• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* @(#)s_expm1.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 #ifndef lint
14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_expm1.c,v 1.7 2002/05/28 18:15:04 alfred Exp $";
15 #endif
16 
17 /* expm1(x)
18  * Returns exp(x)-1, the exponential of x minus 1.
19  *
20  * Method
21  *   1. Argument reduction:
22  *	Given x, find r and integer k such that
23  *
24  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
25  *
26  *      Here a correction term c will be computed to compensate
27  *	the error in r when rounded to a floating-point number.
28  *
29  *   2. Approximating expm1(r) by a special rational function on
30  *	the interval [0,0.34658]:
31  *	Since
32  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
33  *	we define R1(r*r) by
34  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
35  *	That is,
36  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
37  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
38  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
39  *      We use a special Reme algorithm on [0,0.347] to generate
40  * 	a polynomial of degree 5 in r*r to approximate R1. The
41  *	maximum error of this polynomial approximation is bounded
42  *	by 2**-61. In other words,
43  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
44  *	where 	Q1  =  -1.6666666666666567384E-2,
45  * 		Q2  =   3.9682539681370365873E-4,
46  * 		Q3  =  -9.9206344733435987357E-6,
47  * 		Q4  =   2.5051361420808517002E-7,
48  * 		Q5  =  -6.2843505682382617102E-9;
49  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
50  *	with error bounded by
51  *	    |                  5           |     -61
52  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
53  *	    |                              |
54  *
55  *	expm1(r) = exp(r)-1 is then computed by the following
56  * 	specific way which minimize the accumulation rounding error:
57  *			       2     3
58  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
59  *	      expm1(r) = r + --- + --- * [--------------------]
60  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
61  *
62  *	To compensate the error in the argument reduction, we use
63  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
64  *			   ~ expm1(r) + c + r*c
65  *	Thus c+r*c will be added in as the correction terms for
66  *	expm1(r+c). Now rearrange the term to avoid optimization
67  * 	screw up:
68  *		        (      2                                    2 )
69  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
70  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
71  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
72  *                      (                                             )
73  *
74  *		   = r - E
75  *   3. Scale back to obtain expm1(x):
76  *	From step 1, we have
77  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
78  *		    = or     2^k*[expm1(r) + (1-2^-k)]
79  *   4. Implementation notes:
80  *	(A). To save one multiplication, we scale the coefficient Qi
81  *	     to Qi*2^i, and replace z by (x^2)/2.
82  *	(B). To achieve maximum accuracy, we compute expm1(x) by
83  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
84  *	  (ii)  if k=0, return r-E
85  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
86  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
87  *	       	       else	     return  1.0+2.0*(r-E);
88  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
89  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
90  *	  (vii) return 2^k(1-((E+2^-k)-r))
91  *
92  * Special cases:
93  *	expm1(INF) is INF, expm1(NaN) is NaN;
94  *	expm1(-INF) is -1, and
95  *	for finite argument, only expm1(0)=0 is exact.
96  *
97  * Accuracy:
98  *	according to an error analysis, the error is always less than
99  *	1 ulp (unit in the last place).
100  *
101  * Misc. info.
102  *	For IEEE double
103  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
104  *
105  * Constants:
106  * The hexadecimal values are the intended ones for the following
107  * constants. The decimal values may be used, provided that the
108  * compiler will convert from decimal to binary accurately enough
109  * to produce the hexadecimal values shown.
110  */
111 
112 #include "math.h"
113 #include "math_private.h"
114 
115 static const double
116 one		= 1.0,
117 huge		= 1.0e+300,
118 tiny		= 1.0e-300,
119 o_threshold	= 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
120 ln2_hi		= 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
121 ln2_lo		= 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
122 invln2		= 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
123 	/* scaled coefficients related to expm1 */
124 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
125 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
126 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
127 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
128 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
129 
130 double
expm1(double x)131 expm1(double x)
132 {
133 	double y,hi,lo,c,t,e,hxs,hfx,r1;
134 	int32_t k,xsb;
135 	u_int32_t hx;
136 
137 	GET_HIGH_WORD(hx,x);
138 	xsb = hx&0x80000000;		/* sign bit of x */
139 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
140 	hx &= 0x7fffffff;		/* high word of |x| */
141 
142     /* filter out huge and non-finite argument */
143 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
144 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
145                 if(hx>=0x7ff00000) {
146 		    u_int32_t low;
147 		    GET_LOW_WORD(low,x);
148 		    if(((hx&0xfffff)|low)!=0)
149 		         return x+x; 	 /* NaN */
150 		    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
151 	        }
152 	        if(x > o_threshold) return huge*huge; /* overflow */
153 	    }
154 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
155 		if(x+tiny<0.0)		/* raise inexact */
156 		return tiny-one;	/* return -1 */
157 	    }
158 	}
159 
160     /* argument reduction */
161 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
162 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
163 		if(xsb==0)
164 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
165 		else
166 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
167 	    } else {
168 		k  = invln2*x+((xsb==0)?0.5:-0.5);
169 		t  = k;
170 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
171 		lo = t*ln2_lo;
172 	    }
173 	    x  = hi - lo;
174 	    c  = (hi-x)-lo;
175 	}
176 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
177 	    t = huge+x;	/* return x with inexact flags when x!=0 */
178 	    return x - (t-(huge+x));
179 	}
180 	else k = 0;
181 
182     /* x is now in primary range */
183 	hfx = 0.5*x;
184 	hxs = x*hfx;
185 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
186 	t  = 3.0-r1*hfx;
187 	e  = hxs*((r1-t)/(6.0 - x*t));
188 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
189 	else {
190 	    e  = (x*(e-c)-c);
191 	    e -= hxs;
192 	    if(k== -1) return 0.5*(x-e)-0.5;
193 	    if(k==1)
194 	       	if(x < -0.25) return -2.0*(e-(x+0.5));
195 	       	else 	      return  one+2.0*(x-e);
196 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
197 	        u_int32_t high;
198 	        y = one-(e-x);
199 		GET_HIGH_WORD(high,y);
200 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
201 	        return y-one;
202 	    }
203 	    t = one;
204 	    if(k<20) {
205 	        u_int32_t high;
206 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
207 	       	y = t-(e-x);
208 		GET_HIGH_WORD(high,y);
209 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
210 	   } else {
211 	        u_int32_t high;
212 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
213 	       	y = x-(e+t);
214 	       	y += one;
215 		GET_HIGH_WORD(high,y);
216 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
217 	    }
218 	}
219 	return y;
220 }
221