• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
19 
20 #include "arch/instruction_set.h"
21 #include "arch/instruction_set_features.h"
22 #include "base/arena_containers.h"
23 #include "base/arena_object.h"
24 #include "base/array_ref.h"
25 #include "base/bit_field.h"
26 #include "base/bit_utils.h"
27 #include "base/enums.h"
28 #include "base/globals.h"
29 #include "base/memory_region.h"
30 #include "dex/string_reference.h"
31 #include "dex/type_reference.h"
32 #include "graph_visualizer.h"
33 #include "locations.h"
34 #include "nodes.h"
35 #include "optimizing_compiler_stats.h"
36 #include "read_barrier_option.h"
37 #include "stack.h"
38 #include "utils/label.h"
39 
40 namespace art {
41 
42 // Binary encoding of 2^32 for type double.
43 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000);
44 // Binary encoding of 2^31 for type double.
45 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000);
46 
47 // Minimum value for a primitive integer.
48 static int32_t constexpr kPrimIntMin = 0x80000000;
49 // Minimum value for a primitive long.
50 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000);
51 
52 // Maximum value for a primitive integer.
53 static int32_t constexpr kPrimIntMax = 0x7fffffff;
54 // Maximum value for a primitive long.
55 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff);
56 
57 static constexpr ReadBarrierOption kCompilerReadBarrierOption =
58     kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier;
59 
60 class Assembler;
61 class CodeGenerator;
62 class CompilerOptions;
63 class StackMapStream;
64 class ParallelMoveResolver;
65 
66 namespace linker {
67 class LinkerPatch;
68 }  // namespace linker
69 
70 class CodeAllocator {
71  public:
CodeAllocator()72   CodeAllocator() {}
~CodeAllocator()73   virtual ~CodeAllocator() {}
74 
75   virtual uint8_t* Allocate(size_t size) = 0;
76   virtual ArrayRef<const uint8_t> GetMemory() const = 0;
77 
78  private:
79   DISALLOW_COPY_AND_ASSIGN(CodeAllocator);
80 };
81 
82 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> {
83  public:
SlowPathCode(HInstruction * instruction)84   explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) {
85     for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) {
86       saved_core_stack_offsets_[i] = kRegisterNotSaved;
87       saved_fpu_stack_offsets_[i] = kRegisterNotSaved;
88     }
89   }
90 
~SlowPathCode()91   virtual ~SlowPathCode() {}
92 
93   virtual void EmitNativeCode(CodeGenerator* codegen) = 0;
94 
95   // Save live core and floating-point caller-save registers and
96   // update the stack mask in `locations` for registers holding object
97   // references.
98   virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
99   // Restore live core and floating-point caller-save registers.
100   virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
101 
IsCoreRegisterSaved(int reg)102   bool IsCoreRegisterSaved(int reg) const {
103     return saved_core_stack_offsets_[reg] != kRegisterNotSaved;
104   }
105 
IsFpuRegisterSaved(int reg)106   bool IsFpuRegisterSaved(int reg) const {
107     return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved;
108   }
109 
GetStackOffsetOfCoreRegister(int reg)110   uint32_t GetStackOffsetOfCoreRegister(int reg) const {
111     return saved_core_stack_offsets_[reg];
112   }
113 
GetStackOffsetOfFpuRegister(int reg)114   uint32_t GetStackOffsetOfFpuRegister(int reg) const {
115     return saved_fpu_stack_offsets_[reg];
116   }
117 
IsFatal()118   virtual bool IsFatal() const { return false; }
119 
120   virtual const char* GetDescription() const = 0;
121 
GetEntryLabel()122   Label* GetEntryLabel() { return &entry_label_; }
GetExitLabel()123   Label* GetExitLabel() { return &exit_label_; }
124 
GetInstruction()125   HInstruction* GetInstruction() const {
126     return instruction_;
127   }
128 
GetDexPc()129   uint32_t GetDexPc() const {
130     return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc;
131   }
132 
133  protected:
134   static constexpr size_t kMaximumNumberOfExpectedRegisters = 32;
135   static constexpr uint32_t kRegisterNotSaved = -1;
136   // The instruction where this slow path is happening.
137   HInstruction* instruction_;
138   uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters];
139   uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters];
140 
141  private:
142   Label entry_label_;
143   Label exit_label_;
144 
145   DISALLOW_COPY_AND_ASSIGN(SlowPathCode);
146 };
147 
148 class InvokeDexCallingConventionVisitor {
149  public:
150   virtual Location GetNextLocation(DataType::Type type) = 0;
151   virtual Location GetReturnLocation(DataType::Type type) const = 0;
152   virtual Location GetMethodLocation() const = 0;
153 
154  protected:
InvokeDexCallingConventionVisitor()155   InvokeDexCallingConventionVisitor() {}
~InvokeDexCallingConventionVisitor()156   virtual ~InvokeDexCallingConventionVisitor() {}
157 
158   // The current index for core registers.
159   uint32_t gp_index_ = 0u;
160   // The current index for floating-point registers.
161   uint32_t float_index_ = 0u;
162   // The current stack index.
163   uint32_t stack_index_ = 0u;
164 
165  private:
166   DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor);
167 };
168 
169 class FieldAccessCallingConvention {
170  public:
171   virtual Location GetObjectLocation() const = 0;
172   virtual Location GetFieldIndexLocation() const = 0;
173   virtual Location GetReturnLocation(DataType::Type type) const = 0;
174   virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0;
175   virtual Location GetFpuLocation(DataType::Type type) const = 0;
~FieldAccessCallingConvention()176   virtual ~FieldAccessCallingConvention() {}
177 
178  protected:
FieldAccessCallingConvention()179   FieldAccessCallingConvention() {}
180 
181  private:
182   DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention);
183 };
184 
185 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> {
186  public:
187   // Compiles the graph to executable instructions.
188   void Compile(CodeAllocator* allocator);
189   static std::unique_ptr<CodeGenerator> Create(HGraph* graph,
190                                                const CompilerOptions& compiler_options,
191                                                OptimizingCompilerStats* stats = nullptr);
192   virtual ~CodeGenerator();
193 
194   // Get the graph. This is the outermost graph, never the graph of a method being inlined.
GetGraph()195   HGraph* GetGraph() const { return graph_; }
196 
197   HBasicBlock* GetNextBlockToEmit() const;
198   HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const;
199   bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const;
200 
GetStackSlotOfParameter(HParameterValue * parameter)201   size_t GetStackSlotOfParameter(HParameterValue* parameter) const {
202     // Note that this follows the current calling convention.
203     return GetFrameSize()
204         + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet()))  // Art method
205         + parameter->GetIndex() * kVRegSize;
206   }
207 
208   virtual void Initialize() = 0;
209   virtual void Finalize(CodeAllocator* allocator);
210   virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches);
211   virtual bool NeedsThunkCode(const linker::LinkerPatch& patch) const;
212   virtual void EmitThunkCode(const linker::LinkerPatch& patch,
213                              /*out*/ ArenaVector<uint8_t>* code,
214                              /*out*/ std::string* debug_name);
215   virtual void GenerateFrameEntry() = 0;
216   virtual void GenerateFrameExit() = 0;
217   virtual void Bind(HBasicBlock* block) = 0;
218   virtual void MoveConstant(Location destination, int32_t value) = 0;
219   virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0;
220   virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0;
221 
222   virtual Assembler* GetAssembler() = 0;
223   virtual const Assembler& GetAssembler() const = 0;
224   virtual size_t GetWordSize() const = 0;
225   virtual size_t GetFloatingPointSpillSlotSize() const = 0;
226   virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0;
227   void InitializeCodeGeneration(size_t number_of_spill_slots,
228                                 size_t maximum_safepoint_spill_size,
229                                 size_t number_of_out_slots,
230                                 const ArenaVector<HBasicBlock*>& block_order);
231   // Backends can override this as necessary. For most, no special alignment is required.
GetPreferredSlotsAlignment()232   virtual uint32_t GetPreferredSlotsAlignment() const { return 1; }
233 
GetFrameSize()234   uint32_t GetFrameSize() const { return frame_size_; }
SetFrameSize(uint32_t size)235   void SetFrameSize(uint32_t size) { frame_size_ = size; }
GetCoreSpillMask()236   uint32_t GetCoreSpillMask() const { return core_spill_mask_; }
GetFpuSpillMask()237   uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; }
238 
GetNumberOfCoreRegisters()239   size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; }
GetNumberOfFloatingPointRegisters()240   size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; }
241   virtual void SetupBlockedRegisters() const = 0;
242 
ComputeSpillMask()243   virtual void ComputeSpillMask() {
244     core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
245     DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
246     fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
247   }
248 
ComputeRegisterMask(const int * registers,size_t length)249   static uint32_t ComputeRegisterMask(const int* registers, size_t length) {
250     uint32_t mask = 0;
251     for (size_t i = 0, e = length; i < e; ++i) {
252       mask |= (1 << registers[i]);
253     }
254     return mask;
255   }
256 
257   virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0;
258   virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0;
259   virtual InstructionSet GetInstructionSet() const = 0;
260 
GetCompilerOptions()261   const CompilerOptions& GetCompilerOptions() const { return compiler_options_; }
262 
263   // Saves the register in the stack. Returns the size taken on stack.
264   virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
265   // Restores the register from the stack. Returns the size taken on stack.
266   virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
267 
268   virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
269   virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
270 
271   virtual bool NeedsTwoRegisters(DataType::Type type) const = 0;
272   // Returns whether we should split long moves in parallel moves.
ShouldSplitLongMoves()273   virtual bool ShouldSplitLongMoves() const { return false; }
274 
GetNumberOfCoreCalleeSaveRegisters()275   size_t GetNumberOfCoreCalleeSaveRegisters() const {
276     return POPCOUNT(core_callee_save_mask_);
277   }
278 
GetNumberOfCoreCallerSaveRegisters()279   size_t GetNumberOfCoreCallerSaveRegisters() const {
280     DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters());
281     return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters();
282   }
283 
IsCoreCalleeSaveRegister(int reg)284   bool IsCoreCalleeSaveRegister(int reg) const {
285     return (core_callee_save_mask_ & (1 << reg)) != 0;
286   }
287 
IsFloatingPointCalleeSaveRegister(int reg)288   bool IsFloatingPointCalleeSaveRegister(int reg) const {
289     return (fpu_callee_save_mask_ & (1 << reg)) != 0;
290   }
291 
GetSlowPathSpills(LocationSummary * locations,bool core_registers)292   uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const {
293     DCHECK(locations->OnlyCallsOnSlowPath() ||
294            (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() &&
295                !locations->HasCustomSlowPathCallingConvention()));
296     uint32_t live_registers = core_registers
297         ? locations->GetLiveRegisters()->GetCoreRegisters()
298         : locations->GetLiveRegisters()->GetFloatingPointRegisters();
299     if (locations->HasCustomSlowPathCallingConvention()) {
300       // Save only the live registers that the custom calling convention wants us to save.
301       uint32_t caller_saves = core_registers
302           ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters()
303           : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters();
304       return live_registers & caller_saves;
305     } else {
306       // Default ABI, we need to spill non-callee-save live registers.
307       uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_;
308       return live_registers & ~callee_saves;
309     }
310   }
311 
GetNumberOfSlowPathSpills(LocationSummary * locations,bool core_registers)312   size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const {
313     return POPCOUNT(GetSlowPathSpills(locations, core_registers));
314   }
315 
GetStackOffsetOfShouldDeoptimizeFlag()316   size_t GetStackOffsetOfShouldDeoptimizeFlag() const {
317     DCHECK(GetGraph()->HasShouldDeoptimizeFlag());
318     DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize);
319     return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize;
320   }
321 
322   // Record native to dex mapping for a suspend point.  Required by runtime.
323   void RecordPcInfo(HInstruction* instruction,
324                     uint32_t dex_pc,
325                     SlowPathCode* slow_path = nullptr,
326                     bool native_debug_info = false);
327   // Check whether we have already recorded mapping at this PC.
328   bool HasStackMapAtCurrentPc();
329   // Record extra stack maps if we support native debugging.
330   void MaybeRecordNativeDebugInfo(HInstruction* instruction,
331                                   uint32_t dex_pc,
332                                   SlowPathCode* slow_path = nullptr);
333 
334   bool CanMoveNullCheckToUser(HNullCheck* null_check);
335   void MaybeRecordImplicitNullCheck(HInstruction* instruction);
336   LocationSummary* CreateThrowingSlowPathLocations(
337       HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty());
338   void GenerateNullCheck(HNullCheck* null_check);
339   virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0;
340   virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0;
341 
342   // Records a stack map which the runtime might use to set catch phi values
343   // during exception delivery.
344   // TODO: Replace with a catch-entering instruction that records the environment.
345   void RecordCatchBlockInfo();
346 
347   // Get the ScopedArenaAllocator used for codegen memory allocation.
348   ScopedArenaAllocator* GetScopedAllocator();
349 
350   void AddSlowPath(SlowPathCode* slow_path);
351 
352   ScopedArenaVector<uint8_t> BuildStackMaps(const dex::CodeItem* code_item_for_osr_check);
353   size_t GetNumberOfJitRoots() const;
354 
355   // Fills the `literals` array with literals collected during code generation.
356   // Also emits literal patches.
357   void EmitJitRoots(uint8_t* code,
358                     const uint8_t* roots_data,
359                     /*out*/std::vector<Handle<mirror::Object>>* roots)
360       REQUIRES_SHARED(Locks::mutator_lock_);
361 
IsLeafMethod()362   bool IsLeafMethod() const {
363     return is_leaf_;
364   }
365 
MarkNotLeaf()366   void MarkNotLeaf() {
367     is_leaf_ = false;
368     requires_current_method_ = true;
369   }
370 
SetRequiresCurrentMethod()371   void SetRequiresCurrentMethod() {
372     requires_current_method_ = true;
373   }
374 
RequiresCurrentMethod()375   bool RequiresCurrentMethod() const {
376     return requires_current_method_;
377   }
378 
379   // Clears the spill slots taken by loop phis in the `LocationSummary` of the
380   // suspend check. This is called when the code generator generates code
381   // for the suspend check at the back edge (instead of where the suspend check
382   // is, which is the loop entry). At this point, the spill slots for the phis
383   // have not been written to.
384   void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
385                                              HParallelMove* spills) const;
386 
GetBlockedCoreRegisters()387   bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; }
GetBlockedFloatingPointRegisters()388   bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; }
389 
IsBlockedCoreRegister(size_t i)390   bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; }
IsBlockedFloatingPointRegister(size_t i)391   bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; }
392 
393   // Helper that returns the offset of the array's length field.
394   // Note: Besides the normal arrays, we also use the HArrayLength for
395   // accessing the String's `count` field in String intrinsics.
396   static uint32_t GetArrayLengthOffset(HArrayLength* array_length);
397 
398   // Helper that returns the offset of the array's data.
399   // Note: Besides the normal arrays, we also use the HArrayGet for
400   // accessing the String's `value` field in String intrinsics.
401   static uint32_t GetArrayDataOffset(HArrayGet* array_get);
402 
403   void EmitParallelMoves(Location from1,
404                          Location to1,
405                          DataType::Type type1,
406                          Location from2,
407                          Location to2,
408                          DataType::Type type2);
409 
InstanceOfNeedsReadBarrier(HInstanceOf * instance_of)410   static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) {
411     // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck.
412     DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck ||
413            instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck ||
414            instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck ||
415            instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck)
416         << instance_of->GetTypeCheckKind();
417     // If the target class is in the boot image, it's non-moveable and it doesn't matter
418     // if we compare it with a from-space or to-space reference, the result is the same.
419     // It's OK to traverse a class hierarchy jumping between from-space and to-space.
420     return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage();
421   }
422 
ReadBarrierOptionForInstanceOf(HInstanceOf * instance_of)423   static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) {
424     return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier;
425   }
426 
IsTypeCheckSlowPathFatal(HCheckCast * check_cast)427   static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) {
428     switch (check_cast->GetTypeCheckKind()) {
429       case TypeCheckKind::kExactCheck:
430       case TypeCheckKind::kAbstractClassCheck:
431       case TypeCheckKind::kClassHierarchyCheck:
432       case TypeCheckKind::kArrayObjectCheck:
433       case TypeCheckKind::kInterfaceCheck: {
434         bool needs_read_barrier =
435             kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage();
436         // We do not emit read barriers for HCheckCast, so we can get false negatives
437         // and the slow path shall re-check and simply return if the cast is actually OK.
438         return !needs_read_barrier;
439       }
440       case TypeCheckKind::kArrayCheck:
441       case TypeCheckKind::kUnresolvedCheck:
442         return false;
443       case TypeCheckKind::kBitstringCheck:
444         return true;
445     }
446     LOG(FATAL) << "Unreachable";
447     UNREACHABLE();
448   }
449 
GetCheckCastCallKind(HCheckCast * check_cast)450   static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) {
451     return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock())
452         ? LocationSummary::kNoCall  // In fact, call on a fatal (non-returning) slow path.
453         : LocationSummary::kCallOnSlowPath;
454   }
455 
StoreNeedsWriteBarrier(DataType::Type type,HInstruction * value)456   static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) {
457     // Check that null value is not represented as an integer constant.
458     DCHECK(type != DataType::Type::kReference || !value->IsIntConstant());
459     return type == DataType::Type::kReference && !value->IsNullConstant();
460   }
461 
462 
463   // Performs checks pertaining to an InvokeRuntime call.
464   void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
465                              HInstruction* instruction,
466                              SlowPathCode* slow_path);
467 
468   // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call.
469   static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
470                                                           SlowPathCode* slow_path);
471 
AddAllocatedRegister(Location location)472   void AddAllocatedRegister(Location location) {
473     allocated_registers_.Add(location);
474   }
475 
HasAllocatedRegister(bool is_core,int reg)476   bool HasAllocatedRegister(bool is_core, int reg) const {
477     return is_core
478         ? allocated_registers_.ContainsCoreRegister(reg)
479         : allocated_registers_.ContainsFloatingPointRegister(reg);
480   }
481 
482   void AllocateLocations(HInstruction* instruction);
483 
484   // Tells whether the stack frame of the compiled method is
485   // considered "empty", that is either actually having a size of zero,
486   // or just containing the saved return address register.
HasEmptyFrame()487   bool HasEmptyFrame() const {
488     return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0);
489   }
490 
GetInt8ValueOf(HConstant * constant)491   static int8_t GetInt8ValueOf(HConstant* constant) {
492     DCHECK(constant->IsIntConstant());
493     return constant->AsIntConstant()->GetValue();
494   }
495 
GetInt16ValueOf(HConstant * constant)496   static int16_t GetInt16ValueOf(HConstant* constant) {
497     DCHECK(constant->IsIntConstant());
498     return constant->AsIntConstant()->GetValue();
499   }
500 
GetInt32ValueOf(HConstant * constant)501   static int32_t GetInt32ValueOf(HConstant* constant) {
502     if (constant->IsIntConstant()) {
503       return constant->AsIntConstant()->GetValue();
504     } else if (constant->IsNullConstant()) {
505       return 0;
506     } else {
507       DCHECK(constant->IsFloatConstant());
508       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
509     }
510   }
511 
GetInt64ValueOf(HConstant * constant)512   static int64_t GetInt64ValueOf(HConstant* constant) {
513     if (constant->IsIntConstant()) {
514       return constant->AsIntConstant()->GetValue();
515     } else if (constant->IsNullConstant()) {
516       return 0;
517     } else if (constant->IsFloatConstant()) {
518       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
519     } else if (constant->IsLongConstant()) {
520       return constant->AsLongConstant()->GetValue();
521     } else {
522       DCHECK(constant->IsDoubleConstant());
523       return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
524     }
525   }
526 
GetFirstRegisterSlotInSlowPath()527   size_t GetFirstRegisterSlotInSlowPath() const {
528     return first_register_slot_in_slow_path_;
529   }
530 
FrameEntrySpillSize()531   uint32_t FrameEntrySpillSize() const {
532     return GetFpuSpillSize() + GetCoreSpillSize();
533   }
534 
535   virtual ParallelMoveResolver* GetMoveResolver() = 0;
536 
537   static void CreateCommonInvokeLocationSummary(
538       HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor);
539 
540   void GenerateInvokeStaticOrDirectRuntimeCall(
541       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path);
542 
543   void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke);
544 
545   void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke);
546 
547   void GenerateInvokeCustomCall(HInvokeCustom* invoke);
548 
549   void CreateUnresolvedFieldLocationSummary(
550       HInstruction* field_access,
551       DataType::Type field_type,
552       const FieldAccessCallingConvention& calling_convention);
553 
554   void GenerateUnresolvedFieldAccess(
555       HInstruction* field_access,
556       DataType::Type field_type,
557       uint32_t field_index,
558       uint32_t dex_pc,
559       const FieldAccessCallingConvention& calling_convention);
560 
561   static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
562                                                         Location runtime_type_index_location,
563                                                         Location runtime_return_location);
564   void GenerateLoadClassRuntimeCall(HLoadClass* cls);
565 
566   static void CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle* method_handle,
567                                                              Location runtime_handle_index_location,
568                                                              Location runtime_return_location);
569   void GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle);
570 
571   static void CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType* method_type,
572                                                              Location runtime_type_index_location,
573                                                              Location runtime_return_location);
574   void GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type);
575 
576   uint32_t GetBootImageOffset(HLoadClass* load_class);
577   uint32_t GetBootImageOffset(HLoadString* load_string);
578   uint32_t GetBootImageOffset(HInvokeStaticOrDirect* invoke);
579 
580   static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke);
581 
SetDisassemblyInformation(DisassemblyInformation * info)582   void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; }
GetDisassemblyInformation()583   DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; }
584 
585   virtual void InvokeRuntime(QuickEntrypointEnum entrypoint,
586                              HInstruction* instruction,
587                              uint32_t dex_pc,
588                              SlowPathCode* slow_path = nullptr) = 0;
589 
590   // Check if the desired_string_load_kind is supported. If it is, return it,
591   // otherwise return a fall-back kind that should be used instead.
592   virtual HLoadString::LoadKind GetSupportedLoadStringKind(
593       HLoadString::LoadKind desired_string_load_kind) = 0;
594 
595   // Check if the desired_class_load_kind is supported. If it is, return it,
596   // otherwise return a fall-back kind that should be used instead.
597   virtual HLoadClass::LoadKind GetSupportedLoadClassKind(
598       HLoadClass::LoadKind desired_class_load_kind) = 0;
599 
GetLoadStringCallKind(HLoadString * load)600   static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) {
601     switch (load->GetLoadKind()) {
602       case HLoadString::LoadKind::kBssEntry:
603         DCHECK(load->NeedsEnvironment());
604         return LocationSummary::kCallOnSlowPath;
605       case HLoadString::LoadKind::kRuntimeCall:
606         DCHECK(load->NeedsEnvironment());
607         return LocationSummary::kCallOnMainOnly;
608       case HLoadString::LoadKind::kJitTableAddress:
609         DCHECK(!load->NeedsEnvironment());
610         return kEmitCompilerReadBarrier
611             ? LocationSummary::kCallOnSlowPath
612             : LocationSummary::kNoCall;
613         break;
614       default:
615         DCHECK(!load->NeedsEnvironment());
616         return LocationSummary::kNoCall;
617     }
618   }
619 
620   // Check if the desired_dispatch_info is supported. If it is, return it,
621   // otherwise return a fall-back info that should be used instead.
622   virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
623       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
624       ArtMethod* method) = 0;
625 
626   // Generate a call to a static or direct method.
627   virtual void GenerateStaticOrDirectCall(
628       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
629   // Generate a call to a virtual method.
630   virtual void GenerateVirtualCall(
631       HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
632 
633   // Copy the result of a call into the given target.
634   virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0;
635 
636   virtual void GenerateNop() = 0;
637 
638   static QuickEntrypointEnum GetArrayAllocationEntrypoint(HNewArray* new_array);
639 
640  protected:
641   // Patch info used for recording locations of required linker patches and their targets,
642   // i.e. target method, string, type or code identified by their dex file and index,
643   // or .data.bimg.rel.ro entries identified by the boot image offset.
644   template <typename LabelType>
645   struct PatchInfo {
PatchInfoPatchInfo646     PatchInfo(const DexFile* dex_file, uint32_t off_or_idx)
647         : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { }
648 
649     // Target dex file or null for .data.bmig.rel.ro patches.
650     const DexFile* target_dex_file;
651     // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index.
652     uint32_t offset_or_index;
653     // Label for the instruction to patch.
654     LabelType label;
655   };
656 
657   CodeGenerator(HGraph* graph,
658                 size_t number_of_core_registers,
659                 size_t number_of_fpu_registers,
660                 size_t number_of_register_pairs,
661                 uint32_t core_callee_save_mask,
662                 uint32_t fpu_callee_save_mask,
663                 const CompilerOptions& compiler_options,
664                 OptimizingCompilerStats* stats);
665 
666   virtual HGraphVisitor* GetLocationBuilder() = 0;
667   virtual HGraphVisitor* GetInstructionVisitor() = 0;
668 
669   // Returns the location of the first spilled entry for floating point registers,
670   // relative to the stack pointer.
GetFpuSpillStart()671   uint32_t GetFpuSpillStart() const {
672     return GetFrameSize() - FrameEntrySpillSize();
673   }
674 
GetFpuSpillSize()675   uint32_t GetFpuSpillSize() const {
676     return POPCOUNT(fpu_spill_mask_) * GetFloatingPointSpillSlotSize();
677   }
678 
GetCoreSpillSize()679   uint32_t GetCoreSpillSize() const {
680     return POPCOUNT(core_spill_mask_) * GetWordSize();
681   }
682 
HasAllocatedCalleeSaveRegisters()683   virtual bool HasAllocatedCalleeSaveRegisters() const {
684     // We check the core registers against 1 because it always comprises the return PC.
685     return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1)
686       || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0);
687   }
688 
CallPushesPC()689   bool CallPushesPC() const {
690     InstructionSet instruction_set = GetInstructionSet();
691     return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64;
692   }
693 
694   // Arm64 has its own type for a label, so we need to templatize these methods
695   // to share the logic.
696 
697   template <typename LabelType>
CommonInitializeLabels()698   LabelType* CommonInitializeLabels() {
699     // We use raw array allocations instead of ArenaVector<> because Labels are
700     // non-constructible and non-movable and as such cannot be held in a vector.
701     size_t size = GetGraph()->GetBlocks().size();
702     LabelType* labels =
703         GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator);
704     for (size_t i = 0; i != size; ++i) {
705       new(labels + i) LabelType();
706     }
707     return labels;
708   }
709 
710   template <typename LabelType>
CommonGetLabelOf(LabelType * raw_pointer_to_labels_array,HBasicBlock * block)711   LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const {
712     block = FirstNonEmptyBlock(block);
713     return raw_pointer_to_labels_array + block->GetBlockId();
714   }
715 
GetCurrentSlowPath()716   SlowPathCode* GetCurrentSlowPath() {
717     return current_slow_path_;
718   }
719 
720   StackMapStream* GetStackMapStream();
721 
722   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string);
723   uint64_t GetJitStringRootIndex(StringReference string_reference);
724   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass);
725   uint64_t GetJitClassRootIndex(TypeReference type_reference);
726 
727   // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code.
728   virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data);
729 
730   // Frame size required for this method.
731   uint32_t frame_size_;
732   uint32_t core_spill_mask_;
733   uint32_t fpu_spill_mask_;
734   uint32_t first_register_slot_in_slow_path_;
735 
736   // Registers that were allocated during linear scan.
737   RegisterSet allocated_registers_;
738 
739   // Arrays used when doing register allocation to know which
740   // registers we can allocate. `SetupBlockedRegisters` updates the
741   // arrays.
742   bool* const blocked_core_registers_;
743   bool* const blocked_fpu_registers_;
744   size_t number_of_core_registers_;
745   size_t number_of_fpu_registers_;
746   size_t number_of_register_pairs_;
747   const uint32_t core_callee_save_mask_;
748   const uint32_t fpu_callee_save_mask_;
749 
750   // The order to use for code generation.
751   const ArenaVector<HBasicBlock*>* block_order_;
752 
753   DisassemblyInformation* disasm_info_;
754 
755  private:
756   class CodeGenerationData;
757 
758   void InitializeCodeGenerationData();
759   size_t GetStackOffsetOfSavedRegister(size_t index);
760   void GenerateSlowPaths();
761   void BlockIfInRegister(Location location, bool is_out = false) const;
762   void EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path);
763 
764   OptimizingCompilerStats* stats_;
765 
766   HGraph* const graph_;
767   const CompilerOptions& compiler_options_;
768 
769   // The current slow-path that we're generating code for.
770   SlowPathCode* current_slow_path_;
771 
772   // The current block index in `block_order_` of the block
773   // we are generating code for.
774   size_t current_block_index_;
775 
776   // Whether the method is a leaf method.
777   bool is_leaf_;
778 
779   // Whether an instruction in the graph accesses the current method.
780   // TODO: Rename: this actually indicates that some instruction in the method
781   // needs the environment including a valid stack frame.
782   bool requires_current_method_;
783 
784   // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the
785   // ArenaStack memory allocated in previous passes instead of adding to the memory
786   // held by the ArenaAllocator. This ScopedArenaAllocator is created in
787   // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed.
788   std::unique_ptr<CodeGenerationData> code_generation_data_;
789 
790   friend class OptimizingCFITest;
791 
792   DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
793 };
794 
795 template <typename C, typename F>
796 class CallingConvention {
797  public:
CallingConvention(const C * registers,size_t number_of_registers,const F * fpu_registers,size_t number_of_fpu_registers,PointerSize pointer_size)798   CallingConvention(const C* registers,
799                     size_t number_of_registers,
800                     const F* fpu_registers,
801                     size_t number_of_fpu_registers,
802                     PointerSize pointer_size)
803       : registers_(registers),
804         number_of_registers_(number_of_registers),
805         fpu_registers_(fpu_registers),
806         number_of_fpu_registers_(number_of_fpu_registers),
807         pointer_size_(pointer_size) {}
808 
GetNumberOfRegisters()809   size_t GetNumberOfRegisters() const { return number_of_registers_; }
GetNumberOfFpuRegisters()810   size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; }
811 
GetRegisterAt(size_t index)812   C GetRegisterAt(size_t index) const {
813     DCHECK_LT(index, number_of_registers_);
814     return registers_[index];
815   }
816 
GetFpuRegisterAt(size_t index)817   F GetFpuRegisterAt(size_t index) const {
818     DCHECK_LT(index, number_of_fpu_registers_);
819     return fpu_registers_[index];
820   }
821 
GetStackOffsetOf(size_t index)822   size_t GetStackOffsetOf(size_t index) const {
823     // We still reserve the space for parameters passed by registers.
824     // Add space for the method pointer.
825     return static_cast<size_t>(pointer_size_) + index * kVRegSize;
826   }
827 
828  private:
829   const C* registers_;
830   const size_t number_of_registers_;
831   const F* fpu_registers_;
832   const size_t number_of_fpu_registers_;
833   const PointerSize pointer_size_;
834 
835   DISALLOW_COPY_AND_ASSIGN(CallingConvention);
836 };
837 
838 /**
839  * A templated class SlowPathGenerator with a templated method NewSlowPath()
840  * that can be used by any code generator to share equivalent slow-paths with
841  * the objective of reducing generated code size.
842  *
843  * InstructionType:  instruction that requires SlowPathCodeType
844  * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *)
845  */
846 template <typename InstructionType>
847 class SlowPathGenerator {
848   static_assert(std::is_base_of<HInstruction, InstructionType>::value,
849                 "InstructionType is not a subclass of art::HInstruction");
850 
851  public:
SlowPathGenerator(HGraph * graph,CodeGenerator * codegen)852   SlowPathGenerator(HGraph* graph, CodeGenerator* codegen)
853       : graph_(graph),
854         codegen_(codegen),
855         slow_path_map_(std::less<uint32_t>(),
856                        graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {}
857 
858   // Creates and adds a new slow-path, if needed, or returns existing one otherwise.
859   // Templating the method (rather than the whole class) on the slow-path type enables
860   // keeping this code at a generic, non architecture-specific place.
861   //
862   // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType.
863   //       To relax this requirement, we would need some RTTI on the stored slow-paths,
864   //       or template the class as a whole on SlowPathType.
865   template <typename SlowPathCodeType>
NewSlowPath(InstructionType * instruction)866   SlowPathCodeType* NewSlowPath(InstructionType* instruction) {
867     static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value,
868                   "SlowPathCodeType is not a subclass of art::SlowPathCode");
869     static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value,
870                   "SlowPathCodeType is not constructible from InstructionType*");
871     // Iterate over potential candidates for sharing. Currently, only same-typed
872     // slow-paths with exactly the same dex-pc are viable candidates.
873     // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing?
874     const uint32_t dex_pc = instruction->GetDexPc();
875     auto iter = slow_path_map_.find(dex_pc);
876     if (iter != slow_path_map_.end()) {
877       const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second;
878       for (const auto& it : candidates) {
879         InstructionType* other_instruction = it.first;
880         SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second);
881         // Determine if the instructions allow for slow-path sharing.
882         if (HaveSameLiveRegisters(instruction, other_instruction) &&
883             HaveSameStackMap(instruction, other_instruction)) {
884           // Can share: reuse existing one.
885           return other_slow_path;
886         }
887       }
888     } else {
889       // First time this dex-pc is seen.
890       iter = slow_path_map_.Put(dex_pc,
891                                 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}});
892     }
893     // Cannot share: create and add new slow-path for this particular dex-pc.
894     SlowPathCodeType* slow_path =
895         new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction);
896     iter->second.emplace_back(std::make_pair(instruction, slow_path));
897     codegen_->AddSlowPath(slow_path);
898     return slow_path;
899   }
900 
901  private:
902   // Tests if both instructions have same set of live physical registers. This ensures
903   // the slow-path has exactly the same preamble on saving these registers to stack.
HaveSameLiveRegisters(const InstructionType * i1,const InstructionType * i2)904   bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const {
905     const uint32_t core_spill = ~codegen_->GetCoreSpillMask();
906     const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask();
907     RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters();
908     RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters();
909     return (((live1->GetCoreRegisters() & core_spill) ==
910              (live2->GetCoreRegisters() & core_spill)) &&
911             ((live1->GetFloatingPointRegisters() & fpu_spill) ==
912              (live2->GetFloatingPointRegisters() & fpu_spill)));
913   }
914 
915   // Tests if both instructions have the same stack map. This ensures the interpreter
916   // will find exactly the same dex-registers at the same entries.
HaveSameStackMap(const InstructionType * i1,const InstructionType * i2)917   bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const {
918     DCHECK(i1->HasEnvironment());
919     DCHECK(i2->HasEnvironment());
920     // We conservatively test if the two instructions find exactly the same instructions
921     // and location in each dex-register. This guarantees they will have the same stack map.
922     HEnvironment* e1 = i1->GetEnvironment();
923     HEnvironment* e2 = i2->GetEnvironment();
924     if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) {
925       return false;
926     }
927     for (size_t i = 0, sz = e1->Size(); i < sz; ++i) {
928       if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) ||
929           !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) {
930         return false;
931       }
932     }
933     return true;
934   }
935 
936   HGraph* const graph_;
937   CodeGenerator* const codegen_;
938 
939   // Map from dex-pc to vector of already existing instruction/slow-path pairs.
940   ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_;
941 
942   DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator);
943 };
944 
945 class InstructionCodeGenerator : public HGraphVisitor {
946  public:
InstructionCodeGenerator(HGraph * graph,CodeGenerator * codegen)947   InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen)
948       : HGraphVisitor(graph),
949         deopt_slow_paths_(graph, codegen) {}
950 
951  protected:
952   // Add slow-path generator for each instruction/slow-path combination that desires sharing.
953   // TODO: under current regime, only deopt sharing make sense; extend later.
954   SlowPathGenerator<HDeoptimize> deopt_slow_paths_;
955 };
956 
957 }  // namespace art
958 
959 #endif  // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
960