• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <inttypes.h>
18 #include <pwd.h>
19 #include <sys/types.h>
20 
21 #define LOG_TAG "BufferQueueConsumer"
22 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
23 //#define LOG_NDEBUG 0
24 
25 #if DEBUG_ONLY_CODE
26 #define VALIDATE_CONSISTENCY() do { mCore->validateConsistencyLocked(); } while (0)
27 #else
28 #define VALIDATE_CONSISTENCY()
29 #endif
30 
31 #include <gui/BufferItem.h>
32 #include <gui/BufferQueueConsumer.h>
33 #include <gui/BufferQueueCore.h>
34 #include <gui/IConsumerListener.h>
35 #include <gui/IProducerListener.h>
36 
37 #include <private/gui/BufferQueueThreadState.h>
38 #ifndef __ANDROID_VNDK__
39 #include <binder/PermissionCache.h>
40 #include <vndksupport/linker.h>
41 #endif
42 
43 #include <system/window.h>
44 
45 namespace android {
46 
BufferQueueConsumer(const sp<BufferQueueCore> & core)47 BufferQueueConsumer::BufferQueueConsumer(const sp<BufferQueueCore>& core) :
48     mCore(core),
49     mSlots(core->mSlots),
50     mConsumerName() {}
51 
~BufferQueueConsumer()52 BufferQueueConsumer::~BufferQueueConsumer() {}
53 
acquireBuffer(BufferItem * outBuffer,nsecs_t expectedPresent,uint64_t maxFrameNumber)54 status_t BufferQueueConsumer::acquireBuffer(BufferItem* outBuffer,
55         nsecs_t expectedPresent, uint64_t maxFrameNumber) {
56     ATRACE_CALL();
57 
58     int numDroppedBuffers = 0;
59     sp<IProducerListener> listener;
60     {
61         std::unique_lock<std::mutex> lock(mCore->mMutex);
62 
63         // Check that the consumer doesn't currently have the maximum number of
64         // buffers acquired. We allow the max buffer count to be exceeded by one
65         // buffer so that the consumer can successfully set up the newly acquired
66         // buffer before releasing the old one.
67         int numAcquiredBuffers = 0;
68         for (int s : mCore->mActiveBuffers) {
69             if (mSlots[s].mBufferState.isAcquired()) {
70                 ++numAcquiredBuffers;
71             }
72         }
73         if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
74             BQ_LOGE("acquireBuffer: max acquired buffer count reached: %d (max %d)",
75                     numAcquiredBuffers, mCore->mMaxAcquiredBufferCount);
76             return INVALID_OPERATION;
77         }
78 
79         bool sharedBufferAvailable = mCore->mSharedBufferMode &&
80                 mCore->mAutoRefresh && mCore->mSharedBufferSlot !=
81                 BufferQueueCore::INVALID_BUFFER_SLOT;
82 
83         // In asynchronous mode the list is guaranteed to be one buffer deep,
84         // while in synchronous mode we use the oldest buffer.
85         if (mCore->mQueue.empty() && !sharedBufferAvailable) {
86             return NO_BUFFER_AVAILABLE;
87         }
88 
89         BufferQueueCore::Fifo::iterator front(mCore->mQueue.begin());
90 
91         // If expectedPresent is specified, we may not want to return a buffer yet.
92         // If it's specified and there's more than one buffer queued, we may want
93         // to drop a buffer.
94         // Skip this if we're in shared buffer mode and the queue is empty,
95         // since in that case we'll just return the shared buffer.
96         if (expectedPresent != 0 && !mCore->mQueue.empty()) {
97             // The 'expectedPresent' argument indicates when the buffer is expected
98             // to be presented on-screen. If the buffer's desired present time is
99             // earlier (less) than expectedPresent -- meaning it will be displayed
100             // on time or possibly late if we show it as soon as possible -- we
101             // acquire and return it. If we don't want to display it until after the
102             // expectedPresent time, we return PRESENT_LATER without acquiring it.
103             //
104             // To be safe, we don't defer acquisition if expectedPresent is more
105             // than one second in the future beyond the desired present time
106             // (i.e., we'd be holding the buffer for a long time).
107             //
108             // NOTE: Code assumes monotonic time values from the system clock
109             // are positive.
110 
111             // Start by checking to see if we can drop frames. We skip this check if
112             // the timestamps are being auto-generated by Surface. If the app isn't
113             // generating timestamps explicitly, it probably doesn't want frames to
114             // be discarded based on them.
115             while (mCore->mQueue.size() > 1 && !mCore->mQueue[0].mIsAutoTimestamp) {
116                 const BufferItem& bufferItem(mCore->mQueue[1]);
117 
118                 // If dropping entry[0] would leave us with a buffer that the
119                 // consumer is not yet ready for, don't drop it.
120                 if (maxFrameNumber && bufferItem.mFrameNumber > maxFrameNumber) {
121                     break;
122                 }
123 
124                 // If entry[1] is timely, drop entry[0] (and repeat). We apply an
125                 // additional criterion here: we only drop the earlier buffer if our
126                 // desiredPresent falls within +/- 1 second of the expected present.
127                 // Otherwise, bogus desiredPresent times (e.g., 0 or a small
128                 // relative timestamp), which normally mean "ignore the timestamp
129                 // and acquire immediately", would cause us to drop frames.
130                 //
131                 // We may want to add an additional criterion: don't drop the
132                 // earlier buffer if entry[1]'s fence hasn't signaled yet.
133                 nsecs_t desiredPresent = bufferItem.mTimestamp;
134                 if (desiredPresent < expectedPresent - MAX_REASONABLE_NSEC ||
135                         desiredPresent > expectedPresent) {
136                     // This buffer is set to display in the near future, or
137                     // desiredPresent is garbage. Either way we don't want to drop
138                     // the previous buffer just to get this on the screen sooner.
139                     BQ_LOGV("acquireBuffer: nodrop desire=%" PRId64 " expect=%"
140                             PRId64 " (%" PRId64 ") now=%" PRId64,
141                             desiredPresent, expectedPresent,
142                             desiredPresent - expectedPresent,
143                             systemTime(CLOCK_MONOTONIC));
144                     break;
145                 }
146 
147                 BQ_LOGV("acquireBuffer: drop desire=%" PRId64 " expect=%" PRId64
148                         " size=%zu",
149                         desiredPresent, expectedPresent, mCore->mQueue.size());
150 
151                 if (!front->mIsStale) {
152                     // Front buffer is still in mSlots, so mark the slot as free
153                     mSlots[front->mSlot].mBufferState.freeQueued();
154 
155                     // After leaving shared buffer mode, the shared buffer will
156                     // still be around. Mark it as no longer shared if this
157                     // operation causes it to be free.
158                     if (!mCore->mSharedBufferMode &&
159                             mSlots[front->mSlot].mBufferState.isFree()) {
160                         mSlots[front->mSlot].mBufferState.mShared = false;
161                     }
162 
163                     // Don't put the shared buffer on the free list
164                     if (!mSlots[front->mSlot].mBufferState.isShared()) {
165                         mCore->mActiveBuffers.erase(front->mSlot);
166                         mCore->mFreeBuffers.push_back(front->mSlot);
167                     }
168 
169                     listener = mCore->mConnectedProducerListener;
170                     ++numDroppedBuffers;
171                 }
172 
173                 mCore->mQueue.erase(front);
174                 front = mCore->mQueue.begin();
175             }
176 
177             // See if the front buffer is ready to be acquired
178             nsecs_t desiredPresent = front->mTimestamp;
179             bool bufferIsDue = desiredPresent <= expectedPresent ||
180                     desiredPresent > expectedPresent + MAX_REASONABLE_NSEC;
181             bool consumerIsReady = maxFrameNumber > 0 ?
182                     front->mFrameNumber <= maxFrameNumber : true;
183             if (!bufferIsDue || !consumerIsReady) {
184                 BQ_LOGV("acquireBuffer: defer desire=%" PRId64 " expect=%" PRId64
185                         " (%" PRId64 ") now=%" PRId64 " frame=%" PRIu64
186                         " consumer=%" PRIu64,
187                         desiredPresent, expectedPresent,
188                         desiredPresent - expectedPresent,
189                         systemTime(CLOCK_MONOTONIC),
190                         front->mFrameNumber, maxFrameNumber);
191                 ATRACE_NAME("PRESENT_LATER");
192                 return PRESENT_LATER;
193             }
194 
195             BQ_LOGV("acquireBuffer: accept desire=%" PRId64 " expect=%" PRId64 " "
196                     "(%" PRId64 ") now=%" PRId64, desiredPresent, expectedPresent,
197                     desiredPresent - expectedPresent,
198                     systemTime(CLOCK_MONOTONIC));
199         }
200 
201         int slot = BufferQueueCore::INVALID_BUFFER_SLOT;
202 
203         if (sharedBufferAvailable && mCore->mQueue.empty()) {
204             // make sure the buffer has finished allocating before acquiring it
205             mCore->waitWhileAllocatingLocked(lock);
206 
207             slot = mCore->mSharedBufferSlot;
208 
209             // Recreate the BufferItem for the shared buffer from the data that
210             // was cached when it was last queued.
211             outBuffer->mGraphicBuffer = mSlots[slot].mGraphicBuffer;
212             outBuffer->mFence = Fence::NO_FENCE;
213             outBuffer->mFenceTime = FenceTime::NO_FENCE;
214             outBuffer->mCrop = mCore->mSharedBufferCache.crop;
215             outBuffer->mTransform = mCore->mSharedBufferCache.transform &
216                     ~static_cast<uint32_t>(
217                     NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY);
218             outBuffer->mScalingMode = mCore->mSharedBufferCache.scalingMode;
219             outBuffer->mDataSpace = mCore->mSharedBufferCache.dataspace;
220             outBuffer->mFrameNumber = mCore->mFrameCounter;
221             outBuffer->mSlot = slot;
222             outBuffer->mAcquireCalled = mSlots[slot].mAcquireCalled;
223             outBuffer->mTransformToDisplayInverse =
224                     (mCore->mSharedBufferCache.transform &
225                     NATIVE_WINDOW_TRANSFORM_INVERSE_DISPLAY) != 0;
226             outBuffer->mSurfaceDamage = Region::INVALID_REGION;
227             outBuffer->mQueuedBuffer = false;
228             outBuffer->mIsStale = false;
229             outBuffer->mAutoRefresh = mCore->mSharedBufferMode &&
230                     mCore->mAutoRefresh;
231         } else {
232             slot = front->mSlot;
233             *outBuffer = *front;
234         }
235 
236         ATRACE_BUFFER_INDEX(slot);
237 
238         BQ_LOGV("acquireBuffer: acquiring { slot=%d/%" PRIu64 " buffer=%p }",
239                 slot, outBuffer->mFrameNumber, outBuffer->mGraphicBuffer->handle);
240 
241         if (!outBuffer->mIsStale) {
242             mSlots[slot].mAcquireCalled = true;
243             // Don't decrease the queue count if the BufferItem wasn't
244             // previously in the queue. This happens in shared buffer mode when
245             // the queue is empty and the BufferItem is created above.
246             if (mCore->mQueue.empty()) {
247                 mSlots[slot].mBufferState.acquireNotInQueue();
248             } else {
249                 mSlots[slot].mBufferState.acquire();
250             }
251             mSlots[slot].mFence = Fence::NO_FENCE;
252         }
253 
254         // If the buffer has previously been acquired by the consumer, set
255         // mGraphicBuffer to NULL to avoid unnecessarily remapping this buffer
256         // on the consumer side
257         if (outBuffer->mAcquireCalled) {
258             outBuffer->mGraphicBuffer = nullptr;
259         }
260 
261         mCore->mQueue.erase(front);
262 
263         // We might have freed a slot while dropping old buffers, or the producer
264         // may be blocked waiting for the number of buffers in the queue to
265         // decrease.
266         mCore->mDequeueCondition.notify_all();
267 
268         ATRACE_INT(mCore->mConsumerName.string(),
269                 static_cast<int32_t>(mCore->mQueue.size()));
270         mCore->mOccupancyTracker.registerOccupancyChange(mCore->mQueue.size());
271 
272         VALIDATE_CONSISTENCY();
273     }
274 
275     if (listener != nullptr) {
276         for (int i = 0; i < numDroppedBuffers; ++i) {
277             listener->onBufferReleased();
278         }
279     }
280 
281     return NO_ERROR;
282 }
283 
detachBuffer(int slot)284 status_t BufferQueueConsumer::detachBuffer(int slot) {
285     ATRACE_CALL();
286     ATRACE_BUFFER_INDEX(slot);
287     BQ_LOGV("detachBuffer: slot %d", slot);
288     std::lock_guard<std::mutex> lock(mCore->mMutex);
289 
290     if (mCore->mIsAbandoned) {
291         BQ_LOGE("detachBuffer: BufferQueue has been abandoned");
292         return NO_INIT;
293     }
294 
295     if (mCore->mSharedBufferMode || slot == mCore->mSharedBufferSlot) {
296         BQ_LOGE("detachBuffer: detachBuffer not allowed in shared buffer mode");
297         return BAD_VALUE;
298     }
299 
300     if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS) {
301         BQ_LOGE("detachBuffer: slot index %d out of range [0, %d)",
302                 slot, BufferQueueDefs::NUM_BUFFER_SLOTS);
303         return BAD_VALUE;
304     } else if (!mSlots[slot].mBufferState.isAcquired()) {
305         BQ_LOGE("detachBuffer: slot %d is not owned by the consumer "
306                 "(state = %s)", slot, mSlots[slot].mBufferState.string());
307         return BAD_VALUE;
308     }
309 
310     mSlots[slot].mBufferState.detachConsumer();
311     mCore->mActiveBuffers.erase(slot);
312     mCore->mFreeSlots.insert(slot);
313     mCore->clearBufferSlotLocked(slot);
314     mCore->mDequeueCondition.notify_all();
315     VALIDATE_CONSISTENCY();
316 
317     return NO_ERROR;
318 }
319 
attachBuffer(int * outSlot,const sp<android::GraphicBuffer> & buffer)320 status_t BufferQueueConsumer::attachBuffer(int* outSlot,
321         const sp<android::GraphicBuffer>& buffer) {
322     ATRACE_CALL();
323 
324     if (outSlot == nullptr) {
325         BQ_LOGE("attachBuffer: outSlot must not be NULL");
326         return BAD_VALUE;
327     } else if (buffer == nullptr) {
328         BQ_LOGE("attachBuffer: cannot attach NULL buffer");
329         return BAD_VALUE;
330     }
331 
332     std::lock_guard<std::mutex> lock(mCore->mMutex);
333 
334     if (mCore->mSharedBufferMode) {
335         BQ_LOGE("attachBuffer: cannot attach a buffer in shared buffer mode");
336         return BAD_VALUE;
337     }
338 
339     // Make sure we don't have too many acquired buffers
340     int numAcquiredBuffers = 0;
341     for (int s : mCore->mActiveBuffers) {
342         if (mSlots[s].mBufferState.isAcquired()) {
343             ++numAcquiredBuffers;
344         }
345     }
346 
347     if (numAcquiredBuffers >= mCore->mMaxAcquiredBufferCount + 1) {
348         BQ_LOGE("attachBuffer: max acquired buffer count reached: %d "
349                 "(max %d)", numAcquiredBuffers,
350                 mCore->mMaxAcquiredBufferCount);
351         return INVALID_OPERATION;
352     }
353 
354     if (buffer->getGenerationNumber() != mCore->mGenerationNumber) {
355         BQ_LOGE("attachBuffer: generation number mismatch [buffer %u] "
356                 "[queue %u]", buffer->getGenerationNumber(),
357                 mCore->mGenerationNumber);
358         return BAD_VALUE;
359     }
360 
361     // Find a free slot to put the buffer into
362     int found = BufferQueueCore::INVALID_BUFFER_SLOT;
363     if (!mCore->mFreeSlots.empty()) {
364         auto slot = mCore->mFreeSlots.begin();
365         found = *slot;
366         mCore->mFreeSlots.erase(slot);
367     } else if (!mCore->mFreeBuffers.empty()) {
368         found = mCore->mFreeBuffers.front();
369         mCore->mFreeBuffers.remove(found);
370     }
371     if (found == BufferQueueCore::INVALID_BUFFER_SLOT) {
372         BQ_LOGE("attachBuffer: could not find free buffer slot");
373         return NO_MEMORY;
374     }
375 
376     mCore->mActiveBuffers.insert(found);
377     *outSlot = found;
378     ATRACE_BUFFER_INDEX(*outSlot);
379     BQ_LOGV("attachBuffer: returning slot %d", *outSlot);
380 
381     mSlots[*outSlot].mGraphicBuffer = buffer;
382     mSlots[*outSlot].mBufferState.attachConsumer();
383     mSlots[*outSlot].mNeedsReallocation = true;
384     mSlots[*outSlot].mFence = Fence::NO_FENCE;
385     mSlots[*outSlot].mFrameNumber = 0;
386 
387     // mAcquireCalled tells BufferQueue that it doesn't need to send a valid
388     // GraphicBuffer pointer on the next acquireBuffer call, which decreases
389     // Binder traffic by not un/flattening the GraphicBuffer. However, it
390     // requires that the consumer maintain a cached copy of the slot <--> buffer
391     // mappings, which is why the consumer doesn't need the valid pointer on
392     // acquire.
393     //
394     // The StreamSplitter is one of the primary users of the attach/detach
395     // logic, and while it is running, all buffers it acquires are immediately
396     // detached, and all buffers it eventually releases are ones that were
397     // attached (as opposed to having been obtained from acquireBuffer), so it
398     // doesn't make sense to maintain the slot/buffer mappings, which would
399     // become invalid for every buffer during detach/attach. By setting this to
400     // false, the valid GraphicBuffer pointer will always be sent with acquire
401     // for attached buffers.
402     mSlots[*outSlot].mAcquireCalled = false;
403 
404     VALIDATE_CONSISTENCY();
405 
406     return NO_ERROR;
407 }
408 
releaseBuffer(int slot,uint64_t frameNumber,const sp<Fence> & releaseFence,EGLDisplay eglDisplay,EGLSyncKHR eglFence)409 status_t BufferQueueConsumer::releaseBuffer(int slot, uint64_t frameNumber,
410         const sp<Fence>& releaseFence, EGLDisplay eglDisplay,
411         EGLSyncKHR eglFence) {
412     ATRACE_CALL();
413     ATRACE_BUFFER_INDEX(slot);
414 
415     if (slot < 0 || slot >= BufferQueueDefs::NUM_BUFFER_SLOTS ||
416             releaseFence == nullptr) {
417         BQ_LOGE("releaseBuffer: slot %d out of range or fence %p NULL", slot,
418                 releaseFence.get());
419         return BAD_VALUE;
420     }
421 
422     sp<IProducerListener> listener;
423     { // Autolock scope
424         std::lock_guard<std::mutex> lock(mCore->mMutex);
425 
426         // If the frame number has changed because the buffer has been reallocated,
427         // we can ignore this releaseBuffer for the old buffer.
428         // Ignore this for the shared buffer where the frame number can easily
429         // get out of sync due to the buffer being queued and acquired at the
430         // same time.
431         if (frameNumber != mSlots[slot].mFrameNumber &&
432                 !mSlots[slot].mBufferState.isShared()) {
433             return STALE_BUFFER_SLOT;
434         }
435 
436         if (!mSlots[slot].mBufferState.isAcquired()) {
437             BQ_LOGE("releaseBuffer: attempted to release buffer slot %d "
438                     "but its state was %s", slot,
439                     mSlots[slot].mBufferState.string());
440             return BAD_VALUE;
441         }
442 
443         mSlots[slot].mEglDisplay = eglDisplay;
444         mSlots[slot].mEglFence = eglFence;
445         mSlots[slot].mFence = releaseFence;
446         mSlots[slot].mBufferState.release();
447 
448         // After leaving shared buffer mode, the shared buffer will
449         // still be around. Mark it as no longer shared if this
450         // operation causes it to be free.
451         if (!mCore->mSharedBufferMode && mSlots[slot].mBufferState.isFree()) {
452             mSlots[slot].mBufferState.mShared = false;
453         }
454         // Don't put the shared buffer on the free list.
455         if (!mSlots[slot].mBufferState.isShared()) {
456             mCore->mActiveBuffers.erase(slot);
457             mCore->mFreeBuffers.push_back(slot);
458         }
459 
460         listener = mCore->mConnectedProducerListener;
461         BQ_LOGV("releaseBuffer: releasing slot %d", slot);
462 
463         mCore->mDequeueCondition.notify_all();
464         VALIDATE_CONSISTENCY();
465     } // Autolock scope
466 
467     // Call back without lock held
468     if (listener != nullptr) {
469         listener->onBufferReleased();
470     }
471 
472     return NO_ERROR;
473 }
474 
connect(const sp<IConsumerListener> & consumerListener,bool controlledByApp)475 status_t BufferQueueConsumer::connect(
476         const sp<IConsumerListener>& consumerListener, bool controlledByApp) {
477     ATRACE_CALL();
478 
479     if (consumerListener == nullptr) {
480         BQ_LOGE("connect: consumerListener may not be NULL");
481         return BAD_VALUE;
482     }
483 
484     BQ_LOGV("connect: controlledByApp=%s",
485             controlledByApp ? "true" : "false");
486 
487     std::lock_guard<std::mutex> lock(mCore->mMutex);
488 
489     if (mCore->mIsAbandoned) {
490         BQ_LOGE("connect: BufferQueue has been abandoned");
491         return NO_INIT;
492     }
493 
494     mCore->mConsumerListener = consumerListener;
495     mCore->mConsumerControlledByApp = controlledByApp;
496 
497     return NO_ERROR;
498 }
499 
disconnect()500 status_t BufferQueueConsumer::disconnect() {
501     ATRACE_CALL();
502 
503     BQ_LOGV("disconnect");
504 
505     std::lock_guard<std::mutex> lock(mCore->mMutex);
506 
507     if (mCore->mConsumerListener == nullptr) {
508         BQ_LOGE("disconnect: no consumer is connected");
509         return BAD_VALUE;
510     }
511 
512     mCore->mIsAbandoned = true;
513     mCore->mConsumerListener = nullptr;
514     mCore->mQueue.clear();
515     mCore->freeAllBuffersLocked();
516     mCore->mSharedBufferSlot = BufferQueueCore::INVALID_BUFFER_SLOT;
517     mCore->mDequeueCondition.notify_all();
518     return NO_ERROR;
519 }
520 
getReleasedBuffers(uint64_t * outSlotMask)521 status_t BufferQueueConsumer::getReleasedBuffers(uint64_t *outSlotMask) {
522     ATRACE_CALL();
523 
524     if (outSlotMask == nullptr) {
525         BQ_LOGE("getReleasedBuffers: outSlotMask may not be NULL");
526         return BAD_VALUE;
527     }
528 
529     std::lock_guard<std::mutex> lock(mCore->mMutex);
530 
531     if (mCore->mIsAbandoned) {
532         BQ_LOGE("getReleasedBuffers: BufferQueue has been abandoned");
533         return NO_INIT;
534     }
535 
536     uint64_t mask = 0;
537     for (int s = 0; s < BufferQueueDefs::NUM_BUFFER_SLOTS; ++s) {
538         if (!mSlots[s].mAcquireCalled) {
539             mask |= (1ULL << s);
540         }
541     }
542 
543     // Remove from the mask queued buffers for which acquire has been called,
544     // since the consumer will not receive their buffer addresses and so must
545     // retain their cached information
546     BufferQueueCore::Fifo::iterator current(mCore->mQueue.begin());
547     while (current != mCore->mQueue.end()) {
548         if (current->mAcquireCalled) {
549             mask &= ~(1ULL << current->mSlot);
550         }
551         ++current;
552     }
553 
554     BQ_LOGV("getReleasedBuffers: returning mask %#" PRIx64, mask);
555     *outSlotMask = mask;
556     return NO_ERROR;
557 }
558 
setDefaultBufferSize(uint32_t width,uint32_t height)559 status_t BufferQueueConsumer::setDefaultBufferSize(uint32_t width,
560         uint32_t height) {
561     ATRACE_CALL();
562 
563     if (width == 0 || height == 0) {
564         BQ_LOGV("setDefaultBufferSize: dimensions cannot be 0 (width=%u "
565                 "height=%u)", width, height);
566         return BAD_VALUE;
567     }
568 
569     BQ_LOGV("setDefaultBufferSize: width=%u height=%u", width, height);
570 
571     std::lock_guard<std::mutex> lock(mCore->mMutex);
572     mCore->mDefaultWidth = width;
573     mCore->mDefaultHeight = height;
574     return NO_ERROR;
575 }
576 
setMaxBufferCount(int bufferCount)577 status_t BufferQueueConsumer::setMaxBufferCount(int bufferCount) {
578     ATRACE_CALL();
579 
580     if (bufferCount < 1 || bufferCount > BufferQueueDefs::NUM_BUFFER_SLOTS) {
581         BQ_LOGE("setMaxBufferCount: invalid count %d", bufferCount);
582         return BAD_VALUE;
583     }
584 
585     std::lock_guard<std::mutex> lock(mCore->mMutex);
586 
587     if (mCore->mConnectedApi != BufferQueueCore::NO_CONNECTED_API) {
588         BQ_LOGE("setMaxBufferCount: producer is already connected");
589         return INVALID_OPERATION;
590     }
591 
592     if (bufferCount < mCore->mMaxAcquiredBufferCount) {
593         BQ_LOGE("setMaxBufferCount: invalid buffer count (%d) less than"
594                 "mMaxAcquiredBufferCount (%d)", bufferCount,
595                 mCore->mMaxAcquiredBufferCount);
596         return BAD_VALUE;
597     }
598 
599     int delta = mCore->getMaxBufferCountLocked(mCore->mAsyncMode,
600             mCore->mDequeueBufferCannotBlock, bufferCount) -
601             mCore->getMaxBufferCountLocked();
602     if (!mCore->adjustAvailableSlotsLocked(delta)) {
603         BQ_LOGE("setMaxBufferCount: BufferQueue failed to adjust the number of "
604                 "available slots. Delta = %d", delta);
605         return BAD_VALUE;
606     }
607 
608     mCore->mMaxBufferCount = bufferCount;
609     return NO_ERROR;
610 }
611 
setMaxAcquiredBufferCount(int maxAcquiredBuffers)612 status_t BufferQueueConsumer::setMaxAcquiredBufferCount(
613         int maxAcquiredBuffers) {
614     ATRACE_CALL();
615 
616     if (maxAcquiredBuffers < 1 ||
617             maxAcquiredBuffers > BufferQueueCore::MAX_MAX_ACQUIRED_BUFFERS) {
618         BQ_LOGE("setMaxAcquiredBufferCount: invalid count %d",
619                 maxAcquiredBuffers);
620         return BAD_VALUE;
621     }
622 
623     sp<IConsumerListener> listener;
624     { // Autolock scope
625         std::unique_lock<std::mutex> lock(mCore->mMutex);
626         mCore->waitWhileAllocatingLocked(lock);
627 
628         if (mCore->mIsAbandoned) {
629             BQ_LOGE("setMaxAcquiredBufferCount: consumer is abandoned");
630             return NO_INIT;
631         }
632 
633         if (maxAcquiredBuffers == mCore->mMaxAcquiredBufferCount) {
634             return NO_ERROR;
635         }
636 
637         // The new maxAcquiredBuffers count should not be violated by the number
638         // of currently acquired buffers
639         int acquiredCount = 0;
640         for (int slot : mCore->mActiveBuffers) {
641             if (mSlots[slot].mBufferState.isAcquired()) {
642                 acquiredCount++;
643             }
644         }
645         if (acquiredCount > maxAcquiredBuffers) {
646             BQ_LOGE("setMaxAcquiredBufferCount: the requested maxAcquiredBuffer"
647                     "count (%d) exceeds the current acquired buffer count (%d)",
648                     maxAcquiredBuffers, acquiredCount);
649             return BAD_VALUE;
650         }
651 
652         if ((maxAcquiredBuffers + mCore->mMaxDequeuedBufferCount +
653                 (mCore->mAsyncMode || mCore->mDequeueBufferCannotBlock ? 1 : 0))
654                 > mCore->mMaxBufferCount) {
655             BQ_LOGE("setMaxAcquiredBufferCount: %d acquired buffers would "
656                     "exceed the maxBufferCount (%d) (maxDequeued %d async %d)",
657                     maxAcquiredBuffers, mCore->mMaxBufferCount,
658                     mCore->mMaxDequeuedBufferCount, mCore->mAsyncMode ||
659                     mCore->mDequeueBufferCannotBlock);
660             return BAD_VALUE;
661         }
662 
663         int delta = maxAcquiredBuffers - mCore->mMaxAcquiredBufferCount;
664         if (!mCore->adjustAvailableSlotsLocked(delta)) {
665             return BAD_VALUE;
666         }
667 
668         BQ_LOGV("setMaxAcquiredBufferCount: %d", maxAcquiredBuffers);
669         mCore->mMaxAcquiredBufferCount = maxAcquiredBuffers;
670         VALIDATE_CONSISTENCY();
671         if (delta < 0) {
672             listener = mCore->mConsumerListener;
673         }
674     }
675     // Call back without lock held
676     if (listener != nullptr) {
677         listener->onBuffersReleased();
678     }
679 
680     return NO_ERROR;
681 }
682 
setConsumerName(const String8 & name)683 status_t BufferQueueConsumer::setConsumerName(const String8& name) {
684     ATRACE_CALL();
685     BQ_LOGV("setConsumerName: '%s'", name.string());
686     std::lock_guard<std::mutex> lock(mCore->mMutex);
687     mCore->mConsumerName = name;
688     mConsumerName = name;
689     return NO_ERROR;
690 }
691 
setDefaultBufferFormat(PixelFormat defaultFormat)692 status_t BufferQueueConsumer::setDefaultBufferFormat(PixelFormat defaultFormat) {
693     ATRACE_CALL();
694     BQ_LOGV("setDefaultBufferFormat: %u", defaultFormat);
695     std::lock_guard<std::mutex> lock(mCore->mMutex);
696     mCore->mDefaultBufferFormat = defaultFormat;
697     return NO_ERROR;
698 }
699 
setDefaultBufferDataSpace(android_dataspace defaultDataSpace)700 status_t BufferQueueConsumer::setDefaultBufferDataSpace(
701         android_dataspace defaultDataSpace) {
702     ATRACE_CALL();
703     BQ_LOGV("setDefaultBufferDataSpace: %u", defaultDataSpace);
704     std::lock_guard<std::mutex> lock(mCore->mMutex);
705     mCore->mDefaultBufferDataSpace = defaultDataSpace;
706     return NO_ERROR;
707 }
708 
setConsumerUsageBits(uint64_t usage)709 status_t BufferQueueConsumer::setConsumerUsageBits(uint64_t usage) {
710     ATRACE_CALL();
711     BQ_LOGV("setConsumerUsageBits: %#" PRIx64, usage);
712     std::lock_guard<std::mutex> lock(mCore->mMutex);
713     mCore->mConsumerUsageBits = usage;
714     return NO_ERROR;
715 }
716 
setConsumerIsProtected(bool isProtected)717 status_t BufferQueueConsumer::setConsumerIsProtected(bool isProtected) {
718     ATRACE_CALL();
719     BQ_LOGV("setConsumerIsProtected: %s", isProtected ? "true" : "false");
720     std::lock_guard<std::mutex> lock(mCore->mMutex);
721     mCore->mConsumerIsProtected = isProtected;
722     return NO_ERROR;
723 }
724 
setTransformHint(uint32_t hint)725 status_t BufferQueueConsumer::setTransformHint(uint32_t hint) {
726     ATRACE_CALL();
727     BQ_LOGV("setTransformHint: %#x", hint);
728     std::lock_guard<std::mutex> lock(mCore->mMutex);
729     mCore->mTransformHint = hint;
730     return NO_ERROR;
731 }
732 
getSidebandStream(sp<NativeHandle> * outStream) const733 status_t BufferQueueConsumer::getSidebandStream(sp<NativeHandle>* outStream) const {
734     std::lock_guard<std::mutex> lock(mCore->mMutex);
735     *outStream = mCore->mSidebandStream;
736     return NO_ERROR;
737 }
738 
getOccupancyHistory(bool forceFlush,std::vector<OccupancyTracker::Segment> * outHistory)739 status_t BufferQueueConsumer::getOccupancyHistory(bool forceFlush,
740         std::vector<OccupancyTracker::Segment>* outHistory) {
741     std::lock_guard<std::mutex> lock(mCore->mMutex);
742     *outHistory = mCore->mOccupancyTracker.getSegmentHistory(forceFlush);
743     return NO_ERROR;
744 }
745 
discardFreeBuffers()746 status_t BufferQueueConsumer::discardFreeBuffers() {
747     std::lock_guard<std::mutex> lock(mCore->mMutex);
748     mCore->discardFreeBuffersLocked();
749     return NO_ERROR;
750 }
751 
dumpState(const String8 & prefix,String8 * outResult) const752 status_t BufferQueueConsumer::dumpState(const String8& prefix, String8* outResult) const {
753     struct passwd* pwd = getpwnam("shell");
754     uid_t shellUid = pwd ? pwd->pw_uid : 0;
755     if (!shellUid) {
756         int savedErrno = errno;
757         BQ_LOGE("Cannot get AID_SHELL");
758         return savedErrno ? -savedErrno : UNKNOWN_ERROR;
759     }
760 
761     bool denied = false;
762     const uid_t uid = BufferQueueThreadState::getCallingUid();
763 #ifndef __ANDROID_VNDK__
764     // permission check can't be done for vendors as vendors have no access to
765     // the PermissionController. We need to do a runtime check as well, since
766     // the system variant of libgui can be loaded in a vendor process. For eg:
767     // if a HAL uses an llndk library that depends on libgui (libmediandk etc).
768     if (!android_is_in_vendor_process()) {
769         const pid_t pid = BufferQueueThreadState::getCallingPid();
770         if ((uid != shellUid) &&
771             !PermissionCache::checkPermission(String16("android.permission.DUMP"), pid, uid)) {
772             outResult->appendFormat("Permission Denial: can't dump BufferQueueConsumer "
773                                     "from pid=%d, uid=%d\n",
774                                     pid, uid);
775             denied = true;
776         }
777     }
778 #else
779     if (uid != shellUid) {
780         denied = true;
781     }
782 #endif
783     if (denied) {
784         android_errorWriteWithInfoLog(0x534e4554, "27046057",
785                 static_cast<int32_t>(uid), nullptr, 0);
786         return PERMISSION_DENIED;
787     }
788 
789     mCore->dumpState(prefix, outResult);
790     return NO_ERROR;
791 }
792 
793 } // namespace android
794