1 /*
2 * wpa_supplicant/hostapd / common helper functions, etc.
3 * Copyright (c) 2002-2019, Jouni Malinen <j@w1.fi>
4 *
5 * This software may be distributed under the terms of the BSD license.
6 * See README for more details.
7 */
8
9 #include "includes.h"
10 #include <limits.h>
11 #ifdef CONFIG_OPEN_HARMONY_PATCH
12 #include <sys/stat.h>
13 #endif /* CONFIG_OPEN_HARMONY_PATCH */
14
15 #include "common/ieee802_11_defs.h"
16 #include "common.h"
17 #ifdef CONFIG_EAP_AUTH
18 #include "securec.h"
19 #define GAP_SIZE 2
20 #endif
hex2num(char c)21 int hex2num(char c)
22 {
23 if (c >= '0' && c <= '9')
24 return c - '0';
25 if (c >= 'a' && c <= 'f')
26 return c - 'a' + 10;
27 if (c >= 'A' && c <= 'F')
28 return c - 'A' + 10;
29 return -1;
30 }
31
32
hex2byte(const char * hex)33 int hex2byte(const char *hex)
34 {
35 int a, b;
36 a = hex2num(*hex++);
37 if (a < 0)
38 return -1;
39 b = hex2num(*hex++);
40 if (b < 0)
41 return -1;
42 return (a << 4) | b;
43 }
44
mac_to_str(const u8 * addr)45 const char *mac_to_str(const u8 *addr)
46 {
47 const int macAddrIndexOne = 0;
48 const int macAddrIndexTwo = 1;
49 const int macAddrIndexThree = 2;
50 const int macAddrIndexFour = 3;
51 const int macAddrIndexFive = 4;
52 const int macAddrIndexSix = 5;
53 static char macToStr[18];
54 if (disable_anonymized_print()) {
55 if (os_snprintf(macToStr, sizeof(macToStr), "%02x:%02x:%02x:%02x:%02x:%02x", addr[macAddrIndexOne],
56 addr[macAddrIndexTwo], addr[macAddrIndexThree], addr[macAddrIndexFour],
57 addr[macAddrIndexFive], addr[macAddrIndexSix]) < 0) {
58 return NULL;
59 }
60 return macToStr;
61 } else {
62 if (os_snprintf(macToStr, sizeof(macToStr), "%02x:%02x:**:**:**:%02x", addr[macAddrIndexOne],
63 addr[macAddrIndexTwo], addr[macAddrIndexSix]) < 0) {
64 return NULL;
65 }
66 return macToStr;
67 }
68 }
69
hwaddr_parse(const char * txt,u8 * addr)70 static const char * hwaddr_parse(const char *txt, u8 *addr)
71 {
72 size_t i;
73
74 for (i = 0; i < ETH_ALEN; i++) {
75 int a;
76
77 a = hex2byte(txt);
78 if (a < 0)
79 return NULL;
80 txt += 2;
81 addr[i] = a;
82 if (i < ETH_ALEN - 1 && *txt++ != ':')
83 return NULL;
84 }
85 return txt;
86 }
87
88
89 /**
90 * hwaddr_aton - Convert ASCII string to MAC address (colon-delimited format)
91 * @txt: MAC address as a string (e.g., "00:11:22:33:44:55")
92 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
93 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
94 */
hwaddr_aton(const char * txt,u8 * addr)95 int hwaddr_aton(const char *txt, u8 *addr)
96 {
97 return hwaddr_parse(txt, addr) ? 0 : -1;
98 }
99
100
101 /**
102 * hwaddr_masked_aton - Convert ASCII string with optional mask to MAC address (colon-delimited format)
103 * @txt: MAC address with optional mask as a string (e.g., "00:11:22:33:44:55/ff:ff:ff:ff:00:00")
104 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
105 * @mask: Buffer for the MAC address mask (ETH_ALEN = 6 bytes)
106 * @maskable: Flag to indicate whether a mask is allowed
107 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
108 */
hwaddr_masked_aton(const char * txt,u8 * addr,u8 * mask,u8 maskable)109 int hwaddr_masked_aton(const char *txt, u8 *addr, u8 *mask, u8 maskable)
110 {
111 const char *r;
112
113 /* parse address part */
114 r = hwaddr_parse(txt, addr);
115 if (!r)
116 return -1;
117
118 /* check for optional mask */
119 if (*r == '\0' || isspace((unsigned char) *r)) {
120 /* no mask specified, assume default */
121 os_memset(mask, 0xff, ETH_ALEN);
122 } else if (maskable && *r == '/') {
123 /* mask specified and allowed */
124 r = hwaddr_parse(r + 1, mask);
125 /* parser error? */
126 if (!r)
127 return -1;
128 } else {
129 /* mask specified but not allowed or trailing garbage */
130 return -1;
131 }
132
133 return 0;
134 }
135
136
137 /**
138 * hwaddr_compact_aton - Convert ASCII string to MAC address (no colon delimitors format)
139 * @txt: MAC address as a string (e.g., "001122334455")
140 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
141 * Returns: 0 on success, -1 on failure (e.g., string not a MAC address)
142 */
hwaddr_compact_aton(const char * txt,u8 * addr)143 int hwaddr_compact_aton(const char *txt, u8 *addr)
144 {
145 int i;
146
147 for (i = 0; i < 6; i++) {
148 int a, b;
149
150 a = hex2num(*txt++);
151 if (a < 0)
152 return -1;
153 b = hex2num(*txt++);
154 if (b < 0)
155 return -1;
156 *addr++ = (a << 4) | b;
157 }
158
159 return 0;
160 }
161
162 /**
163 * hwaddr_aton2 - Convert ASCII string to MAC address (in any known format)
164 * @txt: MAC address as a string (e.g., 00:11:22:33:44:55 or 0011.2233.4455)
165 * @addr: Buffer for the MAC address (ETH_ALEN = 6 bytes)
166 * Returns: Characters used (> 0) on success, -1 on failure
167 */
hwaddr_aton2(const char * txt,u8 * addr)168 int hwaddr_aton2(const char *txt, u8 *addr)
169 {
170 int i;
171 const char *pos = txt;
172
173 for (i = 0; i < 6; i++) {
174 int a, b;
175
176 while (*pos == ':' || *pos == '.' || *pos == '-')
177 pos++;
178
179 a = hex2num(*pos++);
180 if (a < 0)
181 return -1;
182 b = hex2num(*pos++);
183 if (b < 0)
184 return -1;
185 *addr++ = (a << 4) | b;
186 }
187
188 return pos - txt;
189 }
190
191
192 /**
193 * hexstr2bin - Convert ASCII hex string into binary data
194 * @hex: ASCII hex string (e.g., "01ab")
195 * @buf: Buffer for the binary data
196 * @len: Length of the text to convert in bytes (of buf); hex will be double
197 * this size
198 * Returns: 0 on success, -1 on failure (invalid hex string)
199 */
hexstr2bin(const char * hex,u8 * buf,size_t len)200 int hexstr2bin(const char *hex, u8 *buf, size_t len)
201 {
202 size_t i;
203 int a;
204 const char *ipos = hex;
205 u8 *opos = buf;
206
207 for (i = 0; i < len; i++) {
208 a = hex2byte(ipos);
209 if (a < 0)
210 return -1;
211 *opos++ = a;
212 ipos += 2;
213 }
214 return 0;
215 }
216
217 #ifdef CONFIG_EAP_AUTH
bin2hexstr(const unsigned char * bin,size_t bin_len,char * hexstr,size_t hexstr_len)218 void bin2hexstr(const unsigned char* bin, size_t bin_len, char* hexstr, size_t hexstr_len)
219 {
220 size_t hexstr_index = 0;
221 for (size_t i = 0; i < bin_len; i++) {
222 if (os_snprintf(hexstr + hexstr_index, hexstr_len - hexstr_index, "%02x", bin[i]) <= 0) {
223 printf("bin2hexstr fail\n");
224 }
225 hexstr_index += GAP_SIZE;
226 if (hexstr_index >= hexstr_len) {
227 break;
228 }
229 }
230 }
231 #endif
232
hwaddr_mask_txt(char * buf,size_t len,const u8 * addr,const u8 * mask)233 int hwaddr_mask_txt(char *buf, size_t len, const u8 *addr, const u8 *mask)
234 {
235 size_t i;
236 int print_mask = 0;
237 int res;
238
239 for (i = 0; i < ETH_ALEN; i++) {
240 if (mask[i] != 0xff) {
241 print_mask = 1;
242 break;
243 }
244 }
245
246 if (print_mask)
247 res = os_snprintf(buf, len, MACSTR "/" MACSTR,
248 MAC2STR(addr), MAC2STR(mask));
249 else
250 res = os_snprintf(buf, len, MACSTR, MAC2STR(addr));
251 if (os_snprintf_error(len, res))
252 return -1;
253 return res;
254 }
255
256
257 /**
258 * inc_byte_array - Increment arbitrary length byte array by one
259 * @counter: Pointer to byte array
260 * @len: Length of the counter in bytes
261 *
262 * This function increments the last byte of the counter by one and continues
263 * rolling over to more significant bytes if the byte was incremented from
264 * 0xff to 0x00.
265 */
inc_byte_array(u8 * counter,size_t len)266 void inc_byte_array(u8 *counter, size_t len)
267 {
268 int pos = len - 1;
269 while (pos >= 0) {
270 counter[pos]++;
271 if (counter[pos] != 0)
272 break;
273 pos--;
274 }
275 }
276
277
buf_shift_right(u8 * buf,size_t len,size_t bits)278 void buf_shift_right(u8 *buf, size_t len, size_t bits)
279 {
280 size_t i;
281
282 for (i = len - 1; i > 0; i--)
283 buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
284 buf[0] >>= bits;
285 }
286
287
wpa_get_ntp_timestamp(u8 * buf)288 void wpa_get_ntp_timestamp(u8 *buf)
289 {
290 struct os_time now;
291 u32 sec, usec;
292 be32 tmp;
293
294 /* 64-bit NTP timestamp (time from 1900-01-01 00:00:00) */
295 os_get_time(&now);
296 sec = now.sec + 2208988800U; /* Epoch to 1900 */
297 /* Estimate 2^32/10^6 = 4295 - 1/32 - 1/512 */
298 usec = now.usec;
299 usec = 4295 * usec - (usec >> 5) - (usec >> 9);
300 tmp = host_to_be32(sec);
301 os_memcpy(buf, (u8 *) &tmp, 4);
302 tmp = host_to_be32(usec);
303 os_memcpy(buf + 4, (u8 *) &tmp, 4);
304 }
305
306 /**
307 * wpa_scnprintf - Simpler-to-use snprintf function
308 * @buf: Output buffer
309 * @size: Buffer size
310 * @fmt: format
311 *
312 * Simpler snprintf version that doesn't require further error checks - the
313 * return value only indicates how many bytes were actually written, excluding
314 * the NULL byte (i.e., 0 on error, size-1 if buffer is not big enough).
315 */
wpa_scnprintf(char * buf,size_t size,const char * fmt,...)316 int wpa_scnprintf(char *buf, size_t size, const char *fmt, ...)
317 {
318 va_list ap;
319 int ret;
320
321 if (!size)
322 return 0;
323
324 va_start(ap, fmt);
325 ret = vsnprintf(buf, size, fmt, ap);
326 va_end(ap);
327
328 if (ret < 0)
329 return 0;
330 if ((size_t) ret >= size)
331 return size - 1;
332
333 return ret;
334 }
335
336
wpa_snprintf_hex_sep(char * buf,size_t buf_size,const u8 * data,size_t len,char sep)337 int wpa_snprintf_hex_sep(char *buf, size_t buf_size, const u8 *data, size_t len,
338 char sep)
339 {
340 size_t i;
341 char *pos = buf, *end = buf + buf_size;
342 int ret;
343
344 if (buf_size == 0)
345 return 0;
346
347 for (i = 0; i < len; i++) {
348 ret = os_snprintf(pos, end - pos, "%02x%c",
349 data[i], sep);
350 if (os_snprintf_error(end - pos, ret)) {
351 end[-1] = '\0';
352 return pos - buf;
353 }
354 pos += ret;
355 }
356 pos[-1] = '\0';
357 return pos - buf;
358 }
359
360
_wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len,int uppercase)361 static inline int _wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data,
362 size_t len, int uppercase)
363 {
364 size_t i;
365 char *pos = buf, *end = buf + buf_size;
366 int ret;
367 if (buf_size == 0)
368 return 0;
369 for (i = 0; i < len; i++) {
370 ret = os_snprintf(pos, end - pos, uppercase ? "%02X" : "%02x",
371 data[i]);
372 if (os_snprintf_error(end - pos, ret)) {
373 end[-1] = '\0';
374 return pos - buf;
375 }
376 pos += ret;
377 }
378 end[-1] = '\0';
379 return pos - buf;
380 }
381
382 /**
383 * wpa_snprintf_hex - Print data as a hex string into a buffer
384 * @buf: Memory area to use as the output buffer
385 * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
386 * @data: Data to be printed
387 * @len: Length of data in bytes
388 * Returns: Number of bytes written
389 */
wpa_snprintf_hex(char * buf,size_t buf_size,const u8 * data,size_t len)390 int wpa_snprintf_hex(char *buf, size_t buf_size, const u8 *data, size_t len)
391 {
392 return _wpa_snprintf_hex(buf, buf_size, data, len, 0);
393 }
394
395
396 /**
397 * wpa_snprintf_hex_uppercase - Print data as a upper case hex string into buf
398 * @buf: Memory area to use as the output buffer
399 * @buf_size: Maximum buffer size in bytes (should be at least 2 * len + 1)
400 * @data: Data to be printed
401 * @len: Length of data in bytes
402 * Returns: Number of bytes written
403 */
wpa_snprintf_hex_uppercase(char * buf,size_t buf_size,const u8 * data,size_t len)404 int wpa_snprintf_hex_uppercase(char *buf, size_t buf_size, const u8 *data,
405 size_t len)
406 {
407 return _wpa_snprintf_hex(buf, buf_size, data, len, 1);
408 }
409
410
411 #ifdef CONFIG_ANSI_C_EXTRA
412
413 #ifdef _WIN32_WCE
perror(const char * s)414 void perror(const char *s)
415 {
416 wpa_printf(MSG_ERROR, "%s: GetLastError: %d",
417 s, (int) GetLastError());
418 }
419 #endif /* _WIN32_WCE */
420
421
422 int optind = 1;
423 int optopt;
424 char *optarg;
425
getopt(int argc,char * const argv[],const char * optstring)426 int getopt(int argc, char *const argv[], const char *optstring)
427 {
428 static int optchr = 1;
429 char *cp;
430
431 if (optchr == 1) {
432 if (optind >= argc) {
433 /* all arguments processed */
434 return EOF;
435 }
436
437 if (argv[optind][0] != '-' || argv[optind][1] == '\0') {
438 /* no option characters */
439 return EOF;
440 }
441 }
442
443 if (os_strcmp(argv[optind], "--") == 0) {
444 /* no more options */
445 optind++;
446 return EOF;
447 }
448
449 optopt = argv[optind][optchr];
450 cp = os_strchr(optstring, optopt);
451 if (cp == NULL || optopt == ':') {
452 if (argv[optind][++optchr] == '\0') {
453 optchr = 1;
454 optind++;
455 }
456 return '?';
457 }
458
459 if (cp[1] == ':') {
460 /* Argument required */
461 optchr = 1;
462 if (argv[optind][optchr + 1]) {
463 /* No space between option and argument */
464 optarg = &argv[optind++][optchr + 1];
465 } else if (++optind >= argc) {
466 /* option requires an argument */
467 return '?';
468 } else {
469 /* Argument in the next argv */
470 optarg = argv[optind++];
471 }
472 } else {
473 /* No argument */
474 if (argv[optind][++optchr] == '\0') {
475 optchr = 1;
476 optind++;
477 }
478 optarg = NULL;
479 }
480 return *cp;
481 }
482 #endif /* CONFIG_ANSI_C_EXTRA */
483
484
485 #ifdef CONFIG_NATIVE_WINDOWS
486 /**
487 * wpa_unicode2ascii_inplace - Convert unicode string into ASCII
488 * @str: Pointer to string to convert
489 *
490 * This function converts a unicode string to ASCII using the same
491 * buffer for output. If UNICODE is not set, the buffer is not
492 * modified.
493 */
wpa_unicode2ascii_inplace(TCHAR * str)494 void wpa_unicode2ascii_inplace(TCHAR *str)
495 {
496 #ifdef UNICODE
497 char *dst = (char *) str;
498 while (*str)
499 *dst++ = (char) *str++;
500 *dst = '\0';
501 #endif /* UNICODE */
502 }
503
504
wpa_strdup_tchar(const char * str)505 TCHAR * wpa_strdup_tchar(const char *str)
506 {
507 #ifdef UNICODE
508 TCHAR *buf;
509 buf = os_malloc((strlen(str) + 1) * sizeof(TCHAR));
510 if (buf == NULL)
511 return NULL;
512 wsprintf(buf, L"%S", str);
513 return buf;
514 #else /* UNICODE */
515 return os_strdup(str);
516 #endif /* UNICODE */
517 }
518 #endif /* CONFIG_NATIVE_WINDOWS */
519
520
printf_encode(char * txt,size_t maxlen,const u8 * data,size_t len)521 void printf_encode(char *txt, size_t maxlen, const u8 *data, size_t len)
522 {
523 char *end = txt + maxlen;
524 size_t i;
525
526 for (i = 0; i < len; i++) {
527 if (txt + 4 >= end)
528 break;
529
530 switch (data[i]) {
531 case '\"':
532 *txt++ = '\\';
533 *txt++ = '\"';
534 break;
535 case '\\':
536 *txt++ = '\\';
537 *txt++ = '\\';
538 break;
539 case '\033':
540 *txt++ = '\\';
541 *txt++ = 'e';
542 break;
543 case '\n':
544 *txt++ = '\\';
545 *txt++ = 'n';
546 break;
547 case '\r':
548 *txt++ = '\\';
549 *txt++ = 'r';
550 break;
551 case '\t':
552 *txt++ = '\\';
553 *txt++ = 't';
554 break;
555 default:
556 if (data[i] >= 32 && data[i] <= 126) {
557 *txt++ = data[i];
558 } else {
559 txt += os_snprintf(txt, end - txt, "\\x%02x",
560 data[i]);
561 }
562 break;
563 }
564 }
565
566 *txt = '\0';
567 }
568
569
printf_decode(u8 * buf,size_t maxlen,const char * str)570 size_t printf_decode(u8 *buf, size_t maxlen, const char *str)
571 {
572 const char *pos = str;
573 size_t len = 0;
574 int val;
575
576 while (*pos) {
577 if (len + 1 >= maxlen)
578 break;
579 switch (*pos) {
580 case '\\':
581 pos++;
582 switch (*pos) {
583 case '\\':
584 buf[len++] = '\\';
585 pos++;
586 break;
587 case '"':
588 buf[len++] = '"';
589 pos++;
590 break;
591 case 'n':
592 buf[len++] = '\n';
593 pos++;
594 break;
595 case 'r':
596 buf[len++] = '\r';
597 pos++;
598 break;
599 case 't':
600 buf[len++] = '\t';
601 pos++;
602 break;
603 case 'e':
604 buf[len++] = '\033';
605 pos++;
606 break;
607 case 'x':
608 pos++;
609 val = hex2byte(pos);
610 if (val < 0) {
611 val = hex2num(*pos);
612 if (val < 0)
613 break;
614 buf[len++] = val;
615 pos++;
616 } else {
617 buf[len++] = val;
618 pos += 2;
619 }
620 break;
621 case '0':
622 case '1':
623 case '2':
624 case '3':
625 case '4':
626 case '5':
627 case '6':
628 case '7':
629 val = *pos++ - '0';
630 if (*pos >= '0' && *pos <= '7')
631 val = val * 8 + (*pos++ - '0');
632 if (*pos >= '0' && *pos <= '7')
633 val = val * 8 + (*pos++ - '0');
634 buf[len++] = val;
635 break;
636 default:
637 break;
638 }
639 break;
640 default:
641 buf[len++] = *pos++;
642 break;
643 }
644 }
645 if (maxlen > len)
646 buf[len] = '\0';
647
648 return len;
649 }
650
651
652 /**
653 * wpa_ssid_txt - Convert SSID to a printable string
654 * @ssid: SSID (32-octet string)
655 * @ssid_len: Length of ssid in octets
656 * Returns: Pointer to a printable string
657 *
658 * This function can be used to convert SSIDs into printable form. In most
659 * cases, SSIDs do not use unprintable characters, but IEEE 802.11 standard
660 * does not limit the used character set, so anything could be used in an SSID.
661 *
662 * This function uses a static buffer, so only one call can be used at the
663 * time, i.e., this is not re-entrant and the returned buffer must be used
664 * before calling this again.
665 */
wpa_ssid_txt(const u8 * ssid,size_t ssid_len)666 const char * wpa_ssid_txt(const u8 *ssid, size_t ssid_len)
667 {
668 static char ssid_txt[SSID_MAX_LEN * 4 + 1];
669
670 if (ssid == NULL) {
671 ssid_txt[0] = '\0';
672 return ssid_txt;
673 }
674
675 printf_encode(ssid_txt, sizeof(ssid_txt), ssid, ssid_len);
676 return ssid_txt;
677 }
678
679
__hide_aliasing_typecast(void * foo)680 void * __hide_aliasing_typecast(void *foo)
681 {
682 return foo;
683 }
684
685
wpa_config_parse_string(const char * value,size_t * len)686 char * wpa_config_parse_string(const char *value, size_t *len)
687 {
688 if (*value == '"') {
689 const char *pos;
690 char *str;
691 value++;
692 pos = os_strrchr(value, '"');
693 if (pos == NULL || pos[1] != '\0')
694 return NULL;
695 *len = pos - value;
696 str = dup_binstr(value, *len);
697 if (str == NULL)
698 return NULL;
699 return str;
700 } else if (*value == 'P' && value[1] == '"') {
701 const char *pos;
702 char *tstr, *str;
703 size_t tlen;
704 value += 2;
705 pos = os_strrchr(value, '"');
706 if (pos == NULL || pos[1] != '\0')
707 return NULL;
708 tlen = pos - value;
709 tstr = dup_binstr(value, tlen);
710 if (tstr == NULL)
711 return NULL;
712
713 str = os_malloc(tlen + 1);
714 if (str == NULL) {
715 os_free(tstr);
716 return NULL;
717 }
718
719 *len = printf_decode((u8 *) str, tlen + 1, tstr);
720 os_free(tstr);
721
722 return str;
723 } else {
724 u8 *str;
725 size_t tlen, hlen = os_strlen(value);
726 if (hlen & 1)
727 return NULL;
728 tlen = hlen / 2;
729 str = os_malloc(tlen + 1);
730 if (str == NULL)
731 return NULL;
732 if (hexstr2bin(value, str, tlen)) {
733 os_free(str);
734 return NULL;
735 }
736 str[tlen] = '\0';
737 *len = tlen;
738 return (char *) str;
739 }
740 }
741
742
is_hex(const u8 * data,size_t len)743 int is_hex(const u8 *data, size_t len)
744 {
745 size_t i;
746
747 for (i = 0; i < len; i++) {
748 if (data[i] < 32 || data[i] >= 127)
749 return 1;
750 }
751 return 0;
752 }
753
754
has_ctrl_char(const u8 * data,size_t len)755 int has_ctrl_char(const u8 *data, size_t len)
756 {
757 size_t i;
758
759 for (i = 0; i < len; i++) {
760 if (data[i] < 32 || data[i] == 127)
761 return 1;
762 }
763 return 0;
764 }
765
766
has_newline(const char * str)767 int has_newline(const char *str)
768 {
769 while (*str) {
770 if (*str == '\n' || *str == '\r')
771 return 1;
772 str++;
773 }
774 return 0;
775 }
776
777
merge_byte_arrays(u8 * res,size_t res_len,const u8 * src1,size_t src1_len,const u8 * src2,size_t src2_len)778 size_t merge_byte_arrays(u8 *res, size_t res_len,
779 const u8 *src1, size_t src1_len,
780 const u8 *src2, size_t src2_len)
781 {
782 size_t len = 0;
783
784 os_memset(res, 0, res_len);
785
786 if (src1) {
787 if (src1_len >= res_len) {
788 os_memcpy(res, src1, res_len);
789 return res_len;
790 }
791
792 os_memcpy(res, src1, src1_len);
793 len += src1_len;
794 }
795
796 if (src2) {
797 if (len + src2_len >= res_len) {
798 os_memcpy(res + len, src2, res_len - len);
799 return res_len;
800 }
801
802 os_memcpy(res + len, src2, src2_len);
803 len += src2_len;
804 }
805
806 return len;
807 }
808
809
dup_binstr(const void * src,size_t len)810 char * dup_binstr(const void *src, size_t len)
811 {
812 char *res;
813
814 if (src == NULL)
815 return NULL;
816 res = os_malloc(len + 1);
817 if (res == NULL)
818 return NULL;
819 os_memcpy(res, src, len);
820 res[len] = '\0';
821
822 return res;
823 }
824
825
freq_range_list_parse(struct wpa_freq_range_list * res,const char * value)826 int freq_range_list_parse(struct wpa_freq_range_list *res, const char *value)
827 {
828 struct wpa_freq_range *freq = NULL, *n;
829 unsigned int count = 0;
830 const char *pos, *pos2, *pos3;
831
832 /*
833 * Comma separated list of frequency ranges.
834 * For example: 2412-2432,2462,5000-6000
835 */
836 pos = value;
837 while (pos && pos[0]) {
838 if (count == UINT_MAX) {
839 os_free(freq);
840 return -1;
841 }
842 n = os_realloc_array(freq, count + 1,
843 sizeof(struct wpa_freq_range));
844 if (n == NULL) {
845 os_free(freq);
846 return -1;
847 }
848 freq = n;
849 freq[count].min = atoi(pos);
850 pos2 = os_strchr(pos, '-');
851 pos3 = os_strchr(pos, ',');
852 if (pos2 && (!pos3 || pos2 < pos3)) {
853 pos2++;
854 freq[count].max = atoi(pos2);
855 } else
856 freq[count].max = freq[count].min;
857 pos = pos3;
858 if (pos)
859 pos++;
860 count++;
861 }
862
863 os_free(res->range);
864 res->range = freq;
865 res->num = count;
866
867 return 0;
868 }
869
870
freq_range_list_includes(const struct wpa_freq_range_list * list,unsigned int freq)871 int freq_range_list_includes(const struct wpa_freq_range_list *list,
872 unsigned int freq)
873 {
874 unsigned int i;
875
876 if (list == NULL)
877 return 0;
878
879 for (i = 0; i < list->num; i++) {
880 if (freq >= list->range[i].min && freq <= list->range[i].max)
881 return 1;
882 }
883
884 return 0;
885 }
886
887
freq_range_list_str(const struct wpa_freq_range_list * list)888 char * freq_range_list_str(const struct wpa_freq_range_list *list)
889 {
890 char *buf, *pos, *end;
891 size_t maxlen;
892 unsigned int i;
893 int res;
894
895 if (list->num == 0)
896 return NULL;
897
898 maxlen = list->num * 30;
899 buf = os_malloc(maxlen);
900 if (buf == NULL)
901 return NULL;
902 pos = buf;
903 end = buf + maxlen;
904
905 for (i = 0; i < list->num; i++) {
906 struct wpa_freq_range *range = &list->range[i];
907
908 if (range->min == range->max)
909 res = os_snprintf(pos, end - pos, "%s%u",
910 i == 0 ? "" : ",", range->min);
911 else
912 res = os_snprintf(pos, end - pos, "%s%u-%u",
913 i == 0 ? "" : ",",
914 range->min, range->max);
915 if (os_snprintf_error(end - pos, res)) {
916 os_free(buf);
917 return NULL;
918 }
919 pos += res;
920 }
921
922 return buf;
923 }
924
925
int_array_len(const int * a)926 size_t int_array_len(const int *a)
927 {
928 size_t i;
929
930 for (i = 0; a && a[i]; i++)
931 ;
932 return i;
933 }
934
935
int_array_concat(int ** res,const int * a)936 void int_array_concat(int **res, const int *a)
937 {
938 size_t reslen, alen, i, max_size;
939 int *n;
940
941 reslen = int_array_len(*res);
942 alen = int_array_len(a);
943 max_size = (size_t) -1;
944 if (alen >= max_size - reslen) {
945 /* This should not really happen, but if it did, something
946 * would overflow. Do not try to merge the arrays; instead, make
947 * this behave like memory allocation failure to avoid messing
948 * up memory. */
949 os_free(*res);
950 *res = NULL;
951 return;
952 }
953 n = os_realloc_array(*res, reslen + alen + 1, sizeof(int));
954 if (n == NULL) {
955 os_free(*res);
956 *res = NULL;
957 return;
958 }
959 for (i = 0; i <= alen; i++)
960 n[reslen + i] = a[i];
961 *res = n;
962 }
963
964
freq_cmp(const void * a,const void * b)965 static int freq_cmp(const void *a, const void *b)
966 {
967 int _a = *(int *) a;
968 int _b = *(int *) b;
969
970 if (_a == 0)
971 return 1;
972 if (_b == 0)
973 return -1;
974 return _a - _b;
975 }
976
977
int_array_sort_unique(int * a)978 void int_array_sort_unique(int *a)
979 {
980 size_t alen, i, j;
981
982 if (a == NULL)
983 return;
984
985 alen = int_array_len(a);
986 qsort(a, alen, sizeof(int), freq_cmp);
987
988 i = 0;
989 j = 1;
990 while (a[i] && a[j]) {
991 if (a[i] == a[j]) {
992 j++;
993 continue;
994 }
995 a[++i] = a[j++];
996 }
997 if (a[i])
998 i++;
999 a[i] = 0;
1000 }
1001
1002
int_array_add_unique(int ** res,int a)1003 void int_array_add_unique(int **res, int a)
1004 {
1005 size_t reslen, max_size;
1006 int *n;
1007
1008 for (reslen = 0; *res && (*res)[reslen]; reslen++) {
1009 if ((*res)[reslen] == a)
1010 return; /* already in the list */
1011 }
1012
1013 max_size = (size_t) -1;
1014 if (reslen > max_size - 2) {
1015 /* This should not really happen in practice, but if it did,
1016 * something would overflow. Do not try to add the new value;
1017 * instead, make this behave like memory allocation failure to
1018 * avoid messing up memory. */
1019 os_free(*res);
1020 *res = NULL;
1021 return;
1022 }
1023 n = os_realloc_array(*res, reslen + 2, sizeof(int));
1024 if (n == NULL) {
1025 os_free(*res);
1026 *res = NULL;
1027 return;
1028 }
1029
1030 n[reslen] = a;
1031 n[reslen + 1] = 0;
1032
1033 *res = n;
1034 }
1035
1036
int_array_includes(int * arr,int val)1037 bool int_array_includes(int *arr, int val)
1038 {
1039 int i;
1040
1041 for (i = 0; arr && arr[i]; i++) {
1042 if (val == arr[i])
1043 return true;
1044 }
1045
1046 return false;
1047 }
1048
1049
str_clear_free(char * str)1050 void str_clear_free(char *str)
1051 {
1052 if (str) {
1053 size_t len = os_strlen(str);
1054 forced_memzero(str, len);
1055 os_free(str);
1056 }
1057 }
1058
1059
bin_clear_free(void * bin,size_t len)1060 void bin_clear_free(void *bin, size_t len)
1061 {
1062 if (bin) {
1063 forced_memzero(bin, len);
1064 os_free(bin);
1065 }
1066 }
1067
1068
random_mac_addr(u8 * addr)1069 int random_mac_addr(u8 *addr)
1070 {
1071 if (os_get_random(addr, ETH_ALEN) < 0)
1072 return -1;
1073 addr[0] &= 0xfe; /* unicast */
1074 addr[0] |= 0x02; /* locally administered */
1075 return 0;
1076 }
1077
1078
random_mac_addr_keep_oui(u8 * addr)1079 int random_mac_addr_keep_oui(u8 *addr)
1080 {
1081 if (os_get_random(addr + 3, 3) < 0)
1082 return -1;
1083 addr[0] &= 0xfe; /* unicast */
1084 addr[0] |= 0x02; /* locally administered */
1085 return 0;
1086 }
1087
1088
1089 /**
1090 * cstr_token - Get next token from const char string
1091 * @str: a constant string to tokenize
1092 * @delim: a string of delimiters
1093 * @last: a pointer to a character following the returned token
1094 * It has to be set to NULL for the first call and passed for any
1095 * further call.
1096 * Returns: a pointer to token position in str or NULL
1097 *
1098 * This function is similar to str_token, but it can be used with both
1099 * char and const char strings. Differences:
1100 * - The str buffer remains unmodified
1101 * - The returned token is not a NULL terminated string, but a token
1102 * position in str buffer. If a return value is not NULL a size
1103 * of the returned token could be calculated as (last - token).
1104 */
cstr_token(const char * str,const char * delim,const char ** last)1105 const char * cstr_token(const char *str, const char *delim, const char **last)
1106 {
1107 const char *end, *token = str;
1108
1109 if (!str || !delim || !last)
1110 return NULL;
1111
1112 if (*last)
1113 token = *last;
1114
1115 while (*token && os_strchr(delim, *token))
1116 token++;
1117
1118 if (!*token)
1119 return NULL;
1120
1121 end = token + 1;
1122
1123 while (*end && !os_strchr(delim, *end))
1124 end++;
1125
1126 *last = end;
1127 return token;
1128 }
1129
1130
1131 /**
1132 * str_token - Get next token from a string
1133 * @buf: String to tokenize. Note that the string might be modified.
1134 * @delim: String of delimiters
1135 * @context: Pointer to save our context. Should be initialized with
1136 * NULL on the first call, and passed for any further call.
1137 * Returns: The next token, NULL if there are no more valid tokens.
1138 */
str_token(char * str,const char * delim,char ** context)1139 char * str_token(char *str, const char *delim, char **context)
1140 {
1141 char *token = (char *) cstr_token(str, delim, (const char **) context);
1142
1143 if (token && **context)
1144 *(*context)++ = '\0';
1145
1146 return token;
1147 }
1148
1149
utf8_unescape(const char * inp,size_t in_size,char * outp,size_t out_size)1150 size_t utf8_unescape(const char *inp, size_t in_size,
1151 char *outp, size_t out_size)
1152 {
1153 size_t res_size = 0;
1154
1155 if (!inp || !outp)
1156 return 0;
1157
1158 if (!in_size)
1159 in_size = os_strlen(inp);
1160
1161 /* Advance past leading single quote */
1162 if (*inp == '\'' && in_size) {
1163 inp++;
1164 in_size--;
1165 }
1166
1167 while (in_size) {
1168 in_size--;
1169 if (res_size >= out_size)
1170 return 0;
1171
1172 switch (*inp) {
1173 case '\'':
1174 /* Terminate on bare single quote */
1175 *outp = '\0';
1176 return res_size;
1177
1178 case '\\':
1179 if (!in_size)
1180 return 0;
1181 in_size--;
1182 inp++;
1183 __attribute__((fallthrough));
1184
1185 default:
1186 *outp++ = *inp++;
1187 res_size++;
1188 }
1189 }
1190
1191 /* NUL terminate if space allows */
1192 if (res_size < out_size)
1193 *outp = '\0';
1194
1195 return res_size;
1196 }
1197
1198
utf8_escape(const char * inp,size_t in_size,char * outp,size_t out_size)1199 size_t utf8_escape(const char *inp, size_t in_size,
1200 char *outp, size_t out_size)
1201 {
1202 size_t res_size = 0;
1203
1204 if (!inp || !outp)
1205 return 0;
1206
1207 /* inp may or may not be NUL terminated, but must be if 0 size
1208 * is specified */
1209 if (!in_size)
1210 in_size = os_strlen(inp);
1211
1212 while (in_size) {
1213 in_size--;
1214 if (res_size++ >= out_size)
1215 return 0;
1216
1217 switch (*inp) {
1218 case '\\':
1219 case '\'':
1220 if (res_size++ >= out_size)
1221 return 0;
1222 *outp++ = '\\';
1223 __attribute__((fallthrough));
1224
1225 default:
1226 *outp++ = *inp++;
1227 break;
1228 }
1229 }
1230
1231 /* NUL terminate if space allows */
1232 if (res_size < out_size)
1233 *outp = '\0';
1234
1235 return res_size;
1236 }
1237
1238
is_ctrl_char(char c)1239 int is_ctrl_char(char c)
1240 {
1241 return c > 0 && c < 32;
1242 }
1243
1244
1245 /**
1246 * ssid_parse - Parse a string that contains SSID in hex or text format
1247 * @buf: Input NULL terminated string that contains the SSID
1248 * @ssid: Output SSID
1249 * Returns: 0 on success, -1 otherwise
1250 *
1251 * The SSID has to be enclosed in double quotes for the text format or space
1252 * or NULL terminated string of hex digits for the hex format. buf can include
1253 * additional arguments after the SSID.
1254 */
ssid_parse(const char * buf,struct wpa_ssid_value * ssid)1255 int ssid_parse(const char *buf, struct wpa_ssid_value *ssid)
1256 {
1257 char *tmp, *res, *end;
1258 size_t len;
1259
1260 ssid->ssid_len = 0;
1261
1262 tmp = os_strdup(buf);
1263 if (!tmp)
1264 return -1;
1265
1266 if (*tmp != '"') {
1267 end = os_strchr(tmp, ' ');
1268 if (end)
1269 *end = '\0';
1270 } else {
1271 end = os_strchr(tmp + 1, '"');
1272 if (!end) {
1273 os_free(tmp);
1274 return -1;
1275 }
1276
1277 end[1] = '\0';
1278 }
1279
1280 res = wpa_config_parse_string(tmp, &len);
1281 if (res && len <= SSID_MAX_LEN) {
1282 ssid->ssid_len = len;
1283 os_memcpy(ssid->ssid, res, len);
1284 }
1285
1286 os_free(tmp);
1287 os_free(res);
1288
1289 return ssid->ssid_len ? 0 : -1;
1290 }
1291
1292
str_starts(const char * str,const char * start)1293 int str_starts(const char *str, const char *start)
1294 {
1295 return os_strncmp(str, start, os_strlen(start)) == 0;
1296 }
1297
1298
1299 /**
1300 * rssi_to_rcpi - Convert RSSI to RCPI
1301 * @rssi: RSSI to convert
1302 * Returns: RCPI corresponding to the given RSSI value, or 255 if not available.
1303 *
1304 * It's possible to estimate RCPI based on RSSI in dBm. This calculation will
1305 * not reflect the correct value for high rates, but it's good enough for Action
1306 * frames which are transmitted with up to 24 Mbps rates.
1307 */
rssi_to_rcpi(int rssi)1308 u8 rssi_to_rcpi(int rssi)
1309 {
1310 if (!rssi)
1311 return 255; /* not available */
1312 if (rssi < -110)
1313 return 0;
1314 if (rssi > 0)
1315 return 220;
1316 return (rssi + 110) * 2;
1317 }
1318
1319
get_param(const char * cmd,const char * param)1320 char * get_param(const char *cmd, const char *param)
1321 {
1322 const char *pos, *end;
1323 char *val;
1324 size_t len;
1325
1326 pos = os_strstr(cmd, param);
1327 if (!pos)
1328 return NULL;
1329
1330 pos += os_strlen(param);
1331 end = os_strchr(pos, ' ');
1332 if (end)
1333 len = end - pos;
1334 else
1335 len = os_strlen(pos);
1336 val = os_malloc(len + 1);
1337 if (!val)
1338 return NULL;
1339 os_memcpy(val, pos, len);
1340 val[len] = '\0';
1341 return val;
1342 }
1343
1344
1345 /* Try to prevent most compilers from optimizing out clearing of memory that
1346 * becomes unaccessible after this function is called. This is mostly the case
1347 * for clearing local stack variables at the end of a function. This is not
1348 * exactly perfect, i.e., someone could come up with a compiler that figures out
1349 * the pointer is pointing to memset and then end up optimizing the call out, so
1350 * try go a bit further by storing the first octet (now zero) to make this even
1351 * a bit more difficult to optimize out. Once memset_s() is available, that
1352 * could be used here instead. */
1353 static void * (* const volatile memset_func)(void *, int, size_t) = memset;
1354 static u8 forced_memzero_val;
1355
forced_memzero(void * ptr,size_t len)1356 void forced_memzero(void *ptr, size_t len)
1357 {
1358 memset_func(ptr, 0, len);
1359 if (len)
1360 forced_memzero_val = ((u8 *) ptr)[0];
1361 }
1362
StrtoUint(const char * input)1363 unsigned int StrtoUint(const char *input)
1364 {
1365 if(input == NULL || input[0] == '\0' || strlen(input) > MAX_UINT32_LENGTH) {
1366 return 0;
1367 }
1368 char *endPtr = NULL;
1369 unsigned long result = 0;
1370 result = strtol(input, &endPtr, NUMBER_BASE);
1371
1372 if(endPtr == input || *endPtr != '\0') {
1373 return 0;
1374 } else if(errno == ERANGE) {
1375 return 0;
1376 } else {
1377 return (unsigned int)result;
1378 }
1379 }
1380
StrtoInt(const char * input)1381 int StrtoInt(const char *input)
1382 {
1383 if(input == NULL || input[0] == '\0' || strlen(input) > MAX_INT32_LENGTH) {
1384 return 0;
1385 }
1386 char *endPtr = NULL;
1387 long result = 0;
1388 result = strtol(input, &endPtr, NUMBER_BASE);
1389
1390 if(endPtr == input || *endPtr != '\0') {
1391 return 0;
1392 } else if(errno == ERANGE) {
1393 return 0;
1394 } else {
1395 return (int)result;
1396 }
1397 }
1398
1399 #ifdef CONFIG_OPEN_HARMONY_PATCH
IsUpdaterMode(void)1400 bool IsUpdaterMode(void)
1401 {
1402 static bool hasRun = false;
1403 static bool updaterMode = false;
1404 if (hasRun) {
1405 return updaterMode;
1406 }
1407 struct stat st = {};
1408 if (stat("/bin/updater", &st) == 0 && S_ISREG(st.st_mode)) {
1409 updaterMode = true;
1410 }
1411 hasRun = true;
1412 return updaterMode;
1413 }
1414 #endif /* CONFIG_OPEN_HARMONY_PATCH */