1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #ifndef DEX_BUILDER_H_
17 #define DEX_BUILDER_H_
18
19 #include <array>
20 #include <forward_list>
21 #include <map>
22 #include <optional>
23 #include <string>
24 #include <unordered_map>
25 #include <vector>
26
27 #include "dex/dex_instruction.h"
28 #include "slicer/dex_ir.h"
29 #include "slicer/writer.h"
30
31 namespace startop {
32 namespace dex {
33
34 // TODO: remove this once the dex generation code is complete.
35 void WriteTestDexFile(const std::string& filename);
36
37 //////////////////////////
38 // Forward declarations //
39 //////////////////////////
40 class DexBuilder;
41
42 // Our custom allocator for dex::Writer
43 //
44 // This keeps track of all allocations and ensures they are freed when
45 // TrackingAllocator is destroyed. Pointers to memory allocated by this
46 // allocator must not outlive the allocator.
47 class TrackingAllocator : public ::dex::Writer::Allocator {
48 public:
49 virtual void* Allocate(size_t size);
50 virtual void Free(void* ptr);
51
52 private:
53 std::unordered_map<void*, std::unique_ptr<uint8_t[]>> allocations_;
54 };
55
56 // Represents a DEX type descriptor.
57 //
58 // TODO: add a way to create a descriptor for a reference of a class type.
59 class TypeDescriptor {
60 public:
61 // Named constructors for base type descriptors.
62 static const TypeDescriptor Int();
63 static const TypeDescriptor Void();
64
65 // Creates a type descriptor from a fully-qualified class name. For example, it turns the class
66 // name java.lang.Object into the descriptor Ljava/lang/Object.
67 static TypeDescriptor FromClassname(const std::string& name);
68
69 // Return the full descriptor, such as I or Ljava/lang/Object
descriptor()70 const std::string& descriptor() const { return descriptor_; }
71 // Return the shorty descriptor, such as I or L
short_descriptor()72 std::string short_descriptor() const { return descriptor().substr(0, 1); }
73
is_object()74 bool is_object() const { return short_descriptor() == "L"; }
75
76 bool operator<(const TypeDescriptor& rhs) const { return descriptor_ < rhs.descriptor_; }
77
78 private:
TypeDescriptor(std::string descriptor)79 explicit TypeDescriptor(std::string descriptor) : descriptor_{descriptor} {}
80
81 const std::string descriptor_;
82 };
83
84 // Defines a function signature. For example, Prototype{TypeDescriptor::VOID, TypeDescriptor::Int}
85 // represents the function type (Int) -> Void.
86 class Prototype {
87 public:
88 template <typename... TypeDescriptors>
Prototype(TypeDescriptor return_type,TypeDescriptors...param_types)89 explicit Prototype(TypeDescriptor return_type, TypeDescriptors... param_types)
90 : return_type_{return_type}, param_types_{param_types...} {}
91
92 // Encode this prototype into the dex file.
93 ir::Proto* Encode(DexBuilder* dex) const;
94
95 // Get the shorty descriptor, such as VII for (Int, Int) -> Void
96 std::string Shorty() const;
97
98 const TypeDescriptor& ArgType(size_t index) const;
99
100 bool operator<(const Prototype& rhs) const {
101 return std::make_tuple(return_type_, param_types_) <
102 std::make_tuple(rhs.return_type_, rhs.param_types_);
103 }
104
105 private:
106 const TypeDescriptor return_type_;
107 const std::vector<TypeDescriptor> param_types_;
108 };
109
110 // Represents a DEX register or constant. We separate regular registers and parameters
111 // because we will not know the real parameter id until after all instructions
112 // have been generated.
113 class Value {
114 public:
Local(size_t id)115 static constexpr Value Local(size_t id) { return Value{id, Kind::kLocalRegister}; }
Parameter(size_t id)116 static constexpr Value Parameter(size_t id) { return Value{id, Kind::kParameter}; }
Immediate(size_t value)117 static constexpr Value Immediate(size_t value) { return Value{value, Kind::kImmediate}; }
String(size_t value)118 static constexpr Value String(size_t value) { return Value{value, Kind::kString}; }
Label(size_t id)119 static constexpr Value Label(size_t id) { return Value{id, Kind::kLabel}; }
Type(size_t id)120 static constexpr Value Type(size_t id) { return Value{id, Kind::kType}; }
121
is_register()122 bool is_register() const { return kind_ == Kind::kLocalRegister; }
is_parameter()123 bool is_parameter() const { return kind_ == Kind::kParameter; }
is_variable()124 bool is_variable() const { return is_register() || is_parameter(); }
is_immediate()125 bool is_immediate() const { return kind_ == Kind::kImmediate; }
is_string()126 bool is_string() const { return kind_ == Kind::kString; }
is_label()127 bool is_label() const { return kind_ == Kind::kLabel; }
is_type()128 bool is_type() const { return kind_ == Kind::kType; }
129
value()130 size_t value() const { return value_; }
131
Value()132 constexpr Value() : value_{0}, kind_{Kind::kInvalid} {}
133
134 private:
135 enum class Kind { kInvalid, kLocalRegister, kParameter, kImmediate, kString, kLabel, kType };
136
137 size_t value_;
138 Kind kind_;
139
Value(size_t value,Kind kind)140 constexpr Value(size_t value, Kind kind) : value_{value}, kind_{kind} {}
141 };
142
143 // A virtual instruction. We convert these to real instructions in MethodBuilder::Encode.
144 // Virtual instructions are needed to keep track of information that is not known until all of the
145 // code is generated. This information includes things like how many local registers are created and
146 // branch target locations.
147 class Instruction {
148 public:
149 // The operation performed by this instruction. These are virtual instructions that do not
150 // correspond exactly to DEX instructions.
151 enum class Op {
152 kBindLabel,
153 kBranchEqz,
154 kBranchNEqz,
155 kCheckCast,
156 kInvokeDirect,
157 kInvokeInterface,
158 kInvokeStatic,
159 kInvokeVirtual,
160 kMove,
161 kMoveObject,
162 kNew,
163 kReturn,
164 kReturnObject,
165 };
166
167 ////////////////////////
168 // Named Constructors //
169 ////////////////////////
170
171 // For instructions with no return value and no arguments.
OpNoArgs(Op opcode)172 static inline Instruction OpNoArgs(Op opcode) {
173 return Instruction{opcode, /*method_id*/ 0, /*dest*/ {}};
174 }
175 // For most instructions, which take some number of arguments and have an optional return value.
176 template <typename... T>
OpWithArgs(Op opcode,std::optional<const Value> dest,T...args)177 static inline Instruction OpWithArgs(Op opcode, std::optional<const Value> dest, T... args) {
178 return Instruction{opcode, /*method_id=*/0, /*result_is_object=*/false, dest, args...};
179 }
180
181 // A cast instruction. Basically, `(type)val`
Cast(Value val,Value type)182 static inline Instruction Cast(Value val, Value type) {
183 CHECK(type.is_type());
184 return OpWithArgs(Op::kCheckCast, val, type);
185 }
186
187 // For method calls.
188 template <typename... T>
InvokeVirtual(size_t method_id,std::optional<const Value> dest,Value this_arg,T...args)189 static inline Instruction InvokeVirtual(size_t method_id, std::optional<const Value> dest,
190 Value this_arg, T... args) {
191 return Instruction{
192 Op::kInvokeVirtual, method_id, /*result_is_object=*/false, dest, this_arg, args...};
193 }
194 // Returns an object
195 template <typename... T>
InvokeVirtualObject(size_t method_id,std::optional<const Value> dest,Value this_arg,T...args)196 static inline Instruction InvokeVirtualObject(size_t method_id, std::optional<const Value> dest,
197 Value this_arg, T... args) {
198 return Instruction{
199 Op::kInvokeVirtual, method_id, /*result_is_object=*/true, dest, this_arg, args...};
200 }
201 // For direct calls (basically, constructors).
202 template <typename... T>
InvokeDirect(size_t method_id,std::optional<const Value> dest,Value this_arg,T...args)203 static inline Instruction InvokeDirect(size_t method_id, std::optional<const Value> dest,
204 Value this_arg, T... args) {
205 return Instruction{
206 Op::kInvokeDirect, method_id, /*result_is_object=*/false, dest, this_arg, args...};
207 }
208 // Returns an object
209 template <typename... T>
InvokeDirectObject(size_t method_id,std::optional<const Value> dest,Value this_arg,T...args)210 static inline Instruction InvokeDirectObject(size_t method_id, std::optional<const Value> dest,
211 Value this_arg, T... args) {
212 return Instruction{
213 Op::kInvokeDirect, method_id, /*result_is_object=*/true, dest, this_arg, args...};
214 }
215 // For static calls.
216 template <typename... T>
InvokeStatic(size_t method_id,std::optional<const Value> dest,T...args)217 static inline Instruction InvokeStatic(size_t method_id, std::optional<const Value> dest,
218 T... args) {
219 return Instruction{Op::kInvokeStatic, method_id, /*result_is_object=*/false, dest, args...};
220 }
221 // Returns an object
222 template <typename... T>
InvokeStaticObject(size_t method_id,std::optional<const Value> dest,T...args)223 static inline Instruction InvokeStaticObject(size_t method_id, std::optional<const Value> dest,
224 T... args) {
225 return Instruction{Op::kInvokeStatic, method_id, /*result_is_object=*/true, dest, args...};
226 }
227 // For static calls.
228 template <typename... T>
InvokeInterface(size_t method_id,std::optional<const Value> dest,T...args)229 static inline Instruction InvokeInterface(size_t method_id, std::optional<const Value> dest,
230 T... args) {
231 return Instruction{Op::kInvokeInterface, method_id, /*result_is_object=*/false, dest, args...};
232 }
233
234 ///////////////
235 // Accessors //
236 ///////////////
237
opcode()238 Op opcode() const { return opcode_; }
method_id()239 size_t method_id() const { return method_id_; }
result_is_object()240 bool result_is_object() const { return result_is_object_; }
dest()241 const std::optional<const Value>& dest() const { return dest_; }
args()242 const std::vector<const Value>& args() const { return args_; }
243
244 private:
Instruction(Op opcode,size_t method_id,std::optional<const Value> dest)245 inline Instruction(Op opcode, size_t method_id, std::optional<const Value> dest)
246 : opcode_{opcode}, method_id_{method_id}, result_is_object_{false}, dest_{dest}, args_{} {}
247
248 template <typename... T>
Instruction(Op opcode,size_t method_id,bool result_is_object,std::optional<const Value> dest,T...args)249 inline constexpr Instruction(Op opcode, size_t method_id, bool result_is_object,
250 std::optional<const Value> dest, T... args)
251 : opcode_{opcode},
252 method_id_{method_id},
253 result_is_object_{result_is_object},
254 dest_{dest},
255 args_{args...} {}
256
257 const Op opcode_;
258 // The index of the method to invoke, for kInvokeVirtual and similar opcodes.
259 const size_t method_id_{0};
260 const bool result_is_object_;
261 const std::optional<const Value> dest_;
262 const std::vector<const Value> args_;
263 };
264
265 // Needed for CHECK_EQ, DCHECK_EQ, etc.
266 std::ostream& operator<<(std::ostream& out, const Instruction::Op& opcode);
267
268 // Keeps track of information needed to manipulate or call a method.
269 struct MethodDeclData {
270 size_t id;
271 ir::MethodDecl* decl;
272 };
273
274 // Tools to help build methods and their bodies.
275 class MethodBuilder {
276 public:
277 MethodBuilder(DexBuilder* dex, ir::Class* class_def, ir::MethodDecl* decl);
278
279 // Encode the method into DEX format.
280 ir::EncodedMethod* Encode();
281
282 // Create a new register to be used to storing values. Note that these are not SSA registers, like
283 // might be expected in similar code generators. This does no liveness tracking or anything, so
284 // it's up to the caller to reuse registers as appropriate.
285 Value MakeRegister();
286
287 Value MakeLabel();
288
289 /////////////////////////////////
290 // Instruction builder methods //
291 /////////////////////////////////
292
293 void AddInstruction(Instruction instruction);
294
295 // return-void
296 void BuildReturn();
297 void BuildReturn(Value src, bool is_object = false);
298 // const/4
299 void BuildConst4(Value target, int value);
300 void BuildConstString(Value target, const std::string& value);
301 template <typename... T>
302 void BuildNew(Value target, TypeDescriptor type, Prototype constructor, T... args);
303
304 // TODO: add builders for more instructions
305
dex_file()306 DexBuilder* dex_file() const { return dex_; }
307
308 private:
309 void EncodeInstructions();
310 void EncodeInstruction(const Instruction& instruction);
311
312 // Encodes a return instruction. For instructions with no return value, the opcode field is
313 // ignored. Otherwise, this specifies which return instruction will be used (return,
314 // return-object, etc.)
315 void EncodeReturn(const Instruction& instruction, ::art::Instruction::Code opcode);
316
317 void EncodeMove(const Instruction& instruction);
318 void EncodeInvoke(const Instruction& instruction, ::art::Instruction::Code opcode);
319 void EncodeBranch(art::Instruction::Code op, const Instruction& instruction);
320 void EncodeNew(const Instruction& instruction);
321 void EncodeCast(const Instruction& instruction);
322
323 // Low-level instruction format encoding. See
324 // https://source.android.com/devices/tech/dalvik/instruction-formats for documentation of
325 // formats.
326
Encode10x(art::Instruction::Code opcode)327 inline void Encode10x(art::Instruction::Code opcode) {
328 // 00|op
329 buffer_.push_back(opcode);
330 }
331
Encode11x(art::Instruction::Code opcode,uint8_t a)332 inline void Encode11x(art::Instruction::Code opcode, uint8_t a) {
333 // aa|op
334 buffer_.push_back((a << 8) | opcode);
335 }
336
Encode11n(art::Instruction::Code opcode,uint8_t a,int8_t b)337 inline void Encode11n(art::Instruction::Code opcode, uint8_t a, int8_t b) {
338 // b|a|op
339
340 // Make sure the fields are in bounds (4 bits for a, 4 bits for b).
341 CHECK_LT(a, 16);
342 CHECK_LE(-8, b);
343 CHECK_LT(b, 8);
344
345 buffer_.push_back(((b & 0xf) << 12) | (a << 8) | opcode);
346 }
347
Encode21c(art::Instruction::Code opcode,uint8_t a,uint16_t b)348 inline void Encode21c(art::Instruction::Code opcode, uint8_t a, uint16_t b) {
349 // aa|op|bbbb
350 buffer_.push_back((a << 8) | opcode);
351 buffer_.push_back(b);
352 }
353
Encode32x(art::Instruction::Code opcode,uint16_t a,uint16_t b)354 inline void Encode32x(art::Instruction::Code opcode, uint16_t a, uint16_t b) {
355 buffer_.push_back(opcode);
356 buffer_.push_back(a);
357 buffer_.push_back(b);
358 }
359
Encode35c(art::Instruction::Code opcode,size_t a,uint16_t b,uint8_t c,uint8_t d,uint8_t e,uint8_t f,uint8_t g)360 inline void Encode35c(art::Instruction::Code opcode, size_t a, uint16_t b, uint8_t c, uint8_t d,
361 uint8_t e, uint8_t f, uint8_t g) {
362 // a|g|op|bbbb|f|e|d|c
363
364 CHECK_LE(a, 5);
365 CHECK(IsShortRegister(c));
366 CHECK(IsShortRegister(d));
367 CHECK(IsShortRegister(e));
368 CHECK(IsShortRegister(f));
369 CHECK(IsShortRegister(g));
370 buffer_.push_back((a << 12) | (g << 8) | opcode);
371 buffer_.push_back(b);
372 buffer_.push_back((f << 12) | (e << 8) | (d << 4) | c);
373 }
374
Encode3rc(art::Instruction::Code opcode,size_t a,uint16_t b,uint16_t c)375 inline void Encode3rc(art::Instruction::Code opcode, size_t a, uint16_t b, uint16_t c) {
376 CHECK_LE(a, 255);
377 buffer_.push_back((a << 8) | opcode);
378 buffer_.push_back(b);
379 buffer_.push_back(c);
380 }
381
IsShortRegister(size_t register_value)382 static constexpr bool IsShortRegister(size_t register_value) { return register_value < 16; }
383
384 // Returns an array of num_regs scratch registers. These are guaranteed to be
385 // contiguous, so they are suitable for the invoke-*/range instructions.
386 template <int num_regs>
GetScratchRegisters()387 std::array<Value, num_regs> GetScratchRegisters() const {
388 static_assert(num_regs <= kMaxScratchRegisters);
389 std::array<Value, num_regs> regs;
390 for (size_t i = 0; i < num_regs; ++i) {
391 regs[i] = std::move(Value::Local(num_registers_ + i));
392 }
393 return regs;
394 }
395
396 // Converts a register or parameter to its DEX register number.
397 size_t RegisterValue(const Value& value) const;
398
399 // Sets a label's address to the current position in the instruction buffer. If there are any
400 // forward references to the label, this function will back-patch them.
401 void BindLabel(const Value& label);
402
403 // Returns the offset of the label relative to the given instruction offset. If the label is not
404 // bound, a reference will be saved and it will automatically be patched when the label is bound.
405 ::dex::u2 LabelValue(const Value& label, size_t instruction_offset, size_t field_offset);
406
407 DexBuilder* dex_;
408 ir::Class* class_;
409 ir::MethodDecl* decl_;
410
411 // A list of the instructions we will eventually encode.
412 std::vector<Instruction> instructions_;
413
414 // A buffer to hold instructions that have been encoded.
415 std::vector<::dex::u2> buffer_;
416
417 // We create some scratch registers for when we have to shuffle registers
418 // around to make legal DEX code.
419 static constexpr size_t kMaxScratchRegisters = 5;
420
421 // How many registers we've allocated
422 size_t num_registers_{0};
423
424 // Stores information needed to back-patch a label once it is bound. We need to know the start of
425 // the instruction that refers to the label, and the offset to where the actual label value should
426 // go.
427 struct LabelReference {
428 size_t instruction_offset;
429 size_t field_offset;
430 };
431
432 struct LabelData {
433 std::optional<size_t> bound_address;
434 std::forward_list<LabelReference> references;
435 };
436
437 std::vector<LabelData> labels_;
438
439 // During encoding, keep track of the largest number of arguments needed, so we can use it for our
440 // outs count
441 size_t max_args_{0};
442 };
443
444 // A helper to build class definitions.
445 class ClassBuilder {
446 public:
447 ClassBuilder(DexBuilder* parent, const std::string& name, ir::Class* class_def);
448
449 void set_source_file(const std::string& source);
450
451 // Create a method with the given name and prototype. The returned MethodBuilder can be used to
452 // fill in the method body.
453 MethodBuilder CreateMethod(const std::string& name, Prototype prototype);
454
455 private:
456 DexBuilder* const parent_;
457 const TypeDescriptor type_descriptor_;
458 ir::Class* const class_;
459 };
460
461 // Builds Dex files from scratch.
462 class DexBuilder {
463 public:
464 DexBuilder();
465
466 // Create an in-memory image of the DEX file that can either be loaded directly or written to a
467 // file.
468 slicer::MemView CreateImage();
469
470 template <typename T>
Alloc()471 T* Alloc() {
472 return dex_file_->Alloc<T>();
473 }
474
475 // Find the ir::String that matches the given string, creating it if it does not exist.
476 ir::String* GetOrAddString(const std::string& string);
477 // Create a new class of the given name.
478 ClassBuilder MakeClass(const std::string& name);
479
480 // Add a type for the given descriptor, or return the existing one if it already exists.
481 // See the TypeDescriptor class for help generating these. GetOrAddType can be used to declare
482 // imported classes.
483 ir::Type* GetOrAddType(const std::string& descriptor);
484
485 // Returns the method id for the method, creating it if it has not been created yet.
486 const MethodDeclData& GetOrDeclareMethod(TypeDescriptor type, const std::string& name,
487 Prototype prototype);
488
489 std::optional<const Prototype> GetPrototypeByMethodId(size_t method_id) const;
490
491 private:
492 // Looks up the ir::Proto* corresponding to this given prototype, or creates one if it does not
493 // exist.
494 ir::Proto* GetOrEncodeProto(Prototype prototype);
495
496 std::shared_ptr<ir::DexFile> dex_file_;
497
498 // allocator_ is needed to be able to encode the image.
499 TrackingAllocator allocator_;
500
501 // We'll need to allocate buffers for all of the encoded strings we create. This is where we store
502 // all of them.
503 std::vector<std::unique_ptr<uint8_t[]>> string_data_;
504
505 // Keep track of what types we've defined so we can look them up later.
506 std::unordered_map<std::string, ir::Type*> types_by_descriptor_;
507
508 struct MethodDescriptor {
509 TypeDescriptor type;
510 std::string name;
511 Prototype prototype;
512
513 inline bool operator<(const MethodDescriptor& rhs) const {
514 return std::make_tuple(type, name, prototype) <
515 std::make_tuple(rhs.type, rhs.name, rhs.prototype);
516 }
517 };
518
519 // Maps method declarations to their method index. This is needed to encode references to them.
520 // When we go to actually write the DEX file, slicer will re-assign these after correctly sorting
521 // the methods list.
522 std::map<MethodDescriptor, MethodDeclData> method_id_map_;
523
524 // Keep track of what strings we've defined so we can look them up later.
525 std::unordered_map<std::string, ir::String*> strings_;
526
527 // Keep track of already-encoded protos.
528 std::map<Prototype, ir::Proto*> proto_map_;
529 };
530
531 template <typename... T>
BuildNew(Value target,TypeDescriptor type,Prototype constructor,T...args)532 void MethodBuilder::BuildNew(Value target, TypeDescriptor type, Prototype constructor, T... args) {
533 MethodDeclData constructor_data{dex_->GetOrDeclareMethod(type, "<init>", constructor)};
534 // allocate the object
535 ir::Type* type_def = dex_->GetOrAddType(type.descriptor());
536 AddInstruction(
537 Instruction::OpWithArgs(Instruction::Op::kNew, target, Value::Type(type_def->orig_index)));
538 // call the constructor
539 AddInstruction(Instruction::InvokeDirect(constructor_data.id, /*dest=*/{}, target, args...));
540 };
541
542 } // namespace dex
543 } // namespace startop
544
545 #endif // DEX_BUILDER_H_
546