1 /*
2 * Copyright 2014 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <cmath>
17 #include "flatbuffers/flatbuffers.h"
18 #include "flatbuffers/idl.h"
19 #include "flatbuffers/minireflect.h"
20 #include "flatbuffers/registry.h"
21 #include "flatbuffers/util.h"
22
23 // clang-format off
24 #ifdef FLATBUFFERS_CPP98_STL
25 #include "flatbuffers/stl_emulation.h"
26 namespace std {
27 using flatbuffers::unique_ptr;
28 }
29 #endif
30 // clang-format on
31
32 #include "monster_test_generated.h"
33 #include "namespace_test/namespace_test1_generated.h"
34 #include "namespace_test/namespace_test2_generated.h"
35 #include "union_vector/union_vector_generated.h"
36 #include "monster_extra_generated.h"
37 #include "test_assert.h"
38
39 #include "flatbuffers/flexbuffers.h"
40
41 using namespace MyGame::Example;
42
43 void FlatBufferBuilderTest();
44
45 // Include simple random number generator to ensure results will be the
46 // same cross platform.
47 // http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
48 uint32_t lcg_seed = 48271;
lcg_rand()49 uint32_t lcg_rand() {
50 return lcg_seed = (static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL;
51 }
lcg_reset()52 void lcg_reset() { lcg_seed = 48271; }
53
54 std::string test_data_path =
55 #ifdef BAZEL_TEST_DATA_PATH
56 "../com_github_google_flatbuffers/tests/";
57 #else
58 "tests/";
59 #endif
60
61 // example of how to build up a serialized buffer algorithmically:
CreateFlatBufferTest(std::string & buffer)62 flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
63 flatbuffers::FlatBufferBuilder builder;
64
65 auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
66
67 auto name = builder.CreateString("MyMonster");
68
69 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
70 auto inventory = builder.CreateVector(inv_data, 10);
71
72 // Alternatively, create the vector first, and fill in data later:
73 // unsigned char *inv_buf = nullptr;
74 // auto inventory = builder.CreateUninitializedVector<unsigned char>(
75 // 10, &inv_buf);
76 // memcpy(inv_buf, inv_data, 10);
77
78 Test tests[] = { Test(10, 20), Test(30, 40) };
79 auto testv = builder.CreateVectorOfStructs(tests, 2);
80
81 // clang-format off
82 #ifndef FLATBUFFERS_CPP98_STL
83 // Create a vector of structures from a lambda.
84 auto testv2 = builder.CreateVectorOfStructs<Test>(
85 2, [&](size_t i, Test* s) -> void {
86 *s = tests[i];
87 });
88 #else
89 // Create a vector of structures using a plain old C++ function.
90 auto testv2 = builder.CreateVectorOfStructs<Test>(
91 2, [](size_t i, Test* s, void *state) -> void {
92 *s = (reinterpret_cast<Test*>(state))[i];
93 }, tests);
94 #endif // FLATBUFFERS_CPP98_STL
95 // clang-format on
96
97 // create monster with very few fields set:
98 // (same functionality as CreateMonster below, but sets fields manually)
99 flatbuffers::Offset<Monster> mlocs[3];
100 auto fred = builder.CreateString("Fred");
101 auto barney = builder.CreateString("Barney");
102 auto wilma = builder.CreateString("Wilma");
103 MonsterBuilder mb1(builder);
104 mb1.add_name(fred);
105 mlocs[0] = mb1.Finish();
106 MonsterBuilder mb2(builder);
107 mb2.add_name(barney);
108 mb2.add_hp(1000);
109 mlocs[1] = mb2.Finish();
110 MonsterBuilder mb3(builder);
111 mb3.add_name(wilma);
112 mlocs[2] = mb3.Finish();
113
114 // Create an array of strings. Also test string pooling, and lambdas.
115 auto vecofstrings =
116 builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
117 4,
118 [](size_t i, flatbuffers::FlatBufferBuilder *b)
119 -> flatbuffers::Offset<flatbuffers::String> {
120 static const char *names[] = { "bob", "fred", "bob", "fred" };
121 return b->CreateSharedString(names[i]);
122 },
123 &builder);
124
125 // Creating vectors of strings in one convenient call.
126 std::vector<std::string> names2;
127 names2.push_back("jane");
128 names2.push_back("mary");
129 auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
130
131 // Create an array of sorted tables, can be used with binary search when read:
132 auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
133
134 // Create an array of sorted structs,
135 // can be used with binary search when read:
136 std::vector<Ability> abilities;
137 abilities.push_back(Ability(4, 40));
138 abilities.push_back(Ability(3, 30));
139 abilities.push_back(Ability(2, 20));
140 abilities.push_back(Ability(1, 10));
141 auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
142
143 // Create a nested FlatBuffer.
144 // Nested FlatBuffers are stored in a ubyte vector, which can be convenient
145 // since they can be memcpy'd around much easier than other FlatBuffer
146 // values. They have little overhead compared to storing the table directly.
147 // As a test, create a mostly empty Monster buffer:
148 flatbuffers::FlatBufferBuilder nested_builder;
149 auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
150 nested_builder.CreateString("NestedMonster"));
151 FinishMonsterBuffer(nested_builder, nmloc);
152 // Now we can store the buffer in the parent. Note that by default, vectors
153 // are only aligned to their elements or size field, so in this case if the
154 // buffer contains 64-bit elements, they may not be correctly aligned. We fix
155 // that with:
156 builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
157 nested_builder.GetBufferMinAlignment());
158 // If for whatever reason you don't have the nested_builder available, you
159 // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
160 // the largest force_align value in your schema if you're using it.
161 auto nested_flatbuffer_vector = builder.CreateVector(
162 nested_builder.GetBufferPointer(), nested_builder.GetSize());
163
164 // Test a nested FlexBuffer:
165 flexbuffers::Builder flexbuild;
166 flexbuild.Int(1234);
167 flexbuild.Finish();
168 auto flex = builder.CreateVector(flexbuild.GetBuffer());
169
170 // Test vector of enums.
171 Color colors[] = { Color_Blue, Color_Green };
172 // We use this special creation function because we have an array of
173 // pre-C++11 (enum class) enums whose size likely is int, yet its declared
174 // type in the schema is byte.
175 auto vecofcolors = builder.CreateVectorScalarCast<int8_t, Color>(colors, 2);
176
177 // shortcut for creating monster with all fields set:
178 auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
179 Any_Monster, mlocs[1].Union(), // Store a union.
180 testv, vecofstrings, vecoftables, 0,
181 nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0,
182 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
183 vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, AnyUniqueAliases_NONE, 0,
185 AnyAmbiguousAliases_NONE, 0, vecofcolors);
186
187 FinishMonsterBuffer(builder, mloc);
188
189 // clang-format off
190 #ifdef FLATBUFFERS_TEST_VERBOSE
191 // print byte data for debugging:
192 auto p = builder.GetBufferPointer();
193 for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
194 printf("%d ", p[i]);
195 #endif
196 // clang-format on
197
198 // return the buffer for the caller to use.
199 auto bufferpointer =
200 reinterpret_cast<const char *>(builder.GetBufferPointer());
201 buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
202
203 return builder.Release();
204 }
205
206 // example of accessing a buffer loaded in memory:
AccessFlatBufferTest(const uint8_t * flatbuf,size_t length,bool pooled=true)207 void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
208 bool pooled = true) {
209 // First, verify the buffers integrity (optional)
210 flatbuffers::Verifier verifier(flatbuf, length);
211 TEST_EQ(VerifyMonsterBuffer(verifier), true);
212
213 // clang-format off
214 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
215 std::vector<uint8_t> test_buff;
216 test_buff.resize(length * 2);
217 std::memcpy(&test_buff[0], flatbuf, length);
218 std::memcpy(&test_buff[length], flatbuf, length);
219
220 flatbuffers::Verifier verifier1(&test_buff[0], length);
221 TEST_EQ(VerifyMonsterBuffer(verifier1), true);
222 TEST_EQ(verifier1.GetComputedSize(), length);
223
224 flatbuffers::Verifier verifier2(&test_buff[length], length);
225 TEST_EQ(VerifyMonsterBuffer(verifier2), true);
226 TEST_EQ(verifier2.GetComputedSize(), length);
227 #endif
228 // clang-format on
229
230 TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
231 TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
232 TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
233
234 // Access the buffer from the root.
235 auto monster = GetMonster(flatbuf);
236
237 TEST_EQ(monster->hp(), 80);
238 TEST_EQ(monster->mana(), 150); // default
239 TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
240 // Can't access the following field, it is deprecated in the schema,
241 // which means accessors are not generated:
242 // monster.friendly()
243
244 auto pos = monster->pos();
245 TEST_NOTNULL(pos);
246 TEST_EQ(pos->z(), 3);
247 TEST_EQ(pos->test3().a(), 10);
248 TEST_EQ(pos->test3().b(), 20);
249
250 auto inventory = monster->inventory();
251 TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
252 TEST_NOTNULL(inventory);
253 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
254 // Check compatibilty of iterators with STL.
255 std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
256 for (auto it = inventory->begin(); it != inventory->end(); ++it) {
257 auto indx = it - inventory->begin();
258 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
259 TEST_EQ(*it, inv_data[indx]);
260 }
261
262 for (auto it = inventory->cbegin(); it != inventory->cend(); ++it) {
263 auto indx = it - inventory->cbegin();
264 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
265 TEST_EQ(*it, inv_data[indx]);
266 }
267
268 for (auto it = inventory->rbegin(); it != inventory->rend(); ++it) {
269 auto indx = inventory->rend() - it;
270 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
271 TEST_EQ(*it, inv_data[indx]);
272 }
273
274 for (auto it = inventory->crbegin(); it != inventory->crend(); ++it) {
275 auto indx = inventory->crend() - it;
276 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
277 TEST_EQ(*it, inv_data[indx]);
278 }
279
280 TEST_EQ(monster->color(), Color_Blue);
281
282 // Example of accessing a union:
283 TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
284 auto monster2 = reinterpret_cast<const Monster *>(monster->test());
285 TEST_NOTNULL(monster2);
286 TEST_EQ_STR(monster2->name()->c_str(), "Fred");
287
288 // Example of accessing a vector of strings:
289 auto vecofstrings = monster->testarrayofstring();
290 TEST_EQ(vecofstrings->size(), 4U);
291 TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
292 TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
293 if (pooled) {
294 // These should have pointer equality because of string pooling.
295 TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
296 TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
297 }
298
299 auto vecofstrings2 = monster->testarrayofstring2();
300 if (vecofstrings2) {
301 TEST_EQ(vecofstrings2->size(), 2U);
302 TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
303 TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
304 }
305
306 // Example of accessing a vector of tables:
307 auto vecoftables = monster->testarrayoftables();
308 TEST_EQ(vecoftables->size(), 3U);
309 for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
310 TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
311 TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
312 TEST_EQ(vecoftables->Get(0)->hp(), 1000);
313 TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
314 TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
315 TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
316 TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
317 TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
318
319 // Test accessing a vector of sorted structs
320 auto vecofstructs = monster->testarrayofsortedstruct();
321 if (vecofstructs) { // not filled in monster_test.bfbs
322 for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
323 auto left = vecofstructs->Get(i);
324 auto right = vecofstructs->Get(i + 1);
325 TEST_EQ(true, (left->KeyCompareLessThan(right)));
326 }
327 TEST_NOTNULL(vecofstructs->LookupByKey(3));
328 TEST_EQ(static_cast<const Ability *>(nullptr),
329 vecofstructs->LookupByKey(5));
330 }
331
332 // Test nested FlatBuffers if available:
333 auto nested_buffer = monster->testnestedflatbuffer();
334 if (nested_buffer) {
335 // nested_buffer is a vector of bytes you can memcpy. However, if you
336 // actually want to access the nested data, this is a convenient
337 // accessor that directly gives you the root table:
338 auto nested_monster = monster->testnestedflatbuffer_nested_root();
339 TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
340 }
341
342 // Test flexbuffer if available:
343 auto flex = monster->flex();
344 // flex is a vector of bytes you can memcpy etc.
345 TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
346 // However, if you actually want to access the nested data, this is a
347 // convenient accessor that directly gives you the root value:
348 TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
349
350 // Test vector of enums:
351 auto colors = monster->vector_of_enums();
352 if (colors) {
353 TEST_EQ(colors->size(), 2);
354 TEST_EQ(colors->Get(0), Color_Blue);
355 TEST_EQ(colors->Get(1), Color_Green);
356 }
357
358 // Since Flatbuffers uses explicit mechanisms to override the default
359 // compiler alignment, double check that the compiler indeed obeys them:
360 // (Test consists of a short and byte):
361 TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
362 TEST_EQ(sizeof(Test), 4UL);
363
364 const flatbuffers::Vector<const Test *> *tests_array[] = {
365 monster->test4(),
366 monster->test5(),
367 };
368 for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
369 auto tests = tests_array[i];
370 TEST_NOTNULL(tests);
371 auto test_0 = tests->Get(0);
372 auto test_1 = tests->Get(1);
373 TEST_EQ(test_0->a(), 10);
374 TEST_EQ(test_0->b(), 20);
375 TEST_EQ(test_1->a(), 30);
376 TEST_EQ(test_1->b(), 40);
377 for (auto it = tests->begin(); it != tests->end(); ++it) {
378 TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
379 }
380 }
381
382 // Checking for presence of fields:
383 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
384 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
385
386 // Obtaining a buffer from a root:
387 TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
388 }
389
390 // Change a FlatBuffer in-place, after it has been constructed.
MutateFlatBuffersTest(uint8_t * flatbuf,std::size_t length)391 void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
392 // Get non-const pointer to root.
393 auto monster = GetMutableMonster(flatbuf);
394
395 // Each of these tests mutates, then tests, then set back to the original,
396 // so we can test that the buffer in the end still passes our original test.
397 auto hp_ok = monster->mutate_hp(10);
398 TEST_EQ(hp_ok, true); // Field was present.
399 TEST_EQ(monster->hp(), 10);
400 // Mutate to default value
401 auto hp_ok_default = monster->mutate_hp(100);
402 TEST_EQ(hp_ok_default, true); // Field was present.
403 TEST_EQ(monster->hp(), 100);
404 // Test that mutate to default above keeps field valid for further mutations
405 auto hp_ok_2 = monster->mutate_hp(20);
406 TEST_EQ(hp_ok_2, true);
407 TEST_EQ(monster->hp(), 20);
408 monster->mutate_hp(80);
409
410 // Monster originally at 150 mana (default value)
411 auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
412 TEST_EQ(mana_default_ok,
413 true); // Mutation should succeed, because default value.
414 TEST_EQ(monster->mana(), 150);
415 auto mana_ok = monster->mutate_mana(10);
416 TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
417 TEST_EQ(monster->mana(), 150);
418
419 // Mutate structs.
420 auto pos = monster->mutable_pos();
421 auto test3 = pos->mutable_test3(); // Struct inside a struct.
422 test3.mutate_a(50); // Struct fields never fail.
423 TEST_EQ(test3.a(), 50);
424 test3.mutate_a(10);
425
426 // Mutate vectors.
427 auto inventory = monster->mutable_inventory();
428 inventory->Mutate(9, 100);
429 TEST_EQ(inventory->Get(9), 100);
430 inventory->Mutate(9, 9);
431
432 auto tables = monster->mutable_testarrayoftables();
433 auto first = tables->GetMutableObject(0);
434 TEST_EQ(first->hp(), 1000);
435 first->mutate_hp(0);
436 TEST_EQ(first->hp(), 0);
437 first->mutate_hp(1000);
438
439 // Run the verifier and the regular test to make sure we didn't trample on
440 // anything.
441 AccessFlatBufferTest(flatbuf, length);
442 }
443
444 // Unpack a FlatBuffer into objects.
ObjectFlatBuffersTest(uint8_t * flatbuf)445 void ObjectFlatBuffersTest(uint8_t *flatbuf) {
446 // Optional: we can specify resolver and rehasher functions to turn hashed
447 // strings into object pointers and back, to implement remote references
448 // and such.
449 auto resolver = flatbuffers::resolver_function_t(
450 [](void **pointer_adr, flatbuffers::hash_value_t hash) {
451 (void)pointer_adr;
452 (void)hash;
453 // Don't actually do anything, leave variable null.
454 });
455 auto rehasher = flatbuffers::rehasher_function_t(
456 [](void *pointer) -> flatbuffers::hash_value_t {
457 (void)pointer;
458 return 0;
459 });
460
461 // Turn a buffer into C++ objects.
462 auto monster1 = UnPackMonster(flatbuf, &resolver);
463
464 // Re-serialize the data.
465 flatbuffers::FlatBufferBuilder fbb1;
466 fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
467 MonsterIdentifier());
468
469 // Unpack again, and re-serialize again.
470 auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
471 flatbuffers::FlatBufferBuilder fbb2;
472 fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
473 MonsterIdentifier());
474
475 // Now we've gone full round-trip, the two buffers should match.
476 auto len1 = fbb1.GetSize();
477 auto len2 = fbb2.GetSize();
478 TEST_EQ(len1, len2);
479 TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);
480
481 // Test it with the original buffer test to make sure all data survived.
482 AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
483
484 // Test accessing fields, similar to AccessFlatBufferTest above.
485 TEST_EQ(monster2->hp, 80);
486 TEST_EQ(monster2->mana, 150); // default
487 TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
488
489 auto &pos = monster2->pos;
490 TEST_NOTNULL(pos);
491 TEST_EQ(pos->z(), 3);
492 TEST_EQ(pos->test3().a(), 10);
493 TEST_EQ(pos->test3().b(), 20);
494
495 auto &inventory = monster2->inventory;
496 TEST_EQ(inventory.size(), 10UL);
497 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
498 for (auto it = inventory.begin(); it != inventory.end(); ++it)
499 TEST_EQ(*it, inv_data[it - inventory.begin()]);
500
501 TEST_EQ(monster2->color, Color_Blue);
502
503 auto monster3 = monster2->test.AsMonster();
504 TEST_NOTNULL(monster3);
505 TEST_EQ_STR(monster3->name.c_str(), "Fred");
506
507 auto &vecofstrings = monster2->testarrayofstring;
508 TEST_EQ(vecofstrings.size(), 4U);
509 TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
510 TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
511
512 auto &vecofstrings2 = monster2->testarrayofstring2;
513 TEST_EQ(vecofstrings2.size(), 2U);
514 TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
515 TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
516
517 auto &vecoftables = monster2->testarrayoftables;
518 TEST_EQ(vecoftables.size(), 3U);
519 TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
520 TEST_EQ(vecoftables[0]->hp, 1000);
521 TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
522 TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
523
524 auto &tests = monster2->test4;
525 TEST_EQ(tests[0].a(), 10);
526 TEST_EQ(tests[0].b(), 20);
527 TEST_EQ(tests[1].a(), 30);
528 TEST_EQ(tests[1].b(), 40);
529 }
530
531 // Prefix a FlatBuffer with a size field.
SizePrefixedTest()532 void SizePrefixedTest() {
533 // Create size prefixed buffer.
534 flatbuffers::FlatBufferBuilder fbb;
535 FinishSizePrefixedMonsterBuffer(
536 fbb,
537 CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob")));
538
539 // Verify it.
540 flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
541 TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);
542
543 // Access it.
544 auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
545 TEST_EQ(m->mana(), 200);
546 TEST_EQ(m->hp(), 300);
547 TEST_EQ_STR(m->name()->c_str(), "bob");
548 }
549
TriviallyCopyableTest()550 void TriviallyCopyableTest() {
551 // clang-format off
552 #if __GNUG__ && __GNUC__ < 5
553 TEST_EQ(__has_trivial_copy(Vec3), true);
554 #else
555 #if __cplusplus >= 201103L
556 TEST_EQ(std::is_trivially_copyable<Vec3>::value, true);
557 #endif
558 #endif
559 // clang-format on
560 }
561
562 // Check stringify of an default enum value to json
JsonDefaultTest()563 void JsonDefaultTest() {
564 // load FlatBuffer schema (.fbs) from disk
565 std::string schemafile;
566 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
567 false, &schemafile), true);
568 // parse schema first, so we can use it to parse the data after
569 flatbuffers::Parser parser;
570 auto include_test_path =
571 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
572 const char *include_directories[] = { test_data_path.c_str(),
573 include_test_path.c_str(), nullptr };
574
575 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
576 // create incomplete monster and store to json
577 parser.opts.output_default_scalars_in_json = true;
578 parser.opts.output_enum_identifiers = true;
579 flatbuffers::FlatBufferBuilder builder;
580 auto name = builder.CreateString("default_enum");
581 MonsterBuilder color_monster(builder);
582 color_monster.add_name(name);
583 FinishMonsterBuffer(builder, color_monster.Finish());
584 std::string jsongen;
585 auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
586 TEST_EQ(result, true);
587 // default value of the "color" field is Blue
588 TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true);
589 // default value of the "testf" field is 3.14159
590 TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true);
591 }
592
593 // example of parsing text straight into a buffer, and generating
594 // text back from it:
ParseAndGenerateTextTest(bool binary)595 void ParseAndGenerateTextTest(bool binary) {
596 // load FlatBuffer schema (.fbs) and JSON from disk
597 std::string schemafile;
598 std::string jsonfile;
599 TEST_EQ(flatbuffers::LoadFile(
600 (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
601 .c_str(),
602 binary, &schemafile),
603 true);
604 TEST_EQ(flatbuffers::LoadFile(
605 (test_data_path + "monsterdata_test.golden").c_str(), false,
606 &jsonfile),
607 true);
608
609 auto include_test_path =
610 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
611 const char *include_directories[] = { test_data_path.c_str(),
612 include_test_path.c_str(), nullptr };
613
614 // parse schema first, so we can use it to parse the data after
615 flatbuffers::Parser parser;
616 if (binary) {
617 flatbuffers::Verifier verifier(
618 reinterpret_cast<const uint8_t *>(schemafile.c_str()),
619 schemafile.size());
620 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
621 //auto schema = reflection::GetSchema(schemafile.c_str());
622 TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true);
623 } else {
624 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
625 }
626 TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
627
628 // here, parser.builder_ contains a binary buffer that is the parsed data.
629
630 // First, verify it, just in case:
631 flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
632 parser.builder_.GetSize());
633 TEST_EQ(VerifyMonsterBuffer(verifier), true);
634
635 AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
636 parser.builder_.GetSize(), false);
637
638 // to ensure it is correct, we now generate text back from the binary,
639 // and compare the two:
640 std::string jsongen;
641 auto result =
642 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
643 TEST_EQ(result, true);
644 TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
645
646 // We can also do the above using the convenient Registry that knows about
647 // a set of file_identifiers mapped to schemas.
648 flatbuffers::Registry registry;
649 // Make sure schemas can find their includes.
650 registry.AddIncludeDirectory(test_data_path.c_str());
651 registry.AddIncludeDirectory(include_test_path.c_str());
652 // Call this with many schemas if possible.
653 registry.Register(MonsterIdentifier(),
654 (test_data_path + "monster_test.fbs").c_str());
655 // Now we got this set up, we can parse by just specifying the identifier,
656 // the correct schema will be loaded on the fly:
657 auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
658 // If this fails, check registry.lasterror_.
659 TEST_NOTNULL(buf.data());
660 // Test the buffer, to be sure:
661 AccessFlatBufferTest(buf.data(), buf.size(), false);
662 // We can use the registry to turn this back into text, in this case it
663 // will get the file_identifier from the binary:
664 std::string text;
665 auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
666 // If this fails, check registry.lasterror_.
667 TEST_EQ(ok, true);
668 TEST_EQ_STR(text.c_str(), jsonfile.c_str());
669
670 // Generate text for UTF-8 strings without escapes.
671 std::string jsonfile_utf8;
672 TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(),
673 false, &jsonfile_utf8),
674 true);
675 TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
676 // To ensure it is correct, generate utf-8 text back from the binary.
677 std::string jsongen_utf8;
678 // request natural printing for utf-8 strings
679 parser.opts.natural_utf8 = true;
680 parser.opts.strict_json = true;
681 TEST_EQ(
682 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8),
683 true);
684 TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
685 }
686
ReflectionTest(uint8_t * flatbuf,size_t length)687 void ReflectionTest(uint8_t *flatbuf, size_t length) {
688 // Load a binary schema.
689 std::string bfbsfile;
690 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(),
691 true, &bfbsfile),
692 true);
693
694 // Verify it, just in case:
695 flatbuffers::Verifier verifier(
696 reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
697 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
698
699 // Make sure the schema is what we expect it to be.
700 auto &schema = *reflection::GetSchema(bfbsfile.c_str());
701 auto root_table = schema.root_table();
702 TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
703 auto fields = root_table->fields();
704 auto hp_field_ptr = fields->LookupByKey("hp");
705 TEST_NOTNULL(hp_field_ptr);
706 auto &hp_field = *hp_field_ptr;
707 TEST_EQ_STR(hp_field.name()->c_str(), "hp");
708 TEST_EQ(hp_field.id(), 2);
709 TEST_EQ(hp_field.type()->base_type(), reflection::Short);
710 auto friendly_field_ptr = fields->LookupByKey("friendly");
711 TEST_NOTNULL(friendly_field_ptr);
712 TEST_NOTNULL(friendly_field_ptr->attributes());
713 TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
714
715 // Make sure the table index is what we expect it to be.
716 auto pos_field_ptr = fields->LookupByKey("pos");
717 TEST_NOTNULL(pos_field_ptr);
718 TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
719 auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
720 TEST_NOTNULL(pos_table_ptr);
721 TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
722
723 // Now use it to dynamically access a buffer.
724 auto &root = *flatbuffers::GetAnyRoot(flatbuf);
725
726 // Verify the buffer first using reflection based verification
727 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
728 true);
729
730 auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
731 TEST_EQ(hp, 80);
732
733 // Rather than needing to know the type, we can also get the value of
734 // any field as an int64_t/double/string, regardless of what it actually is.
735 auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
736 TEST_EQ(hp_int64, 80);
737 auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
738 TEST_EQ(hp_double, 80.0);
739 auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
740 TEST_EQ_STR(hp_string.c_str(), "80");
741
742 // Get struct field through reflection
743 auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
744 TEST_NOTNULL(pos_struct);
745 TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct,
746 *pos_table_ptr->fields()->LookupByKey("z")),
747 3.0f);
748
749 auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
750 auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
751 TEST_NOTNULL(test3_struct);
752 auto test3_object = schema.objects()->Get(test3_field->type()->index());
753
754 TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct,
755 *test3_object->fields()->LookupByKey("a")),
756 10);
757
758 // We can also modify it.
759 flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
760 hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
761 TEST_EQ(hp, 200);
762
763 // We can also set fields generically:
764 flatbuffers::SetAnyFieldI(&root, hp_field, 300);
765 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
766 TEST_EQ(hp_int64, 300);
767 flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
768 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
769 TEST_EQ(hp_int64, 300);
770 flatbuffers::SetAnyFieldS(&root, hp_field, "300");
771 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
772 TEST_EQ(hp_int64, 300);
773
774 // Test buffer is valid after the modifications
775 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
776 true);
777
778 // Reset it, for further tests.
779 flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
780
781 // More advanced functionality: changing the size of items in-line!
782 // First we put the FlatBuffer inside an std::vector.
783 std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
784 // Find the field we want to modify.
785 auto &name_field = *fields->LookupByKey("name");
786 // Get the root.
787 // This time we wrap the result from GetAnyRoot in a smartpointer that
788 // will keep rroot valid as resizingbuf resizes.
789 auto rroot = flatbuffers::piv(
790 flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)),
791 resizingbuf);
792 SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
793 &resizingbuf);
794 // Here resizingbuf has changed, but rroot is still valid.
795 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
796 // Now lets extend a vector by 100 elements (10 -> 110).
797 auto &inventory_field = *fields->LookupByKey("inventory");
798 auto rinventory = flatbuffers::piv(
799 flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf);
800 flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
801 &resizingbuf);
802 // rinventory still valid, so lets read from it.
803 TEST_EQ(rinventory->Get(10), 50);
804
805 // For reflection uses not covered already, there is a more powerful way:
806 // we can simply generate whatever object we want to add/modify in a
807 // FlatBuffer of its own, then add that to an existing FlatBuffer:
808 // As an example, let's add a string to an array of strings.
809 // First, find our field:
810 auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
811 // Find the vector value:
812 auto rtestarrayofstring = flatbuffers::piv(
813 flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
814 **rroot, testarrayofstring_field),
815 resizingbuf);
816 // It's a vector of 2 strings, to which we add one more, initialized to
817 // offset 0.
818 flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
819 schema, 3, 0, *rtestarrayofstring, &resizingbuf);
820 // Here we just create a buffer that contans a single string, but this
821 // could also be any complex set of tables and other values.
822 flatbuffers::FlatBufferBuilder stringfbb;
823 stringfbb.Finish(stringfbb.CreateString("hank"));
824 // Add the contents of it to our existing FlatBuffer.
825 // We do this last, so the pointer doesn't get invalidated (since it is
826 // at the end of the buffer):
827 auto string_ptr = flatbuffers::AddFlatBuffer(
828 resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize());
829 // Finally, set the new value in the vector.
830 rtestarrayofstring->MutateOffset(2, string_ptr);
831 TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
832 TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
833 // Test integrity of all resize operations above.
834 flatbuffers::Verifier resize_verifier(
835 reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)),
836 resizingbuf.size());
837 TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
838
839 // Test buffer is valid using reflection as well
840 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
841 flatbuffers::vector_data(resizingbuf),
842 resizingbuf.size()),
843 true);
844
845 // As an additional test, also set it on the name field.
846 // Note: unlike the name change above, this just overwrites the offset,
847 // rather than changing the string in-place.
848 SetFieldT(*rroot, name_field, string_ptr);
849 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
850
851 // Using reflection, rather than mutating binary FlatBuffers, we can also copy
852 // tables and other things out of other FlatBuffers into a FlatBufferBuilder,
853 // either part or whole.
854 flatbuffers::FlatBufferBuilder fbb;
855 auto root_offset = flatbuffers::CopyTable(
856 fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true);
857 fbb.Finish(root_offset, MonsterIdentifier());
858 // Test that it was copied correctly:
859 AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
860
861 // Test buffer is valid using reflection as well
862 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
863 fbb.GetBufferPointer(), fbb.GetSize()),
864 true);
865 }
866
MiniReflectFlatBuffersTest(uint8_t * flatbuf)867 void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
868 auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable());
869 TEST_EQ_STR(
870 s.c_str(),
871 "{ "
872 "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
873 "{ a: 10, b: 20 } }, "
874 "hp: 80, "
875 "name: \"MyMonster\", "
876 "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
877 "test_type: Monster, "
878 "test: { name: \"Fred\" }, "
879 "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
880 "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
881 "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" "
882 "}, "
883 "{ name: \"Wilma\" } ], "
884 // TODO(wvo): should really print this nested buffer correctly.
885 "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, "
886 "0, "
887 "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
888 "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
889 "testarrayofstring2: [ \"jane\", \"mary\" ], "
890 "testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
891 "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
892 "{ id: 4, distance: 40 } ], "
893 "flex: [ 210, 4, 5, 2 ], "
894 "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
895 "vector_of_enums: [ Blue, Green ] "
896 "}");
897 }
898
899 // Parse a .proto schema, output as .fbs
ParseProtoTest()900 void ParseProtoTest() {
901 // load the .proto and the golden file from disk
902 std::string protofile;
903 std::string goldenfile;
904 std::string goldenunionfile;
905 TEST_EQ(
906 flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
907 false, &protofile),
908 true);
909 TEST_EQ(
910 flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(),
911 false, &goldenfile),
912 true);
913 TEST_EQ(
914 flatbuffers::LoadFile((test_data_path +
915 "prototest/test_union.golden").c_str(),
916 false, &goldenunionfile),
917 true);
918
919 flatbuffers::IDLOptions opts;
920 opts.include_dependence_headers = false;
921 opts.proto_mode = true;
922
923 // Parse proto.
924 flatbuffers::Parser parser(opts);
925 auto protopath = test_data_path + "prototest/";
926 const char *include_directories[] = { protopath.c_str(), nullptr };
927 TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
928
929 // Generate fbs.
930 auto fbs = flatbuffers::GenerateFBS(parser, "test");
931
932 // Ensure generated file is parsable.
933 flatbuffers::Parser parser2;
934 TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
935 TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
936
937 // Parse proto with --oneof-union option.
938 opts.proto_oneof_union = true;
939 flatbuffers::Parser parser3(opts);
940 TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
941
942 // Generate fbs.
943 auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
944
945 // Ensure generated file is parsable.
946 flatbuffers::Parser parser4;
947 TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
948 TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
949 }
950
951 template<typename T>
CompareTableFieldValue(flatbuffers::Table * table,flatbuffers::voffset_t voffset,T val)952 void CompareTableFieldValue(flatbuffers::Table *table,
953 flatbuffers::voffset_t voffset, T val) {
954 T read = table->GetField(voffset, static_cast<T>(0));
955 TEST_EQ(read, val);
956 }
957
958 // Low level stress/fuzz test: serialize/deserialize a variety of
959 // different kinds of data in different combinations
FuzzTest1()960 void FuzzTest1() {
961 // Values we're testing against: chosen to ensure no bits get chopped
962 // off anywhere, and also be different from eachother.
963 const uint8_t bool_val = true;
964 const int8_t char_val = -127; // 0x81
965 const uint8_t uchar_val = 0xFF;
966 const int16_t short_val = -32222; // 0x8222;
967 const uint16_t ushort_val = 0xFEEE;
968 const int32_t int_val = 0x83333333;
969 const uint32_t uint_val = 0xFDDDDDDD;
970 const int64_t long_val = 0x8444444444444444LL;
971 const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
972 const float float_val = 3.14159f;
973 const double double_val = 3.14159265359;
974
975 const int test_values_max = 11;
976 const flatbuffers::voffset_t fields_per_object = 4;
977 const int num_fuzz_objects = 10000; // The higher, the more thorough :)
978
979 flatbuffers::FlatBufferBuilder builder;
980
981 lcg_reset(); // Keep it deterministic.
982
983 flatbuffers::uoffset_t objects[num_fuzz_objects];
984
985 // Generate num_fuzz_objects random objects each consisting of
986 // fields_per_object fields, each of a random type.
987 for (int i = 0; i < num_fuzz_objects; i++) {
988 auto start = builder.StartTable();
989 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
990 int choice = lcg_rand() % test_values_max;
991 auto off = flatbuffers::FieldIndexToOffset(f);
992 switch (choice) {
993 case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break;
994 case 1: builder.AddElement<int8_t>(off, char_val, 0); break;
995 case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break;
996 case 3: builder.AddElement<int16_t>(off, short_val, 0); break;
997 case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
998 case 5: builder.AddElement<int32_t>(off, int_val, 0); break;
999 case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
1000 case 7: builder.AddElement<int64_t>(off, long_val, 0); break;
1001 case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
1002 case 9: builder.AddElement<float>(off, float_val, 0); break;
1003 case 10: builder.AddElement<double>(off, double_val, 0); break;
1004 }
1005 }
1006 objects[i] = builder.EndTable(start);
1007 }
1008 builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
1009
1010 lcg_reset(); // Reset.
1011
1012 uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
1013
1014 // Test that all objects we generated are readable and return the
1015 // expected values. We generate random objects in the same order
1016 // so this is deterministic.
1017 for (int i = 0; i < num_fuzz_objects; i++) {
1018 auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
1019 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
1020 int choice = lcg_rand() % test_values_max;
1021 flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
1022 switch (choice) {
1023 case 0: CompareTableFieldValue(table, off, bool_val); break;
1024 case 1: CompareTableFieldValue(table, off, char_val); break;
1025 case 2: CompareTableFieldValue(table, off, uchar_val); break;
1026 case 3: CompareTableFieldValue(table, off, short_val); break;
1027 case 4: CompareTableFieldValue(table, off, ushort_val); break;
1028 case 5: CompareTableFieldValue(table, off, int_val); break;
1029 case 6: CompareTableFieldValue(table, off, uint_val); break;
1030 case 7: CompareTableFieldValue(table, off, long_val); break;
1031 case 8: CompareTableFieldValue(table, off, ulong_val); break;
1032 case 9: CompareTableFieldValue(table, off, float_val); break;
1033 case 10: CompareTableFieldValue(table, off, double_val); break;
1034 }
1035 }
1036 }
1037 }
1038
1039 // High level stress/fuzz test: generate a big schema and
1040 // matching json data in random combinations, then parse both,
1041 // generate json back from the binary, and compare with the original.
FuzzTest2()1042 void FuzzTest2() {
1043 lcg_reset(); // Keep it deterministic.
1044
1045 const int num_definitions = 30;
1046 const int num_struct_definitions = 5; // Subset of num_definitions.
1047 const int fields_per_definition = 15;
1048 const int instances_per_definition = 5;
1049 const int deprecation_rate = 10; // 1 in deprecation_rate fields will
1050 // be deprecated.
1051
1052 std::string schema = "namespace test;\n\n";
1053
1054 struct RndDef {
1055 std::string instances[instances_per_definition];
1056
1057 // Since we're generating schema and corresponding data in tandem,
1058 // this convenience function adds strings to both at once.
1059 static void Add(RndDef (&definitions_l)[num_definitions],
1060 std::string &schema_l, const int instances_per_definition_l,
1061 const char *schema_add, const char *instance_add,
1062 int definition) {
1063 schema_l += schema_add;
1064 for (int i = 0; i < instances_per_definition_l; i++)
1065 definitions_l[definition].instances[i] += instance_add;
1066 }
1067 };
1068
1069 // clang-format off
1070 #define AddToSchemaAndInstances(schema_add, instance_add) \
1071 RndDef::Add(definitions, schema, instances_per_definition, \
1072 schema_add, instance_add, definition)
1073
1074 #define Dummy() \
1075 RndDef::Add(definitions, schema, instances_per_definition, \
1076 "byte", "1", definition)
1077 // clang-format on
1078
1079 RndDef definitions[num_definitions];
1080
1081 // We are going to generate num_definitions, the first
1082 // num_struct_definitions will be structs, the rest tables. For each
1083 // generate random fields, some of which may be struct/table types
1084 // referring to previously generated structs/tables.
1085 // Simultanenously, we generate instances_per_definition JSON data
1086 // definitions, which will have identical structure to the schema
1087 // being generated. We generate multiple instances such that when creating
1088 // hierarchy, we get some variety by picking one randomly.
1089 for (int definition = 0; definition < num_definitions; definition++) {
1090 std::string definition_name = "D" + flatbuffers::NumToString(definition);
1091
1092 bool is_struct = definition < num_struct_definitions;
1093
1094 AddToSchemaAndInstances(
1095 ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
1096 "{\n");
1097
1098 for (int field = 0; field < fields_per_definition; field++) {
1099 const bool is_last_field = field == fields_per_definition - 1;
1100
1101 // Deprecate 1 in deprecation_rate fields. Only table fields can be
1102 // deprecated.
1103 // Don't deprecate the last field to avoid dangling commas in JSON.
1104 const bool deprecated =
1105 !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0);
1106
1107 std::string field_name = "f" + flatbuffers::NumToString(field);
1108 AddToSchemaAndInstances((" " + field_name + ":").c_str(),
1109 deprecated ? "" : (field_name + ": ").c_str());
1110 // Pick random type:
1111 auto base_type = static_cast<flatbuffers::BaseType>(
1112 lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
1113 switch (base_type) {
1114 case flatbuffers::BASE_TYPE_STRING:
1115 if (is_struct) {
1116 Dummy(); // No strings in structs.
1117 } else {
1118 AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
1119 }
1120 break;
1121 case flatbuffers::BASE_TYPE_VECTOR:
1122 if (is_struct) {
1123 Dummy(); // No vectors in structs.
1124 } else {
1125 AddToSchemaAndInstances("[ubyte]",
1126 deprecated ? "" : "[\n0,\n1,\n255\n]");
1127 }
1128 break;
1129 case flatbuffers::BASE_TYPE_NONE:
1130 case flatbuffers::BASE_TYPE_UTYPE:
1131 case flatbuffers::BASE_TYPE_STRUCT:
1132 case flatbuffers::BASE_TYPE_UNION:
1133 if (definition) {
1134 // Pick a random previous definition and random data instance of
1135 // that definition.
1136 int defref = lcg_rand() % definition;
1137 int instance = lcg_rand() % instances_per_definition;
1138 AddToSchemaAndInstances(
1139 ("D" + flatbuffers::NumToString(defref)).c_str(),
1140 deprecated ? ""
1141 : definitions[defref].instances[instance].c_str());
1142 } else {
1143 // If this is the first definition, we have no definition we can
1144 // refer to.
1145 Dummy();
1146 }
1147 break;
1148 case flatbuffers::BASE_TYPE_BOOL:
1149 AddToSchemaAndInstances(
1150 "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false"));
1151 break;
1152 default:
1153 // All the scalar types.
1154 schema += flatbuffers::kTypeNames[base_type];
1155
1156 if (!deprecated) {
1157 // We want each instance to use its own random value.
1158 for (int inst = 0; inst < instances_per_definition; inst++)
1159 definitions[definition].instances[inst] +=
1160 flatbuffers::IsFloat(base_type)
1161 ? flatbuffers::NumToString<double>(lcg_rand() % 128)
1162 .c_str()
1163 : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
1164 }
1165 }
1166 AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n",
1167 deprecated ? "" : is_last_field ? "\n" : ",\n");
1168 }
1169 AddToSchemaAndInstances("}\n\n", "}");
1170 }
1171
1172 schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
1173 schema += ";\n";
1174
1175 flatbuffers::Parser parser;
1176
1177 // Will not compare against the original if we don't write defaults
1178 parser.builder_.ForceDefaults(true);
1179
1180 // Parse the schema, parse the generated data, then generate text back
1181 // from the binary and compare against the original.
1182 TEST_EQ(parser.Parse(schema.c_str()), true);
1183
1184 const std::string &json =
1185 definitions[num_definitions - 1].instances[0] + "\n";
1186
1187 TEST_EQ(parser.Parse(json.c_str()), true);
1188
1189 std::string jsongen;
1190 parser.opts.indent_step = 0;
1191 auto result =
1192 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1193 TEST_EQ(result, true);
1194
1195 if (jsongen != json) {
1196 // These strings are larger than a megabyte, so we show the bytes around
1197 // the first bytes that are different rather than the whole string.
1198 size_t len = std::min(json.length(), jsongen.length());
1199 for (size_t i = 0; i < len; i++) {
1200 if (json[i] != jsongen[i]) {
1201 i -= std::min(static_cast<size_t>(10), i); // show some context;
1202 size_t end = std::min(len, i + 20);
1203 for (; i < end; i++)
1204 TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
1205 static_cast<int>(i), jsongen[i], json[i]);
1206 break;
1207 }
1208 }
1209 TEST_NOTNULL(NULL);
1210 }
1211
1212 // clang-format off
1213 #ifdef FLATBUFFERS_TEST_VERBOSE
1214 TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
1215 static_cast<int>(schema.length() / 1024),
1216 static_cast<int>(json.length() / 1024));
1217 #endif
1218 // clang-format on
1219 }
1220
1221 // Test that parser errors are actually generated.
TestError_(const char * src,const char * error_substr,bool strict_json,const char * file,int line,const char * func)1222 void TestError_(const char *src, const char *error_substr, bool strict_json,
1223 const char *file, int line, const char *func) {
1224 flatbuffers::IDLOptions opts;
1225 opts.strict_json = strict_json;
1226 flatbuffers::Parser parser(opts);
1227 if (parser.Parse(src)) {
1228 TestFail("true", "false",
1229 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
1230 func);
1231 } else if (!strstr(parser.error_.c_str(), error_substr)) {
1232 TestFail(parser.error_.c_str(), error_substr,
1233 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
1234 func);
1235 }
1236 }
1237
TestError_(const char * src,const char * error_substr,const char * file,int line,const char * func)1238 void TestError_(const char *src, const char *error_substr, const char *file,
1239 int line, const char *func) {
1240 TestError_(src, error_substr, false, file, line, func);
1241 }
1242
1243 #ifdef _WIN32
1244 # define TestError(src, ...) \
1245 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
1246 #else
1247 # define TestError(src, ...) \
1248 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
1249 #endif
1250
1251 // Test that parsing errors occur as we'd expect.
1252 // Also useful for coverage, making sure these paths are run.
ErrorTest()1253 void ErrorTest() {
1254 // In order they appear in idl_parser.cpp
1255 TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
1256 TestError("\"\0", "illegal");
1257 TestError("\"\\q", "escape code");
1258 TestError("table ///", "documentation");
1259 TestError("@", "illegal");
1260 TestError("table 1", "expecting");
1261 TestError("table X { Y:[[int]]; }", "nested vector");
1262 TestError("table X { Y:1; }", "illegal type");
1263 TestError("table X { Y:int; Y:int; }", "field already");
1264 TestError("table Y {} table X { Y:int; }", "same as table");
1265 TestError("struct X { Y:string; }", "only scalar");
1266 TestError("table X { Y:string = \"\"; }", "default values");
1267 TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
1268 TestError("struct X { Y:int (deprecated); }", "deprecate");
1269 TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
1270 "missing type field");
1271 TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
1272 "type id");
1273 TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
1274 TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
1275 TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
1276 true);
1277 TestError(
1278 "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
1279 "{ V:{ Y:1 } }",
1280 "wrong number");
1281 TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
1282 "unknown enum value");
1283 TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
1284 TestError("enum X:byte { Y } enum X {", "enum already");
1285 TestError("enum X:float {}", "underlying");
1286 TestError("enum X:byte { Y, Y }", "value already");
1287 TestError("enum X:byte { Y=2, Z=1 }", "ascending");
1288 TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out");
1289 TestError("table X { Y:int; } table X {", "datatype already");
1290 TestError("struct X (force_align: 7) { Y:int; }", "force_align");
1291 TestError("struct X {}", "size 0");
1292 TestError("{}", "no root");
1293 TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
1294 TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
1295 "end of file");
1296 TestError("root_type X;", "unknown root");
1297 TestError("struct X { Y:int; } root_type X;", "a table");
1298 TestError("union X { Y }", "referenced");
1299 TestError("union Z { X } struct X { Y:int; }", "only tables");
1300 TestError("table X { Y:[int]; YLength:int; }", "clash");
1301 TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
1302 // float to integer conversion is forbidden
1303 TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
1304 TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
1305 TestError("enum X:bool { Y = true }", "must be integral");
1306 }
1307
TestValue(const char * json,const char * type_name)1308 template<typename T> T TestValue(const char *json, const char *type_name) {
1309 flatbuffers::Parser parser;
1310 parser.builder_.ForceDefaults(true); // return defaults
1311 auto check_default = json ? false : true;
1312 if (check_default) { parser.opts.output_default_scalars_in_json = true; }
1313 // Simple schema.
1314 std::string schema =
1315 "table X { Y:" + std::string(type_name) + "; } root_type X;";
1316 TEST_EQ(parser.Parse(schema.c_str()), true);
1317
1318 auto done = parser.Parse(check_default ? "{}" : json);
1319 TEST_EQ_STR(parser.error_.c_str(), "");
1320 TEST_EQ(done, true);
1321
1322 // Check with print.
1323 std::string print_back;
1324 parser.opts.indent_step = -1;
1325 TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
1326 true);
1327 // restore value from its default
1328 if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
1329
1330 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
1331 parser.builder_.GetBufferPointer());
1332 return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
1333 }
1334
FloatCompare(float a,float b)1335 bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
1336
1337 // Additional parser testing not covered elsewhere.
ValueTest()1338 void ValueTest() {
1339 // Test scientific notation numbers.
1340 TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"),
1341 3.14159f),
1342 true);
1343 // number in string
1344 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"),
1345 3.14159f),
1346 true);
1347
1348 // Test conversion functions.
1349 TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1),
1350 true);
1351
1352 // int embedded to string
1353 TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876);
1354 TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876);
1355
1356 // Test negative hex constant.
1357 TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512);
1358 TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
1359
1360 // positive hex constant
1361 TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef);
1362 // with optional '+' sign
1363 TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
1364 // hex in string
1365 TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
1366
1367 // Make sure we do unsigned 64bit correctly.
1368 TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"),
1369 12335089644688340133ULL);
1370
1371 // bool in string
1372 TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false);
1373 TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true);
1374 TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false);
1375 TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true);
1376
1377 // check comments before and after json object
1378 TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1);
1379 TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1);
1380
1381 }
1382
NestedListTest()1383 void NestedListTest() {
1384 flatbuffers::Parser parser1;
1385 TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
1386 "root_type T;"
1387 "{ F:[ [10,20], [30,40]] }"),
1388 true);
1389 }
1390
EnumStringsTest()1391 void EnumStringsTest() {
1392 flatbuffers::Parser parser1;
1393 TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
1394 "root_type T;"
1395 "{ F:[ A, B, \"C\", \"A B C\" ] }"),
1396 true);
1397 flatbuffers::Parser parser2;
1398 TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
1399 "root_type T;"
1400 "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
1401 true);
1402 }
1403
EnumNamesTest()1404 void EnumNamesTest() {
1405 TEST_EQ_STR("Red", EnumNameColor(Color_Red));
1406 TEST_EQ_STR("Green", EnumNameColor(Color_Green));
1407 TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
1408 // Check that Color to string don't crash while decode a mixture of Colors.
1409 // 1) Example::Color enum is enum with unfixed underlying type.
1410 // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
1411 // Consequence: A value is out of this range will lead to UB (since C++17).
1412 // For details see C++17 standard or explanation on the SO:
1413 // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
1414 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
1415 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY-1)));
1416 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY+1)));
1417 }
1418
EnumOutOfRangeTest()1419 void EnumOutOfRangeTest() {
1420 TestError("enum X:byte { Y = 128 }", "enum value does not fit");
1421 TestError("enum X:byte { Y = -129 }", "enum value does not fit");
1422 TestError("enum X:byte { Y = 127, Z }", "enum value does not fit");
1423 TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
1424 TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
1425 // Unions begin with an implicit "NONE = 0".
1426 TestError("table Y{} union X { Y = -1 }",
1427 "enum values must be specified in ascending order");
1428 TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
1429 TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
1430 TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
1431 TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
1432 TestError("enum X:uint { Y = -1 }", "enum value does not fit");
1433 TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
1434 TestError("enum X:long { Y = 9223372036854775808 }", "constant does not fit");
1435 TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value overflows");
1436 TestError("enum X:ulong { Y = -1 }", "enum value does not fit");
1437 // TODO: these are perfectly valid constants that shouldn't fail
1438 TestError("enum X:ulong { Y = 13835058055282163712 }", "constant does not fit");
1439 TestError("enum X:ulong { Y = 18446744073709551615 }", "constant does not fit");
1440 }
1441
IntegerOutOfRangeTest()1442 void IntegerOutOfRangeTest() {
1443 TestError("table T { F:byte; } root_type T; { F:128 }",
1444 "constant does not fit");
1445 TestError("table T { F:byte; } root_type T; { F:-129 }",
1446 "constant does not fit");
1447 TestError("table T { F:ubyte; } root_type T; { F:256 }",
1448 "constant does not fit");
1449 TestError("table T { F:ubyte; } root_type T; { F:-1 }",
1450 "constant does not fit");
1451 TestError("table T { F:short; } root_type T; { F:32768 }",
1452 "constant does not fit");
1453 TestError("table T { F:short; } root_type T; { F:-32769 }",
1454 "constant does not fit");
1455 TestError("table T { F:ushort; } root_type T; { F:65536 }",
1456 "constant does not fit");
1457 TestError("table T { F:ushort; } root_type T; { F:-1 }",
1458 "constant does not fit");
1459 TestError("table T { F:int; } root_type T; { F:2147483648 }",
1460 "constant does not fit");
1461 TestError("table T { F:int; } root_type T; { F:-2147483649 }",
1462 "constant does not fit");
1463 TestError("table T { F:uint; } root_type T; { F:4294967296 }",
1464 "constant does not fit");
1465 TestError("table T { F:uint; } root_type T; { F:-1 }",
1466 "constant does not fit");
1467 // Check fixed width aliases
1468 TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
1469 TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
1470 TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
1471 TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
1472 TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
1473 TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
1474 "does not fit");
1475 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
1476 TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
1477 "does not fit");
1478 TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
1479 "does not fit");
1480
1481 TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
1482 TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
1483 TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
1484 TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
1485 TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
1486 TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
1487 "does not fit");
1488 TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
1489 "does not fit");
1490 TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
1491 "does not fit");
1492 // check out-of-int64 as int8
1493 TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
1494 "does not fit");
1495 TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
1496 "does not fit");
1497
1498 // Check default values
1499 TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
1500 "does not fit");
1501 TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
1502 "does not fit");
1503 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
1504 TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
1505 "does not fit");
1506 TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
1507 "does not fit");
1508 }
1509
IntegerBoundaryTest()1510 void IntegerBoundaryTest() {
1511 TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127);
1512 TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128);
1513 TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255);
1514 TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0);
1515 TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767);
1516 TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768);
1517 TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535);
1518 TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0);
1519 TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647);
1520 TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int"), (-2147483647 - 1));
1521 TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295);
1522 TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0);
1523 TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"),
1524 9223372036854775807);
1525 TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long"),
1526 (-9223372036854775807 - 1));
1527 TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"),
1528 18446744073709551615U);
1529 TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0);
1530 TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"),
1531 18446744073709551615ULL);
1532 // check that the default works
1533 TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
1534 18446744073709551615ULL);
1535 }
1536
ValidFloatTest()1537 void ValidFloatTest() {
1538 const auto infinityf = flatbuffers::numeric_limits<float>::infinity();
1539 const auto infinityd = flatbuffers::numeric_limits<double>::infinity();
1540 // check rounding to infinity
1541 TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf);
1542 TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf);
1543 TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd);
1544 TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd);
1545
1546 TEST_EQ(
1547 FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f),
1548 true);
1549 // float in string
1550 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2 \" }", "float"),
1551 3.14159f),
1552 true);
1553
1554 TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f);
1555 TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f);
1556 TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f);
1557 TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f);
1558 TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f);
1559 TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f);
1560 TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f);
1561 TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f);
1562 TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f);
1563 TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f);
1564 TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f);
1565 TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f);
1566 TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f);
1567 TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f);
1568
1569 #if defined(FLATBUFFERS_HAS_NEW_STRTOD)
1570 // Old MSVC versions may have problem with this check.
1571 // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
1572 TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"),
1573 6929495644600920.0);
1574 // check nan's
1575 TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true);
1576 TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true);
1577 TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true);
1578 TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true);
1579 TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true);
1580 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
1581 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
1582 // check inf
1583 TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf);
1584 TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf);
1585 TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf);
1586 TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf);
1587 TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf);
1588 TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf);
1589 TestValue<double>(
1590 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
1591 "3.0e2] }",
1592 "[double]");
1593 TestValue<float>(
1594 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
1595 "3.0e2] }",
1596 "[float]");
1597
1598 // Test binary format of float point.
1599 // https://en.cppreference.com/w/cpp/language/floating_literal
1600 // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
1601 TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625);
1602 // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
1603 TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f);
1604 TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f);
1605 TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f);
1606 TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f);
1607 TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0);
1608 TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625);
1609 TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625);
1610 TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
1611 TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
1612
1613 #else // FLATBUFFERS_HAS_NEW_STRTOD
1614 TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
1615 #endif // FLATBUFFERS_HAS_NEW_STRTOD
1616 }
1617
InvalidFloatTest()1618 void InvalidFloatTest() {
1619 auto invalid_msg = "invalid number";
1620 auto comma_msg = "expecting: ,";
1621 TestError("table T { F:float; } root_type T; { F:1,0 }", "");
1622 TestError("table T { F:float; } root_type T; { F:. }", "");
1623 TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
1624 TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
1625 TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
1626 TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
1627 TestError("table T { F:float; } root_type T; { F:.e }", "");
1628 TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
1629 TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
1630 TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
1631 TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
1632 TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
1633 TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
1634 TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
1635 TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
1636 // exponent pP is mandatory for hex-float
1637 TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
1638 TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
1639 TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
1640 // eE not exponent in hex-float!
1641 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
1642 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
1643 TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
1644 TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
1645 TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
1646 TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
1647 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
1648 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
1649 TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
1650 TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
1651 TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
1652 TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
1653 TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
1654 TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
1655 TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
1656 TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
1657 TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
1658 TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
1659 TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
1660 TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
1661 TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
1662 TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
1663 TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
1664 TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
1665 // floats in string
1666 TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
1667 TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
1668 TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
1669 TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
1670 TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
1671 TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
1672 // disable escapes for "number-in-string"
1673 TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
1674 TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
1675 TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
1676 TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
1677 TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
1678 TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
1679 // null is not a number constant!
1680 TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
1681 TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
1682 }
1683
1684 template<typename T>
NumericUtilsTestInteger(const char * lower,const char * upper)1685 void NumericUtilsTestInteger(const char *lower, const char *upper) {
1686 T x;
1687 TEST_EQ(flatbuffers::StringToNumber("1q", &x), false);
1688 TEST_EQ(x, 0);
1689 TEST_EQ(flatbuffers::StringToNumber(upper, &x), false);
1690 TEST_EQ(x, flatbuffers::numeric_limits<T>::max());
1691 TEST_EQ(flatbuffers::StringToNumber(lower, &x), false);
1692 auto expval = flatbuffers::is_unsigned<T>::value
1693 ? flatbuffers::numeric_limits<T>::max()
1694 : flatbuffers::numeric_limits<T>::lowest();
1695 TEST_EQ(x, expval);
1696 }
1697
1698 template<typename T>
NumericUtilsTestFloat(const char * lower,const char * upper)1699 void NumericUtilsTestFloat(const char *lower, const char *upper) {
1700 T f;
1701 TEST_EQ(flatbuffers::StringToNumber("", &f), false);
1702 TEST_EQ(flatbuffers::StringToNumber("1q", &f), false);
1703 TEST_EQ(f, 0);
1704 TEST_EQ(flatbuffers::StringToNumber(upper, &f), true);
1705 TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity());
1706 TEST_EQ(flatbuffers::StringToNumber(lower, &f), true);
1707 TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity());
1708 }
1709
NumericUtilsTest()1710 void NumericUtilsTest() {
1711 NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616");
1712 NumericUtilsTestInteger<uint8_t>("-1", "256");
1713 NumericUtilsTestInteger<int64_t>("-9223372036854775809",
1714 "9223372036854775808");
1715 NumericUtilsTestInteger<int8_t>("-129", "128");
1716 NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38");
1717 NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308");
1718 }
1719
IsAsciiUtilsTest()1720 void IsAsciiUtilsTest() {
1721 char c = -128;
1722 for (int cnt = 0; cnt < 256; cnt++) {
1723 auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z'));
1724 auto dec = (('0' <= c) && (c <= '9'));
1725 auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F'));
1726 TEST_EQ(flatbuffers::is_alpha(c), alpha);
1727 TEST_EQ(flatbuffers::is_alnum(c), alpha || dec);
1728 TEST_EQ(flatbuffers::is_digit(c), dec);
1729 TEST_EQ(flatbuffers::is_xdigit(c), dec || hex);
1730 c += 1;
1731 }
1732 }
1733
UnicodeTest()1734 void UnicodeTest() {
1735 flatbuffers::Parser parser;
1736 // Without setting allow_non_utf8 = true, we treat \x sequences as byte
1737 // sequences which are then validated as UTF-8.
1738 TEST_EQ(parser.Parse("table T { F:string; }"
1739 "root_type T;"
1740 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1741 "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
1742 "3D\\uDE0E\" }"),
1743 true);
1744 std::string jsongen;
1745 parser.opts.indent_step = -1;
1746 auto result =
1747 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1748 TEST_EQ(result, true);
1749 TEST_EQ_STR(jsongen.c_str(),
1750 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1751 "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
1752 }
1753
UnicodeTestAllowNonUTF8()1754 void UnicodeTestAllowNonUTF8() {
1755 flatbuffers::Parser parser;
1756 parser.opts.allow_non_utf8 = true;
1757 TEST_EQ(
1758 parser.Parse(
1759 "table T { F:string; }"
1760 "root_type T;"
1761 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1762 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
1763 true);
1764 std::string jsongen;
1765 parser.opts.indent_step = -1;
1766 auto result =
1767 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1768 TEST_EQ(result, true);
1769 TEST_EQ_STR(
1770 jsongen.c_str(),
1771 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1772 "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
1773 }
1774
UnicodeTestGenerateTextFailsOnNonUTF8()1775 void UnicodeTestGenerateTextFailsOnNonUTF8() {
1776 flatbuffers::Parser parser;
1777 // Allow non-UTF-8 initially to model what happens when we load a binary
1778 // flatbuffer from disk which contains non-UTF-8 strings.
1779 parser.opts.allow_non_utf8 = true;
1780 TEST_EQ(
1781 parser.Parse(
1782 "table T { F:string; }"
1783 "root_type T;"
1784 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1785 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
1786 true);
1787 std::string jsongen;
1788 parser.opts.indent_step = -1;
1789 // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
1790 // failure.
1791 parser.opts.allow_non_utf8 = false;
1792 auto result =
1793 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1794 TEST_EQ(result, false);
1795 }
1796
UnicodeSurrogatesTest()1797 void UnicodeSurrogatesTest() {
1798 flatbuffers::Parser parser;
1799
1800 TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
1801 "root_type T;"
1802 "{ F:\"\\uD83D\\uDCA9\"}"),
1803 true);
1804 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
1805 parser.builder_.GetBufferPointer());
1806 auto string = root->GetPointer<flatbuffers::String *>(
1807 flatbuffers::FieldIndexToOffset(0));
1808 TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
1809 }
1810
UnicodeInvalidSurrogatesTest()1811 void UnicodeInvalidSurrogatesTest() {
1812 TestError(
1813 "table T { F:string; }"
1814 "root_type T;"
1815 "{ F:\"\\uD800\"}",
1816 "unpaired high surrogate");
1817 TestError(
1818 "table T { F:string; }"
1819 "root_type T;"
1820 "{ F:\"\\uD800abcd\"}",
1821 "unpaired high surrogate");
1822 TestError(
1823 "table T { F:string; }"
1824 "root_type T;"
1825 "{ F:\"\\uD800\\n\"}",
1826 "unpaired high surrogate");
1827 TestError(
1828 "table T { F:string; }"
1829 "root_type T;"
1830 "{ F:\"\\uD800\\uD800\"}",
1831 "multiple high surrogates");
1832 TestError(
1833 "table T { F:string; }"
1834 "root_type T;"
1835 "{ F:\"\\uDC00\"}",
1836 "unpaired low surrogate");
1837 }
1838
InvalidUTF8Test()1839 void InvalidUTF8Test() {
1840 // "1 byte" pattern, under min length of 2 bytes
1841 TestError(
1842 "table T { F:string; }"
1843 "root_type T;"
1844 "{ F:\"\x80\"}",
1845 "illegal UTF-8 sequence");
1846 // 2 byte pattern, string too short
1847 TestError(
1848 "table T { F:string; }"
1849 "root_type T;"
1850 "{ F:\"\xDF\"}",
1851 "illegal UTF-8 sequence");
1852 // 3 byte pattern, string too short
1853 TestError(
1854 "table T { F:string; }"
1855 "root_type T;"
1856 "{ F:\"\xEF\xBF\"}",
1857 "illegal UTF-8 sequence");
1858 // 4 byte pattern, string too short
1859 TestError(
1860 "table T { F:string; }"
1861 "root_type T;"
1862 "{ F:\"\xF7\xBF\xBF\"}",
1863 "illegal UTF-8 sequence");
1864 // "5 byte" pattern, string too short
1865 TestError(
1866 "table T { F:string; }"
1867 "root_type T;"
1868 "{ F:\"\xFB\xBF\xBF\xBF\"}",
1869 "illegal UTF-8 sequence");
1870 // "6 byte" pattern, string too short
1871 TestError(
1872 "table T { F:string; }"
1873 "root_type T;"
1874 "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
1875 "illegal UTF-8 sequence");
1876 // "7 byte" pattern, string too short
1877 TestError(
1878 "table T { F:string; }"
1879 "root_type T;"
1880 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
1881 "illegal UTF-8 sequence");
1882 // "5 byte" pattern, over max length of 4 bytes
1883 TestError(
1884 "table T { F:string; }"
1885 "root_type T;"
1886 "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
1887 "illegal UTF-8 sequence");
1888 // "6 byte" pattern, over max length of 4 bytes
1889 TestError(
1890 "table T { F:string; }"
1891 "root_type T;"
1892 "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
1893 "illegal UTF-8 sequence");
1894 // "7 byte" pattern, over max length of 4 bytes
1895 TestError(
1896 "table T { F:string; }"
1897 "root_type T;"
1898 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
1899 "illegal UTF-8 sequence");
1900
1901 // Three invalid encodings for U+000A (\n, aka NEWLINE)
1902 TestError(
1903 "table T { F:string; }"
1904 "root_type T;"
1905 "{ F:\"\xC0\x8A\"}",
1906 "illegal UTF-8 sequence");
1907 TestError(
1908 "table T { F:string; }"
1909 "root_type T;"
1910 "{ F:\"\xE0\x80\x8A\"}",
1911 "illegal UTF-8 sequence");
1912 TestError(
1913 "table T { F:string; }"
1914 "root_type T;"
1915 "{ F:\"\xF0\x80\x80\x8A\"}",
1916 "illegal UTF-8 sequence");
1917
1918 // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
1919 TestError(
1920 "table T { F:string; }"
1921 "root_type T;"
1922 "{ F:\"\xE0\x81\xA9\"}",
1923 "illegal UTF-8 sequence");
1924 TestError(
1925 "table T { F:string; }"
1926 "root_type T;"
1927 "{ F:\"\xF0\x80\x81\xA9\"}",
1928 "illegal UTF-8 sequence");
1929
1930 // Invalid encoding for U+20AC (EURO SYMBOL)
1931 TestError(
1932 "table T { F:string; }"
1933 "root_type T;"
1934 "{ F:\"\xF0\x82\x82\xAC\"}",
1935 "illegal UTF-8 sequence");
1936
1937 // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
1938 // UTF-8
1939 TestError(
1940 "table T { F:string; }"
1941 "root_type T;"
1942 // U+10400 "encoded" as U+D801 U+DC00
1943 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
1944 "illegal UTF-8 sequence");
1945
1946 // Check independence of identifier from locale.
1947 std::string locale_ident;
1948 locale_ident += "table T { F";
1949 locale_ident += static_cast<char>(-32); // unsigned 0xE0
1950 locale_ident += " :string; }";
1951 locale_ident += "root_type T;";
1952 locale_ident += "{}";
1953 TestError(locale_ident.c_str(), "");
1954 }
1955
UnknownFieldsTest()1956 void UnknownFieldsTest() {
1957 flatbuffers::IDLOptions opts;
1958 opts.skip_unexpected_fields_in_json = true;
1959 flatbuffers::Parser parser(opts);
1960
1961 TEST_EQ(parser.Parse("table T { str:string; i:int;}"
1962 "root_type T;"
1963 "{ str:\"test\","
1964 "unknown_string:\"test\","
1965 "\"unknown_string\":\"test\","
1966 "unknown_int:10,"
1967 "unknown_float:1.0,"
1968 "unknown_array: [ 1, 2, 3, 4],"
1969 "unknown_object: { i: 10 },"
1970 "\"unknown_object\": { \"i\": 10 },"
1971 "i:10}"),
1972 true);
1973
1974 std::string jsongen;
1975 parser.opts.indent_step = -1;
1976 auto result =
1977 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1978 TEST_EQ(result, true);
1979 TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
1980 }
1981
ParseUnionTest()1982 void ParseUnionTest() {
1983 // Unions must be parseable with the type field following the object.
1984 flatbuffers::Parser parser;
1985 TEST_EQ(parser.Parse("table T { A:int; }"
1986 "union U { T }"
1987 "table V { X:U; }"
1988 "root_type V;"
1989 "{ X:{ A:1 }, X_type: T }"),
1990 true);
1991 // Unions must be parsable with prefixed namespace.
1992 flatbuffers::Parser parser2;
1993 TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
1994 "table B { e:U; } root_type B;"
1995 "{ e_type: N_A, e: {} }"),
1996 true);
1997 }
1998
InvalidNestedFlatbufferTest()1999 void InvalidNestedFlatbufferTest() {
2000 // First, load and parse FlatBuffer schema (.fbs)
2001 std::string schemafile;
2002 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
2003 false, &schemafile),
2004 true);
2005 auto include_test_path =
2006 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
2007 const char *include_directories[] = { test_data_path.c_str(),
2008 include_test_path.c_str(), nullptr };
2009 flatbuffers::Parser parser1;
2010 TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true);
2011
2012 // "color" inside nested flatbuffer contains invalid enum value
2013 TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: "
2014 "\"Leela\", color: \"nonexistent\"}}"),
2015 false);
2016 // Check that Parser is destroyed correctly after parsing invalid json
2017 }
2018
UnionVectorTest()2019 void UnionVectorTest() {
2020 // load FlatBuffer fbs schema.
2021 // TODO: load a JSON file with such a vector when JSON support is ready.
2022 std::string schemafile;
2023 TEST_EQ(flatbuffers::LoadFile(
2024 (test_data_path + "union_vector/union_vector.fbs").c_str(), false,
2025 &schemafile),
2026 true);
2027
2028 // parse schema.
2029 flatbuffers::IDLOptions idl_opts;
2030 idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kCpp;
2031 flatbuffers::Parser parser(idl_opts);
2032 TEST_EQ(parser.Parse(schemafile.c_str()), true);
2033
2034 flatbuffers::FlatBufferBuilder fbb;
2035
2036 // union types.
2037 std::vector<uint8_t> types;
2038 types.push_back(static_cast<uint8_t>(Character_Belle));
2039 types.push_back(static_cast<uint8_t>(Character_MuLan));
2040 types.push_back(static_cast<uint8_t>(Character_BookFan));
2041 types.push_back(static_cast<uint8_t>(Character_Other));
2042 types.push_back(static_cast<uint8_t>(Character_Unused));
2043
2044 // union values.
2045 std::vector<flatbuffers::Offset<void>> characters;
2046 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
2047 characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
2048 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
2049 characters.push_back(fbb.CreateString("Other").Union());
2050 characters.push_back(fbb.CreateString("Unused").Union());
2051
2052 // create Movie.
2053 const auto movie_offset =
2054 CreateMovie(fbb, Character_Rapunzel,
2055 fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
2056 fbb.CreateVector(types), fbb.CreateVector(characters));
2057 FinishMovieBuffer(fbb, movie_offset);
2058 auto buf = fbb.GetBufferPointer();
2059
2060 flatbuffers::Verifier verifier(buf, fbb.GetSize());
2061 TEST_EQ(VerifyMovieBuffer(verifier), true);
2062
2063 auto flat_movie = GetMovie(buf);
2064
2065 auto TestMovie = [](const Movie *movie) {
2066 TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
2067
2068 auto cts = movie->characters_type();
2069 TEST_EQ(movie->characters_type()->size(), 5);
2070 TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
2071 TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
2072 TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
2073 TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
2074 TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
2075
2076 auto rapunzel = movie->main_character_as_Rapunzel();
2077 TEST_NOTNULL(rapunzel);
2078 TEST_EQ(rapunzel->hair_length(), 6);
2079
2080 auto cs = movie->characters();
2081 TEST_EQ(cs->size(), 5);
2082 auto belle = cs->GetAs<BookReader>(0);
2083 TEST_EQ(belle->books_read(), 7);
2084 auto mu_lan = cs->GetAs<Attacker>(1);
2085 TEST_EQ(mu_lan->sword_attack_damage(), 5);
2086 auto book_fan = cs->GetAs<BookReader>(2);
2087 TEST_EQ(book_fan->books_read(), 2);
2088 auto other = cs->GetAsString(3);
2089 TEST_EQ_STR(other->c_str(), "Other");
2090 auto unused = cs->GetAsString(4);
2091 TEST_EQ_STR(unused->c_str(), "Unused");
2092 };
2093
2094 TestMovie(flat_movie);
2095
2096 auto movie_object = flat_movie->UnPack();
2097 TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
2098 TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
2099 TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
2100 TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
2101 TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
2102 TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
2103
2104 fbb.Clear();
2105 fbb.Finish(Movie::Pack(fbb, movie_object));
2106
2107 delete movie_object;
2108
2109 auto repacked_movie = GetMovie(fbb.GetBufferPointer());
2110
2111 TestMovie(repacked_movie);
2112
2113 auto s =
2114 flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable());
2115 TEST_EQ_STR(
2116 s.c_str(),
2117 "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
2118 "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
2119 "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
2120 "{ books_read: 2 }, \"Other\", \"Unused\" ] }");
2121
2122
2123 flatbuffers::ToStringVisitor visitor("\n", true, " ");
2124 IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor);
2125 TEST_EQ_STR(
2126 visitor.s.c_str(),
2127 "{\n"
2128 " \"main_character_type\": \"Rapunzel\",\n"
2129 " \"main_character\": {\n"
2130 " \"hair_length\": 6\n"
2131 " },\n"
2132 " \"characters_type\": [\n"
2133 " \"Belle\",\n"
2134 " \"MuLan\",\n"
2135 " \"BookFan\",\n"
2136 " \"Other\",\n"
2137 " \"Unused\"\n"
2138 " ],\n"
2139 " \"characters\": [\n"
2140 " {\n"
2141 " \"books_read\": 7\n"
2142 " },\n"
2143 " {\n"
2144 " \"sword_attack_damage\": 5\n"
2145 " },\n"
2146 " {\n"
2147 " \"books_read\": 2\n"
2148 " },\n"
2149 " \"Other\",\n"
2150 " \"Unused\"\n"
2151 " ]\n"
2152 "}");
2153 }
2154
ConformTest()2155 void ConformTest() {
2156 flatbuffers::Parser parser;
2157 TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
2158
2159 auto test_conform = [](flatbuffers::Parser &parser1, const char *test,
2160 const char *expected_err) {
2161 flatbuffers::Parser parser2;
2162 TEST_EQ(parser2.Parse(test), true);
2163 auto err = parser2.ConformTo(parser1);
2164 TEST_NOTNULL(strstr(err.c_str(), expected_err));
2165 };
2166
2167 test_conform(parser, "table T { A:byte; }", "types differ for field");
2168 test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
2169 test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
2170 test_conform(parser, "table T { B:float; }",
2171 "field renamed to different type");
2172 test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
2173 }
2174
ParseProtoBufAsciiTest()2175 void ParseProtoBufAsciiTest() {
2176 // We can put the parser in a mode where it will accept JSON that looks more
2177 // like Protobuf ASCII, for users that have data in that format.
2178 // This uses no "" for field names (which we already support by default,
2179 // omits `,`, `:` before `{` and a couple of other features.
2180 flatbuffers::Parser parser;
2181 parser.opts.protobuf_ascii_alike = true;
2182 TEST_EQ(
2183 parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"),
2184 true);
2185 TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
2186 // Similarly, in text output, it should omit these.
2187 std::string text;
2188 auto ok = flatbuffers::GenerateText(
2189 parser, parser.builder_.GetBufferPointer(), &text);
2190 TEST_EQ(ok, true);
2191 TEST_EQ_STR(text.c_str(),
2192 "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n");
2193 }
2194
FlexBuffersTest()2195 void FlexBuffersTest() {
2196 flexbuffers::Builder slb(512,
2197 flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
2198
2199 // Write the equivalent of:
2200 // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ],
2201 // foo: 100, bool: true, mymap: { foo: "Fred" } }
2202 // clang-format off
2203 #ifndef FLATBUFFERS_CPP98_STL
2204 // It's possible to do this without std::function support as well.
2205 slb.Map([&]() {
2206 slb.Vector("vec", [&]() {
2207 slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
2208 slb += "Fred";
2209 slb.IndirectFloat(4.0f);
2210 uint8_t blob[] = { 77 };
2211 slb.Blob(blob, 1);
2212 slb += false;
2213 });
2214 int ints[] = { 1, 2, 3 };
2215 slb.Vector("bar", ints, 3);
2216 slb.FixedTypedVector("bar3", ints, 3);
2217 bool bools[] = {true, false, true, false};
2218 slb.Vector("bools", bools, 4);
2219 slb.Bool("bool", true);
2220 slb.Double("foo", 100);
2221 slb.Map("mymap", [&]() {
2222 slb.String("foo", "Fred"); // Testing key and string reuse.
2223 });
2224 });
2225 slb.Finish();
2226 #else
2227 // It's possible to do this without std::function support as well.
2228 slb.Map([](flexbuffers::Builder& slb2) {
2229 slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
2230 slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
2231 slb3 += "Fred";
2232 slb3.IndirectFloat(4.0f);
2233 uint8_t blob[] = { 77 };
2234 slb3.Blob(blob, 1);
2235 slb3 += false;
2236 }, slb2);
2237 int ints[] = { 1, 2, 3 };
2238 slb2.Vector("bar", ints, 3);
2239 slb2.FixedTypedVector("bar3", ints, 3);
2240 slb2.Bool("bool", true);
2241 slb2.Double("foo", 100);
2242 slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
2243 slb3.String("foo", "Fred"); // Testing key and string reuse.
2244 }, slb2);
2245 }, slb);
2246 slb.Finish();
2247 #endif // FLATBUFFERS_CPP98_STL
2248
2249 #ifdef FLATBUFFERS_TEST_VERBOSE
2250 for (size_t i = 0; i < slb.GetBuffer().size(); i++)
2251 printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
2252 printf("\n");
2253 #endif
2254 // clang-format on
2255
2256 auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
2257 TEST_EQ(map.size(), 7);
2258 auto vec = map["vec"].AsVector();
2259 TEST_EQ(vec.size(), 5);
2260 TEST_EQ(vec[0].AsInt64(), -100);
2261 TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
2262 TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
2263 TEST_EQ(vec[2].AsDouble(), 4.0);
2264 TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
2265 TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
2266 TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
2267
2268 // Few tests for templated version of As.
2269 TEST_EQ(vec[0].As<int64_t>(), -100);
2270 TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
2271 TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed.
2272 TEST_EQ(vec[2].As<double>(), 4.0);
2273
2274 // Test that the blob can be accessed.
2275 TEST_EQ(vec[3].IsBlob(), true);
2276 auto blob = vec[3].AsBlob();
2277 TEST_EQ(blob.size(), 1);
2278 TEST_EQ(blob.data()[0], 77);
2279 TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
2280 TEST_EQ(vec[4].AsBool(), false); // Check if value is false
2281 auto tvec = map["bar"].AsTypedVector();
2282 TEST_EQ(tvec.size(), 3);
2283 TEST_EQ(tvec[2].AsInt8(), 3);
2284 auto tvec3 = map["bar3"].AsFixedTypedVector();
2285 TEST_EQ(tvec3.size(), 3);
2286 TEST_EQ(tvec3[2].AsInt8(), 3);
2287 TEST_EQ(map["bool"].AsBool(), true);
2288 auto tvecb = map["bools"].AsTypedVector();
2289 TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL);
2290 TEST_EQ(map["foo"].AsUInt8(), 100);
2291 TEST_EQ(map["unknown"].IsNull(), true);
2292 auto mymap = map["mymap"].AsMap();
2293 // These should be equal by pointer equality, since key and value are shared.
2294 TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
2295 TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
2296 // We can mutate values in the buffer.
2297 TEST_EQ(vec[0].MutateInt(-99), true);
2298 TEST_EQ(vec[0].AsInt64(), -99);
2299 TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
2300 TEST_EQ_STR(vec[1].AsString().c_str(), "John");
2301 TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
2302 TEST_EQ(vec[2].MutateFloat(2.0f), true);
2303 TEST_EQ(vec[2].AsFloat(), 2.0f);
2304 TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
2305 TEST_EQ(vec[4].AsBool(), false); // Is false before change
2306 TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
2307 TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
2308
2309 // Parse from JSON:
2310 flatbuffers::Parser parser;
2311 slb.Clear();
2312 auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
2313 TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
2314 auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
2315 auto jmap = jroot.AsMap();
2316 auto jvec = jmap["a"].AsVector();
2317 TEST_EQ(jvec[0].AsInt64(), 123);
2318 TEST_EQ(jvec[1].AsDouble(), 456.0);
2319 TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
2320 TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
2321 TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
2322 TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
2323 TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
2324 // And from FlexBuffer back to JSON:
2325 auto jsonback = jroot.ToString();
2326 TEST_EQ_STR(jsontest, jsonback.c_str());
2327 }
2328
TypeAliasesTest()2329 void TypeAliasesTest() {
2330 flatbuffers::FlatBufferBuilder builder;
2331
2332 builder.Finish(CreateTypeAliases(
2333 builder, flatbuffers::numeric_limits<int8_t>::min(),
2334 flatbuffers::numeric_limits<uint8_t>::max(),
2335 flatbuffers::numeric_limits<int16_t>::min(),
2336 flatbuffers::numeric_limits<uint16_t>::max(),
2337 flatbuffers::numeric_limits<int32_t>::min(),
2338 flatbuffers::numeric_limits<uint32_t>::max(),
2339 flatbuffers::numeric_limits<int64_t>::min(),
2340 flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));
2341
2342 auto p = builder.GetBufferPointer();
2343 auto ta = flatbuffers::GetRoot<TypeAliases>(p);
2344
2345 TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
2346 TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
2347 TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
2348 TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
2349 TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
2350 TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
2351 TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
2352 TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
2353 TEST_EQ(ta->f32(), 2.3f);
2354 TEST_EQ(ta->f64(), 2.3);
2355 using namespace flatbuffers; // is_same
2356 static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
2357 static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
2358 static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
2359 static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
2360 static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
2361 static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
2362 static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
2363 static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
2364 static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
2365 static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
2366 }
2367
EndianSwapTest()2368 void EndianSwapTest() {
2369 TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412);
2370 TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)),
2371 0x78563412);
2372 TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)),
2373 0xEFCDAB9078563412);
2374 TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f);
2375 }
2376
UninitializedVectorTest()2377 void UninitializedVectorTest() {
2378 flatbuffers::FlatBufferBuilder builder;
2379
2380 Test *buf = nullptr;
2381 auto vector_offset = builder.CreateUninitializedVectorOfStructs<Test>(2, &buf);
2382 TEST_NOTNULL(buf);
2383 buf[0] = Test(10, 20);
2384 buf[1] = Test(30, 40);
2385
2386 auto required_name = builder.CreateString("myMonster");
2387 auto monster_builder = MonsterBuilder(builder);
2388 monster_builder.add_name(required_name); // required field mandated for monster.
2389 monster_builder.add_test4(vector_offset);
2390 builder.Finish(monster_builder.Finish());
2391
2392 auto p = builder.GetBufferPointer();
2393 auto uvt = flatbuffers::GetRoot<Monster>(p);
2394 TEST_NOTNULL(uvt);
2395 auto vec = uvt->test4();
2396 TEST_NOTNULL(vec);
2397 auto test_0 = vec->Get(0);
2398 auto test_1 = vec->Get(1);
2399 TEST_EQ(test_0->a(), 10);
2400 TEST_EQ(test_0->b(), 20);
2401 TEST_EQ(test_1->a(), 30);
2402 TEST_EQ(test_1->b(), 40);
2403 }
2404
EqualOperatorTest()2405 void EqualOperatorTest() {
2406 MonsterT a;
2407 MonsterT b;
2408 TEST_EQ(b == a, true);
2409
2410 b.mana = 33;
2411 TEST_EQ(b == a, false);
2412 b.mana = 150;
2413 TEST_EQ(b == a, true);
2414
2415 b.inventory.push_back(3);
2416 TEST_EQ(b == a, false);
2417 b.inventory.clear();
2418 TEST_EQ(b == a, true);
2419
2420 b.test.type = Any_Monster;
2421 TEST_EQ(b == a, false);
2422 }
2423
2424 // For testing any binaries, e.g. from fuzzing.
LoadVerifyBinaryTest()2425 void LoadVerifyBinaryTest() {
2426 std::string binary;
2427 if (flatbuffers::LoadFile((test_data_path +
2428 "fuzzer/your-filename-here").c_str(),
2429 true, &binary)) {
2430 flatbuffers::Verifier verifier(
2431 reinterpret_cast<const uint8_t *>(binary.data()), binary.size());
2432 TEST_EQ(VerifyMonsterBuffer(verifier), true);
2433 }
2434 }
2435
CreateSharedStringTest()2436 void CreateSharedStringTest() {
2437 flatbuffers::FlatBufferBuilder builder;
2438 const auto one1 = builder.CreateSharedString("one");
2439 const auto two = builder.CreateSharedString("two");
2440 const auto one2 = builder.CreateSharedString("one");
2441 TEST_EQ(one1.o, one2.o);
2442 const auto onetwo = builder.CreateSharedString("onetwo");
2443 TEST_EQ(onetwo.o != one1.o, true);
2444 TEST_EQ(onetwo.o != two.o, true);
2445
2446 // Support for embedded nulls
2447 const char chars_b[] = {'a', '\0', 'b'};
2448 const char chars_c[] = {'a', '\0', 'c'};
2449 const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b));
2450 const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c));
2451 const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b));
2452 TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro
2453 TEST_EQ(null_b1.o, null_b2.o);
2454
2455 // Put the strings into an array for round trip verification.
2456 const flatbuffers::Offset<flatbuffers::String> array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 };
2457 const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7));
2458 MonsterBuilder monster_builder(builder);
2459 monster_builder.add_name(two);
2460 monster_builder.add_testarrayofstring(vector_offset);
2461 builder.Finish(monster_builder.Finish());
2462
2463 // Read the Monster back.
2464 const auto *monster = flatbuffers::GetRoot<Monster>(builder.GetBufferPointer());
2465 TEST_EQ_STR(monster->name()->c_str(), "two");
2466 const auto *testarrayofstring = monster->testarrayofstring();
2467 TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7));
2468 const auto &a = *testarrayofstring;
2469 TEST_EQ_STR(a[0]->c_str(), "one");
2470 TEST_EQ_STR(a[1]->c_str(), "two");
2471 TEST_EQ_STR(a[2]->c_str(), "one");
2472 TEST_EQ_STR(a[3]->c_str(), "onetwo");
2473 TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b))));
2474 TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c))));
2475 TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b))));
2476
2477 // Make sure String::operator< works, too, since it is related to StringOffsetCompare.
2478 TEST_EQ((*a[0]) < (*a[1]), true);
2479 TEST_EQ((*a[1]) < (*a[0]), false);
2480 TEST_EQ((*a[1]) < (*a[2]), false);
2481 TEST_EQ((*a[2]) < (*a[1]), true);
2482 TEST_EQ((*a[4]) < (*a[3]), true);
2483 TEST_EQ((*a[5]) < (*a[4]), false);
2484 TEST_EQ((*a[5]) < (*a[4]), false);
2485 TEST_EQ((*a[6]) < (*a[5]), true);
2486 }
2487
FlatBufferTests()2488 int FlatBufferTests() {
2489 // clang-format off
2490
2491 // Run our various test suites:
2492
2493 std::string rawbuf;
2494 auto flatbuf1 = CreateFlatBufferTest(rawbuf);
2495 #if !defined(FLATBUFFERS_CPP98_STL)
2496 auto flatbuf = std::move(flatbuf1); // Test move assignment.
2497 #else
2498 auto &flatbuf = flatbuf1;
2499 #endif // !defined(FLATBUFFERS_CPP98_STL)
2500
2501 TriviallyCopyableTest();
2502
2503 AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
2504 rawbuf.length());
2505 AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
2506
2507 MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
2508
2509 ObjectFlatBuffersTest(flatbuf.data());
2510
2511 MiniReflectFlatBuffersTest(flatbuf.data());
2512
2513 SizePrefixedTest();
2514
2515 #ifndef FLATBUFFERS_NO_FILE_TESTS
2516 #ifdef FLATBUFFERS_TEST_PATH_PREFIX
2517 test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
2518 test_data_path;
2519 #endif
2520 ParseAndGenerateTextTest(false);
2521 ParseAndGenerateTextTest(true);
2522 ReflectionTest(flatbuf.data(), flatbuf.size());
2523 ParseProtoTest();
2524 UnionVectorTest();
2525 LoadVerifyBinaryTest();
2526 #endif
2527 // clang-format on
2528
2529 FuzzTest1();
2530 FuzzTest2();
2531
2532 ErrorTest();
2533 ValueTest();
2534 EnumStringsTest();
2535 EnumNamesTest();
2536 EnumOutOfRangeTest();
2537 IntegerOutOfRangeTest();
2538 IntegerBoundaryTest();
2539 UnicodeTest();
2540 UnicodeTestAllowNonUTF8();
2541 UnicodeTestGenerateTextFailsOnNonUTF8();
2542 UnicodeSurrogatesTest();
2543 UnicodeInvalidSurrogatesTest();
2544 InvalidUTF8Test();
2545 UnknownFieldsTest();
2546 ParseUnionTest();
2547 InvalidNestedFlatbufferTest();
2548 ConformTest();
2549 ParseProtoBufAsciiTest();
2550 TypeAliasesTest();
2551 EndianSwapTest();
2552 CreateSharedStringTest();
2553 JsonDefaultTest();
2554 FlexBuffersTest();
2555 UninitializedVectorTest();
2556 EqualOperatorTest();
2557 NumericUtilsTest();
2558 IsAsciiUtilsTest();
2559 ValidFloatTest();
2560 InvalidFloatTest();
2561 return 0;
2562 }
2563
main(int,const char * [])2564 int main(int /*argc*/, const char * /*argv*/ []) {
2565 InitTestEngine();
2566
2567 std::string req_locale;
2568 if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE",
2569 &req_locale)) {
2570 TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s",
2571 req_locale.c_str());
2572 req_locale = flatbuffers::RemoveStringQuotes(req_locale);
2573 std::string the_locale;
2574 TEST_ASSERT_FUNC(
2575 flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale));
2576 TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str());
2577 }
2578
2579 FlatBufferTests();
2580 FlatBufferBuilderTest();
2581
2582 if (!testing_fails) {
2583 TEST_OUTPUT_LINE("ALL TESTS PASSED");
2584 } else {
2585 TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
2586 }
2587 return CloseTestEngine();
2588 }
2589