• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <tommath.h>
2 #ifdef BN_MP_DIV_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4  *
5  * LibTomMath is a library that provides multiple-precision
6  * integer arithmetic as well as number theoretic functionality.
7  *
8  * The library was designed directly after the MPI library by
9  * Michael Fromberger but has been written from scratch with
10  * additional optimizations in place.
11  *
12  * The library is free for all purposes without any express
13  * guarantee it works.
14  *
15  * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
16  */
17 
18 #ifdef BN_MP_DIV_SMALL
19 
20 /* slower bit-bang division... also smaller */
mp_div(mp_int * a,mp_int * b,mp_int * c,mp_int * d)21 int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
22 {
23    mp_int ta, tb, tq, q;
24    int    res, n, n2;
25 
26   /* is divisor zero ? */
27   if (mp_iszero (b) == 1) {
28     return MP_VAL;
29   }
30 
31   /* if a < b then q=0, r = a */
32   if (mp_cmp_mag (a, b) == MP_LT) {
33     if (d != NULL) {
34       res = mp_copy (a, d);
35     } else {
36       res = MP_OKAY;
37     }
38     if (c != NULL) {
39       mp_zero (c);
40     }
41     return res;
42   }
43 
44   /* init our temps */
45   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
46      return res;
47   }
48 
49 
50   mp_set(&tq, 1);
51   n = mp_count_bits(a) - mp_count_bits(b);
52   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
53       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
54       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
55       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
56       goto LBL_ERR;
57   }
58 
59   while (n-- >= 0) {
60      if (mp_cmp(&tb, &ta) != MP_GT) {
61         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
62             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
63            goto LBL_ERR;
64         }
65      }
66      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
67          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
68            goto LBL_ERR;
69      }
70   }
71 
72   /* now q == quotient and ta == remainder */
73   n  = a->sign;
74   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
75   if (c != NULL) {
76      mp_exch(c, &q);
77      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
78   }
79   if (d != NULL) {
80      mp_exch(d, &ta);
81      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
82   }
83 LBL_ERR:
84    mp_clear_multi(&ta, &tb, &tq, &q, NULL);
85    return res;
86 }
87 
88 #else
89 
90 /* integer signed division.
91  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
92  * HAC pp.598 Algorithm 14.20
93  *
94  * Note that the description in HAC is horribly
95  * incomplete.  For example, it doesn't consider
96  * the case where digits are removed from 'x' in
97  * the inner loop.  It also doesn't consider the
98  * case that y has fewer than three digits, etc..
99  *
100  * The overall algorithm is as described as
101  * 14.20 from HAC but fixed to treat these cases.
102 */
mp_div(mp_int * a,mp_int * b,mp_int * c,mp_int * d)103 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
104 {
105   mp_int  q, x, y, t1, t2;
106   int     res, n, t, i, norm, neg;
107 
108   /* is divisor zero ? */
109   if (mp_iszero (b) == 1) {
110     return MP_VAL;
111   }
112 
113   /* if a < b then q=0, r = a */
114   if (mp_cmp_mag (a, b) == MP_LT) {
115     if (d != NULL) {
116       res = mp_copy (a, d);
117     } else {
118       res = MP_OKAY;
119     }
120     if (c != NULL) {
121       mp_zero (c);
122     }
123     return res;
124   }
125 
126   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
127     return res;
128   }
129   q.used = a->used + 2;
130 
131   if ((res = mp_init (&t1)) != MP_OKAY) {
132     goto LBL_Q;
133   }
134 
135   if ((res = mp_init (&t2)) != MP_OKAY) {
136     goto LBL_T1;
137   }
138 
139   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
140     goto LBL_T2;
141   }
142 
143   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
144     goto LBL_X;
145   }
146 
147   /* fix the sign */
148   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
149   x.sign = y.sign = MP_ZPOS;
150 
151   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
152   norm = mp_count_bits(&y) % DIGIT_BIT;
153   if (norm < (int)(DIGIT_BIT-1)) {
154      norm = (DIGIT_BIT-1) - norm;
155      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
156        goto LBL_Y;
157      }
158      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
159        goto LBL_Y;
160      }
161   } else {
162      norm = 0;
163   }
164 
165   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
166   n = x.used - 1;
167   t = y.used - 1;
168 
169   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
170   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
171     goto LBL_Y;
172   }
173 
174   while (mp_cmp (&x, &y) != MP_LT) {
175     ++(q.dp[n - t]);
176     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
177       goto LBL_Y;
178     }
179   }
180 
181   /* reset y by shifting it back down */
182   mp_rshd (&y, n - t);
183 
184   /* step 3. for i from n down to (t + 1) */
185   for (i = n; i >= (t + 1); i--) {
186     if (i > x.used) {
187       continue;
188     }
189 
190     /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
191      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
192     if (x.dp[i] == y.dp[t]) {
193       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
194     } else {
195       mp_word tmp;
196       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
197       tmp |= ((mp_word) x.dp[i - 1]);
198       tmp /= ((mp_word) y.dp[t]);
199       if (tmp > (mp_word) MP_MASK)
200         tmp = MP_MASK;
201       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
202     }
203 
204     /* while (q{i-t-1} * (yt * b + y{t-1})) >
205              xi * b**2 + xi-1 * b + xi-2
206 
207        do q{i-t-1} -= 1;
208     */
209     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
210     do {
211       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
212 
213       /* find left hand */
214       mp_zero (&t1);
215       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
216       t1.dp[1] = y.dp[t];
217       t1.used = 2;
218       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
219         goto LBL_Y;
220       }
221 
222       /* find right hand */
223       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
224       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
225       t2.dp[2] = x.dp[i];
226       t2.used = 3;
227     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
228 
229     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
230     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
231       goto LBL_Y;
232     }
233 
234     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
235       goto LBL_Y;
236     }
237 
238     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
239       goto LBL_Y;
240     }
241 
242     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
243     if (x.sign == MP_NEG) {
244       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
245         goto LBL_Y;
246       }
247       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
248         goto LBL_Y;
249       }
250       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
251         goto LBL_Y;
252       }
253 
254       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
255     }
256   }
257 
258   /* now q is the quotient and x is the remainder
259    * [which we have to normalize]
260    */
261 
262   /* get sign before writing to c */
263   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
264 
265   if (c != NULL) {
266     mp_clamp (&q);
267     mp_exch (&q, c);
268     c->sign = neg;
269   }
270 
271   if (d != NULL) {
272     if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) {
273 		goto LBL_Y;
274 	}
275     mp_exch (&x, d);
276   }
277 
278   res = MP_OKAY;
279 
280 LBL_Y:mp_clear (&y);
281 LBL_X:mp_clear (&x);
282 LBL_T2:mp_clear (&t2);
283 LBL_T1:mp_clear (&t1);
284 LBL_Q:mp_clear (&q);
285   return res;
286 }
287 
288 #endif
289 
290 #endif
291 
292 /* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */
293 /* $Revision: 1.3 $ */
294 /* $Date: 2006/03/31 14:18:44 $ */
295