1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file streamout_jit.cpp
24 *
25 * @brief Implementation of the streamout jitter
26 *
27 * Notes:
28 *
29 ******************************************************************************/
30 #include "jit_pch.hpp"
31 #include "builder.h"
32 #include "jit_api.h"
33 #include "streamout_jit.h"
34 #include "gen_state_llvm.h"
35
36 using namespace llvm;
37 using namespace SwrJit;
38
39 //////////////////////////////////////////////////////////////////////////
40 /// Interface to Jitting a fetch shader
41 //////////////////////////////////////////////////////////////////////////
42 struct StreamOutJit : public Builder
43 {
StreamOutJitStreamOutJit44 StreamOutJit(JitManager* pJitMgr) : Builder(pJitMgr){};
45
46 // returns pointer to SWR_STREAMOUT_BUFFER
getSOBufferStreamOutJit47 Value* getSOBuffer(Value* pSoCtx, uint32_t buffer)
48 {
49 return LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_pBuffer, buffer });
50 }
51
52
53 //////////////////////////////////////////////////////////////////////////
54 // @brief checks if streamout buffer is oob
55 // @return <i1> true/false
oobStreamOutJit56 Value* oob(const STREAMOUT_COMPILE_STATE& state, Value* pSoCtx, uint32_t buffer)
57 {
58 Value* returnMask = C(false);
59
60 Value* pBuf = getSOBuffer(pSoCtx, buffer);
61
62 // load enable
63 // @todo bool data types should generate <i1> llvm type
64 Value* enabled = TRUNC(LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_enable }), IRB()->getInt1Ty());
65
66 // load buffer size
67 Value* bufferSize = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_bufferSize });
68
69 // load current streamOffset
70 Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
71
72 // load buffer pitch
73 Value* pitch = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pitch });
74
75 // buffer is considered oob if in use in a decl but not enabled
76 returnMask = OR(returnMask, NOT(enabled));
77
78 // buffer is oob if cannot fit a prims worth of verts
79 Value* newOffset = ADD(streamOffset, MUL(pitch, C(state.numVertsPerPrim)));
80 returnMask = OR(returnMask, ICMP_SGT(newOffset, bufferSize));
81
82 return returnMask;
83 }
84
85
86 //////////////////////////////////////////////////////////////////////////
87 // @brief converts scalar bitmask to <4 x i32> suitable for shuffle vector,
88 // packing the active mask bits
89 // ex. bitmask 0011 -> (0, 1, 0, 0)
90 // bitmask 1000 -> (3, 0, 0, 0)
91 // bitmask 1100 -> (2, 3, 0, 0)
PackMaskStreamOutJit92 Value* PackMask(uint32_t bitmask)
93 {
94 std::vector<Constant*> indices(4, C(0));
95 DWORD index;
96 uint32_t elem = 0;
97 while (_BitScanForward(&index, bitmask))
98 {
99 indices[elem++] = C((int)index);
100 bitmask &= ~(1 << index);
101 }
102
103 return ConstantVector::get(indices);
104 }
105
106 //////////////////////////////////////////////////////////////////////////
107 // @brief convert scalar bitmask to <4xfloat> bitmask
ToMaskStreamOutJit108 Value* ToMask(uint32_t bitmask)
109 {
110 std::vector<Constant*> indices;
111 for (uint32_t i = 0; i < 4; ++i)
112 {
113 if (bitmask & (1 << i))
114 {
115 indices.push_back(C(-1.0f));
116 }
117 else
118 {
119 indices.push_back(C(0.0f));
120 }
121 }
122 return ConstantVector::get(indices);
123 }
124
125 //////////////////////////////////////////////////////////////////////////
126 // @brief processes a single decl from the streamout stream. Reads 4 components from the input
127 // stream and writes N components to the output buffer given the componentMask or if
128 // a hole, just increments the buffer pointer
129 // @param pStream - pointer to current attribute
130 // @param pOutBuffers - pointers to the current location of each output buffer
131 // @param decl - input decl
buildDeclStreamOutJit132 void buildDecl(Value* pStream, Value* pOutBuffers[4], const STREAMOUT_DECL& decl)
133 {
134 // @todo add this to x86 macros
135 Function* maskStore = Intrinsic::getDeclaration(JM()->mpCurrentModule, Intrinsic::x86_avx_maskstore_ps);
136
137 uint32_t numComponents = _mm_popcnt_u32(decl.componentMask);
138 uint32_t packedMask = (1 << numComponents) - 1;
139 if (!decl.hole)
140 {
141 // increment stream pointer to correct slot
142 Value* pAttrib = GEP(pStream, C(4 * decl.attribSlot));
143
144 // load 4 components from stream
145 Type* simd4Ty = VectorType::get(IRB()->getFloatTy(), 4);
146 Type* simd4PtrTy = PointerType::get(simd4Ty, 0);
147 pAttrib = BITCAST(pAttrib, simd4PtrTy);
148 Value *vattrib = LOAD(pAttrib);
149
150 // shuffle/pack enabled components
151 Value* vpackedAttrib = VSHUFFLE(vattrib, vattrib, PackMask(decl.componentMask));
152
153 // store to output buffer
154 // cast SO buffer to i8*, needed by maskstore
155 Value* pOut = BITCAST(pOutBuffers[decl.bufferIndex], PointerType::get(mInt8Ty, 0));
156
157 // cast input to <4xfloat>
158 Value* src = BITCAST(vpackedAttrib, simd4Ty);
159
160 // cast mask to <4xint>
161 Value* mask = ToMask(packedMask);
162 mask = BITCAST(mask, VectorType::get(IRB()->getInt32Ty(), 4));
163 CALL(maskStore, {pOut, mask, src});
164 }
165
166 // increment SO buffer
167 pOutBuffers[decl.bufferIndex] = GEP(pOutBuffers[decl.bufferIndex], C(numComponents));
168 }
169
170 //////////////////////////////////////////////////////////////////////////
171 // @brief builds a single vertex worth of data for the given stream
172 // @param streamState - state for this stream
173 // @param pCurVertex - pointer to src stream vertex data
174 // @param pOutBuffer - pointers to up to 4 SO buffers
buildVertexStreamOutJit175 void buildVertex(const STREAMOUT_STREAM& streamState, Value* pCurVertex, Value* pOutBuffer[4])
176 {
177 for (uint32_t d = 0; d < streamState.numDecls; ++d)
178 {
179 const STREAMOUT_DECL& decl = streamState.decl[d];
180 buildDecl(pCurVertex, pOutBuffer, decl);
181 }
182 }
183
buildStreamStreamOutJit184 void buildStream(const STREAMOUT_COMPILE_STATE& state, const STREAMOUT_STREAM& streamState, Value* pSoCtx, BasicBlock* returnBB, Function* soFunc)
185 {
186 // get list of active SO buffers
187 std::unordered_set<uint32_t> activeSOBuffers;
188 for (uint32_t d = 0; d < streamState.numDecls; ++d)
189 {
190 const STREAMOUT_DECL& decl = streamState.decl[d];
191 activeSOBuffers.insert(decl.bufferIndex);
192 }
193
194 // always increment numPrimStorageNeeded
195 Value *numPrimStorageNeeded = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimStorageNeeded });
196 numPrimStorageNeeded = ADD(numPrimStorageNeeded, C(1));
197 STORE(numPrimStorageNeeded, pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimStorageNeeded });
198
199 // check OOB on active SO buffers. If any buffer is out of bound, don't write
200 // the primitive to any buffer
201 Value* oobMask = C(false);
202 for (uint32_t buffer : activeSOBuffers)
203 {
204 oobMask = OR(oobMask, oob(state, pSoCtx, buffer));
205 }
206
207 BasicBlock* validBB = BasicBlock::Create(JM()->mContext, "valid", soFunc);
208
209 // early out if OOB
210 COND_BR(oobMask, returnBB, validBB);
211
212 IRB()->SetInsertPoint(validBB);
213
214 Value* numPrimsWritten = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimsWritten });
215 numPrimsWritten = ADD(numPrimsWritten, C(1));
216 STORE(numPrimsWritten, pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_numPrimsWritten });
217
218 // compute start pointer for each output buffer
219 Value* pOutBuffer[4];
220 Value* pOutBufferStartVertex[4];
221 Value* outBufferPitch[4];
222 for (uint32_t b: activeSOBuffers)
223 {
224 Value* pBuf = getSOBuffer(pSoCtx, b);
225 Value* pData = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pBuffer });
226 Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
227 pOutBuffer[b] = GEP(pData, streamOffset);
228 pOutBufferStartVertex[b] = pOutBuffer[b];
229
230 outBufferPitch[b] = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_pitch });
231 }
232
233 // loop over the vertices of the prim
234 Value* pStreamData = LOAD(pSoCtx, { 0, SWR_STREAMOUT_CONTEXT_pPrimData });
235 for (uint32_t v = 0; v < state.numVertsPerPrim; ++v)
236 {
237 buildVertex(streamState, pStreamData, pOutBuffer);
238
239 // increment stream and output buffer pointers
240 // stream verts are always 32*4 dwords apart
241 pStreamData = GEP(pStreamData, C(SWR_VTX_NUM_SLOTS * 4));
242
243 // output buffers offset using pitch in buffer state
244 for (uint32_t b : activeSOBuffers)
245 {
246 pOutBufferStartVertex[b] = GEP(pOutBufferStartVertex[b], outBufferPitch[b]);
247 pOutBuffer[b] = pOutBufferStartVertex[b];
248 }
249 }
250
251 // update each active buffer's streamOffset
252 for (uint32_t b : activeSOBuffers)
253 {
254 Value* pBuf = getSOBuffer(pSoCtx, b);
255 Value* streamOffset = LOAD(pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
256 streamOffset = ADD(streamOffset, MUL(C(state.numVertsPerPrim), outBufferPitch[b]));
257 STORE(streamOffset, pBuf, { 0, SWR_STREAMOUT_BUFFER_streamOffset });
258 }
259 }
260
CreateStreamOutJit261 Function* Create(const STREAMOUT_COMPILE_STATE& state)
262 {
263 std::stringstream fnName("SO_", std::ios_base::in | std::ios_base::out | std::ios_base::ate);
264 fnName << ComputeCRC(0, &state, sizeof(state));
265
266 // SO function signature
267 // typedef void(__cdecl *PFN_SO_FUNC)(SWR_STREAMOUT_CONTEXT*)
268
269 std::vector<Type*> args{
270 PointerType::get(Gen_SWR_STREAMOUT_CONTEXT(JM()), 0), // SWR_STREAMOUT_CONTEXT*
271 };
272
273 FunctionType* fTy = FunctionType::get(IRB()->getVoidTy(), args, false);
274 Function* soFunc = Function::Create(fTy, GlobalValue::ExternalLinkage, fnName.str(), JM()->mpCurrentModule);
275
276 soFunc->getParent()->setModuleIdentifier(soFunc->getName());
277
278 // create return basic block
279 BasicBlock* entry = BasicBlock::Create(JM()->mContext, "entry", soFunc);
280 BasicBlock* returnBB = BasicBlock::Create(JM()->mContext, "return", soFunc);
281
282 IRB()->SetInsertPoint(entry);
283
284 // arguments
285 auto argitr = soFunc->arg_begin();
286 Value* pSoCtx = &*argitr++;
287 pSoCtx->setName("pSoCtx");
288
289 const STREAMOUT_STREAM& streamState = state.stream;
290 buildStream(state, streamState, pSoCtx, returnBB, soFunc);
291
292 BR(returnBB);
293
294 IRB()->SetInsertPoint(returnBB);
295 RET_VOID();
296
297 JitManager::DumpToFile(soFunc, "SoFunc");
298
299 ::FunctionPassManager passes(JM()->mpCurrentModule);
300
301 passes.add(createBreakCriticalEdgesPass());
302 passes.add(createCFGSimplificationPass());
303 passes.add(createEarlyCSEPass());
304 passes.add(createPromoteMemoryToRegisterPass());
305 passes.add(createCFGSimplificationPass());
306 passes.add(createEarlyCSEPass());
307 passes.add(createInstructionCombiningPass());
308 passes.add(createInstructionSimplifierPass());
309 passes.add(createConstantPropagationPass());
310 passes.add(createSCCPPass());
311 passes.add(createAggressiveDCEPass());
312
313 passes.run(*soFunc);
314
315 JitManager::DumpToFile(soFunc, "SoFunc_optimized");
316
317 return soFunc;
318 }
319 };
320
321 //////////////////////////////////////////////////////////////////////////
322 /// @brief JITs from streamout shader IR
323 /// @param hJitMgr - JitManager handle
324 /// @param func - LLVM function IR
325 /// @return PFN_SO_FUNC - pointer to SOS function
JitStreamoutFunc(HANDLE hJitMgr,const HANDLE hFunc)326 PFN_SO_FUNC JitStreamoutFunc(HANDLE hJitMgr, const HANDLE hFunc)
327 {
328 const llvm::Function *func = (const llvm::Function*)hFunc;
329 JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);
330 PFN_SO_FUNC pfnStreamOut;
331 pfnStreamOut = (PFN_SO_FUNC)(pJitMgr->mpExec->getFunctionAddress(func->getName().str()));
332 // MCJIT finalizes modules the first time you JIT code from them. After finalized, you cannot add new IR to the module
333 pJitMgr->mIsModuleFinalized = true;
334
335 return pfnStreamOut;
336 }
337
338 //////////////////////////////////////////////////////////////////////////
339 /// @brief JIT compiles streamout shader
340 /// @param hJitMgr - JitManager handle
341 /// @param state - SO state to build function from
JitCompileStreamout(HANDLE hJitMgr,const STREAMOUT_COMPILE_STATE & state)342 extern "C" PFN_SO_FUNC JITCALL JitCompileStreamout(HANDLE hJitMgr, const STREAMOUT_COMPILE_STATE& state)
343 {
344 JitManager* pJitMgr = reinterpret_cast<JitManager*>(hJitMgr);
345
346 STREAMOUT_COMPILE_STATE soState = state;
347 if (soState.offsetAttribs)
348 {
349 for (uint32_t i = 0; i < soState.stream.numDecls; ++i)
350 {
351 soState.stream.decl[i].attribSlot -= soState.offsetAttribs;
352 }
353 }
354
355 pJitMgr->SetupNewModule();
356
357 StreamOutJit theJit(pJitMgr);
358 HANDLE hFunc = theJit.Create(soState);
359
360 return JitStreamoutFunc(hJitMgr, hFunc);
361 }
362