• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <tommath.h>
2 #ifdef BN_FAST_MP_INVMOD_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4  *
5  * LibTomMath is a library that provides multiple-precision
6  * integer arithmetic as well as number theoretic functionality.
7  *
8  * The library was designed directly after the MPI library by
9  * Michael Fromberger but has been written from scratch with
10  * additional optimizations in place.
11  *
12  * The library is free for all purposes without any express
13  * guarantee it works.
14  *
15  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
16  */
17 
18 /* computes the modular inverse via binary extended euclidean algorithm,
19  * that is c = 1/a mod b
20  *
21  * Based on slow invmod except this is optimized for the case where b is
22  * odd as per HAC Note 14.64 on pp. 610
23  */
fast_mp_invmod(mp_int * a,mp_int * b,mp_int * c)24 int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
25 {
26   mp_int  x, y, u, v, B, D;
27   int     res, neg;
28 
29   /* 2. [modified] b must be odd   */
30   if (mp_iseven (b) == 1) {
31     return MP_VAL;
32   }
33 
34   /* init all our temps */
35   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
36      return res;
37   }
38 
39   /* x == modulus, y == value to invert */
40   if ((res = mp_copy (b, &x)) != MP_OKAY) {
41     goto LBL_ERR;
42   }
43 
44   /* we need y = |a| */
45   if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
46     goto LBL_ERR;
47   }
48 
49   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
50   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
51     goto LBL_ERR;
52   }
53   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
54     goto LBL_ERR;
55   }
56   mp_set (&D, 1);
57 
58 top:
59   /* 4.  while u is even do */
60   while (mp_iseven (&u) == 1) {
61     /* 4.1 u = u/2 */
62     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
63       goto LBL_ERR;
64     }
65     /* 4.2 if B is odd then */
66     if (mp_isodd (&B) == 1) {
67       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
68         goto LBL_ERR;
69       }
70     }
71     /* B = B/2 */
72     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
73       goto LBL_ERR;
74     }
75   }
76 
77   /* 5.  while v is even do */
78   while (mp_iseven (&v) == 1) {
79     /* 5.1 v = v/2 */
80     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
81       goto LBL_ERR;
82     }
83     /* 5.2 if D is odd then */
84     if (mp_isodd (&D) == 1) {
85       /* D = (D-x)/2 */
86       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
87         goto LBL_ERR;
88       }
89     }
90     /* D = D/2 */
91     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
92       goto LBL_ERR;
93     }
94   }
95 
96   /* 6.  if u >= v then */
97   if (mp_cmp (&u, &v) != MP_LT) {
98     /* u = u - v, B = B - D */
99     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
100       goto LBL_ERR;
101     }
102 
103     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
104       goto LBL_ERR;
105     }
106   } else {
107     /* v - v - u, D = D - B */
108     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
109       goto LBL_ERR;
110     }
111 
112     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
113       goto LBL_ERR;
114     }
115   }
116 
117   /* if not zero goto step 4 */
118   if (mp_iszero (&u) == 0) {
119     goto top;
120   }
121 
122   /* now a = C, b = D, gcd == g*v */
123 
124   /* if v != 1 then there is no inverse */
125   if (mp_cmp_d (&v, 1) != MP_EQ) {
126     res = MP_VAL;
127     goto LBL_ERR;
128   }
129 
130   /* b is now the inverse */
131   neg = a->sign;
132   while (D.sign == MP_NEG) {
133     if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
134       goto LBL_ERR;
135     }
136   }
137   mp_exch (&D, c);
138   c->sign = neg;
139   res = MP_OKAY;
140 
141 LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
142   return res;
143 }
144 #endif
145 
146 /* $Source: /cvs/libtom/libtommath/bn_fast_mp_invmod.c,v $ */
147 /* $Revision: 1.3 $ */
148 /* $Date: 2006/03/31 14:18:44 $ */
149