
1053 
1054   // Create Huffman bit lengths and codes for each histogram image.
1055   assert(histogram_image->size == 1);
1056   if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
1057     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1058     goto Error;
1059   }
1060 
1061   // No color cache, no Huffman image.
1062   VP8LPutBits(bw, 0, 1);
1063 
1064   // Find maximum number of symbols for the huffman tree-set.
1065   for (i = 0; i < 5; ++i) {
1066     HuffmanTreeCode* const codes = &huffman_codes[i];
1067     if (max_tokens < codes->num_symbols) {
1068       max_tokens = codes->num_symbols;
1069     }
1070   }
1071 
1072   tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
1073   if (tokens == NULL) {
1074     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1075     goto Error;
1076   }
1077 
1078   // Store Huffman codes.
1079   for (i = 0; i < 5; ++i) {
1080     HuffmanTreeCode* const codes = &huffman_codes[i];
1081     StoreHuffmanCode(bw, huff_tree, tokens, codes);
1082     ClearHuffmanTreeIfOnlyOneSymbol(codes);
1083   }
1084 
1085   // Store actual literals.
1086   err = StoreImageToBitMask(bw, width, 0, refs, histogram_symbols,
1087                             huffman_codes);
1088 
1089  Error:
1090   WebPSafeFree(tokens);
1091   WebPSafeFree(huff_tree);
1092   VP8LFreeHistogramSet(histogram_image);
1093   WebPSafeFree(huffman_codes[0].codes);
1094   return err;
1095 }
1096 
EncodeImageInternal(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs refs_array[4],int width,int height,int quality,int low_effort,int use_cache,const CrunchConfig * const config,int * cache_bits,int histogram_bits,size_t init_byte_position,int * const hdr_size,int * const data_size)1097 static WebPEncodingError EncodeImageInternal(
1098     VP8LBitWriter* const bw, const uint32_t* const argb,
1099     VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width,
1100     int height, int quality, int low_effort, int use_cache,
1101     const CrunchConfig* const config, int* cache_bits, int histogram_bits,
1102     size_t init_byte_position, int* const hdr_size, int* const data_size) {
1103   WebPEncodingError err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1104   const uint32_t histogram_image_xysize =
1105       VP8LSubSampleSize(width, histogram_bits) *
1106       VP8LSubSampleSize(height, histogram_bits);
1107   VP8LHistogramSet* histogram_image = NULL;
1108   VP8LHistogram* tmp_histo = NULL;
1109   int histogram_image_size = 0;
1110   size_t bit_array_size = 0;
1111   HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
1112       3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
1113   HuffmanTreeToken* tokens = NULL;
1114   HuffmanTreeCode* huffman_codes = NULL;
1115   uint16_t* const histogram_symbols =
1116       (uint16_t*)WebPSafeMalloc(histogram_image_xysize,
1117                                 sizeof(*histogram_symbols));
1118   int sub_configs_idx;
1119   int cache_bits_init, write_histogram_image;
1120   VP8LBitWriter bw_init = *bw, bw_best;
1121   int hdr_size_tmp;
1122   VP8LHashChain hash_chain_histogram;  // histogram image hash chain
1123   size_t bw_size_best = ~(size_t)0;
1124   assert(histogram_bits >= MIN_HUFFMAN_BITS);
1125   assert(histogram_bits <= MAX_HUFFMAN_BITS);
1126   assert(hdr_size != NULL);
1127   assert(data_size != NULL);
1128 
1129   // Make sure we can allocate the different objects.
1130   memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram));
1131   if (huff_tree == NULL || histogram_symbols == NULL ||
1132       !VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize) ||
1133       !VP8LHashChainFill(hash_chain, quality, argb, width, height,
1134                          low_effort)) {
1135     goto Error;
1136   }
1137   if (use_cache) {
1138     // If the value is different from zero, it has been set during the
1139     // palette analysis.
1140     cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits;
1141   } else {
1142     cache_bits_init = 0;
1143   }
1144   // If several iterations will happen, clone into bw_best.
1145   if (!VP8LBitWriterInit(&bw_best, 0) ||
1146       ((config->sub_configs_size_ > 1 ||
1147         config->sub_configs_[0].do_no_cache_) &&
1148        !VP8LBitWriterClone(bw, &bw_best))) {
1149     goto Error;
1150   }
1151   for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_;
1152        ++sub_configs_idx) {
1153     const CrunchSubConfig* const sub_config =
1154         &config->sub_configs_[sub_configs_idx];
1155     int cache_bits_best, i_cache;
1156     err = VP8LGetBackwardReferences(width, height, argb, quality, low_effort,
1157                                     sub_config->lz77_, cache_bits_init,
1158                                     sub_config->do_no_cache_, hash_chain,
1159                                     &refs_array[0], &cache_bits_best);
1160     if (err != VP8_ENC_OK) goto Error;
1161 
1162     for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) {
1163       const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0;
1164       // Speed-up: no need to study the no-cache case if it was already studied
1165       // in i_cache == 0.
1166       if (i_cache == 1 && cache_bits_best == 0) break;
1167 
1168       // Reset the bit writer for this iteration.
1169       VP8LBitWriterReset(&bw_init, bw);
1170 
1171       // Build histogram image and symbols from backward references.
1172       histogram_image =
1173           VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp);
1174       tmp_histo = VP8LAllocateHistogram(cache_bits_tmp);
1175       if (histogram_image == NULL || tmp_histo == NULL ||
1176           !VP8LGetHistoImageSymbols(width, height, &refs_array[i_cache],
1177                                     quality, low_effort, histogram_bits,
1178                                     cache_bits_tmp, histogram_image, tmp_histo,
1179                                     histogram_symbols)) {
1180         goto Error;
1181       }
1182       // Create Huffman bit lengths and codes for each histogram image.
1183       histogram_image_size = histogram_image->size;
1184       bit_array_size = 5 * histogram_image_size;
1185       huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
1186                                                        sizeof(*huffman_codes));
1187       // Note: some histogram_image entries may point to tmp_histos[], so the
1188       // latter need to outlive the following call to
1189       // GetHuffBitLengthsAndCodes().
1190       if (huffman_codes == NULL ||
1191           !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
1192         goto Error;
1193       }
1194       // Free combined histograms.
1195       VP8LFreeHistogramSet(histogram_image);
1196       histogram_image = NULL;
1197 
1198       // Free scratch histograms.
1199       VP8LFreeHistogram(tmp_histo);
1200       tmp_histo = NULL;
1201 
1202       // Color Cache parameters.
1203       if (cache_bits_tmp > 0) {
1204         VP8LPutBits(bw, 1, 1);
1205         VP8LPutBits(bw, cache_bits_tmp, 4);
1206       } else {
1207         VP8LPutBits(bw, 0, 1);
1208       }
1209 
1210       // Huffman image + meta huffman.
1211       write_histogram_image = (histogram_image_size > 1);
1212       VP8LPutBits(bw, write_histogram_image, 1);
1213       if (write_histogram_image) {
1214         uint32_t* const histogram_argb =
1215             (uint32_t*)WebPSafeMalloc(histogram_image_xysize,
1216                                       sizeof(*histogram_argb));
1217         int max_index = 0;
1218         uint32_t i;
1219         if (histogram_argb == NULL) goto Error;
1220         for (i = 0; i < histogram_image_xysize; ++i) {
1221           const int symbol_index = histogram_symbols[i] & 0xffff;
1222           histogram_argb[i] = (symbol_index << 8);
1223           if (symbol_index >= max_index) {
1224             max_index = symbol_index + 1;
1225           }
1226         }
1227         histogram_image_size = max_index;
1228 
1229         VP8LPutBits(bw, histogram_bits - 2, 3);
1230         err = EncodeImageNoHuffman(
1231             bw, histogram_argb, &hash_chain_histogram, &refs_array[2],
1232             VP8LSubSampleSize(width, histogram_bits),
1233             VP8LSubSampleSize(height, histogram_bits), quality, low_effort);
1234         WebPSafeFree(histogram_argb);
1235         if (err != VP8_ENC_OK) goto Error;
1236       }
1237 
1238       // Store Huffman codes.
1239       {
1240         int i;
1241         int max_tokens = 0;
1242         // Find maximum number of symbols for the huffman tree-set.
1243         for (i = 0; i < 5 * histogram_image_size; ++i) {
1244           HuffmanTreeCode* const codes = &huffman_codes[i];
1245           if (max_tokens < codes->num_symbols) {
1246             max_tokens = codes->num_symbols;
1247           }
1248         }
1249         tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
1250         if (tokens == NULL) goto Error;
1251         for (i = 0; i < 5 * histogram_image_size; ++i) {
1252           HuffmanTreeCode* const codes = &huffman_codes[i];
1253           StoreHuffmanCode(bw, huff_tree, tokens, codes);
1254           ClearHuffmanTreeIfOnlyOneSymbol(codes);
1255         }
1256       }
1257       // Store actual literals.
1258       hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
1259       err = StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache],
1260                                 histogram_symbols, huffman_codes);
1261       if (err != VP8_ENC_OK) goto Error;
1262       // Keep track of the smallest image so far.
1263       if (VP8LBitWriterNumBytes(bw) < bw_size_best) {
1264         bw_size_best = VP8LBitWriterNumBytes(bw);
1265         *cache_bits = cache_bits_tmp;
1266         *hdr_size = hdr_size_tmp;
1267         *data_size =
1268             (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
1269         VP8LBitWriterSwap(bw, &bw_best);
1270       }
1271       WebPSafeFree(tokens);
1272       tokens = NULL;
1273       if (huffman_codes != NULL) {
1274         WebPSafeFree(huffman_codes->codes);
1275         WebPSafeFree(huffman_codes);
1276         huffman_codes = NULL;
1277       }
1278     }
1279   }
1280   VP8LBitWriterSwap(bw, &bw_best);
1281   err = VP8_ENC_OK;
1282 
1283  Error:
1284   WebPSafeFree(tokens);
1285   WebPSafeFree(huff_tree);
1286   VP8LFreeHistogramSet(histogram_image);
1287   VP8LFreeHistogram(tmp_histo);
1288   VP8LHashChainClear(&hash_chain_histogram);
1289   if (huffman_codes != NULL) {
1290     WebPSafeFree(huffman_codes->codes);
1291     WebPSafeFree(huffman_codes);
1292   }
1293   WebPSafeFree(histogram_symbols);
1294   VP8LBitWriterWipeOut(&bw_best);
1295   return err;
1296 }
1297 
1298 // -----------------------------------------------------------------------------
1299 // Transforms
1300 
ApplySubtractGreen(VP8LEncoder * const enc,int width,int height,VP8LBitWriter * const bw)1301 static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height,
1302                                VP8LBitWriter* const bw) {
1303   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1304   VP8LPutBits(bw, SUBTRACT_GREEN, 2);
1305   VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
1306 }
1307 
ApplyPredictFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,int used_subtract_green,VP8LBitWriter * const bw)1308 static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc,
1309                                             int width, int height,
1310                                             int quality, int low_effort,
1311                                             int used_subtract_green,
1312                                             VP8LBitWriter* const bw) {
1313   const int pred_bits = enc->transform_bits_;
1314   const int transform_width = VP8LSubSampleSize(width, pred_bits);
1315   const int transform_height = VP8LSubSampleSize(height, pred_bits);
1316   // we disable near-lossless quantization if palette is used.
1317   const int near_lossless_strength = enc->use_palette_ ? 100
1318                                    : enc->config_->near_lossless;
1319 
1320   VP8LResidualImage(width, height, pred_bits, low_effort, enc->argb_,
1321                     enc->argb_scratch_, enc->transform_data_,
1322                     near_lossless_strength, enc->config_->exact,
1323                     used_subtract_green);
1324   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1325   VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
1326   assert(pred_bits >= 2);
1327   VP8LPutBits(bw, pred_bits - 2, 3);
1328   return EncodeImageNoHuffman(
1329       bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1330       (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
1331       quality, low_effort);
1332 }
1333 
ApplyCrossColorFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,VP8LBitWriter * const bw)1334 static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc,
1335                                                int width, int height,
1336                                                int quality, int low_effort,
1337                                                VP8LBitWriter* const bw) {
1338   const int ccolor_transform_bits = enc->transform_bits_;
1339   const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits);
1340   const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits);
1341 
1342   VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality,
1343                           enc->argb_, enc->transform_data_);
1344   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1345   VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2);
1346   assert(ccolor_transform_bits >= 2);
1347   VP8LPutBits(bw, ccolor_transform_bits - 2, 3);
1348   return EncodeImageNoHuffman(
1349       bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1350       (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
1351       quality, low_effort);
1352 }
1353 
1354 // -----------------------------------------------------------------------------
1355 
WriteRiffHeader(const WebPPicture * const pic,size_t riff_size,size_t vp8l_size)1356 static WebPEncodingError WriteRiffHeader(const WebPPicture* const pic,
1357                                          size_t riff_size, size_t vp8l_size) {
1358   uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = {
1359     'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
1360     'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE,
1361   };
1362   PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
1363   PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
1364   if (!pic->writer(riff, sizeof(riff), pic)) {
1365     return VP8_ENC_ERROR_BAD_WRITE;
1366   }
1367   return VP8_ENC_OK;
1368 }
1369 
WriteImageSize(const WebPPicture * const pic,VP8LBitWriter * const bw)1370 static int WriteImageSize(const WebPPicture* const pic,
1371                           VP8LBitWriter* const bw) {
1372   const int width = pic->width - 1;
1373   const int height = pic->height - 1;
1374   assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
1375 
1376   VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS);
1377   VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS);
1378   return !bw->error_;
1379 }
1380 
WriteRealAlphaAndVersion(VP8LBitWriter * const bw,int has_alpha)1381 static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) {
1382   VP8LPutBits(bw, has_alpha, 1);
1383   VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS);
1384   return !bw->error_;
1385 }
1386 
WriteImage(const WebPPicture * const pic,VP8LBitWriter * const bw,size_t * const coded_size)1387 static WebPEncodingError WriteImage(const WebPPicture* const pic,
1388                                     VP8LBitWriter* const bw,
1389                                     size_t* const coded_size) {
1390   WebPEncodingError err = VP8_ENC_OK;
1391   const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
1392   const size_t webpll_size = VP8LBitWriterNumBytes(bw);
1393   const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size;
1394   const size_t pad = vp8l_size & 1;
1395   const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad;
1396 
1397   err = WriteRiffHeader(pic, riff_size, vp8l_size);
1398   if (err != VP8_ENC_OK) goto Error;
1399 
1400   if (!pic->writer(webpll_data, webpll_size, pic)) {
1401     err = VP8_ENC_ERROR_BAD_WRITE;
1402     goto Error;
1403   }
1404 
1405   if (pad) {
1406     const uint8_t pad_byte[1] = { 0 };
1407     if (!pic->writer(pad_byte, 1, pic)) {
1408       err = VP8_ENC_ERROR_BAD_WRITE;
1409       goto Error;
1410     }
1411   }
1412   *coded_size = CHUNK_HEADER_SIZE + riff_size;
1413   return VP8_ENC_OK;
1414 
1415  Error:
1416   return err;
1417 }
1418 
1419 // -----------------------------------------------------------------------------
1420 
ClearTransformBuffer(VP8LEncoder * const enc)1421 static void ClearTransformBuffer(VP8LEncoder* const enc) {
1422   WebPSafeFree(enc->transform_mem_);
1423   enc->transform_mem_ = NULL;
1424   enc->transform_mem_size_ = 0;
1425 }
1426 
1427 // Allocates the memory for argb (W x H) buffer, 2 rows of context for
1428 // prediction and transform data.
1429 // Flags influencing the memory allocated:
1430 //  enc->transform_bits_
1431 //  enc->use_predict_, enc->use_cross_color_
AllocateTransformBuffer(VP8LEncoder * const enc,int width,int height)1432 static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc,
1433                                                  int width, int height) {
1434   WebPEncodingError err = VP8_ENC_OK;
1435   const uint64_t image_size = width * height;
1436   // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra
1437   // pixel in each, plus 2 regular scanlines of bytes.
1438   // TODO(skal): Clean up by using arithmetic in bytes instead of words.
1439   const uint64_t argb_scratch_size =
1440       enc->use_predict_
1441           ? (width + 1) * 2 +
1442             (width * 2 + sizeof(uint32_t) - 1) / sizeof(uint32_t)
1443           : 0;
1444   const uint64_t transform_data_size =
1445       (enc->use_predict_ || enc->use_cross_color_)
1446           ? VP8LSubSampleSize(width, enc->transform_bits_) *
1447                 VP8LSubSampleSize(height, enc->transform_bits_)
1448           : 0;
1449   const uint64_t max_alignment_in_words =
1450       (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t);
1451   const uint64_t mem_size =
1452       image_size + max_alignment_in_words +
1453       argb_scratch_size + max_alignment_in_words +
1454       transform_data_size;
1455   uint32_t* mem = enc->transform_mem_;
1456   if (mem == NULL || mem_size > enc->transform_mem_size_) {
1457     ClearTransformBuffer(enc);
1458     mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem));
1459     if (mem == NULL) {
1460       err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1461       goto Error;
1462     }
1463     enc->transform_mem_ = mem;
1464     enc->transform_mem_size_ = (size_t)mem_size;
1465     enc->argb_content_ = kEncoderNone;
1466   }
1467   enc->argb_ = mem;
1468   mem = (uint32_t*)WEBP_ALIGN(mem + image_size);
1469   enc->argb_scratch_ = mem;
1470   mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size);
1471   enc->transform_data_ = mem;
1472 
1473   enc->current_width_ = width;
1474  Error:
1475   return err;
1476 }
1477 
MakeInputImageCopy(VP8LEncoder * const enc)1478 static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) {
1479   WebPEncodingError err = VP8_ENC_OK;
1480   const WebPPicture* const picture = enc->pic_;
1481   const int width = picture->width;
1482   const int height = picture->height;
1483 
1484   err = AllocateTransformBuffer(enc, width, height);
1485   if (err != VP8_ENC_OK) return err;
1486   if (enc->argb_content_ == kEncoderARGB) return VP8_ENC_OK;
1487 
1488   {
1489     uint32_t* dst = enc->argb_;
1490     const uint32_t* src = picture->argb;
1491     int y;
1492     for (y = 0; y < height; ++y) {
1493       memcpy(dst, src, width * sizeof(*dst));
1494       dst += width;
1495       src += picture->argb_stride;
1496     }
1497   }
1498   enc->argb_content_ = kEncoderARGB;
1499   assert(enc->current_width_ == width);
1500   return VP8_ENC_OK;
1501 }
1502 
1503 // -----------------------------------------------------------------------------
1504 
1505 #define APPLY_PALETTE_GREEDY_MAX 4
1506 
SearchColorGreedy(const uint32_t palette[],int palette_size,uint32_t color)1507 static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
1508                                               int palette_size,
1509                                               uint32_t color) {
1510   (void)palette_size;
1511   assert(palette_size < APPLY_PALETTE_GREEDY_MAX);
1512   assert(3 == APPLY_PALETTE_GREEDY_MAX - 1);
1513   if (color == palette[0]) return 0;
1514   if (color == palette[1]) return 1;
1515   if (color == palette[2]) return 2;
1516   return 3;
1517 }
1518 
ApplyPaletteHash0(uint32_t color)1519 static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) {
1520   // Focus on the green color.
1521   return (color >> 8) & 0xff;
1522 }
1523 
1524 #define PALETTE_INV_SIZE_BITS 11
1525 #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS)
1526 
ApplyPaletteHash1(uint32_t color)1527 static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) {
1528   // Forget about alpha.
1529   return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >>
1530          (32 - PALETTE_INV_SIZE_BITS);
1531 }
1532 
ApplyPaletteHash2(uint32_t color)1533 static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
1534   // Forget about alpha.
1535   return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >>
1536          (32 - PALETTE_INV_SIZE_BITS);
1537 }
1538 
1539 // Use 1 pixel cache for ARGB pixels.
1540 #define APPLY_PALETTE_FOR(COLOR_INDEX) do {         \
1541   uint32_t prev_pix = palette[0];                   \
1542   uint32_t prev_idx = 0;                            \
1543   for (y = 0; y < height; ++y) {                    \
1544     for (x = 0; x < width; ++x) {                   \
1545       const uint32_t pix = src[x];                  \
1546       if (pix != prev_pix) {                        \
1547         prev_idx = COLOR_INDEX;                     \
1548         prev_pix = pix;                             \
1549       }                                             \
1550       tmp_row[x] = prev_idx;                        \
1551     }                                               \
1552     VP8LBundleColorMap(tmp_row, width, xbits, dst); \
1553     src += src_stride;                              \
1554     dst += dst_stride;                              \
1555   }                                                 \
1556 } while (0)
1557 
1558 // Remap argb values in src[] to packed palettes entries in dst[]
1559 // using 'row' as a temporary buffer of size 'width'.
1560 // We assume that all src[] values have a corresponding entry in the palette.
1561 // Note: src[] can be the same as dst[]
ApplyPalette(const uint32_t * src,uint32_t src_stride,uint32_t * dst,uint32_t dst_stride,const uint32_t * palette,int palette_size,int width,int height,int xbits)1562 static WebPEncodingError ApplyPalette(const uint32_t* src, uint32_t src_stride,
1563                                       uint32_t* dst, uint32_t dst_stride,
1564                                       const uint32_t* palette, int palette_size,
1565                                       int width, int height, int xbits) {
1566   // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be
1567   // made to work in-place.
1568   uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
1569   int x, y;
1570 
1571   if (tmp_row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
1572 
1573   if (palette_size < APPLY_PALETTE_GREEDY_MAX) {
1574     APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix));
1575   } else {
1576     int i, j;
1577     uint16_t buffer[PALETTE_INV_SIZE];
1578     uint32_t (*const hash_functions[])(uint32_t) = {
1579         ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2
1580     };
1581 
1582     // Try to find a perfect hash function able to go from a color to an index
1583     // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go
1584     // from color to index in palette.
1585     for (i = 0; i < 3; ++i) {
1586       int use_LUT = 1;
1587       // Set each element in buffer to max uint16_t.
1588       memset(buffer, 0xff, sizeof(buffer));
1589       for (j = 0; j < palette_size; ++j) {
1590         const uint32_t ind = hash_functions[i](palette[j]);
1591         if (buffer[ind] != 0xffffu) {
1592           use_LUT = 0;
1593           break;
1594         } else {
1595           buffer[ind] = j;
1596         }
1597       }
1598       if (use_LUT) break;
1599     }
1600 
1601     if (i == 0) {
1602       APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]);
1603     } else if (i == 1) {
1604       APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]);
1605     } else if (i == 2) {
1606       APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]);
1607     } else {
1608       uint32_t idx_map[MAX_PALETTE_SIZE];
1609       uint32_t palette_sorted[MAX_PALETTE_SIZE];
1610       PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map);
1611       APPLY_PALETTE_FOR(
1612           idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]);
1613     }
1614   }
1615   WebPSafeFree(tmp_row);
1616   return VP8_ENC_OK;
1617 }
1618 #undef APPLY_PALETTE_FOR
1619 #undef PALETTE_INV_SIZE_BITS
1620 #undef PALETTE_INV_SIZE
1621 #undef APPLY_PALETTE_GREEDY_MAX
1622 
1623 // Note: Expects "enc->palette_" to be set properly.
MapImageFromPalette(VP8LEncoder * const enc,int in_place)1624 static WebPEncodingError MapImageFromPalette(VP8LEncoder* const enc,
1625                                              int in_place) {
1626   WebPEncodingError err = VP8_ENC_OK;
1627   const WebPPicture* const pic = enc->pic_;
1628   const int width = pic->width;
1629   const int height = pic->height;
1630   const uint32_t* const palette = enc->palette_;
1631   const uint32_t* src = in_place ? enc->argb_ : pic->argb;
1632   const int src_stride = in_place ? enc->current_width_ : pic->argb_stride;
1633   const int palette_size = enc->palette_size_;
1634   int xbits;
1635 
1636   // Replace each input pixel by corresponding palette index.
1637   // This is done line by line.
1638   if (palette_size <= 4) {
1639     xbits = (palette_size <= 2) ? 3 : 2;
1640   } else {
1641     xbits = (palette_size <= 16) ? 1 : 0;
1642   }
1643 
1644   err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height);
1645   if (err != VP8_ENC_OK) return err;
1646 
1647   err = ApplyPalette(src, src_stride,
1648                      enc->argb_, enc->current_width_,
1649                      palette, palette_size, width, height, xbits);
1650   enc->argb_content_ = kEncoderPalette;
1651   return err;
1652 }
1653 
1654 // Save palette_[] to bitstream.
EncodePalette(VP8LBitWriter * const bw,int low_effort,VP8LEncoder * const enc)1655 static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort,
1656                                        VP8LEncoder* const enc) {
1657   int i;
1658   uint32_t tmp_palette[MAX_PALETTE_SIZE];
1659   const int palette_size = enc->palette_size_;
1660   const uint32_t* const palette = enc->palette_;
1661   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1662   VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2);
1663   assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE);
1664   VP8LPutBits(bw, palette_size - 1, 8);
1665   for (i = palette_size - 1; i >= 1; --i) {
1666     tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
1667   }
1668   tmp_palette[0] = palette[0];
1669   return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_,
1670                               &enc->refs_[0], palette_size, 1, /*quality=*/20,
1671                               low_effort);
1672 }
1673 
1674 // -----------------------------------------------------------------------------
1675 // VP8LEncoder
1676 
VP8LEncoderNew(const WebPConfig * const config,const WebPPicture * const picture)1677 static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config,
1678                                    const WebPPicture* const picture) {
1679   VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc));
1680   if (enc == NULL) {
1681     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1682     return NULL;
1683   }
1684   enc->config_ = config;
1685   enc->pic_ = picture;
1686   enc->argb_content_ = kEncoderNone;
1687 
1688   VP8LEncDspInit();
1689 
1690   return enc;
1691 }
1692 
VP8LEncoderDelete(VP8LEncoder * enc)1693 static void VP8LEncoderDelete(VP8LEncoder* enc) {
1694   if (enc != NULL) {
1695     int i;
1696     VP8LHashChainClear(&enc->hash_chain_);
1697     for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
1698     ClearTransformBuffer(enc);
1699     WebPSafeFree(enc);
1700   }
1701 }
1702 
1703 // -----------------------------------------------------------------------------
1704 // Main call
1705 
1706 typedef struct {
1707   const WebPConfig* config_;
1708   const WebPPicture* picture_;
1709   VP8LBitWriter* bw_;
1710   VP8LEncoder* enc_;
1711   int use_cache_;
1712   CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX];
1713   int num_crunch_configs_;
1714   int red_and_blue_always_zero_;
1715   WebPEncodingError err_;
1716   WebPAuxStats* stats_;
1717 } StreamEncodeContext;
1718 
EncodeStreamHook(void * input,void * data2)1719 static int EncodeStreamHook(void* input, void* data2) {
1720   StreamEncodeContext* const params = (StreamEncodeContext*)input;
1721   const WebPConfig* const config = params->config_;
1722   const WebPPicture* const picture = params->picture_;
1723   VP8LBitWriter* const bw = params->bw_;
1724   VP8LEncoder* const enc = params->enc_;
1725   const int use_cache = params->use_cache_;
1726   const CrunchConfig* const crunch_configs = params->crunch_configs_;
1727   const int num_crunch_configs = params->num_crunch_configs_;
1728   const int red_and_blue_always_zero = params->red_and_blue_always_zero_;
1729 #if !defined(WEBP_DISABLE_STATS)
1730   WebPAuxStats* const stats = params->stats_;
1731 #endif
1732   WebPEncodingError err = VP8_ENC_OK;
1733   const int quality = (int)config->quality;
1734   const int low_effort = (config->method == 0);
1735 #if (WEBP_NEAR_LOSSLESS == 1)
1736   const int width = picture->width;
1737 #endif
1738   const int height = picture->height;
1739   const size_t byte_position = VP8LBitWriterNumBytes(bw);
1740 #if (WEBP_NEAR_LOSSLESS == 1)
1741   int use_near_lossless = 0;
1742 #endif
1743   int hdr_size = 0;
1744   int data_size = 0;
1745   int use_delta_palette = 0;
1746   int idx;
1747   size_t best_size = ~(size_t)0;
1748   VP8LBitWriter bw_init = *bw, bw_best;
1749   (void)data2;
1750 
1751   if (!VP8LBitWriterInit(&bw_best, 0) ||
1752       (num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) {
1753     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1754     goto Error;
1755   }
1756 
1757   for (idx = 0; idx < num_crunch_configs; ++idx) {
1758     const int entropy_idx = crunch_configs[idx].entropy_idx_;
1759     enc->use_palette_ =
1760         (entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial);
1761     enc->use_subtract_green_ =
1762         (entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen);
1763     enc->use_predict_ = (entropy_idx == kSpatial) ||
1764                         (entropy_idx == kSpatialSubGreen) ||
1765                         (entropy_idx == kPaletteAndSpatial);
1766     // When using a palette, R/B==0, hence no need to test for cross-color.
1767     if (low_effort || enc->use_palette_) {
1768       enc->use_cross_color_ = 0;
1769     } else {
1770       enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
1771     }
1772     // Reset any parameter in the encoder that is set in the previous iteration.
1773     enc->cache_bits_ = 0;
1774     VP8LBackwardRefsClear(&enc->refs_[0]);
1775     VP8LBackwardRefsClear(&enc->refs_[1]);
1776 
1777 #if (WEBP_NEAR_LOSSLESS == 1)
1778     // Apply near-lossless preprocessing.
1779     use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ &&
1780                         !enc->use_predict_;
1781     if (use_near_lossless) {
1782       err = AllocateTransformBuffer(enc, width, height);
1783       if (err != VP8_ENC_OK) goto Error;
1784       if ((enc->argb_content_ != kEncoderNearLossless) &&
1785           !VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) {
1786         err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1787         goto Error;
1788       }
1789       enc->argb_content_ = kEncoderNearLossless;
1790     } else {
1791       enc->argb_content_ = kEncoderNone;
1792     }
1793 #else
1794     enc->argb_content_ = kEncoderNone;
1795 #endif
1796 
1797     // Encode palette
1798     if (enc->use_palette_) {
1799       if (crunch_configs[idx].palette_sorting_type_ == kSortedDefault) {
1800         // Nothing to do, we have already sorted the palette.
1801         memcpy(enc->palette_, enc->palette_sorted_,
1802                enc->palette_size_ * sizeof(*enc->palette_));
1803       } else if (crunch_configs[idx].palette_sorting_type_ == kMinimizeDelta) {
1804         PaletteSortMinimizeDeltas(enc->palette_sorted_, enc->palette_size_,
1805                                   enc->palette_);
1806       } else {
1807         assert(crunch_configs[idx].palette_sorting_type_ == kModifiedZeng);
1808         err = PaletteSortModifiedZeng(enc->pic_, enc->palette_sorted_,
1809                                       enc->palette_size_, enc->palette_);
1810         if (err != VP8_ENC_OK) goto Error;
1811       }
1812       err = EncodePalette(bw, low_effort, enc);
1813       if (err != VP8_ENC_OK) goto Error;
1814       err = MapImageFromPalette(enc, use_delta_palette);
1815       if (err != VP8_ENC_OK) goto Error;
1816       // If using a color cache, do not have it bigger than the number of
1817       // colors.
1818       if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) {
1819         enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1;
1820       }
1821     }
1822     if (!use_delta_palette) {
1823       // In case image is not packed.
1824       if (enc->argb_content_ != kEncoderNearLossless &&
1825           enc->argb_content_ != kEncoderPalette) {
1826         err = MakeInputImageCopy(enc);
1827         if (err != VP8_ENC_OK) goto Error;
1828       }
1829 
1830       // -----------------------------------------------------------------------
1831       // Apply transforms and write transform data.
1832 
1833       if (enc->use_subtract_green_) {
1834         ApplySubtractGreen(enc, enc->current_width_, height, bw);
1835       }
1836 
1837       if (enc->use_predict_) {
1838         err = ApplyPredictFilter(enc, enc->current_width_, height, quality,
1839                                  low_effort, enc->use_subtract_green_, bw);
1840         if (err != VP8_ENC_OK) goto Error;
1841       }
1842 
1843       if (enc->use_cross_color_) {
1844         err = ApplyCrossColorFilter(enc, enc->current_width_, height, quality,
1845                                     low_effort, bw);
1846         if (err != VP8_ENC_OK) goto Error;
1847       }
1848     }
1849 
1850     VP8LPutBits(bw, !TRANSFORM_PRESENT, 1);  // No more transforms.
1851 
1852     // -------------------------------------------------------------------------
1853     // Encode and write the transformed image.
1854     err = EncodeImageInternal(bw, enc->argb_, &enc->hash_chain_, enc->refs_,
1855                               enc->current_width_, height, quality, low_effort,
1856                               use_cache, &crunch_configs[idx],
1857                               &enc->cache_bits_, enc->histo_bits_,
1858                               byte_position, &hdr_size, &data_size);
1859     if (err != VP8_ENC_OK) goto Error;
1860 
1861     // If we are better than what we already have.
1862     if (VP8LBitWriterNumBytes(bw) < best_size) {
1863       best_size = VP8LBitWriterNumBytes(bw);
1864       // Store the BitWriter.
1865       VP8LBitWriterSwap(bw, &bw_best);
1866 #if !defined(WEBP_DISABLE_STATS)
1867       // Update the stats.
1868       if (stats != NULL) {
1869         stats->lossless_features = 0;
1870         if (enc->use_predict_) stats->lossless_features |= 1;
1871         if (enc->use_cross_color_) stats->lossless_features |= 2;
1872         if (enc->use_subtract_green_) stats->lossless_features |= 4;
1873         if (enc->use_palette_) stats->lossless_features |= 8;
1874         stats->histogram_bits = enc->histo_bits_;
1875         stats->transform_bits = enc->transform_bits_;
1876         stats->cache_bits = enc->cache_bits_;
1877         stats->palette_size = enc->palette_size_;
1878         stats->lossless_size = (int)(best_size - byte_position);
1879         stats->lossless_hdr_size = hdr_size;
1880         stats->lossless_data_size = data_size;
1881       }
1882 #endif
1883     }
1884     // Reset the bit writer for the following iteration if any.
1885     if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw);
1886   }
1887   VP8LBitWriterSwap(&bw_best, bw);
1888 
1889 Error:
1890   VP8LBitWriterWipeOut(&bw_best);
1891   params->err_ = err;
1892   // The hook should return false in case of error.
1893   return (err == VP8_ENC_OK);
1894 }
1895 
VP8LEncodeStream(const WebPConfig * const config,const WebPPicture * const picture,VP8LBitWriter * const bw_main,int use_cache)1896 WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
1897                                    const WebPPicture* const picture,
1898                                    VP8LBitWriter* const bw_main,
1899                                    int use_cache) {
1900   WebPEncodingError err = VP8_ENC_OK;
1901   VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture);
1902   VP8LEncoder* enc_side = NULL;
1903   CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX];
1904   int num_crunch_configs_main, num_crunch_configs_side = 0;
1905   int idx;
1906   int red_and_blue_always_zero = 0;
1907   WebPWorker worker_main, worker_side;
1908   StreamEncodeContext params_main, params_side;
1909   // The main thread uses picture->stats, the side thread uses stats_side.
1910   WebPAuxStats stats_side;
1911   VP8LBitWriter bw_side;
1912   const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface();
1913   int ok_main;
1914 
1915   // Analyze image (entropy, num_palettes etc)
1916   if (enc_main == NULL ||
1917       !EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main,
1918                       &red_and_blue_always_zero) ||
1919       !EncoderInit(enc_main) || !VP8LBitWriterInit(&bw_side, 0)) {
1920     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1921     goto Error;
1922   }
1923 
1924   // Split the configs between the main and side threads (if any).
1925   if (config->thread_level > 0) {
1926     num_crunch_configs_side = num_crunch_configs_main / 2;
1927     for (idx = 0; idx < num_crunch_configs_side; ++idx) {
1928       params_side.crunch_configs_[idx] =
1929           crunch_configs[num_crunch_configs_main - num_crunch_configs_side +
1930                          idx];
1931     }
1932     params_side.num_crunch_configs_ = num_crunch_configs_side;
1933   }
1934   num_crunch_configs_main -= num_crunch_configs_side;
1935   for (idx = 0; idx < num_crunch_configs_main; ++idx) {
1936     params_main.crunch_configs_[idx] = crunch_configs[idx];
1937   }
1938   params_main.num_crunch_configs_ = num_crunch_configs_main;
1939 
1940   // Fill in the parameters for the thread workers.
1941   {
1942     const int params_size = (num_crunch_configs_side > 0) ? 2 : 1;
1943     for (idx = 0; idx < params_size; ++idx) {
1944       // Create the parameters for each worker.
1945       WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side;
1946       StreamEncodeContext* const param =
1947           (idx == 0) ? &params_main : &params_side;
1948       param->config_ = config;
1949       param->picture_ = picture;
1950       param->use_cache_ = use_cache;
1951       param->red_and_blue_always_zero_ = red_and_blue_always_zero;
1952       if (idx == 0) {
1953         param->stats_ = picture->stats;
1954         param->bw_ = bw_main;
1955         param->enc_ = enc_main;
1956       } else {
1957         param->stats_ = (picture->stats == NULL) ? NULL : &stats_side;
1958         // Create a side bit writer.
1959         if (!VP8LBitWriterClone(bw_main, &bw_side)) {
1960           err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1961           goto Error;
1962         }
1963         param->bw_ = &bw_side;
1964         // Create a side encoder.
1965         enc_side = VP8LEncoderNew(config, picture);
1966         if (enc_side == NULL || !EncoderInit(enc_side)) {
1967           err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1968           goto Error;
1969         }
1970         // Copy the values that were computed for the main encoder.
1971         enc_side->histo_bits_ = enc_main->histo_bits_;
1972         enc_side->transform_bits_ = enc_main->transform_bits_;
1973         enc_side->palette_size_ = enc_main->palette_size_;
1974         memcpy(enc_side->palette_, enc_main->palette_,
1975                sizeof(enc_main->palette_));
1976         memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_,
1977                sizeof(enc_main->palette_sorted_));
1978         param->enc_ = enc_side;
1979       }
1980       // Create the workers.
1981       worker_interface->Init(worker);
1982       worker->data1 = param;
1983       worker->data2 = NULL;
1984       worker->hook = EncodeStreamHook;
1985     }
1986   }
1987 
1988   // Start the second thread if needed.
1989   if (num_crunch_configs_side != 0) {
1990     if (!worker_interface->Reset(&worker_side)) {
1991       err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1992       goto Error;
1993     }
1994 #if !defined(WEBP_DISABLE_STATS)
1995     // This line is here and not in the param initialization above to remove a
1996     // Clang static analyzer warning.
1997     if (picture->stats != NULL) {
1998       memcpy(&stats_side, picture->stats, sizeof(stats_side));
1999     }
2000 #endif
2001     // This line is only useful to remove a Clang static analyzer warning.
2002     params_side.err_ = VP8_ENC_OK;
2003     worker_interface->Launch(&worker_side);
2004   }
2005   // Execute the main thread.
2006   worker_interface->Execute(&worker_main);
2007   ok_main = worker_interface->Sync(&worker_main);
2008   worker_interface->End(&worker_main);
2009   if (num_crunch_configs_side != 0) {
2010     // Wait for the second thread.
2011     const int ok_side = worker_interface->Sync(&worker_side);
2012     worker_interface->End(&worker_side);
2013     if (!ok_main || !ok_side) {
2014       err = ok_main ? params_side.err_ : params_main.err_;
2015       goto Error;
2016     }
2017     if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) {
2018       VP8LBitWriterSwap(bw_main, &bw_side);
2019 #if !defined(WEBP_DISABLE_STATS)
2020       if (picture->stats != NULL) {
2021         memcpy(picture->stats, &stats_side, sizeof(*picture->stats));
2022       }
2023 #endif
2024     }
2025   } else {
2026     if (!ok_main) {
2027       err = params_main.err_;
2028       goto Error;
2029     }
2030   }
2031 
2032 Error:
2033   VP8LBitWriterWipeOut(&bw_side);
2034   VP8LEncoderDelete(enc_main);
2035   VP8LEncoderDelete(enc_side);
2036   return err;
2037 }
2038 
2039 #undef CRUNCH_CONFIGS_MAX
2040 #undef CRUNCH_SUBCONFIGS_MAX
2041 
VP8LEncodeImage(const WebPConfig * const config,const WebPPicture * const picture)2042 int VP8LEncodeImage(const WebPConfig* const config,
2043                     const WebPPicture* const picture) {
2044   int width, height;
2045   int has_alpha;
2046   size_t coded_size;
2047   int percent = 0;
2048   int initial_size;
2049   WebPEncodingError err = VP8_ENC_OK;
2050   VP8LBitWriter bw;
2051 
2052   if (picture == NULL) return 0;
2053 
2054   if (config == NULL || picture->argb == NULL) {
2055     err = VP8_ENC_ERROR_NULL_PARAMETER;
2056     WebPEncodingSetError(picture, err);
2057     return 0;
2058   }
2059 
2060   width = picture->width;
2061   height = picture->height;
2062   // Initialize BitWriter with size corresponding to 16 bpp to photo images and
2063   // 8 bpp for graphical images.
2064   initial_size = (config->image_hint == WEBP_HINT_GRAPH) ?
2065       width * height : width * height * 2;
2066   if (!VP8LBitWriterInit(&bw, initial_size)) {
2067     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
2068     goto Error;
2069   }
2070 
2071   if (!WebPReportProgress(picture, 1, &percent)) {
2072  UserAbort:
2073     err = VP8_ENC_ERROR_USER_ABORT;
2074     goto Error;
2075   }
2076   // Reset stats (for pure lossless coding)
2077   if (picture->stats != NULL) {
2078     WebPAuxStats* const stats = picture->stats;
2079     memset(stats, 0, sizeof(*stats));
2080     stats->PSNR[0] = 99.f;
2081     stats->PSNR[1] = 99.f;
2082     stats->PSNR[2] = 99.f;
2083     stats->PSNR[3] = 99.f;
2084     stats->PSNR[4] = 99.f;
2085   }
2086 
2087   // Write image size.
2088   if (!WriteImageSize(picture, &bw)) {
2089     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
2090     goto Error;
2091   }
2092 
2093   has_alpha = WebPPictureHasTransparency(picture);
2094   // Write the non-trivial Alpha flag and lossless version.
2095   if (!WriteRealAlphaAndVersion(&bw, has_alpha)) {
2096     err = VP8_ENC_ERROR_OUT_OF_MEMORY;
2097     goto Error;
2098   }
2099 
2100   if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort;
2101 
2102   // Encode main image stream.
2103   err = VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/);
2104   if (err != VP8_ENC_OK) goto Error;
2105 
2106   if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort;
2107 
2108   // Finish the RIFF chunk.
2109   err = WriteImage(picture, &bw, &coded_size);
2110   if (err != VP8_ENC_OK) goto Error;
2111 
2112   if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort;
2113 
2114 #if !defined(WEBP_DISABLE_STATS)
2115   // Save size.
2116   if (picture->stats != NULL) {
2117     picture->stats->coded_size += (int)coded_size;
2118     picture->stats->lossless_size = (int)coded_size;
2119   }
2120 #endif
2121 
2122   if (picture->extra_info != NULL) {
2123     const int mb_w = (width + 15) >> 4;
2124     const int mb_h = (height + 15) >> 4;
2125     memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
2126   }
2127 
2128  Error:
2129   if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY;
2130   VP8LBitWriterWipeOut(&bw);
2131   if (err != VP8_ENC_OK) {
2132     WebPEncodingSetError(picture, err);
2133     return 0;
2134   }
2135   return 1;
2136 }
2137 
2138 //------------------------------------------------------------------------------
2139