1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_mips.h"
18
19 #include "arch/mips/asm_support_mips.h"
20 #include "arch/mips/entrypoints_direct_mips.h"
21 #include "arch/mips/instruction_set_features_mips.h"
22 #include "art_method.h"
23 #include "class_table.h"
24 #include "code_generator_utils.h"
25 #include "compiled_method.h"
26 #include "entrypoints/quick/quick_entrypoints.h"
27 #include "entrypoints/quick/quick_entrypoints_enum.h"
28 #include "gc/accounting/card_table.h"
29 #include "gc/space/image_space.h"
30 #include "heap_poisoning.h"
31 #include "intrinsics.h"
32 #include "intrinsics_mips.h"
33 #include "linker/linker_patch.h"
34 #include "mirror/array-inl.h"
35 #include "mirror/class-inl.h"
36 #include "offsets.h"
37 #include "stack_map_stream.h"
38 #include "thread.h"
39 #include "utils/assembler.h"
40 #include "utils/mips/assembler_mips.h"
41 #include "utils/stack_checks.h"
42
43 namespace art {
44 namespace mips {
45
46 static constexpr int kCurrentMethodStackOffset = 0;
47 static constexpr Register kMethodRegisterArgument = A0;
48
49 // Flags controlling the use of thunks for Baker read barriers.
50 constexpr bool kBakerReadBarrierThunksEnableForFields = true;
51 constexpr bool kBakerReadBarrierThunksEnableForArrays = true;
52 constexpr bool kBakerReadBarrierThunksEnableForGcRoots = true;
53
MipsReturnLocation(DataType::Type return_type)54 Location MipsReturnLocation(DataType::Type return_type) {
55 switch (return_type) {
56 case DataType::Type::kReference:
57 case DataType::Type::kBool:
58 case DataType::Type::kUint8:
59 case DataType::Type::kInt8:
60 case DataType::Type::kUint16:
61 case DataType::Type::kInt16:
62 case DataType::Type::kUint32:
63 case DataType::Type::kInt32:
64 return Location::RegisterLocation(V0);
65
66 case DataType::Type::kUint64:
67 case DataType::Type::kInt64:
68 return Location::RegisterPairLocation(V0, V1);
69
70 case DataType::Type::kFloat32:
71 case DataType::Type::kFloat64:
72 return Location::FpuRegisterLocation(F0);
73
74 case DataType::Type::kVoid:
75 return Location();
76 }
77 UNREACHABLE();
78 }
79
GetReturnLocation(DataType::Type type) const80 Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(DataType::Type type) const {
81 return MipsReturnLocation(type);
82 }
83
GetMethodLocation() const84 Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const {
85 return Location::RegisterLocation(kMethodRegisterArgument);
86 }
87
GetNextLocation(DataType::Type type)88 Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(DataType::Type type) {
89 Location next_location;
90
91 switch (type) {
92 case DataType::Type::kReference:
93 case DataType::Type::kBool:
94 case DataType::Type::kUint8:
95 case DataType::Type::kInt8:
96 case DataType::Type::kUint16:
97 case DataType::Type::kInt16:
98 case DataType::Type::kInt32: {
99 uint32_t gp_index = gp_index_++;
100 if (gp_index < calling_convention.GetNumberOfRegisters()) {
101 next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index));
102 } else {
103 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
104 next_location = Location::StackSlot(stack_offset);
105 }
106 break;
107 }
108
109 case DataType::Type::kInt64: {
110 uint32_t gp_index = gp_index_;
111 gp_index_ += 2;
112 if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) {
113 Register reg = calling_convention.GetRegisterAt(gp_index);
114 if (reg == A1 || reg == A3) {
115 gp_index_++; // Skip A1(A3), and use A2_A3(T0_T1) instead.
116 gp_index++;
117 }
118 Register low_even = calling_convention.GetRegisterAt(gp_index);
119 Register high_odd = calling_convention.GetRegisterAt(gp_index + 1);
120 DCHECK_EQ(low_even + 1, high_odd);
121 next_location = Location::RegisterPairLocation(low_even, high_odd);
122 } else {
123 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
124 next_location = Location::DoubleStackSlot(stack_offset);
125 }
126 break;
127 }
128
129 // Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double
130 // will take up the even/odd pair, while floats are stored in even regs only.
131 // On 64 bit FPU, both double and float are stored in even registers only.
132 case DataType::Type::kFloat32:
133 case DataType::Type::kFloat64: {
134 uint32_t float_index = float_index_++;
135 if (float_index < calling_convention.GetNumberOfFpuRegisters()) {
136 next_location = Location::FpuRegisterLocation(
137 calling_convention.GetFpuRegisterAt(float_index));
138 } else {
139 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
140 next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
141 : Location::StackSlot(stack_offset);
142 }
143 break;
144 }
145
146 case DataType::Type::kUint32:
147 case DataType::Type::kUint64:
148 case DataType::Type::kVoid:
149 LOG(FATAL) << "Unexpected parameter type " << type;
150 UNREACHABLE();
151 }
152
153 // Space on the stack is reserved for all arguments.
154 stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
155
156 return next_location;
157 }
158
GetReturnLocation(DataType::Type type)159 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type type) {
160 return MipsReturnLocation(type);
161 }
162
OneRegInReferenceOutSaveEverythingCallerSaves()163 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
164 InvokeRuntimeCallingConvention calling_convention;
165 RegisterSet caller_saves = RegisterSet::Empty();
166 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
167 // The reference is returned in the same register. This differs from the standard return location.
168 return caller_saves;
169 }
170
171 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
172 #define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()-> // NOLINT
173 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
174
175 class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS {
176 public:
BoundsCheckSlowPathMIPS(HBoundsCheck * instruction)177 explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {}
178
EmitNativeCode(CodeGenerator * codegen)179 void EmitNativeCode(CodeGenerator* codegen) override {
180 LocationSummary* locations = instruction_->GetLocations();
181 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
182 __ Bind(GetEntryLabel());
183 if (instruction_->CanThrowIntoCatchBlock()) {
184 // Live registers will be restored in the catch block if caught.
185 SaveLiveRegisters(codegen, instruction_->GetLocations());
186 }
187 // We're moving two locations to locations that could overlap, so we need a parallel
188 // move resolver.
189 InvokeRuntimeCallingConvention calling_convention;
190 codegen->EmitParallelMoves(locations->InAt(0),
191 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
192 DataType::Type::kInt32,
193 locations->InAt(1),
194 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
195 DataType::Type::kInt32);
196 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
197 ? kQuickThrowStringBounds
198 : kQuickThrowArrayBounds;
199 mips_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
200 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
201 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
202 }
203
IsFatal() const204 bool IsFatal() const override { return true; }
205
GetDescription() const206 const char* GetDescription() const override { return "BoundsCheckSlowPathMIPS"; }
207
208 private:
209 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS);
210 };
211
212 class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS {
213 public:
DivZeroCheckSlowPathMIPS(HDivZeroCheck * instruction)214 explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {}
215
EmitNativeCode(CodeGenerator * codegen)216 void EmitNativeCode(CodeGenerator* codegen) override {
217 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
218 __ Bind(GetEntryLabel());
219 mips_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
220 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
221 }
222
IsFatal() const223 bool IsFatal() const override { return true; }
224
GetDescription() const225 const char* GetDescription() const override { return "DivZeroCheckSlowPathMIPS"; }
226
227 private:
228 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS);
229 };
230
231 class LoadClassSlowPathMIPS : public SlowPathCodeMIPS {
232 public:
LoadClassSlowPathMIPS(HLoadClass * cls,HInstruction * at)233 LoadClassSlowPathMIPS(HLoadClass* cls, HInstruction* at)
234 : SlowPathCodeMIPS(at), cls_(cls) {
235 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
236 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
237 }
238
EmitNativeCode(CodeGenerator * codegen)239 void EmitNativeCode(CodeGenerator* codegen) override {
240 LocationSummary* locations = instruction_->GetLocations();
241 Location out = locations->Out();
242 const uint32_t dex_pc = instruction_->GetDexPc();
243 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
244 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
245
246 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
247 __ Bind(GetEntryLabel());
248 SaveLiveRegisters(codegen, locations);
249
250 InvokeRuntimeCallingConvention calling_convention;
251 if (must_resolve_type) {
252 DCHECK(IsSameDexFile(cls_->GetDexFile(), mips_codegen->GetGraph()->GetDexFile()));
253 dex::TypeIndex type_index = cls_->GetTypeIndex();
254 __ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_);
255 mips_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
256 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
257 // If we also must_do_clinit, the resolved type is now in the correct register.
258 } else {
259 DCHECK(must_do_clinit);
260 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
261 mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
262 source,
263 cls_->GetType());
264 }
265 if (must_do_clinit) {
266 mips_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
267 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
268 }
269
270 // Move the class to the desired location.
271 if (out.IsValid()) {
272 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
273 DataType::Type type = instruction_->GetType();
274 mips_codegen->MoveLocation(out,
275 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
276 type);
277 }
278 RestoreLiveRegisters(codegen, locations);
279
280 __ B(GetExitLabel());
281 }
282
GetDescription() const283 const char* GetDescription() const override { return "LoadClassSlowPathMIPS"; }
284
285 private:
286 // The class this slow path will load.
287 HLoadClass* const cls_;
288
289 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS);
290 };
291
292 class LoadStringSlowPathMIPS : public SlowPathCodeMIPS {
293 public:
LoadStringSlowPathMIPS(HLoadString * instruction)294 explicit LoadStringSlowPathMIPS(HLoadString* instruction)
295 : SlowPathCodeMIPS(instruction) {}
296
EmitNativeCode(CodeGenerator * codegen)297 void EmitNativeCode(CodeGenerator* codegen) override {
298 DCHECK(instruction_->IsLoadString());
299 DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
300 LocationSummary* locations = instruction_->GetLocations();
301 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
302 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
303 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
304 InvokeRuntimeCallingConvention calling_convention;
305 __ Bind(GetEntryLabel());
306 SaveLiveRegisters(codegen, locations);
307
308 __ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_);
309 mips_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
310 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
311
312 DataType::Type type = instruction_->GetType();
313 mips_codegen->MoveLocation(locations->Out(),
314 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
315 type);
316 RestoreLiveRegisters(codegen, locations);
317
318 __ B(GetExitLabel());
319 }
320
GetDescription() const321 const char* GetDescription() const override { return "LoadStringSlowPathMIPS"; }
322
323 private:
324 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS);
325 };
326
327 class NullCheckSlowPathMIPS : public SlowPathCodeMIPS {
328 public:
NullCheckSlowPathMIPS(HNullCheck * instr)329 explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {}
330
EmitNativeCode(CodeGenerator * codegen)331 void EmitNativeCode(CodeGenerator* codegen) override {
332 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
333 __ Bind(GetEntryLabel());
334 if (instruction_->CanThrowIntoCatchBlock()) {
335 // Live registers will be restored in the catch block if caught.
336 SaveLiveRegisters(codegen, instruction_->GetLocations());
337 }
338 mips_codegen->InvokeRuntime(kQuickThrowNullPointer,
339 instruction_,
340 instruction_->GetDexPc(),
341 this);
342 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
343 }
344
IsFatal() const345 bool IsFatal() const override { return true; }
346
GetDescription() const347 const char* GetDescription() const override { return "NullCheckSlowPathMIPS"; }
348
349 private:
350 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS);
351 };
352
353 class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS {
354 public:
SuspendCheckSlowPathMIPS(HSuspendCheck * instruction,HBasicBlock * successor)355 SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor)
356 : SlowPathCodeMIPS(instruction), successor_(successor) {}
357
EmitNativeCode(CodeGenerator * codegen)358 void EmitNativeCode(CodeGenerator* codegen) override {
359 LocationSummary* locations = instruction_->GetLocations();
360 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
361 __ Bind(GetEntryLabel());
362 SaveLiveRegisters(codegen, locations); // Only saves live vector registers for SIMD.
363 mips_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
364 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
365 RestoreLiveRegisters(codegen, locations); // Only restores live vector registers for SIMD.
366 if (successor_ == nullptr) {
367 __ B(GetReturnLabel());
368 } else {
369 __ B(mips_codegen->GetLabelOf(successor_));
370 }
371 }
372
GetReturnLabel()373 MipsLabel* GetReturnLabel() {
374 DCHECK(successor_ == nullptr);
375 return &return_label_;
376 }
377
GetDescription() const378 const char* GetDescription() const override { return "SuspendCheckSlowPathMIPS"; }
379
GetSuccessor() const380 HBasicBlock* GetSuccessor() const {
381 return successor_;
382 }
383
384 private:
385 // If not null, the block to branch to after the suspend check.
386 HBasicBlock* const successor_;
387
388 // If `successor_` is null, the label to branch to after the suspend check.
389 MipsLabel return_label_;
390
391 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS);
392 };
393
394 class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS {
395 public:
TypeCheckSlowPathMIPS(HInstruction * instruction,bool is_fatal)396 explicit TypeCheckSlowPathMIPS(HInstruction* instruction, bool is_fatal)
397 : SlowPathCodeMIPS(instruction), is_fatal_(is_fatal) {}
398
EmitNativeCode(CodeGenerator * codegen)399 void EmitNativeCode(CodeGenerator* codegen) override {
400 LocationSummary* locations = instruction_->GetLocations();
401 uint32_t dex_pc = instruction_->GetDexPc();
402 DCHECK(instruction_->IsCheckCast()
403 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
404 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
405
406 __ Bind(GetEntryLabel());
407 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
408 SaveLiveRegisters(codegen, locations);
409 }
410
411 // We're moving two locations to locations that could overlap, so we need a parallel
412 // move resolver.
413 InvokeRuntimeCallingConvention calling_convention;
414 codegen->EmitParallelMoves(locations->InAt(0),
415 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
416 DataType::Type::kReference,
417 locations->InAt(1),
418 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
419 DataType::Type::kReference);
420 if (instruction_->IsInstanceOf()) {
421 mips_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
422 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
423 DataType::Type ret_type = instruction_->GetType();
424 Location ret_loc = calling_convention.GetReturnLocation(ret_type);
425 mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
426 } else {
427 DCHECK(instruction_->IsCheckCast());
428 mips_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
429 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
430 }
431
432 if (!is_fatal_) {
433 RestoreLiveRegisters(codegen, locations);
434 __ B(GetExitLabel());
435 }
436 }
437
GetDescription() const438 const char* GetDescription() const override { return "TypeCheckSlowPathMIPS"; }
439
IsFatal() const440 bool IsFatal() const override { return is_fatal_; }
441
442 private:
443 const bool is_fatal_;
444
445 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS);
446 };
447
448 class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS {
449 public:
DeoptimizationSlowPathMIPS(HDeoptimize * instruction)450 explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction)
451 : SlowPathCodeMIPS(instruction) {}
452
EmitNativeCode(CodeGenerator * codegen)453 void EmitNativeCode(CodeGenerator* codegen) override {
454 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
455 __ Bind(GetEntryLabel());
456 LocationSummary* locations = instruction_->GetLocations();
457 SaveLiveRegisters(codegen, locations);
458 InvokeRuntimeCallingConvention calling_convention;
459 __ LoadConst32(calling_convention.GetRegisterAt(0),
460 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
461 mips_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
462 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
463 }
464
GetDescription() const465 const char* GetDescription() const override { return "DeoptimizationSlowPathMIPS"; }
466
467 private:
468 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS);
469 };
470
471 class ArraySetSlowPathMIPS : public SlowPathCodeMIPS {
472 public:
ArraySetSlowPathMIPS(HInstruction * instruction)473 explicit ArraySetSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {}
474
EmitNativeCode(CodeGenerator * codegen)475 void EmitNativeCode(CodeGenerator* codegen) override {
476 LocationSummary* locations = instruction_->GetLocations();
477 __ Bind(GetEntryLabel());
478 SaveLiveRegisters(codegen, locations);
479
480 InvokeRuntimeCallingConvention calling_convention;
481 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
482 parallel_move.AddMove(
483 locations->InAt(0),
484 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
485 DataType::Type::kReference,
486 nullptr);
487 parallel_move.AddMove(
488 locations->InAt(1),
489 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
490 DataType::Type::kInt32,
491 nullptr);
492 parallel_move.AddMove(
493 locations->InAt(2),
494 Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
495 DataType::Type::kReference,
496 nullptr);
497 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
498
499 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
500 mips_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
501 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
502 RestoreLiveRegisters(codegen, locations);
503 __ B(GetExitLabel());
504 }
505
GetDescription() const506 const char* GetDescription() const override { return "ArraySetSlowPathMIPS"; }
507
508 private:
509 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathMIPS);
510 };
511
512 // Slow path marking an object reference `ref` during a read
513 // barrier. The field `obj.field` in the object `obj` holding this
514 // reference does not get updated by this slow path after marking (see
515 // ReadBarrierMarkAndUpdateFieldSlowPathMIPS below for that).
516 //
517 // This means that after the execution of this slow path, `ref` will
518 // always be up-to-date, but `obj.field` may not; i.e., after the
519 // flip, `ref` will be a to-space reference, but `obj.field` will
520 // probably still be a from-space reference (unless it gets updated by
521 // another thread, or if another thread installed another object
522 // reference (different from `ref`) in `obj.field`).
523 //
524 // If `entrypoint` is a valid location it is assumed to already be
525 // holding the entrypoint. The case where the entrypoint is passed in
526 // is for the GcRoot read barrier.
527 class ReadBarrierMarkSlowPathMIPS : public SlowPathCodeMIPS {
528 public:
ReadBarrierMarkSlowPathMIPS(HInstruction * instruction,Location ref,Location entrypoint=Location::NoLocation ())529 ReadBarrierMarkSlowPathMIPS(HInstruction* instruction,
530 Location ref,
531 Location entrypoint = Location::NoLocation())
532 : SlowPathCodeMIPS(instruction), ref_(ref), entrypoint_(entrypoint) {
533 DCHECK(kEmitCompilerReadBarrier);
534 }
535
GetDescription() const536 const char* GetDescription() const override { return "ReadBarrierMarkSlowPathMIPS"; }
537
EmitNativeCode(CodeGenerator * codegen)538 void EmitNativeCode(CodeGenerator* codegen) override {
539 LocationSummary* locations = instruction_->GetLocations();
540 Register ref_reg = ref_.AsRegister<Register>();
541 DCHECK(locations->CanCall());
542 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
543 DCHECK(instruction_->IsInstanceFieldGet() ||
544 instruction_->IsStaticFieldGet() ||
545 instruction_->IsArrayGet() ||
546 instruction_->IsArraySet() ||
547 instruction_->IsLoadClass() ||
548 instruction_->IsLoadString() ||
549 instruction_->IsInstanceOf() ||
550 instruction_->IsCheckCast() ||
551 (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
552 (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
553 << "Unexpected instruction in read barrier marking slow path: "
554 << instruction_->DebugName();
555
556 __ Bind(GetEntryLabel());
557 // No need to save live registers; it's taken care of by the
558 // entrypoint. Also, there is no need to update the stack mask,
559 // as this runtime call will not trigger a garbage collection.
560 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
561 DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
562 (S2 <= ref_reg && ref_reg <= S7) ||
563 (ref_reg == FP)) << ref_reg;
564 // "Compact" slow path, saving two moves.
565 //
566 // Instead of using the standard runtime calling convention (input
567 // and output in A0 and V0 respectively):
568 //
569 // A0 <- ref
570 // V0 <- ReadBarrierMark(A0)
571 // ref <- V0
572 //
573 // we just use rX (the register containing `ref`) as input and output
574 // of a dedicated entrypoint:
575 //
576 // rX <- ReadBarrierMarkRegX(rX)
577 //
578 if (entrypoint_.IsValid()) {
579 mips_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
580 DCHECK_EQ(entrypoint_.AsRegister<Register>(), T9);
581 __ Jalr(entrypoint_.AsRegister<Register>());
582 __ NopIfNoReordering();
583 } else {
584 int32_t entry_point_offset =
585 Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
586 // This runtime call does not require a stack map.
587 mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
588 instruction_,
589 this,
590 /* direct= */ false);
591 }
592 __ B(GetExitLabel());
593 }
594
595 private:
596 // The location (register) of the marked object reference.
597 const Location ref_;
598
599 // The location of the entrypoint if already loaded.
600 const Location entrypoint_;
601
602 DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathMIPS);
603 };
604
605 // Slow path marking an object reference `ref` during a read barrier,
606 // and if needed, atomically updating the field `obj.field` in the
607 // object `obj` holding this reference after marking (contrary to
608 // ReadBarrierMarkSlowPathMIPS above, which never tries to update
609 // `obj.field`).
610 //
611 // This means that after the execution of this slow path, both `ref`
612 // and `obj.field` will be up-to-date; i.e., after the flip, both will
613 // hold the same to-space reference (unless another thread installed
614 // another object reference (different from `ref`) in `obj.field`).
615 class ReadBarrierMarkAndUpdateFieldSlowPathMIPS : public SlowPathCodeMIPS {
616 public:
ReadBarrierMarkAndUpdateFieldSlowPathMIPS(HInstruction * instruction,Location ref,Register obj,Location field_offset,Register temp1)617 ReadBarrierMarkAndUpdateFieldSlowPathMIPS(HInstruction* instruction,
618 Location ref,
619 Register obj,
620 Location field_offset,
621 Register temp1)
622 : SlowPathCodeMIPS(instruction),
623 ref_(ref),
624 obj_(obj),
625 field_offset_(field_offset),
626 temp1_(temp1) {
627 DCHECK(kEmitCompilerReadBarrier);
628 }
629
GetDescription() const630 const char* GetDescription() const override {
631 return "ReadBarrierMarkAndUpdateFieldSlowPathMIPS";
632 }
633
EmitNativeCode(CodeGenerator * codegen)634 void EmitNativeCode(CodeGenerator* codegen) override {
635 LocationSummary* locations = instruction_->GetLocations();
636 Register ref_reg = ref_.AsRegister<Register>();
637 DCHECK(locations->CanCall());
638 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
639 // This slow path is only used by the UnsafeCASObject intrinsic.
640 DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
641 << "Unexpected instruction in read barrier marking and field updating slow path: "
642 << instruction_->DebugName();
643 DCHECK(instruction_->GetLocations()->Intrinsified());
644 DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
645 DCHECK(field_offset_.IsRegisterPair()) << field_offset_;
646
647 __ Bind(GetEntryLabel());
648
649 // Save the old reference.
650 // Note that we cannot use AT or TMP to save the old reference, as those
651 // are used by the code that follows, but we need the old reference after
652 // the call to the ReadBarrierMarkRegX entry point.
653 DCHECK_NE(temp1_, AT);
654 DCHECK_NE(temp1_, TMP);
655 __ Move(temp1_, ref_reg);
656
657 // No need to save live registers; it's taken care of by the
658 // entrypoint. Also, there is no need to update the stack mask,
659 // as this runtime call will not trigger a garbage collection.
660 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
661 DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
662 (S2 <= ref_reg && ref_reg <= S7) ||
663 (ref_reg == FP)) << ref_reg;
664 // "Compact" slow path, saving two moves.
665 //
666 // Instead of using the standard runtime calling convention (input
667 // and output in A0 and V0 respectively):
668 //
669 // A0 <- ref
670 // V0 <- ReadBarrierMark(A0)
671 // ref <- V0
672 //
673 // we just use rX (the register containing `ref`) as input and output
674 // of a dedicated entrypoint:
675 //
676 // rX <- ReadBarrierMarkRegX(rX)
677 //
678 int32_t entry_point_offset =
679 Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
680 // This runtime call does not require a stack map.
681 mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
682 instruction_,
683 this,
684 /* direct= */ false);
685
686 // If the new reference is different from the old reference,
687 // update the field in the holder (`*(obj_ + field_offset_)`).
688 //
689 // Note that this field could also hold a different object, if
690 // another thread had concurrently changed it. In that case, the
691 // the compare-and-set (CAS) loop below would abort, leaving the
692 // field as-is.
693 MipsLabel done;
694 __ Beq(temp1_, ref_reg, &done);
695
696 // Update the the holder's field atomically. This may fail if
697 // mutator updates before us, but it's OK. This is achieved
698 // using a strong compare-and-set (CAS) operation with relaxed
699 // memory synchronization ordering, where the expected value is
700 // the old reference and the desired value is the new reference.
701
702 // Convenience aliases.
703 Register base = obj_;
704 // The UnsafeCASObject intrinsic uses a register pair as field
705 // offset ("long offset"), of which only the low part contains
706 // data.
707 Register offset = field_offset_.AsRegisterPairLow<Register>();
708 Register expected = temp1_;
709 Register value = ref_reg;
710 Register tmp_ptr = TMP; // Pointer to actual memory.
711 Register tmp = AT; // Value in memory.
712
713 __ Addu(tmp_ptr, base, offset);
714
715 if (kPoisonHeapReferences) {
716 __ PoisonHeapReference(expected);
717 // Do not poison `value` if it is the same register as
718 // `expected`, which has just been poisoned.
719 if (value != expected) {
720 __ PoisonHeapReference(value);
721 }
722 }
723
724 // do {
725 // tmp = [r_ptr] - expected;
726 // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
727
728 bool is_r6 = mips_codegen->GetInstructionSetFeatures().IsR6();
729 MipsLabel loop_head, exit_loop;
730 __ Bind(&loop_head);
731 if (is_r6) {
732 __ LlR6(tmp, tmp_ptr);
733 } else {
734 __ LlR2(tmp, tmp_ptr);
735 }
736 __ Bne(tmp, expected, &exit_loop);
737 __ Move(tmp, value);
738 if (is_r6) {
739 __ ScR6(tmp, tmp_ptr);
740 } else {
741 __ ScR2(tmp, tmp_ptr);
742 }
743 __ Beqz(tmp, &loop_head);
744 __ Bind(&exit_loop);
745
746 if (kPoisonHeapReferences) {
747 __ UnpoisonHeapReference(expected);
748 // Do not unpoison `value` if it is the same register as
749 // `expected`, which has just been unpoisoned.
750 if (value != expected) {
751 __ UnpoisonHeapReference(value);
752 }
753 }
754
755 __ Bind(&done);
756 __ B(GetExitLabel());
757 }
758
759 private:
760 // The location (register) of the marked object reference.
761 const Location ref_;
762 // The register containing the object holding the marked object reference field.
763 const Register obj_;
764 // The location of the offset of the marked reference field within `obj_`.
765 Location field_offset_;
766
767 const Register temp1_;
768
769 DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathMIPS);
770 };
771
772 // Slow path generating a read barrier for a heap reference.
773 class ReadBarrierForHeapReferenceSlowPathMIPS : public SlowPathCodeMIPS {
774 public:
ReadBarrierForHeapReferenceSlowPathMIPS(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)775 ReadBarrierForHeapReferenceSlowPathMIPS(HInstruction* instruction,
776 Location out,
777 Location ref,
778 Location obj,
779 uint32_t offset,
780 Location index)
781 : SlowPathCodeMIPS(instruction),
782 out_(out),
783 ref_(ref),
784 obj_(obj),
785 offset_(offset),
786 index_(index) {
787 DCHECK(kEmitCompilerReadBarrier);
788 // If `obj` is equal to `out` or `ref`, it means the initial object
789 // has been overwritten by (or after) the heap object reference load
790 // to be instrumented, e.g.:
791 //
792 // __ LoadFromOffset(kLoadWord, out, out, offset);
793 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
794 //
795 // In that case, we have lost the information about the original
796 // object, and the emitted read barrier cannot work properly.
797 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
798 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
799 }
800
EmitNativeCode(CodeGenerator * codegen)801 void EmitNativeCode(CodeGenerator* codegen) override {
802 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
803 LocationSummary* locations = instruction_->GetLocations();
804 Register reg_out = out_.AsRegister<Register>();
805 DCHECK(locations->CanCall());
806 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
807 DCHECK(instruction_->IsInstanceFieldGet() ||
808 instruction_->IsStaticFieldGet() ||
809 instruction_->IsArrayGet() ||
810 instruction_->IsInstanceOf() ||
811 instruction_->IsCheckCast() ||
812 (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
813 << "Unexpected instruction in read barrier for heap reference slow path: "
814 << instruction_->DebugName();
815
816 __ Bind(GetEntryLabel());
817 SaveLiveRegisters(codegen, locations);
818
819 // We may have to change the index's value, but as `index_` is a
820 // constant member (like other "inputs" of this slow path),
821 // introduce a copy of it, `index`.
822 Location index = index_;
823 if (index_.IsValid()) {
824 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
825 if (instruction_->IsArrayGet()) {
826 // Compute the actual memory offset and store it in `index`.
827 Register index_reg = index_.AsRegister<Register>();
828 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
829 if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
830 // We are about to change the value of `index_reg` (see the
831 // calls to art::mips::MipsAssembler::Sll and
832 // art::mips::MipsAssembler::Addiu32 below), but it has
833 // not been saved by the previous call to
834 // art::SlowPathCode::SaveLiveRegisters, as it is a
835 // callee-save register --
836 // art::SlowPathCode::SaveLiveRegisters does not consider
837 // callee-save registers, as it has been designed with the
838 // assumption that callee-save registers are supposed to be
839 // handled by the called function. So, as a callee-save
840 // register, `index_reg` _would_ eventually be saved onto
841 // the stack, but it would be too late: we would have
842 // changed its value earlier. Therefore, we manually save
843 // it here into another freely available register,
844 // `free_reg`, chosen of course among the caller-save
845 // registers (as a callee-save `free_reg` register would
846 // exhibit the same problem).
847 //
848 // Note we could have requested a temporary register from
849 // the register allocator instead; but we prefer not to, as
850 // this is a slow path, and we know we can find a
851 // caller-save register that is available.
852 Register free_reg = FindAvailableCallerSaveRegister(codegen);
853 __ Move(free_reg, index_reg);
854 index_reg = free_reg;
855 index = Location::RegisterLocation(index_reg);
856 } else {
857 // The initial register stored in `index_` has already been
858 // saved in the call to art::SlowPathCode::SaveLiveRegisters
859 // (as it is not a callee-save register), so we can freely
860 // use it.
861 }
862 // Shifting the index value contained in `index_reg` by the scale
863 // factor (2) cannot overflow in practice, as the runtime is
864 // unable to allocate object arrays with a size larger than
865 // 2^26 - 1 (that is, 2^28 - 4 bytes).
866 __ Sll(index_reg, index_reg, TIMES_4);
867 static_assert(
868 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
869 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
870 __ Addiu32(index_reg, index_reg, offset_);
871 } else {
872 // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
873 // intrinsics, `index_` is not shifted by a scale factor of 2
874 // (as in the case of ArrayGet), as it is actually an offset
875 // to an object field within an object.
876 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
877 DCHECK(instruction_->GetLocations()->Intrinsified());
878 DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
879 (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
880 << instruction_->AsInvoke()->GetIntrinsic();
881 DCHECK_EQ(offset_, 0U);
882 DCHECK(index_.IsRegisterPair());
883 // UnsafeGet's offset location is a register pair, the low
884 // part contains the correct offset.
885 index = index_.ToLow();
886 }
887 }
888
889 // We're moving two or three locations to locations that could
890 // overlap, so we need a parallel move resolver.
891 InvokeRuntimeCallingConvention calling_convention;
892 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
893 parallel_move.AddMove(ref_,
894 Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
895 DataType::Type::kReference,
896 nullptr);
897 parallel_move.AddMove(obj_,
898 Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
899 DataType::Type::kReference,
900 nullptr);
901 if (index.IsValid()) {
902 parallel_move.AddMove(index,
903 Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
904 DataType::Type::kInt32,
905 nullptr);
906 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
907 } else {
908 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
909 __ LoadConst32(calling_convention.GetRegisterAt(2), offset_);
910 }
911 mips_codegen->InvokeRuntime(kQuickReadBarrierSlow,
912 instruction_,
913 instruction_->GetDexPc(),
914 this);
915 CheckEntrypointTypes<
916 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
917 mips_codegen->MoveLocation(out_,
918 calling_convention.GetReturnLocation(DataType::Type::kReference),
919 DataType::Type::kReference);
920
921 RestoreLiveRegisters(codegen, locations);
922 __ B(GetExitLabel());
923 }
924
GetDescription() const925 const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathMIPS"; }
926
927 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)928 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
929 size_t ref = static_cast<int>(ref_.AsRegister<Register>());
930 size_t obj = static_cast<int>(obj_.AsRegister<Register>());
931 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
932 if (i != ref &&
933 i != obj &&
934 !codegen->IsCoreCalleeSaveRegister(i) &&
935 !codegen->IsBlockedCoreRegister(i)) {
936 return static_cast<Register>(i);
937 }
938 }
939 // We shall never fail to find a free caller-save register, as
940 // there are more than two core caller-save registers on MIPS
941 // (meaning it is possible to find one which is different from
942 // `ref` and `obj`).
943 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
944 LOG(FATAL) << "Could not find a free caller-save register";
945 UNREACHABLE();
946 }
947
948 const Location out_;
949 const Location ref_;
950 const Location obj_;
951 const uint32_t offset_;
952 // An additional location containing an index to an array.
953 // Only used for HArrayGet and the UnsafeGetObject &
954 // UnsafeGetObjectVolatile intrinsics.
955 const Location index_;
956
957 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathMIPS);
958 };
959
960 // Slow path generating a read barrier for a GC root.
961 class ReadBarrierForRootSlowPathMIPS : public SlowPathCodeMIPS {
962 public:
ReadBarrierForRootSlowPathMIPS(HInstruction * instruction,Location out,Location root)963 ReadBarrierForRootSlowPathMIPS(HInstruction* instruction, Location out, Location root)
964 : SlowPathCodeMIPS(instruction), out_(out), root_(root) {
965 DCHECK(kEmitCompilerReadBarrier);
966 }
967
EmitNativeCode(CodeGenerator * codegen)968 void EmitNativeCode(CodeGenerator* codegen) override {
969 LocationSummary* locations = instruction_->GetLocations();
970 Register reg_out = out_.AsRegister<Register>();
971 DCHECK(locations->CanCall());
972 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
973 DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
974 << "Unexpected instruction in read barrier for GC root slow path: "
975 << instruction_->DebugName();
976
977 __ Bind(GetEntryLabel());
978 SaveLiveRegisters(codegen, locations);
979
980 InvokeRuntimeCallingConvention calling_convention;
981 CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
982 mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
983 root_,
984 DataType::Type::kReference);
985 mips_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
986 instruction_,
987 instruction_->GetDexPc(),
988 this);
989 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
990 mips_codegen->MoveLocation(out_,
991 calling_convention.GetReturnLocation(DataType::Type::kReference),
992 DataType::Type::kReference);
993
994 RestoreLiveRegisters(codegen, locations);
995 __ B(GetExitLabel());
996 }
997
GetDescription() const998 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathMIPS"; }
999
1000 private:
1001 const Location out_;
1002 const Location root_;
1003
1004 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathMIPS);
1005 };
1006
CodeGeneratorMIPS(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1007 CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph,
1008 const CompilerOptions& compiler_options,
1009 OptimizingCompilerStats* stats)
1010 : CodeGenerator(graph,
1011 kNumberOfCoreRegisters,
1012 kNumberOfFRegisters,
1013 kNumberOfRegisterPairs,
1014 ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
1015 arraysize(kCoreCalleeSaves)),
1016 ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
1017 arraysize(kFpuCalleeSaves)),
1018 compiler_options,
1019 stats),
1020 block_labels_(nullptr),
1021 location_builder_(graph, this),
1022 instruction_visitor_(graph, this),
1023 move_resolver_(graph->GetAllocator(), this),
1024 assembler_(graph->GetAllocator(),
1025 compiler_options.GetInstructionSetFeatures()->AsMipsInstructionSetFeatures()),
1026 uint32_literals_(std::less<uint32_t>(),
1027 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1028 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1029 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1030 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1031 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1032 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1033 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1034 boot_image_intrinsic_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1035 jit_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1036 jit_class_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1037 clobbered_ra_(false) {
1038 // Save RA (containing the return address) to mimic Quick.
1039 AddAllocatedRegister(Location::RegisterLocation(RA));
1040 }
1041
1042 #undef __
1043 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
1044 #define __ down_cast<MipsAssembler*>(GetAssembler())-> // NOLINT
1045 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
1046
Finalize(CodeAllocator * allocator)1047 void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) {
1048 // Ensure that we fix up branches.
1049 __ FinalizeCode();
1050
1051 // Adjust native pc offsets in stack maps.
1052 StackMapStream* stack_map_stream = GetStackMapStream();
1053 for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) {
1054 uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i);
1055 uint32_t new_position = __ GetAdjustedPosition(old_position);
1056 DCHECK_GE(new_position, old_position);
1057 stack_map_stream->SetStackMapNativePcOffset(i, new_position);
1058 }
1059
1060 // Adjust pc offsets for the disassembly information.
1061 if (disasm_info_ != nullptr) {
1062 GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
1063 frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
1064 frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
1065 for (auto& it : *disasm_info_->GetInstructionIntervals()) {
1066 it.second.start = __ GetAdjustedPosition(it.second.start);
1067 it.second.end = __ GetAdjustedPosition(it.second.end);
1068 }
1069 for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
1070 it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
1071 it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
1072 }
1073 }
1074
1075 CodeGenerator::Finalize(allocator);
1076 }
1077
GetAssembler() const1078 MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const {
1079 return codegen_->GetAssembler();
1080 }
1081
EmitMove(size_t index)1082 void ParallelMoveResolverMIPS::EmitMove(size_t index) {
1083 DCHECK_LT(index, moves_.size());
1084 MoveOperands* move = moves_[index];
1085 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
1086 }
1087
EmitSwap(size_t index)1088 void ParallelMoveResolverMIPS::EmitSwap(size_t index) {
1089 DCHECK_LT(index, moves_.size());
1090 MoveOperands* move = moves_[index];
1091 DataType::Type type = move->GetType();
1092 Location loc1 = move->GetDestination();
1093 Location loc2 = move->GetSource();
1094
1095 DCHECK(!loc1.IsConstant());
1096 DCHECK(!loc2.IsConstant());
1097
1098 if (loc1.Equals(loc2)) {
1099 return;
1100 }
1101
1102 if (loc1.IsRegister() && loc2.IsRegister()) {
1103 // Swap 2 GPRs.
1104 Register r1 = loc1.AsRegister<Register>();
1105 Register r2 = loc2.AsRegister<Register>();
1106 __ Move(TMP, r2);
1107 __ Move(r2, r1);
1108 __ Move(r1, TMP);
1109 } else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) {
1110 if (codegen_->GetGraph()->HasSIMD()) {
1111 __ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(loc1));
1112 __ MoveV(VectorRegisterFrom(loc1), VectorRegisterFrom(loc2));
1113 __ MoveV(VectorRegisterFrom(loc2), static_cast<VectorRegister>(FTMP));
1114 } else {
1115 FRegister f1 = loc1.AsFpuRegister<FRegister>();
1116 FRegister f2 = loc2.AsFpuRegister<FRegister>();
1117 if (type == DataType::Type::kFloat32) {
1118 __ MovS(FTMP, f2);
1119 __ MovS(f2, f1);
1120 __ MovS(f1, FTMP);
1121 } else {
1122 DCHECK_EQ(type, DataType::Type::kFloat64);
1123 __ MovD(FTMP, f2);
1124 __ MovD(f2, f1);
1125 __ MovD(f1, FTMP);
1126 }
1127 }
1128 } else if ((loc1.IsRegister() && loc2.IsFpuRegister()) ||
1129 (loc1.IsFpuRegister() && loc2.IsRegister())) {
1130 // Swap FPR and GPR.
1131 DCHECK_EQ(type, DataType::Type::kFloat32); // Can only swap a float.
1132 FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
1133 : loc2.AsFpuRegister<FRegister>();
1134 Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
1135 __ Move(TMP, r2);
1136 __ Mfc1(r2, f1);
1137 __ Mtc1(TMP, f1);
1138 } else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) {
1139 // Swap 2 GPR register pairs.
1140 Register r1 = loc1.AsRegisterPairLow<Register>();
1141 Register r2 = loc2.AsRegisterPairLow<Register>();
1142 __ Move(TMP, r2);
1143 __ Move(r2, r1);
1144 __ Move(r1, TMP);
1145 r1 = loc1.AsRegisterPairHigh<Register>();
1146 r2 = loc2.AsRegisterPairHigh<Register>();
1147 __ Move(TMP, r2);
1148 __ Move(r2, r1);
1149 __ Move(r1, TMP);
1150 } else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) ||
1151 (loc1.IsFpuRegister() && loc2.IsRegisterPair())) {
1152 // Swap FPR and GPR register pair.
1153 DCHECK_EQ(type, DataType::Type::kFloat64);
1154 FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
1155 : loc2.AsFpuRegister<FRegister>();
1156 Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
1157 : loc2.AsRegisterPairLow<Register>();
1158 Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
1159 : loc2.AsRegisterPairHigh<Register>();
1160 // Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and
1161 // then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR
1162 // unpredictable and the following mfch1 will fail.
1163 __ Mfc1(TMP, f1);
1164 __ MoveFromFpuHigh(AT, f1);
1165 __ Mtc1(r2_l, f1);
1166 __ MoveToFpuHigh(r2_h, f1);
1167 __ Move(r2_l, TMP);
1168 __ Move(r2_h, AT);
1169 } else if (loc1.IsStackSlot() && loc2.IsStackSlot()) {
1170 Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot= */ false);
1171 } else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) {
1172 Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot= */ true);
1173 } else if (loc1.IsSIMDStackSlot() && loc2.IsSIMDStackSlot()) {
1174 ExchangeQuadSlots(loc1.GetStackIndex(), loc2.GetStackIndex());
1175 } else if ((loc1.IsRegister() && loc2.IsStackSlot()) ||
1176 (loc1.IsStackSlot() && loc2.IsRegister())) {
1177 Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
1178 intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
1179 __ Move(TMP, reg);
1180 __ LoadFromOffset(kLoadWord, reg, SP, offset);
1181 __ StoreToOffset(kStoreWord, TMP, SP, offset);
1182 } else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) ||
1183 (loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) {
1184 Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
1185 : loc2.AsRegisterPairLow<Register>();
1186 Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
1187 : loc2.AsRegisterPairHigh<Register>();
1188 intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
1189 intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize)
1190 : loc2.GetHighStackIndex(kMipsWordSize);
1191 __ Move(TMP, reg_l);
1192 __ LoadFromOffset(kLoadWord, reg_l, SP, offset_l);
1193 __ StoreToOffset(kStoreWord, TMP, SP, offset_l);
1194 __ Move(TMP, reg_h);
1195 __ LoadFromOffset(kLoadWord, reg_h, SP, offset_h);
1196 __ StoreToOffset(kStoreWord, TMP, SP, offset_h);
1197 } else if ((loc1.IsFpuRegister() && loc2.IsSIMDStackSlot()) ||
1198 (loc1.IsSIMDStackSlot() && loc2.IsFpuRegister())) {
1199 Location fp_loc = loc1.IsFpuRegister() ? loc1 : loc2;
1200 intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex();
1201 __ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(fp_loc));
1202 __ LoadQFromOffset(fp_loc.AsFpuRegister<FRegister>(), SP, offset);
1203 __ StoreQToOffset(FTMP, SP, offset);
1204 } else if (loc1.IsFpuRegister() || loc2.IsFpuRegister()) {
1205 FRegister reg = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
1206 : loc2.AsFpuRegister<FRegister>();
1207 intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex();
1208 if (type == DataType::Type::kFloat32) {
1209 __ MovS(FTMP, reg);
1210 __ LoadSFromOffset(reg, SP, offset);
1211 __ StoreSToOffset(FTMP, SP, offset);
1212 } else {
1213 DCHECK_EQ(type, DataType::Type::kFloat64);
1214 __ MovD(FTMP, reg);
1215 __ LoadDFromOffset(reg, SP, offset);
1216 __ StoreDToOffset(FTMP, SP, offset);
1217 }
1218 } else {
1219 LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported";
1220 }
1221 }
1222
RestoreScratch(int reg)1223 void ParallelMoveResolverMIPS::RestoreScratch(int reg) {
1224 __ Pop(static_cast<Register>(reg));
1225 }
1226
SpillScratch(int reg)1227 void ParallelMoveResolverMIPS::SpillScratch(int reg) {
1228 __ Push(static_cast<Register>(reg));
1229 }
1230
Exchange(int index1,int index2,bool double_slot)1231 void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) {
1232 // Allocate a scratch register other than TMP, if available.
1233 // Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be
1234 // automatically unspilled when the scratch scope object is destroyed).
1235 ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters());
1236 // If V0 spills onto the stack, SP-relative offsets need to be adjusted.
1237 int stack_offset = ensure_scratch.IsSpilled() ? kStackAlignment : 0;
1238 for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) {
1239 __ LoadFromOffset(kLoadWord,
1240 Register(ensure_scratch.GetRegister()),
1241 SP,
1242 index1 + stack_offset);
1243 __ LoadFromOffset(kLoadWord,
1244 TMP,
1245 SP,
1246 index2 + stack_offset);
1247 __ StoreToOffset(kStoreWord,
1248 Register(ensure_scratch.GetRegister()),
1249 SP,
1250 index2 + stack_offset);
1251 __ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset);
1252 }
1253 }
1254
ExchangeQuadSlots(int index1,int index2)1255 void ParallelMoveResolverMIPS::ExchangeQuadSlots(int index1, int index2) {
1256 __ LoadQFromOffset(FTMP, SP, index1);
1257 __ LoadQFromOffset(FTMP2, SP, index2);
1258 __ StoreQToOffset(FTMP, SP, index2);
1259 __ StoreQToOffset(FTMP2, SP, index1);
1260 }
1261
ComputeSpillMask()1262 void CodeGeneratorMIPS::ComputeSpillMask() {
1263 core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
1264 fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
1265 DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
1266 // If there're FPU callee-saved registers and there's an odd number of GPR callee-saved
1267 // registers, include the ZERO register to force alignment of FPU callee-saved registers
1268 // within the stack frame.
1269 if ((fpu_spill_mask_ != 0) && (POPCOUNT(core_spill_mask_) % 2 != 0)) {
1270 core_spill_mask_ |= (1 << ZERO);
1271 }
1272 }
1273
HasAllocatedCalleeSaveRegisters() const1274 bool CodeGeneratorMIPS::HasAllocatedCalleeSaveRegisters() const {
1275 // If RA is clobbered by PC-relative operations on R2 and it's the only spilled register
1276 // (this can happen in leaf methods), force CodeGenerator::InitializeCodeGeneration()
1277 // into the path that creates a stack frame so that RA can be explicitly saved and restored.
1278 // RA can't otherwise be saved/restored when it's the only spilled register.
1279 return CodeGenerator::HasAllocatedCalleeSaveRegisters() || clobbered_ra_;
1280 }
1281
DWARFReg(Register reg)1282 static dwarf::Reg DWARFReg(Register reg) {
1283 return dwarf::Reg::MipsCore(static_cast<int>(reg));
1284 }
1285
1286 // TODO: mapping of floating-point registers to DWARF.
1287
GenerateFrameEntry()1288 void CodeGeneratorMIPS::GenerateFrameEntry() {
1289 __ Bind(&frame_entry_label_);
1290
1291 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1292 __ Lhu(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value());
1293 __ Addiu(TMP, TMP, 1);
1294 __ Sh(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value());
1295 }
1296
1297 bool do_overflow_check =
1298 FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kMips) || !IsLeafMethod();
1299
1300 if (do_overflow_check) {
1301 __ LoadFromOffset(kLoadWord,
1302 ZERO,
1303 SP,
1304 -static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kMips)));
1305 RecordPcInfo(nullptr, 0);
1306 }
1307
1308 if (HasEmptyFrame()) {
1309 CHECK_EQ(fpu_spill_mask_, 0u);
1310 CHECK_EQ(core_spill_mask_, 1u << RA);
1311 CHECK(!clobbered_ra_);
1312 return;
1313 }
1314
1315 // Make sure the frame size isn't unreasonably large.
1316 if (GetFrameSize() > GetStackOverflowReservedBytes(InstructionSet::kMips)) {
1317 LOG(FATAL) << "Stack frame larger than "
1318 << GetStackOverflowReservedBytes(InstructionSet::kMips) << " bytes";
1319 }
1320
1321 // Spill callee-saved registers.
1322
1323 uint32_t ofs = GetFrameSize();
1324 __ IncreaseFrameSize(ofs);
1325
1326 for (uint32_t mask = core_spill_mask_; mask != 0; ) {
1327 Register reg = static_cast<Register>(MostSignificantBit(mask));
1328 mask ^= 1u << reg;
1329 ofs -= kMipsWordSize;
1330 // The ZERO register is only included for alignment.
1331 if (reg != ZERO) {
1332 __ StoreToOffset(kStoreWord, reg, SP, ofs);
1333 __ cfi().RelOffset(DWARFReg(reg), ofs);
1334 }
1335 }
1336
1337 for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
1338 FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
1339 mask ^= 1u << reg;
1340 ofs -= kMipsDoublewordSize;
1341 __ StoreDToOffset(reg, SP, ofs);
1342 // TODO: __ cfi().RelOffset(DWARFReg(reg), ofs);
1343 }
1344
1345 // Save the current method if we need it. Note that we do not
1346 // do this in HCurrentMethod, as the instruction might have been removed
1347 // in the SSA graph.
1348 if (RequiresCurrentMethod()) {
1349 __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, kCurrentMethodStackOffset);
1350 }
1351
1352 if (GetGraph()->HasShouldDeoptimizeFlag()) {
1353 // Initialize should deoptimize flag to 0.
1354 __ StoreToOffset(kStoreWord, ZERO, SP, GetStackOffsetOfShouldDeoptimizeFlag());
1355 }
1356 }
1357
GenerateFrameExit()1358 void CodeGeneratorMIPS::GenerateFrameExit() {
1359 __ cfi().RememberState();
1360
1361 if (!HasEmptyFrame()) {
1362 // Restore callee-saved registers.
1363
1364 // For better instruction scheduling restore RA before other registers.
1365 uint32_t ofs = GetFrameSize();
1366 for (uint32_t mask = core_spill_mask_; mask != 0; ) {
1367 Register reg = static_cast<Register>(MostSignificantBit(mask));
1368 mask ^= 1u << reg;
1369 ofs -= kMipsWordSize;
1370 // The ZERO register is only included for alignment.
1371 if (reg != ZERO) {
1372 __ LoadFromOffset(kLoadWord, reg, SP, ofs);
1373 __ cfi().Restore(DWARFReg(reg));
1374 }
1375 }
1376
1377 for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
1378 FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
1379 mask ^= 1u << reg;
1380 ofs -= kMipsDoublewordSize;
1381 __ LoadDFromOffset(reg, SP, ofs);
1382 // TODO: __ cfi().Restore(DWARFReg(reg));
1383 }
1384
1385 size_t frame_size = GetFrameSize();
1386 // Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
1387 bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
1388 bool reordering = __ SetReorder(false);
1389 if (exchange) {
1390 __ Jr(RA);
1391 __ DecreaseFrameSize(frame_size); // Single instruction in delay slot.
1392 } else {
1393 __ DecreaseFrameSize(frame_size);
1394 __ Jr(RA);
1395 __ Nop(); // In delay slot.
1396 }
1397 __ SetReorder(reordering);
1398 } else {
1399 __ Jr(RA);
1400 __ NopIfNoReordering();
1401 }
1402
1403 __ cfi().RestoreState();
1404 __ cfi().DefCFAOffset(GetFrameSize());
1405 }
1406
Bind(HBasicBlock * block)1407 void CodeGeneratorMIPS::Bind(HBasicBlock* block) {
1408 __ Bind(GetLabelOf(block));
1409 }
1410
VectorRegisterFrom(Location location)1411 VectorRegister VectorRegisterFrom(Location location) {
1412 DCHECK(location.IsFpuRegister());
1413 return static_cast<VectorRegister>(location.AsFpuRegister<FRegister>());
1414 }
1415
MoveLocation(Location destination,Location source,DataType::Type dst_type)1416 void CodeGeneratorMIPS::MoveLocation(Location destination,
1417 Location source,
1418 DataType::Type dst_type) {
1419 if (source.Equals(destination)) {
1420 return;
1421 }
1422
1423 if (source.IsConstant()) {
1424 MoveConstant(destination, source.GetConstant());
1425 } else {
1426 if (destination.IsRegister()) {
1427 if (source.IsRegister()) {
1428 __ Move(destination.AsRegister<Register>(), source.AsRegister<Register>());
1429 } else if (source.IsFpuRegister()) {
1430 __ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>());
1431 } else {
1432 DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
1433 __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
1434 }
1435 } else if (destination.IsRegisterPair()) {
1436 if (source.IsRegisterPair()) {
1437 __ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
1438 __ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
1439 } else if (source.IsFpuRegister()) {
1440 Register dst_high = destination.AsRegisterPairHigh<Register>();
1441 Register dst_low = destination.AsRegisterPairLow<Register>();
1442 FRegister src = source.AsFpuRegister<FRegister>();
1443 __ Mfc1(dst_low, src);
1444 __ MoveFromFpuHigh(dst_high, src);
1445 } else {
1446 DCHECK(source.IsDoubleStackSlot())
1447 << "Cannot move from " << source << " to " << destination;
1448 int32_t off = source.GetStackIndex();
1449 Register r = destination.AsRegisterPairLow<Register>();
1450 __ LoadFromOffset(kLoadDoubleword, r, SP, off);
1451 }
1452 } else if (destination.IsFpuRegister()) {
1453 if (source.IsRegister()) {
1454 DCHECK(!DataType::Is64BitType(dst_type));
1455 __ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>());
1456 } else if (source.IsRegisterPair()) {
1457 DCHECK(DataType::Is64BitType(dst_type));
1458 FRegister dst = destination.AsFpuRegister<FRegister>();
1459 Register src_high = source.AsRegisterPairHigh<Register>();
1460 Register src_low = source.AsRegisterPairLow<Register>();
1461 __ Mtc1(src_low, dst);
1462 __ MoveToFpuHigh(src_high, dst);
1463 } else if (source.IsFpuRegister()) {
1464 if (GetGraph()->HasSIMD()) {
1465 __ MoveV(VectorRegisterFrom(destination),
1466 VectorRegisterFrom(source));
1467 } else {
1468 if (DataType::Is64BitType(dst_type)) {
1469 __ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
1470 } else {
1471 DCHECK_EQ(dst_type, DataType::Type::kFloat32);
1472 __ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
1473 }
1474 }
1475 } else if (source.IsSIMDStackSlot()) {
1476 __ LoadQFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
1477 } else if (source.IsDoubleStackSlot()) {
1478 DCHECK(DataType::Is64BitType(dst_type));
1479 __ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
1480 } else {
1481 DCHECK(!DataType::Is64BitType(dst_type));
1482 DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
1483 __ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
1484 }
1485 } else if (destination.IsSIMDStackSlot()) {
1486 if (source.IsFpuRegister()) {
1487 __ StoreQToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
1488 } else {
1489 DCHECK(source.IsSIMDStackSlot());
1490 __ LoadQFromOffset(FTMP, SP, source.GetStackIndex());
1491 __ StoreQToOffset(FTMP, SP, destination.GetStackIndex());
1492 }
1493 } else if (destination.IsDoubleStackSlot()) {
1494 int32_t dst_offset = destination.GetStackIndex();
1495 if (source.IsRegisterPair()) {
1496 __ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, dst_offset);
1497 } else if (source.IsFpuRegister()) {
1498 __ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset);
1499 } else {
1500 DCHECK(source.IsDoubleStackSlot())
1501 << "Cannot move from " << source << " to " << destination;
1502 __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
1503 __ StoreToOffset(kStoreWord, TMP, SP, dst_offset);
1504 __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4);
1505 __ StoreToOffset(kStoreWord, TMP, SP, dst_offset + 4);
1506 }
1507 } else {
1508 DCHECK(destination.IsStackSlot()) << destination;
1509 int32_t dst_offset = destination.GetStackIndex();
1510 if (source.IsRegister()) {
1511 __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, dst_offset);
1512 } else if (source.IsFpuRegister()) {
1513 __ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset);
1514 } else {
1515 DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
1516 __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
1517 __ StoreToOffset(kStoreWord, TMP, SP, dst_offset);
1518 }
1519 }
1520 }
1521 }
1522
MoveConstant(Location destination,HConstant * c)1523 void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) {
1524 if (c->IsIntConstant() || c->IsNullConstant()) {
1525 // Move 32 bit constant.
1526 int32_t value = GetInt32ValueOf(c);
1527 if (destination.IsRegister()) {
1528 Register dst = destination.AsRegister<Register>();
1529 __ LoadConst32(dst, value);
1530 } else {
1531 DCHECK(destination.IsStackSlot())
1532 << "Cannot move " << c->DebugName() << " to " << destination;
1533 __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
1534 }
1535 } else if (c->IsLongConstant()) {
1536 // Move 64 bit constant.
1537 int64_t value = GetInt64ValueOf(c);
1538 if (destination.IsRegisterPair()) {
1539 Register r_h = destination.AsRegisterPairHigh<Register>();
1540 Register r_l = destination.AsRegisterPairLow<Register>();
1541 __ LoadConst64(r_h, r_l, value);
1542 } else {
1543 DCHECK(destination.IsDoubleStackSlot())
1544 << "Cannot move " << c->DebugName() << " to " << destination;
1545 __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
1546 }
1547 } else if (c->IsFloatConstant()) {
1548 // Move 32 bit float constant.
1549 int32_t value = GetInt32ValueOf(c);
1550 if (destination.IsFpuRegister()) {
1551 __ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP);
1552 } else {
1553 DCHECK(destination.IsStackSlot())
1554 << "Cannot move " << c->DebugName() << " to " << destination;
1555 __ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
1556 }
1557 } else {
1558 // Move 64 bit double constant.
1559 DCHECK(c->IsDoubleConstant()) << c->DebugName();
1560 int64_t value = GetInt64ValueOf(c);
1561 if (destination.IsFpuRegister()) {
1562 FRegister fd = destination.AsFpuRegister<FRegister>();
1563 __ LoadDConst64(fd, value, TMP);
1564 } else {
1565 DCHECK(destination.IsDoubleStackSlot())
1566 << "Cannot move " << c->DebugName() << " to " << destination;
1567 __ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
1568 }
1569 }
1570 }
1571
MoveConstant(Location destination,int32_t value)1572 void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) {
1573 DCHECK(destination.IsRegister());
1574 Register dst = destination.AsRegister<Register>();
1575 __ LoadConst32(dst, value);
1576 }
1577
AddLocationAsTemp(Location location,LocationSummary * locations)1578 void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) {
1579 if (location.IsRegister()) {
1580 locations->AddTemp(location);
1581 } else if (location.IsRegisterPair()) {
1582 locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
1583 locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
1584 } else {
1585 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1586 }
1587 }
1588
1589 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)1590 inline void CodeGeneratorMIPS::EmitPcRelativeLinkerPatches(
1591 const ArenaDeque<PcRelativePatchInfo>& infos,
1592 ArenaVector<linker::LinkerPatch>* linker_patches) {
1593 for (const PcRelativePatchInfo& info : infos) {
1594 const DexFile* dex_file = info.target_dex_file;
1595 size_t offset_or_index = info.offset_or_index;
1596 DCHECK(info.label.IsBound());
1597 uint32_t literal_offset = __ GetLabelLocation(&info.label);
1598 // On R2 we use HMipsComputeBaseMethodAddress and patch relative to
1599 // the assembler's base label used for PC-relative addressing.
1600 const PcRelativePatchInfo& info_high = info.patch_info_high ? *info.patch_info_high : info;
1601 uint32_t pc_rel_offset = info_high.pc_rel_label.IsBound()
1602 ? __ GetLabelLocation(&info_high.pc_rel_label)
1603 : __ GetPcRelBaseLabelLocation();
1604 linker_patches->push_back(Factory(literal_offset, dex_file, pc_rel_offset, offset_or_index));
1605 }
1606 }
1607
1608 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)1609 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
1610 const DexFile* target_dex_file,
1611 uint32_t pc_insn_offset,
1612 uint32_t boot_image_offset) {
1613 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
1614 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
1615 }
1616
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)1617 void CodeGeneratorMIPS::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
1618 DCHECK(linker_patches->empty());
1619 size_t size =
1620 boot_image_method_patches_.size() +
1621 method_bss_entry_patches_.size() +
1622 boot_image_type_patches_.size() +
1623 type_bss_entry_patches_.size() +
1624 boot_image_string_patches_.size() +
1625 string_bss_entry_patches_.size() +
1626 boot_image_intrinsic_patches_.size();
1627 linker_patches->reserve(size);
1628 if (GetCompilerOptions().IsBootImage()) {
1629 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
1630 boot_image_method_patches_, linker_patches);
1631 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
1632 boot_image_type_patches_, linker_patches);
1633 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
1634 boot_image_string_patches_, linker_patches);
1635 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
1636 boot_image_intrinsic_patches_, linker_patches);
1637 } else {
1638 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
1639 boot_image_method_patches_, linker_patches);
1640 DCHECK(boot_image_type_patches_.empty());
1641 DCHECK(boot_image_string_patches_.empty());
1642 DCHECK(boot_image_intrinsic_patches_.empty());
1643 }
1644 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
1645 method_bss_entry_patches_, linker_patches);
1646 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
1647 type_bss_entry_patches_, linker_patches);
1648 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
1649 string_bss_entry_patches_, linker_patches);
1650 DCHECK_EQ(size, linker_patches->size());
1651 }
1652
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,const PcRelativePatchInfo * info_high)1653 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageIntrinsicPatch(
1654 uint32_t intrinsic_data,
1655 const PcRelativePatchInfo* info_high) {
1656 return NewPcRelativePatch(
1657 /* dex_file= */ nullptr, intrinsic_data, info_high, &boot_image_intrinsic_patches_);
1658 }
1659
NewBootImageRelRoPatch(uint32_t boot_image_offset,const PcRelativePatchInfo * info_high)1660 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageRelRoPatch(
1661 uint32_t boot_image_offset,
1662 const PcRelativePatchInfo* info_high) {
1663 return NewPcRelativePatch(
1664 /* dex_file= */ nullptr, boot_image_offset, info_high, &boot_image_method_patches_);
1665 }
1666
NewBootImageMethodPatch(MethodReference target_method,const PcRelativePatchInfo * info_high)1667 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageMethodPatch(
1668 MethodReference target_method,
1669 const PcRelativePatchInfo* info_high) {
1670 return NewPcRelativePatch(
1671 target_method.dex_file, target_method.index, info_high, &boot_image_method_patches_);
1672 }
1673
NewMethodBssEntryPatch(MethodReference target_method,const PcRelativePatchInfo * info_high)1674 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewMethodBssEntryPatch(
1675 MethodReference target_method,
1676 const PcRelativePatchInfo* info_high) {
1677 return NewPcRelativePatch(
1678 target_method.dex_file, target_method.index, info_high, &method_bss_entry_patches_);
1679 }
1680
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,const PcRelativePatchInfo * info_high)1681 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageTypePatch(
1682 const DexFile& dex_file,
1683 dex::TypeIndex type_index,
1684 const PcRelativePatchInfo* info_high) {
1685 return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &boot_image_type_patches_);
1686 }
1687
NewTypeBssEntryPatch(const DexFile & dex_file,dex::TypeIndex type_index,const PcRelativePatchInfo * info_high)1688 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewTypeBssEntryPatch(
1689 const DexFile& dex_file,
1690 dex::TypeIndex type_index,
1691 const PcRelativePatchInfo* info_high) {
1692 return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &type_bss_entry_patches_);
1693 }
1694
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,const PcRelativePatchInfo * info_high)1695 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewBootImageStringPatch(
1696 const DexFile& dex_file,
1697 dex::StringIndex string_index,
1698 const PcRelativePatchInfo* info_high) {
1699 return NewPcRelativePatch(
1700 &dex_file, string_index.index_, info_high, &boot_image_string_patches_);
1701 }
1702
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,const PcRelativePatchInfo * info_high)1703 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewStringBssEntryPatch(
1704 const DexFile& dex_file,
1705 dex::StringIndex string_index,
1706 const PcRelativePatchInfo* info_high) {
1707 return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &string_bss_entry_patches_);
1708 }
1709
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,const PcRelativePatchInfo * info_high,ArenaDeque<PcRelativePatchInfo> * patches)1710 CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativePatch(
1711 const DexFile* dex_file,
1712 uint32_t offset_or_index,
1713 const PcRelativePatchInfo* info_high,
1714 ArenaDeque<PcRelativePatchInfo>* patches) {
1715 patches->emplace_back(dex_file, offset_or_index, info_high);
1716 return &patches->back();
1717 }
1718
DeduplicateUint32Literal(uint32_t value,Uint32ToLiteralMap * map)1719 Literal* CodeGeneratorMIPS::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
1720 return map->GetOrCreate(
1721 value,
1722 [this, value]() { return __ NewLiteral<uint32_t>(value); });
1723 }
1724
DeduplicateBootImageAddressLiteral(uint32_t address)1725 Literal* CodeGeneratorMIPS::DeduplicateBootImageAddressLiteral(uint32_t address) {
1726 return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_);
1727 }
1728
EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo * info_high,Register out,Register base)1729 void CodeGeneratorMIPS::EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high,
1730 Register out,
1731 Register base) {
1732 DCHECK(!info_high->patch_info_high);
1733 DCHECK_NE(out, base);
1734 bool reordering = __ SetReorder(false);
1735 if (GetInstructionSetFeatures().IsR6()) {
1736 DCHECK_EQ(base, ZERO);
1737 __ Bind(&info_high->label);
1738 __ Bind(&info_high->pc_rel_label);
1739 // Add the high half of a 32-bit offset to PC.
1740 __ Auipc(out, /* imm16= */ 0x1234);
1741 __ SetReorder(reordering);
1742 } else {
1743 // If base is ZERO, emit NAL to obtain the actual base.
1744 if (base == ZERO) {
1745 // Generate a dummy PC-relative call to obtain PC.
1746 __ Nal();
1747 }
1748 __ Bind(&info_high->label);
1749 __ Lui(out, /* imm16= */ 0x1234);
1750 // If we emitted the NAL, bind the pc_rel_label, otherwise base is a register holding
1751 // the HMipsComputeBaseMethodAddress which has its own label stored in MipsAssembler.
1752 if (base == ZERO) {
1753 __ Bind(&info_high->pc_rel_label);
1754 }
1755 __ SetReorder(reordering);
1756 // Add the high half of a 32-bit offset to PC.
1757 __ Addu(out, out, (base == ZERO) ? RA : base);
1758 }
1759 // A following instruction will add the sign-extended low half of the 32-bit
1760 // offset to `out` (e.g. lw, jialc, addiu).
1761 }
1762
LoadBootImageAddress(Register reg,uint32_t boot_image_reference)1763 void CodeGeneratorMIPS::LoadBootImageAddress(Register reg, uint32_t boot_image_reference) {
1764 if (GetCompilerOptions().IsBootImage()) {
1765 PcRelativePatchInfo* info_high = NewBootImageIntrinsicPatch(boot_image_reference);
1766 PcRelativePatchInfo* info_low = NewBootImageIntrinsicPatch(boot_image_reference, info_high);
1767 EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, /* base= */ ZERO);
1768 __ Addiu(reg, TMP, /* imm16= */ 0x5678, &info_low->label);
1769 } else if (GetCompilerOptions().GetCompilePic()) {
1770 PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_reference);
1771 PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_reference, info_high);
1772 EmitPcRelativeAddressPlaceholderHigh(info_high, reg, /* base= */ ZERO);
1773 __ Lw(reg, reg, /* imm16= */ 0x5678, &info_low->label);
1774 } else {
1775 DCHECK(Runtime::Current()->UseJitCompilation());
1776 gc::Heap* heap = Runtime::Current()->GetHeap();
1777 DCHECK(!heap->GetBootImageSpaces().empty());
1778 const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
1779 __ LoadConst32(reg, dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(address)));
1780 }
1781 }
1782
AllocateInstanceForIntrinsic(HInvokeStaticOrDirect * invoke,uint32_t boot_image_offset)1783 void CodeGeneratorMIPS::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke,
1784 uint32_t boot_image_offset) {
1785 DCHECK(invoke->IsStatic());
1786 InvokeRuntimeCallingConvention calling_convention;
1787 Register argument = calling_convention.GetRegisterAt(0);
1788 if (GetCompilerOptions().IsBootImage()) {
1789 DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference);
1790 // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
1791 MethodReference target_method = invoke->GetTargetMethod();
1792 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
1793 PcRelativePatchInfo* info_high = NewBootImageTypePatch(*target_method.dex_file, type_idx);
1794 PcRelativePatchInfo* info_low =
1795 NewBootImageTypePatch(*target_method.dex_file, type_idx, info_high);
1796 EmitPcRelativeAddressPlaceholderHigh(info_high, argument, /* base= */ ZERO);
1797 __ Addiu(argument, argument, /* imm16= */ 0x5678, &info_low->label);
1798 } else {
1799 LoadBootImageAddress(argument, boot_image_offset);
1800 }
1801 InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
1802 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
1803 }
1804
NewJitRootStringPatch(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)1805 CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootStringPatch(
1806 const DexFile& dex_file,
1807 dex::StringIndex string_index,
1808 Handle<mirror::String> handle) {
1809 ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
1810 jit_string_patches_.emplace_back(dex_file, string_index.index_);
1811 return &jit_string_patches_.back();
1812 }
1813
NewJitRootClassPatch(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)1814 CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootClassPatch(
1815 const DexFile& dex_file,
1816 dex::TypeIndex type_index,
1817 Handle<mirror::Class> handle) {
1818 ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
1819 jit_class_patches_.emplace_back(dex_file, type_index.index_);
1820 return &jit_class_patches_.back();
1821 }
1822
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,const CodeGeneratorMIPS::JitPatchInfo & info,uint64_t index_in_table) const1823 void CodeGeneratorMIPS::PatchJitRootUse(uint8_t* code,
1824 const uint8_t* roots_data,
1825 const CodeGeneratorMIPS::JitPatchInfo& info,
1826 uint64_t index_in_table) const {
1827 uint32_t high_literal_offset = GetAssembler().GetLabelLocation(&info.high_label);
1828 uint32_t low_literal_offset = GetAssembler().GetLabelLocation(&info.low_label);
1829 uintptr_t address =
1830 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
1831 uint32_t addr32 = dchecked_integral_cast<uint32_t>(address);
1832 // lui reg, addr32_high
1833 DCHECK_EQ(code[high_literal_offset + 0], 0x34);
1834 DCHECK_EQ(code[high_literal_offset + 1], 0x12);
1835 DCHECK_EQ((code[high_literal_offset + 2] & 0xE0), 0x00);
1836 DCHECK_EQ(code[high_literal_offset + 3], 0x3C);
1837 // instr reg, reg, addr32_low
1838 DCHECK_EQ(code[low_literal_offset + 0], 0x78);
1839 DCHECK_EQ(code[low_literal_offset + 1], 0x56);
1840 addr32 += (addr32 & 0x8000) << 1; // Account for sign extension in "instr reg, reg, addr32_low".
1841 // lui reg, addr32_high
1842 code[high_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 16);
1843 code[high_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 24);
1844 // instr reg, reg, addr32_low
1845 code[low_literal_offset + 0] = static_cast<uint8_t>(addr32 >> 0);
1846 code[low_literal_offset + 1] = static_cast<uint8_t>(addr32 >> 8);
1847 }
1848
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)1849 void CodeGeneratorMIPS::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
1850 for (const JitPatchInfo& info : jit_string_patches_) {
1851 StringReference string_reference(&info.target_dex_file, dex::StringIndex(info.index));
1852 uint64_t index_in_table = GetJitStringRootIndex(string_reference);
1853 PatchJitRootUse(code, roots_data, info, index_in_table);
1854 }
1855 for (const JitPatchInfo& info : jit_class_patches_) {
1856 TypeReference type_reference(&info.target_dex_file, dex::TypeIndex(info.index));
1857 uint64_t index_in_table = GetJitClassRootIndex(type_reference);
1858 PatchJitRootUse(code, roots_data, info, index_in_table);
1859 }
1860 }
1861
MarkGCCard(Register object,Register value,bool value_can_be_null)1862 void CodeGeneratorMIPS::MarkGCCard(Register object,
1863 Register value,
1864 bool value_can_be_null) {
1865 MipsLabel done;
1866 Register card = AT;
1867 Register temp = TMP;
1868 if (value_can_be_null) {
1869 __ Beqz(value, &done);
1870 }
1871 // Load the address of the card table into `card`.
1872 __ LoadFromOffset(kLoadWord,
1873 card,
1874 TR,
1875 Thread::CardTableOffset<kMipsPointerSize>().Int32Value());
1876 // Calculate the address of the card corresponding to `object`.
1877 __ Srl(temp, object, gc::accounting::CardTable::kCardShift);
1878 __ Addu(temp, card, temp);
1879 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
1880 // `object`'s card.
1881 //
1882 // Register `card` contains the address of the card table. Note that the card
1883 // table's base is biased during its creation so that it always starts at an
1884 // address whose least-significant byte is equal to `kCardDirty` (see
1885 // art::gc::accounting::CardTable::Create). Therefore the SB instruction
1886 // below writes the `kCardDirty` (byte) value into the `object`'s card
1887 // (located at `card + object >> kCardShift`).
1888 //
1889 // This dual use of the value in register `card` (1. to calculate the location
1890 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
1891 // (no need to explicitly load `kCardDirty` as an immediate value).
1892 __ Sb(card, temp, 0);
1893 if (value_can_be_null) {
1894 __ Bind(&done);
1895 }
1896 }
1897
SetupBlockedRegisters() const1898 void CodeGeneratorMIPS::SetupBlockedRegisters() const {
1899 // ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated.
1900 blocked_core_registers_[ZERO] = true;
1901 blocked_core_registers_[K0] = true;
1902 blocked_core_registers_[K1] = true;
1903 blocked_core_registers_[GP] = true;
1904 blocked_core_registers_[SP] = true;
1905 blocked_core_registers_[RA] = true;
1906
1907 // AT and TMP(T8) are used as temporary/scratch registers
1908 // (similar to how AT is used by MIPS assemblers).
1909 blocked_core_registers_[AT] = true;
1910 blocked_core_registers_[TMP] = true;
1911 blocked_fpu_registers_[FTMP] = true;
1912
1913 if (GetInstructionSetFeatures().HasMsa()) {
1914 // To be used just for MSA instructions.
1915 blocked_fpu_registers_[FTMP2] = true;
1916 }
1917
1918 // Reserve suspend and thread registers.
1919 blocked_core_registers_[S0] = true;
1920 blocked_core_registers_[TR] = true;
1921
1922 // Reserve T9 for function calls
1923 blocked_core_registers_[T9] = true;
1924
1925 // Reserve odd-numbered FPU registers.
1926 for (size_t i = 1; i < kNumberOfFRegisters; i += 2) {
1927 blocked_fpu_registers_[i] = true;
1928 }
1929
1930 if (GetGraph()->IsDebuggable()) {
1931 // Stubs do not save callee-save floating point registers. If the graph
1932 // is debuggable, we need to deal with these registers differently. For
1933 // now, just block them.
1934 for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
1935 blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
1936 }
1937 }
1938 }
1939
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1940 size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1941 __ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index);
1942 return kMipsWordSize;
1943 }
1944
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1945 size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1946 __ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index);
1947 return kMipsWordSize;
1948 }
1949
SaveFloatingPointRegister(size_t stack_index,uint32_t reg_id)1950 size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1951 if (GetGraph()->HasSIMD()) {
1952 __ StoreQToOffset(FRegister(reg_id), SP, stack_index);
1953 } else {
1954 __ StoreDToOffset(FRegister(reg_id), SP, stack_index);
1955 }
1956 return GetFloatingPointSpillSlotSize();
1957 }
1958
RestoreFloatingPointRegister(size_t stack_index,uint32_t reg_id)1959 size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
1960 if (GetGraph()->HasSIMD()) {
1961 __ LoadQFromOffset(FRegister(reg_id), SP, stack_index);
1962 } else {
1963 __ LoadDFromOffset(FRegister(reg_id), SP, stack_index);
1964 }
1965 return GetFloatingPointSpillSlotSize();
1966 }
1967
DumpCoreRegister(std::ostream & stream,int reg) const1968 void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const {
1969 stream << Register(reg);
1970 }
1971
DumpFloatingPointRegister(std::ostream & stream,int reg) const1972 void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1973 stream << FRegister(reg);
1974 }
1975
GetInstructionSetFeatures() const1976 const MipsInstructionSetFeatures& CodeGeneratorMIPS::GetInstructionSetFeatures() const {
1977 return *GetCompilerOptions().GetInstructionSetFeatures()->AsMipsInstructionSetFeatures();
1978 }
1979
1980 constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16;
1981
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1982 void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint,
1983 HInstruction* instruction,
1984 uint32_t dex_pc,
1985 SlowPathCode* slow_path) {
1986 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1987 GenerateInvokeRuntime(GetThreadOffset<kMipsPointerSize>(entrypoint).Int32Value(),
1988 IsDirectEntrypoint(entrypoint));
1989 if (EntrypointRequiresStackMap(entrypoint)) {
1990 RecordPcInfo(instruction, dex_pc, slow_path);
1991 }
1992 }
1993
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path,bool direct)1994 void CodeGeneratorMIPS::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1995 HInstruction* instruction,
1996 SlowPathCode* slow_path,
1997 bool direct) {
1998 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1999 GenerateInvokeRuntime(entry_point_offset, direct);
2000 }
2001
GenerateInvokeRuntime(int32_t entry_point_offset,bool direct)2002 void CodeGeneratorMIPS::GenerateInvokeRuntime(int32_t entry_point_offset, bool direct) {
2003 bool reordering = __ SetReorder(false);
2004 __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
2005 __ Jalr(T9);
2006 if (direct) {
2007 // Reserve argument space on stack (for $a0-$a3) for
2008 // entrypoints that directly reference native implementations.
2009 // Called function may use this space to store $a0-$a3 regs.
2010 __ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); // Single instruction in delay slot.
2011 __ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
2012 } else {
2013 __ Nop(); // In delay slot.
2014 }
2015 __ SetReorder(reordering);
2016 }
2017
GenerateClassInitializationCheck(SlowPathCodeMIPS * slow_path,Register class_reg)2018 void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path,
2019 Register class_reg) {
2020 constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf();
2021 const size_t status_byte_offset =
2022 mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte);
2023 constexpr uint32_t shifted_initialized_value =
2024 enum_cast<uint32_t>(ClassStatus::kInitialized) << (status_lsb_position % kBitsPerByte);
2025
2026 __ LoadFromOffset(kLoadUnsignedByte, TMP, class_reg, status_byte_offset);
2027 __ Sltiu(TMP, TMP, shifted_initialized_value);
2028 __ Bnez(TMP, slow_path->GetEntryLabel());
2029 // Even if the initialized flag is set, we need to ensure consistent memory ordering.
2030 __ Sync(0);
2031 __ Bind(slow_path->GetExitLabel());
2032 }
2033
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,Register temp)2034 void InstructionCodeGeneratorMIPS::GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check,
2035 Register temp) {
2036 uint32_t path_to_root = check->GetBitstringPathToRoot();
2037 uint32_t mask = check->GetBitstringMask();
2038 DCHECK(IsPowerOfTwo(mask + 1));
2039 size_t mask_bits = WhichPowerOf2(mask + 1);
2040
2041 if (mask_bits == 16u) {
2042 // Load only the bitstring part of the status word.
2043 __ LoadFromOffset(
2044 kLoadUnsignedHalfword, temp, temp, mirror::Class::StatusOffset().Int32Value());
2045 // Compare the bitstring bits using XOR.
2046 __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root));
2047 } else {
2048 // /* uint32_t */ temp = temp->status_
2049 __ LoadFromOffset(kLoadWord, temp, temp, mirror::Class::StatusOffset().Int32Value());
2050 // Compare the bitstring bits using XOR.
2051 if (IsUint<16>(path_to_root)) {
2052 __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root));
2053 } else {
2054 __ LoadConst32(TMP, path_to_root);
2055 __ Xor(temp, temp, TMP);
2056 }
2057 // Shift out bits that do not contribute to the comparison.
2058 __ Sll(temp, temp, 32 - mask_bits);
2059 }
2060 }
2061
GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED)2062 void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) {
2063 __ Sync(0); // Only stype 0 is supported.
2064 }
2065
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)2066 void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction,
2067 HBasicBlock* successor) {
2068 SuspendCheckSlowPathMIPS* slow_path =
2069 down_cast<SuspendCheckSlowPathMIPS*>(instruction->GetSlowPath());
2070
2071 if (slow_path == nullptr) {
2072 slow_path =
2073 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathMIPS(instruction, successor);
2074 instruction->SetSlowPath(slow_path);
2075 codegen_->AddSlowPath(slow_path);
2076 if (successor != nullptr) {
2077 DCHECK(successor->IsLoopHeader());
2078 }
2079 } else {
2080 DCHECK_EQ(slow_path->GetSuccessor(), successor);
2081 }
2082
2083 __ LoadFromOffset(kLoadUnsignedHalfword,
2084 TMP,
2085 TR,
2086 Thread::ThreadFlagsOffset<kMipsPointerSize>().Int32Value());
2087 if (successor == nullptr) {
2088 __ Bnez(TMP, slow_path->GetEntryLabel());
2089 __ Bind(slow_path->GetReturnLabel());
2090 } else {
2091 __ Beqz(TMP, codegen_->GetLabelOf(successor));
2092 __ B(slow_path->GetEntryLabel());
2093 // slow_path will return to GetLabelOf(successor).
2094 }
2095 }
2096
InstructionCodeGeneratorMIPS(HGraph * graph,CodeGeneratorMIPS * codegen)2097 InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph,
2098 CodeGeneratorMIPS* codegen)
2099 : InstructionCodeGenerator(graph, codegen),
2100 assembler_(codegen->GetAssembler()),
2101 codegen_(codegen) {}
2102
HandleBinaryOp(HBinaryOperation * instruction)2103 void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
2104 DCHECK_EQ(instruction->InputCount(), 2U);
2105 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2106 DataType::Type type = instruction->GetResultType();
2107 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
2108 switch (type) {
2109 case DataType::Type::kInt32: {
2110 locations->SetInAt(0, Location::RequiresRegister());
2111 HInstruction* right = instruction->InputAt(1);
2112 bool can_use_imm = false;
2113 if (right->IsConstant()) {
2114 int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant());
2115 if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
2116 can_use_imm = IsUint<16>(imm);
2117 } else {
2118 DCHECK(instruction->IsSub() || instruction->IsAdd());
2119 if (instruction->IsSub()) {
2120 imm = -imm;
2121 }
2122 if (isR6) {
2123 bool single_use = right->GetUses().HasExactlyOneElement();
2124 int16_t imm_high = High16Bits(imm);
2125 int16_t imm_low = Low16Bits(imm);
2126 if (imm_low < 0) {
2127 imm_high += 1;
2128 }
2129 can_use_imm = !((imm_high != 0) && (imm_low != 0)) || single_use;
2130 } else {
2131 can_use_imm = IsInt<16>(imm);
2132 }
2133 }
2134 }
2135 if (can_use_imm)
2136 locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
2137 else
2138 locations->SetInAt(1, Location::RequiresRegister());
2139 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2140 break;
2141 }
2142
2143 case DataType::Type::kInt64: {
2144 locations->SetInAt(0, Location::RequiresRegister());
2145 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2146 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2147 break;
2148 }
2149
2150 case DataType::Type::kFloat32:
2151 case DataType::Type::kFloat64:
2152 DCHECK(instruction->IsAdd() || instruction->IsSub());
2153 locations->SetInAt(0, Location::RequiresFpuRegister());
2154 locations->SetInAt(1, Location::RequiresFpuRegister());
2155 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2156 break;
2157
2158 default:
2159 LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
2160 }
2161 }
2162
HandleBinaryOp(HBinaryOperation * instruction)2163 void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
2164 DataType::Type type = instruction->GetType();
2165 LocationSummary* locations = instruction->GetLocations();
2166 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
2167
2168 switch (type) {
2169 case DataType::Type::kInt32: {
2170 Register dst = locations->Out().AsRegister<Register>();
2171 Register lhs = locations->InAt(0).AsRegister<Register>();
2172 Location rhs_location = locations->InAt(1);
2173
2174 Register rhs_reg = ZERO;
2175 int32_t rhs_imm = 0;
2176 bool use_imm = rhs_location.IsConstant();
2177 if (use_imm) {
2178 rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
2179 } else {
2180 rhs_reg = rhs_location.AsRegister<Register>();
2181 }
2182
2183 if (instruction->IsAnd()) {
2184 if (use_imm)
2185 __ Andi(dst, lhs, rhs_imm);
2186 else
2187 __ And(dst, lhs, rhs_reg);
2188 } else if (instruction->IsOr()) {
2189 if (use_imm)
2190 __ Ori(dst, lhs, rhs_imm);
2191 else
2192 __ Or(dst, lhs, rhs_reg);
2193 } else if (instruction->IsXor()) {
2194 if (use_imm)
2195 __ Xori(dst, lhs, rhs_imm);
2196 else
2197 __ Xor(dst, lhs, rhs_reg);
2198 } else {
2199 DCHECK(instruction->IsAdd() || instruction->IsSub());
2200 if (use_imm) {
2201 if (instruction->IsSub()) {
2202 rhs_imm = -rhs_imm;
2203 }
2204 if (IsInt<16>(rhs_imm)) {
2205 __ Addiu(dst, lhs, rhs_imm);
2206 } else {
2207 DCHECK(isR6);
2208 int16_t rhs_imm_high = High16Bits(rhs_imm);
2209 int16_t rhs_imm_low = Low16Bits(rhs_imm);
2210 if (rhs_imm_low < 0) {
2211 rhs_imm_high += 1;
2212 }
2213 __ Aui(dst, lhs, rhs_imm_high);
2214 if (rhs_imm_low != 0) {
2215 __ Addiu(dst, dst, rhs_imm_low);
2216 }
2217 }
2218 } else if (instruction->IsAdd()) {
2219 __ Addu(dst, lhs, rhs_reg);
2220 } else {
2221 DCHECK(instruction->IsSub());
2222 __ Subu(dst, lhs, rhs_reg);
2223 }
2224 }
2225 break;
2226 }
2227
2228 case DataType::Type::kInt64: {
2229 Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
2230 Register dst_low = locations->Out().AsRegisterPairLow<Register>();
2231 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
2232 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
2233 Location rhs_location = locations->InAt(1);
2234 bool use_imm = rhs_location.IsConstant();
2235 if (!use_imm) {
2236 Register rhs_high = rhs_location.AsRegisterPairHigh<Register>();
2237 Register rhs_low = rhs_location.AsRegisterPairLow<Register>();
2238 if (instruction->IsAnd()) {
2239 __ And(dst_low, lhs_low, rhs_low);
2240 __ And(dst_high, lhs_high, rhs_high);
2241 } else if (instruction->IsOr()) {
2242 __ Or(dst_low, lhs_low, rhs_low);
2243 __ Or(dst_high, lhs_high, rhs_high);
2244 } else if (instruction->IsXor()) {
2245 __ Xor(dst_low, lhs_low, rhs_low);
2246 __ Xor(dst_high, lhs_high, rhs_high);
2247 } else if (instruction->IsAdd()) {
2248 if (lhs_low == rhs_low) {
2249 // Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs.
2250 __ Slt(TMP, lhs_low, ZERO);
2251 __ Addu(dst_low, lhs_low, rhs_low);
2252 } else {
2253 __ Addu(dst_low, lhs_low, rhs_low);
2254 // If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged.
2255 __ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low);
2256 }
2257 __ Addu(dst_high, lhs_high, rhs_high);
2258 __ Addu(dst_high, dst_high, TMP);
2259 } else {
2260 DCHECK(instruction->IsSub());
2261 __ Sltu(TMP, lhs_low, rhs_low);
2262 __ Subu(dst_low, lhs_low, rhs_low);
2263 __ Subu(dst_high, lhs_high, rhs_high);
2264 __ Subu(dst_high, dst_high, TMP);
2265 }
2266 } else {
2267 int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant());
2268 if (instruction->IsOr()) {
2269 uint32_t low = Low32Bits(value);
2270 uint32_t high = High32Bits(value);
2271 if (IsUint<16>(low)) {
2272 if (dst_low != lhs_low || low != 0) {
2273 __ Ori(dst_low, lhs_low, low);
2274 }
2275 } else {
2276 __ LoadConst32(TMP, low);
2277 __ Or(dst_low, lhs_low, TMP);
2278 }
2279 if (IsUint<16>(high)) {
2280 if (dst_high != lhs_high || high != 0) {
2281 __ Ori(dst_high, lhs_high, high);
2282 }
2283 } else {
2284 if (high != low) {
2285 __ LoadConst32(TMP, high);
2286 }
2287 __ Or(dst_high, lhs_high, TMP);
2288 }
2289 } else if (instruction->IsXor()) {
2290 uint32_t low = Low32Bits(value);
2291 uint32_t high = High32Bits(value);
2292 if (IsUint<16>(low)) {
2293 if (dst_low != lhs_low || low != 0) {
2294 __ Xori(dst_low, lhs_low, low);
2295 }
2296 } else {
2297 __ LoadConst32(TMP, low);
2298 __ Xor(dst_low, lhs_low, TMP);
2299 }
2300 if (IsUint<16>(high)) {
2301 if (dst_high != lhs_high || high != 0) {
2302 __ Xori(dst_high, lhs_high, high);
2303 }
2304 } else {
2305 if (high != low) {
2306 __ LoadConst32(TMP, high);
2307 }
2308 __ Xor(dst_high, lhs_high, TMP);
2309 }
2310 } else if (instruction->IsAnd()) {
2311 uint32_t low = Low32Bits(value);
2312 uint32_t high = High32Bits(value);
2313 if (IsUint<16>(low)) {
2314 __ Andi(dst_low, lhs_low, low);
2315 } else if (low != 0xFFFFFFFF) {
2316 __ LoadConst32(TMP, low);
2317 __ And(dst_low, lhs_low, TMP);
2318 } else if (dst_low != lhs_low) {
2319 __ Move(dst_low, lhs_low);
2320 }
2321 if (IsUint<16>(high)) {
2322 __ Andi(dst_high, lhs_high, high);
2323 } else if (high != 0xFFFFFFFF) {
2324 if (high != low) {
2325 __ LoadConst32(TMP, high);
2326 }
2327 __ And(dst_high, lhs_high, TMP);
2328 } else if (dst_high != lhs_high) {
2329 __ Move(dst_high, lhs_high);
2330 }
2331 } else {
2332 if (instruction->IsSub()) {
2333 value = -value;
2334 } else {
2335 DCHECK(instruction->IsAdd());
2336 }
2337 int32_t low = Low32Bits(value);
2338 int32_t high = High32Bits(value);
2339 if (IsInt<16>(low)) {
2340 if (dst_low != lhs_low || low != 0) {
2341 __ Addiu(dst_low, lhs_low, low);
2342 }
2343 if (low != 0) {
2344 __ Sltiu(AT, dst_low, low);
2345 }
2346 } else {
2347 __ LoadConst32(TMP, low);
2348 __ Addu(dst_low, lhs_low, TMP);
2349 __ Sltu(AT, dst_low, TMP);
2350 }
2351 if (IsInt<16>(high)) {
2352 if (dst_high != lhs_high || high != 0) {
2353 __ Addiu(dst_high, lhs_high, high);
2354 }
2355 } else {
2356 if (high != low) {
2357 __ LoadConst32(TMP, high);
2358 }
2359 __ Addu(dst_high, lhs_high, TMP);
2360 }
2361 if (low != 0) {
2362 __ Addu(dst_high, dst_high, AT);
2363 }
2364 }
2365 }
2366 break;
2367 }
2368
2369 case DataType::Type::kFloat32:
2370 case DataType::Type::kFloat64: {
2371 FRegister dst = locations->Out().AsFpuRegister<FRegister>();
2372 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
2373 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
2374 if (instruction->IsAdd()) {
2375 if (type == DataType::Type::kFloat32) {
2376 __ AddS(dst, lhs, rhs);
2377 } else {
2378 __ AddD(dst, lhs, rhs);
2379 }
2380 } else {
2381 DCHECK(instruction->IsSub());
2382 if (type == DataType::Type::kFloat32) {
2383 __ SubS(dst, lhs, rhs);
2384 } else {
2385 __ SubD(dst, lhs, rhs);
2386 }
2387 }
2388 break;
2389 }
2390
2391 default:
2392 LOG(FATAL) << "Unexpected binary operation type " << type;
2393 }
2394 }
2395
HandleShift(HBinaryOperation * instr)2396 void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) {
2397 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
2398
2399 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2400 DataType::Type type = instr->GetResultType();
2401 switch (type) {
2402 case DataType::Type::kInt32:
2403 locations->SetInAt(0, Location::RequiresRegister());
2404 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2405 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2406 break;
2407 case DataType::Type::kInt64:
2408 locations->SetInAt(0, Location::RequiresRegister());
2409 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2410 locations->SetOut(Location::RequiresRegister());
2411 break;
2412 default:
2413 LOG(FATAL) << "Unexpected shift type " << type;
2414 }
2415 }
2416
2417 static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte;
2418
HandleShift(HBinaryOperation * instr)2419 void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) {
2420 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
2421 LocationSummary* locations = instr->GetLocations();
2422 DataType::Type type = instr->GetType();
2423
2424 Location rhs_location = locations->InAt(1);
2425 bool use_imm = rhs_location.IsConstant();
2426 Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>();
2427 int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0;
2428 const uint32_t shift_mask =
2429 (type == DataType::Type::kInt32) ? kMaxIntShiftDistance : kMaxLongShiftDistance;
2430 const uint32_t shift_value = rhs_imm & shift_mask;
2431 // Are the INS (Insert Bit Field) and ROTR instructions supported?
2432 bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
2433
2434 switch (type) {
2435 case DataType::Type::kInt32: {
2436 Register dst = locations->Out().AsRegister<Register>();
2437 Register lhs = locations->InAt(0).AsRegister<Register>();
2438 if (use_imm) {
2439 if (shift_value == 0) {
2440 if (dst != lhs) {
2441 __ Move(dst, lhs);
2442 }
2443 } else if (instr->IsShl()) {
2444 __ Sll(dst, lhs, shift_value);
2445 } else if (instr->IsShr()) {
2446 __ Sra(dst, lhs, shift_value);
2447 } else if (instr->IsUShr()) {
2448 __ Srl(dst, lhs, shift_value);
2449 } else {
2450 if (has_ins_rotr) {
2451 __ Rotr(dst, lhs, shift_value);
2452 } else {
2453 __ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask);
2454 __ Srl(dst, lhs, shift_value);
2455 __ Or(dst, dst, TMP);
2456 }
2457 }
2458 } else {
2459 if (instr->IsShl()) {
2460 __ Sllv(dst, lhs, rhs_reg);
2461 } else if (instr->IsShr()) {
2462 __ Srav(dst, lhs, rhs_reg);
2463 } else if (instr->IsUShr()) {
2464 __ Srlv(dst, lhs, rhs_reg);
2465 } else {
2466 if (has_ins_rotr) {
2467 __ Rotrv(dst, lhs, rhs_reg);
2468 } else {
2469 __ Subu(TMP, ZERO, rhs_reg);
2470 // 32-bit shift instructions use the 5 least significant bits of the shift count, so
2471 // shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case
2472 // when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out
2473 // by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`,
2474 // IOW, the OR'd values are equal.
2475 __ Sllv(TMP, lhs, TMP);
2476 __ Srlv(dst, lhs, rhs_reg);
2477 __ Or(dst, dst, TMP);
2478 }
2479 }
2480 }
2481 break;
2482 }
2483
2484 case DataType::Type::kInt64: {
2485 Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
2486 Register dst_low = locations->Out().AsRegisterPairLow<Register>();
2487 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
2488 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
2489 if (use_imm) {
2490 if (shift_value == 0) {
2491 codegen_->MoveLocation(locations->Out(), locations->InAt(0), type);
2492 } else if (shift_value < kMipsBitsPerWord) {
2493 if (has_ins_rotr) {
2494 if (instr->IsShl()) {
2495 __ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
2496 __ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value);
2497 __ Sll(dst_low, lhs_low, shift_value);
2498 } else if (instr->IsShr()) {
2499 __ Srl(dst_low, lhs_low, shift_value);
2500 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
2501 __ Sra(dst_high, lhs_high, shift_value);
2502 } else if (instr->IsUShr()) {
2503 __ Srl(dst_low, lhs_low, shift_value);
2504 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
2505 __ Srl(dst_high, lhs_high, shift_value);
2506 } else {
2507 __ Srl(dst_low, lhs_low, shift_value);
2508 __ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
2509 __ Srl(dst_high, lhs_high, shift_value);
2510 __ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value);
2511 }
2512 } else {
2513 if (instr->IsShl()) {
2514 __ Sll(dst_low, lhs_low, shift_value);
2515 __ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value);
2516 __ Sll(dst_high, lhs_high, shift_value);
2517 __ Or(dst_high, dst_high, TMP);
2518 } else if (instr->IsShr()) {
2519 __ Sra(dst_high, lhs_high, shift_value);
2520 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
2521 __ Srl(dst_low, lhs_low, shift_value);
2522 __ Or(dst_low, dst_low, TMP);
2523 } else if (instr->IsUShr()) {
2524 __ Srl(dst_high, lhs_high, shift_value);
2525 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
2526 __ Srl(dst_low, lhs_low, shift_value);
2527 __ Or(dst_low, dst_low, TMP);
2528 } else {
2529 __ Srl(TMP, lhs_low, shift_value);
2530 __ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value);
2531 __ Or(dst_low, dst_low, TMP);
2532 __ Srl(TMP, lhs_high, shift_value);
2533 __ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
2534 __ Or(dst_high, dst_high, TMP);
2535 }
2536 }
2537 } else {
2538 const uint32_t shift_value_high = shift_value - kMipsBitsPerWord;
2539 if (instr->IsShl()) {
2540 __ Sll(dst_high, lhs_low, shift_value_high);
2541 __ Move(dst_low, ZERO);
2542 } else if (instr->IsShr()) {
2543 __ Sra(dst_low, lhs_high, shift_value_high);
2544 __ Sra(dst_high, dst_low, kMipsBitsPerWord - 1);
2545 } else if (instr->IsUShr()) {
2546 __ Srl(dst_low, lhs_high, shift_value_high);
2547 __ Move(dst_high, ZERO);
2548 } else {
2549 if (shift_value == kMipsBitsPerWord) {
2550 // 64-bit rotation by 32 is just a swap.
2551 __ Move(dst_low, lhs_high);
2552 __ Move(dst_high, lhs_low);
2553 } else {
2554 if (has_ins_rotr) {
2555 __ Srl(dst_low, lhs_high, shift_value_high);
2556 __ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high);
2557 __ Srl(dst_high, lhs_low, shift_value_high);
2558 __ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high);
2559 } else {
2560 __ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high);
2561 __ Srl(dst_low, lhs_high, shift_value_high);
2562 __ Or(dst_low, dst_low, TMP);
2563 __ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high);
2564 __ Srl(dst_high, lhs_low, shift_value_high);
2565 __ Or(dst_high, dst_high, TMP);
2566 }
2567 }
2568 }
2569 }
2570 } else {
2571 const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
2572 MipsLabel done;
2573 if (instr->IsShl()) {
2574 __ Sllv(dst_low, lhs_low, rhs_reg);
2575 __ Nor(AT, ZERO, rhs_reg);
2576 __ Srl(TMP, lhs_low, 1);
2577 __ Srlv(TMP, TMP, AT);
2578 __ Sllv(dst_high, lhs_high, rhs_reg);
2579 __ Or(dst_high, dst_high, TMP);
2580 __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
2581 if (isR6) {
2582 __ Beqzc(TMP, &done, /* is_bare= */ true);
2583 __ Move(dst_high, dst_low);
2584 __ Move(dst_low, ZERO);
2585 } else {
2586 __ Movn(dst_high, dst_low, TMP);
2587 __ Movn(dst_low, ZERO, TMP);
2588 }
2589 } else if (instr->IsShr()) {
2590 __ Srav(dst_high, lhs_high, rhs_reg);
2591 __ Nor(AT, ZERO, rhs_reg);
2592 __ Sll(TMP, lhs_high, 1);
2593 __ Sllv(TMP, TMP, AT);
2594 __ Srlv(dst_low, lhs_low, rhs_reg);
2595 __ Or(dst_low, dst_low, TMP);
2596 __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
2597 if (isR6) {
2598 __ Beqzc(TMP, &done, /* is_bare= */ true);
2599 __ Move(dst_low, dst_high);
2600 __ Sra(dst_high, dst_high, 31);
2601 } else {
2602 __ Sra(AT, dst_high, 31);
2603 __ Movn(dst_low, dst_high, TMP);
2604 __ Movn(dst_high, AT, TMP);
2605 }
2606 } else if (instr->IsUShr()) {
2607 __ Srlv(dst_high, lhs_high, rhs_reg);
2608 __ Nor(AT, ZERO, rhs_reg);
2609 __ Sll(TMP, lhs_high, 1);
2610 __ Sllv(TMP, TMP, AT);
2611 __ Srlv(dst_low, lhs_low, rhs_reg);
2612 __ Or(dst_low, dst_low, TMP);
2613 __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
2614 if (isR6) {
2615 __ Beqzc(TMP, &done, /* is_bare= */ true);
2616 __ Move(dst_low, dst_high);
2617 __ Move(dst_high, ZERO);
2618 } else {
2619 __ Movn(dst_low, dst_high, TMP);
2620 __ Movn(dst_high, ZERO, TMP);
2621 }
2622 } else { // Rotate.
2623 __ Nor(AT, ZERO, rhs_reg);
2624 __ Srlv(TMP, lhs_low, rhs_reg);
2625 __ Sll(dst_low, lhs_high, 1);
2626 __ Sllv(dst_low, dst_low, AT);
2627 __ Or(dst_low, dst_low, TMP);
2628 __ Srlv(TMP, lhs_high, rhs_reg);
2629 __ Sll(dst_high, lhs_low, 1);
2630 __ Sllv(dst_high, dst_high, AT);
2631 __ Or(dst_high, dst_high, TMP);
2632 __ Andi(TMP, rhs_reg, kMipsBitsPerWord);
2633 if (isR6) {
2634 __ Beqzc(TMP, &done, /* is_bare= */ true);
2635 __ Move(TMP, dst_high);
2636 __ Move(dst_high, dst_low);
2637 __ Move(dst_low, TMP);
2638 } else {
2639 __ Movn(AT, dst_high, TMP);
2640 __ Movn(dst_high, dst_low, TMP);
2641 __ Movn(dst_low, AT, TMP);
2642 }
2643 }
2644 __ Bind(&done);
2645 }
2646 break;
2647 }
2648
2649 default:
2650 LOG(FATAL) << "Unexpected shift operation type " << type;
2651 }
2652 }
2653
VisitAdd(HAdd * instruction)2654 void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) {
2655 HandleBinaryOp(instruction);
2656 }
2657
VisitAdd(HAdd * instruction)2658 void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) {
2659 HandleBinaryOp(instruction);
2660 }
2661
VisitAnd(HAnd * instruction)2662 void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) {
2663 HandleBinaryOp(instruction);
2664 }
2665
VisitAnd(HAnd * instruction)2666 void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) {
2667 HandleBinaryOp(instruction);
2668 }
2669
VisitArrayGet(HArrayGet * instruction)2670 void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) {
2671 DataType::Type type = instruction->GetType();
2672 bool object_array_get_with_read_barrier =
2673 kEmitCompilerReadBarrier && (type == DataType::Type::kReference);
2674 LocationSummary* locations =
2675 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2676 object_array_get_with_read_barrier
2677 ? LocationSummary::kCallOnSlowPath
2678 : LocationSummary::kNoCall);
2679 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2680 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2681 }
2682 locations->SetInAt(0, Location::RequiresRegister());
2683 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2684 if (DataType::IsFloatingPointType(type)) {
2685 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2686 } else {
2687 // The output overlaps in the case of an object array get with
2688 // read barriers enabled: we do not want the move to overwrite the
2689 // array's location, as we need it to emit the read barrier.
2690 locations->SetOut(Location::RequiresRegister(),
2691 object_array_get_with_read_barrier
2692 ? Location::kOutputOverlap
2693 : Location::kNoOutputOverlap);
2694 }
2695 // We need a temporary register for the read barrier marking slow
2696 // path in CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier.
2697 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2698 bool temp_needed = instruction->GetIndex()->IsConstant()
2699 ? !kBakerReadBarrierThunksEnableForFields
2700 : !kBakerReadBarrierThunksEnableForArrays;
2701 if (temp_needed) {
2702 locations->AddTemp(Location::RequiresRegister());
2703 }
2704 }
2705 }
2706
GetImplicitNullChecker(HInstruction * instruction,CodeGeneratorMIPS * codegen)2707 static auto GetImplicitNullChecker(HInstruction* instruction, CodeGeneratorMIPS* codegen) {
2708 auto null_checker = [codegen, instruction]() {
2709 codegen->MaybeRecordImplicitNullCheck(instruction);
2710 };
2711 return null_checker;
2712 }
2713
VisitArrayGet(HArrayGet * instruction)2714 void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) {
2715 LocationSummary* locations = instruction->GetLocations();
2716 Location obj_loc = locations->InAt(0);
2717 Register obj = obj_loc.AsRegister<Register>();
2718 Location out_loc = locations->Out();
2719 Location index = locations->InAt(1);
2720 uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
2721 auto null_checker = GetImplicitNullChecker(instruction, codegen_);
2722
2723 DataType::Type type = instruction->GetType();
2724 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
2725 instruction->IsStringCharAt();
2726 switch (type) {
2727 case DataType::Type::kBool:
2728 case DataType::Type::kUint8: {
2729 Register out = out_loc.AsRegister<Register>();
2730 if (index.IsConstant()) {
2731 size_t offset =
2732 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
2733 __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker);
2734 } else {
2735 __ Addu(TMP, obj, index.AsRegister<Register>());
2736 __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker);
2737 }
2738 break;
2739 }
2740
2741 case DataType::Type::kInt8: {
2742 Register out = out_loc.AsRegister<Register>();
2743 if (index.IsConstant()) {
2744 size_t offset =
2745 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
2746 __ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker);
2747 } else {
2748 __ Addu(TMP, obj, index.AsRegister<Register>());
2749 __ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker);
2750 }
2751 break;
2752 }
2753
2754 case DataType::Type::kUint16: {
2755 Register out = out_loc.AsRegister<Register>();
2756 if (maybe_compressed_char_at) {
2757 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2758 __ LoadFromOffset(kLoadWord, TMP, obj, count_offset, null_checker);
2759 __ Sll(TMP, TMP, 31); // Extract compression flag into the most significant bit of TMP.
2760 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2761 "Expecting 0=compressed, 1=uncompressed");
2762 }
2763 if (index.IsConstant()) {
2764 int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
2765 if (maybe_compressed_char_at) {
2766 MipsLabel uncompressed_load, done;
2767 __ Bnez(TMP, &uncompressed_load);
2768 __ LoadFromOffset(kLoadUnsignedByte,
2769 out,
2770 obj,
2771 data_offset + (const_index << TIMES_1));
2772 __ B(&done);
2773 __ Bind(&uncompressed_load);
2774 __ LoadFromOffset(kLoadUnsignedHalfword,
2775 out,
2776 obj,
2777 data_offset + (const_index << TIMES_2));
2778 __ Bind(&done);
2779 } else {
2780 __ LoadFromOffset(kLoadUnsignedHalfword,
2781 out,
2782 obj,
2783 data_offset + (const_index << TIMES_2),
2784 null_checker);
2785 }
2786 } else {
2787 Register index_reg = index.AsRegister<Register>();
2788 if (maybe_compressed_char_at) {
2789 MipsLabel uncompressed_load, done;
2790 __ Bnez(TMP, &uncompressed_load);
2791 __ Addu(TMP, obj, index_reg);
2792 __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset);
2793 __ B(&done);
2794 __ Bind(&uncompressed_load);
2795 __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
2796 __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset);
2797 __ Bind(&done);
2798 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
2799 __ Addu(TMP, index_reg, obj);
2800 __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker);
2801 } else {
2802 __ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
2803 __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker);
2804 }
2805 }
2806 break;
2807 }
2808
2809 case DataType::Type::kInt16: {
2810 Register out = out_loc.AsRegister<Register>();
2811 if (index.IsConstant()) {
2812 size_t offset =
2813 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
2814 __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker);
2815 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
2816 __ Addu(TMP, index.AsRegister<Register>(), obj);
2817 __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker);
2818 } else {
2819 __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_2, TMP);
2820 __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker);
2821 }
2822 break;
2823 }
2824
2825 case DataType::Type::kInt32: {
2826 DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
2827 Register out = out_loc.AsRegister<Register>();
2828 if (index.IsConstant()) {
2829 size_t offset =
2830 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
2831 __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
2832 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
2833 __ Addu(TMP, index.AsRegister<Register>(), obj);
2834 __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
2835 } else {
2836 __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
2837 __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
2838 }
2839 break;
2840 }
2841
2842 case DataType::Type::kReference: {
2843 static_assert(
2844 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2845 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2846 // /* HeapReference<Object> */ out =
2847 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
2848 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2849 bool temp_needed = index.IsConstant()
2850 ? !kBakerReadBarrierThunksEnableForFields
2851 : !kBakerReadBarrierThunksEnableForArrays;
2852 Location temp = temp_needed ? locations->GetTemp(0) : Location::NoLocation();
2853 // Note that a potential implicit null check is handled in this
2854 // CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier call.
2855 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2856 if (index.IsConstant()) {
2857 // Array load with a constant index can be treated as a field load.
2858 size_t offset =
2859 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
2860 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2861 out_loc,
2862 obj,
2863 offset,
2864 temp,
2865 /* needs_null_check= */ false);
2866 } else {
2867 codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction,
2868 out_loc,
2869 obj,
2870 data_offset,
2871 index,
2872 temp,
2873 /* needs_null_check= */ false);
2874 }
2875 } else {
2876 Register out = out_loc.AsRegister<Register>();
2877 if (index.IsConstant()) {
2878 size_t offset =
2879 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
2880 __ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
2881 // If read barriers are enabled, emit read barriers other than
2882 // Baker's using a slow path (and also unpoison the loaded
2883 // reference, if heap poisoning is enabled).
2884 codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
2885 } else {
2886 __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
2887 __ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
2888 // If read barriers are enabled, emit read barriers other than
2889 // Baker's using a slow path (and also unpoison the loaded
2890 // reference, if heap poisoning is enabled).
2891 codegen_->MaybeGenerateReadBarrierSlow(instruction,
2892 out_loc,
2893 out_loc,
2894 obj_loc,
2895 data_offset,
2896 index);
2897 }
2898 }
2899 break;
2900 }
2901
2902 case DataType::Type::kInt64: {
2903 Register out = out_loc.AsRegisterPairLow<Register>();
2904 if (index.IsConstant()) {
2905 size_t offset =
2906 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
2907 __ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker);
2908 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
2909 __ Addu(TMP, index.AsRegister<Register>(), obj);
2910 __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker);
2911 } else {
2912 __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
2913 __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker);
2914 }
2915 break;
2916 }
2917
2918 case DataType::Type::kFloat32: {
2919 FRegister out = out_loc.AsFpuRegister<FRegister>();
2920 if (index.IsConstant()) {
2921 size_t offset =
2922 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
2923 __ LoadSFromOffset(out, obj, offset, null_checker);
2924 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
2925 __ Addu(TMP, index.AsRegister<Register>(), obj);
2926 __ LoadSFromOffset(out, TMP, data_offset, null_checker);
2927 } else {
2928 __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
2929 __ LoadSFromOffset(out, TMP, data_offset, null_checker);
2930 }
2931 break;
2932 }
2933
2934 case DataType::Type::kFloat64: {
2935 FRegister out = out_loc.AsFpuRegister<FRegister>();
2936 if (index.IsConstant()) {
2937 size_t offset =
2938 (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
2939 __ LoadDFromOffset(out, obj, offset, null_checker);
2940 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
2941 __ Addu(TMP, index.AsRegister<Register>(), obj);
2942 __ LoadDFromOffset(out, TMP, data_offset, null_checker);
2943 } else {
2944 __ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
2945 __ LoadDFromOffset(out, TMP, data_offset, null_checker);
2946 }
2947 break;
2948 }
2949
2950 case DataType::Type::kUint32:
2951 case DataType::Type::kUint64:
2952 case DataType::Type::kVoid:
2953 LOG(FATAL) << "Unreachable type " << instruction->GetType();
2954 UNREACHABLE();
2955 }
2956 }
2957
VisitArrayLength(HArrayLength * instruction)2958 void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) {
2959 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2960 locations->SetInAt(0, Location::RequiresRegister());
2961 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2962 }
2963
VisitArrayLength(HArrayLength * instruction)2964 void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) {
2965 LocationSummary* locations = instruction->GetLocations();
2966 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
2967 Register obj = locations->InAt(0).AsRegister<Register>();
2968 Register out = locations->Out().AsRegister<Register>();
2969 __ LoadFromOffset(kLoadWord, out, obj, offset);
2970 codegen_->MaybeRecordImplicitNullCheck(instruction);
2971 // Mask out compression flag from String's array length.
2972 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
2973 __ Srl(out, out, 1u);
2974 }
2975 }
2976
RegisterOrZeroConstant(HInstruction * instruction)2977 Location LocationsBuilderMIPS::RegisterOrZeroConstant(HInstruction* instruction) {
2978 return (instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern())
2979 ? Location::ConstantLocation(instruction->AsConstant())
2980 : Location::RequiresRegister();
2981 }
2982
FpuRegisterOrConstantForStore(HInstruction * instruction)2983 Location LocationsBuilderMIPS::FpuRegisterOrConstantForStore(HInstruction* instruction) {
2984 // We can store 0.0 directly (from the ZERO register) without loading it into an FPU register.
2985 // We can store a non-zero float or double constant without first loading it into the FPU,
2986 // but we should only prefer this if the constant has a single use.
2987 if (instruction->IsConstant() &&
2988 (instruction->AsConstant()->IsZeroBitPattern() ||
2989 instruction->GetUses().HasExactlyOneElement())) {
2990 return Location::ConstantLocation(instruction->AsConstant());
2991 // Otherwise fall through and require an FPU register for the constant.
2992 }
2993 return Location::RequiresFpuRegister();
2994 }
2995
VisitArraySet(HArraySet * instruction)2996 void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) {
2997 DataType::Type value_type = instruction->GetComponentType();
2998
2999 bool needs_write_barrier =
3000 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
3001 bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
3002
3003 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
3004 instruction,
3005 may_need_runtime_call_for_type_check ?
3006 LocationSummary::kCallOnSlowPath :
3007 LocationSummary::kNoCall);
3008
3009 locations->SetInAt(0, Location::RequiresRegister());
3010 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
3011 if (DataType::IsFloatingPointType(instruction->InputAt(2)->GetType())) {
3012 locations->SetInAt(2, FpuRegisterOrConstantForStore(instruction->InputAt(2)));
3013 } else {
3014 locations->SetInAt(2, RegisterOrZeroConstant(instruction->InputAt(2)));
3015 }
3016 if (needs_write_barrier) {
3017 // Temporary register for the write barrier.
3018 locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
3019 }
3020 }
3021
VisitArraySet(HArraySet * instruction)3022 void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) {
3023 LocationSummary* locations = instruction->GetLocations();
3024 Register obj = locations->InAt(0).AsRegister<Register>();
3025 Location index = locations->InAt(1);
3026 Location value_location = locations->InAt(2);
3027 DataType::Type value_type = instruction->GetComponentType();
3028 bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
3029 bool needs_write_barrier =
3030 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
3031 auto null_checker = GetImplicitNullChecker(instruction, codegen_);
3032 Register base_reg = index.IsConstant() ? obj : TMP;
3033
3034 switch (value_type) {
3035 case DataType::Type::kBool:
3036 case DataType::Type::kUint8:
3037 case DataType::Type::kInt8: {
3038 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
3039 if (index.IsConstant()) {
3040 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1;
3041 } else {
3042 __ Addu(base_reg, obj, index.AsRegister<Register>());
3043 }
3044 if (value_location.IsConstant()) {
3045 int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
3046 __ StoreConstToOffset(kStoreByte, value, base_reg, data_offset, TMP, null_checker);
3047 } else {
3048 Register value = value_location.AsRegister<Register>();
3049 __ StoreToOffset(kStoreByte, value, base_reg, data_offset, null_checker);
3050 }
3051 break;
3052 }
3053
3054 case DataType::Type::kUint16:
3055 case DataType::Type::kInt16: {
3056 uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
3057 if (index.IsConstant()) {
3058 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2;
3059 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
3060 __ Addu(base_reg, index.AsRegister<Register>(), obj);
3061 } else {
3062 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_2, base_reg);
3063 }
3064 if (value_location.IsConstant()) {
3065 int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
3066 __ StoreConstToOffset(kStoreHalfword, value, base_reg, data_offset, TMP, null_checker);
3067 } else {
3068 Register value = value_location.AsRegister<Register>();
3069 __ StoreToOffset(kStoreHalfword, value, base_reg, data_offset, null_checker);
3070 }
3071 break;
3072 }
3073
3074 case DataType::Type::kInt32: {
3075 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
3076 if (index.IsConstant()) {
3077 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
3078 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
3079 __ Addu(base_reg, index.AsRegister<Register>(), obj);
3080 } else {
3081 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
3082 }
3083 if (value_location.IsConstant()) {
3084 int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
3085 __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
3086 } else {
3087 Register value = value_location.AsRegister<Register>();
3088 __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
3089 }
3090 break;
3091 }
3092
3093 case DataType::Type::kReference: {
3094 if (value_location.IsConstant()) {
3095 // Just setting null.
3096 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
3097 if (index.IsConstant()) {
3098 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
3099 } else {
3100 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
3101 }
3102 int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
3103 DCHECK_EQ(value, 0);
3104 __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
3105 DCHECK(!needs_write_barrier);
3106 DCHECK(!may_need_runtime_call_for_type_check);
3107 break;
3108 }
3109
3110 DCHECK(needs_write_barrier);
3111 Register value = value_location.AsRegister<Register>();
3112 Register temp1 = locations->GetTemp(0).AsRegister<Register>();
3113 Register temp2 = TMP; // Doesn't need to survive slow path.
3114 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3115 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3116 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3117 MipsLabel done;
3118 SlowPathCodeMIPS* slow_path = nullptr;
3119
3120 if (may_need_runtime_call_for_type_check) {
3121 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathMIPS(instruction);
3122 codegen_->AddSlowPath(slow_path);
3123 if (instruction->GetValueCanBeNull()) {
3124 MipsLabel non_zero;
3125 __ Bnez(value, &non_zero);
3126 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
3127 if (index.IsConstant()) {
3128 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
3129 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
3130 __ Addu(base_reg, index.AsRegister<Register>(), obj);
3131 } else {
3132 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
3133 }
3134 __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
3135 __ B(&done);
3136 __ Bind(&non_zero);
3137 }
3138
3139 // Note that when read barriers are enabled, the type checks
3140 // are performed without read barriers. This is fine, even in
3141 // the case where a class object is in the from-space after
3142 // the flip, as a comparison involving such a type would not
3143 // produce a false positive; it may of course produce a false
3144 // negative, in which case we would take the ArraySet slow
3145 // path.
3146
3147 // /* HeapReference<Class> */ temp1 = obj->klass_
3148 __ LoadFromOffset(kLoadWord, temp1, obj, class_offset, null_checker);
3149 __ MaybeUnpoisonHeapReference(temp1);
3150
3151 // /* HeapReference<Class> */ temp1 = temp1->component_type_
3152 __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
3153 // /* HeapReference<Class> */ temp2 = value->klass_
3154 __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
3155 // If heap poisoning is enabled, no need to unpoison `temp1`
3156 // nor `temp2`, as we are comparing two poisoned references.
3157
3158 if (instruction->StaticTypeOfArrayIsObjectArray()) {
3159 MipsLabel do_put;
3160 __ Beq(temp1, temp2, &do_put);
3161 // If heap poisoning is enabled, the `temp1` reference has
3162 // not been unpoisoned yet; unpoison it now.
3163 __ MaybeUnpoisonHeapReference(temp1);
3164
3165 // /* HeapReference<Class> */ temp1 = temp1->super_class_
3166 __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
3167 // If heap poisoning is enabled, no need to unpoison
3168 // `temp1`, as we are comparing against null below.
3169 __ Bnez(temp1, slow_path->GetEntryLabel());
3170 __ Bind(&do_put);
3171 } else {
3172 __ Bne(temp1, temp2, slow_path->GetEntryLabel());
3173 }
3174 }
3175
3176 Register source = value;
3177 if (kPoisonHeapReferences) {
3178 // Note that in the case where `value` is a null reference,
3179 // we do not enter this block, as a null reference does not
3180 // need poisoning.
3181 __ Move(temp1, value);
3182 __ PoisonHeapReference(temp1);
3183 source = temp1;
3184 }
3185
3186 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
3187 if (index.IsConstant()) {
3188 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
3189 } else {
3190 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
3191 }
3192 __ StoreToOffset(kStoreWord, source, base_reg, data_offset);
3193
3194 if (!may_need_runtime_call_for_type_check) {
3195 codegen_->MaybeRecordImplicitNullCheck(instruction);
3196 }
3197
3198 codegen_->MarkGCCard(obj, value, instruction->GetValueCanBeNull());
3199
3200 if (done.IsLinked()) {
3201 __ Bind(&done);
3202 }
3203
3204 if (slow_path != nullptr) {
3205 __ Bind(slow_path->GetExitLabel());
3206 }
3207 break;
3208 }
3209
3210 case DataType::Type::kInt64: {
3211 uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
3212 if (index.IsConstant()) {
3213 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
3214 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
3215 __ Addu(base_reg, index.AsRegister<Register>(), obj);
3216 } else {
3217 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
3218 }
3219 if (value_location.IsConstant()) {
3220 int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
3221 __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
3222 } else {
3223 Register value = value_location.AsRegisterPairLow<Register>();
3224 __ StoreToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker);
3225 }
3226 break;
3227 }
3228
3229 case DataType::Type::kFloat32: {
3230 uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
3231 if (index.IsConstant()) {
3232 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
3233 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
3234 __ Addu(base_reg, index.AsRegister<Register>(), obj);
3235 } else {
3236 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
3237 }
3238 if (value_location.IsConstant()) {
3239 int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
3240 __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
3241 } else {
3242 FRegister value = value_location.AsFpuRegister<FRegister>();
3243 __ StoreSToOffset(value, base_reg, data_offset, null_checker);
3244 }
3245 break;
3246 }
3247
3248 case DataType::Type::kFloat64: {
3249 uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
3250 if (index.IsConstant()) {
3251 data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
3252 } else if (instruction->InputAt(1)->IsIntermediateArrayAddressIndex()) {
3253 __ Addu(base_reg, index.AsRegister<Register>(), obj);
3254 } else {
3255 __ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
3256 }
3257 if (value_location.IsConstant()) {
3258 int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
3259 __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
3260 } else {
3261 FRegister value = value_location.AsFpuRegister<FRegister>();
3262 __ StoreDToOffset(value, base_reg, data_offset, null_checker);
3263 }
3264 break;
3265 }
3266
3267 case DataType::Type::kUint32:
3268 case DataType::Type::kUint64:
3269 case DataType::Type::kVoid:
3270 LOG(FATAL) << "Unreachable type " << instruction->GetType();
3271 UNREACHABLE();
3272 }
3273 }
3274
VisitIntermediateArrayAddressIndex(HIntermediateArrayAddressIndex * instruction)3275 void LocationsBuilderMIPS::VisitIntermediateArrayAddressIndex(
3276 HIntermediateArrayAddressIndex* instruction) {
3277 LocationSummary* locations =
3278 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
3279
3280 HIntConstant* shift = instruction->GetShift()->AsIntConstant();
3281
3282 locations->SetInAt(0, Location::RequiresRegister());
3283 locations->SetInAt(1, Location::ConstantLocation(shift));
3284 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3285 }
3286
VisitIntermediateArrayAddressIndex(HIntermediateArrayAddressIndex * instruction)3287 void InstructionCodeGeneratorMIPS::VisitIntermediateArrayAddressIndex(
3288 HIntermediateArrayAddressIndex* instruction) {
3289 LocationSummary* locations = instruction->GetLocations();
3290 Register index_reg = locations->InAt(0).AsRegister<Register>();
3291 uint32_t shift = instruction->GetShift()->AsIntConstant()->GetValue();
3292 __ Sll(locations->Out().AsRegister<Register>(), index_reg, shift);
3293 }
3294
VisitBoundsCheck(HBoundsCheck * instruction)3295 void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
3296 RegisterSet caller_saves = RegisterSet::Empty();
3297 InvokeRuntimeCallingConvention calling_convention;
3298 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3299 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
3300 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
3301
3302 HInstruction* index = instruction->InputAt(0);
3303 HInstruction* length = instruction->InputAt(1);
3304
3305 bool const_index = false;
3306 bool const_length = false;
3307
3308 if (index->IsConstant()) {
3309 if (length->IsConstant()) {
3310 const_index = true;
3311 const_length = true;
3312 } else {
3313 int32_t index_value = index->AsIntConstant()->GetValue();
3314 if (index_value < 0 || IsInt<16>(index_value + 1)) {
3315 const_index = true;
3316 }
3317 }
3318 } else if (length->IsConstant()) {
3319 int32_t length_value = length->AsIntConstant()->GetValue();
3320 if (IsUint<15>(length_value)) {
3321 const_length = true;
3322 }
3323 }
3324
3325 locations->SetInAt(0, const_index
3326 ? Location::ConstantLocation(index->AsConstant())
3327 : Location::RequiresRegister());
3328 locations->SetInAt(1, const_length
3329 ? Location::ConstantLocation(length->AsConstant())
3330 : Location::RequiresRegister());
3331 }
3332
VisitBoundsCheck(HBoundsCheck * instruction)3333 void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
3334 LocationSummary* locations = instruction->GetLocations();
3335 Location index_loc = locations->InAt(0);
3336 Location length_loc = locations->InAt(1);
3337
3338 if (length_loc.IsConstant()) {
3339 int32_t length = length_loc.GetConstant()->AsIntConstant()->GetValue();
3340 if (index_loc.IsConstant()) {
3341 int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue();
3342 if (index < 0 || index >= length) {
3343 BoundsCheckSlowPathMIPS* slow_path =
3344 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction);
3345 codegen_->AddSlowPath(slow_path);
3346 __ B(slow_path->GetEntryLabel());
3347 } else {
3348 // Nothing to be done.
3349 }
3350 return;
3351 }
3352
3353 BoundsCheckSlowPathMIPS* slow_path =
3354 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction);
3355 codegen_->AddSlowPath(slow_path);
3356 Register index = index_loc.AsRegister<Register>();
3357 if (length == 0) {
3358 __ B(slow_path->GetEntryLabel());
3359 } else if (length == 1) {
3360 __ Bnez(index, slow_path->GetEntryLabel());
3361 } else {
3362 DCHECK(IsUint<15>(length)) << length;
3363 __ Sltiu(TMP, index, length);
3364 __ Beqz(TMP, slow_path->GetEntryLabel());
3365 }
3366 } else {
3367 Register length = length_loc.AsRegister<Register>();
3368 BoundsCheckSlowPathMIPS* slow_path =
3369 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS(instruction);
3370 codegen_->AddSlowPath(slow_path);
3371 if (index_loc.IsConstant()) {
3372 int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue();
3373 if (index < 0) {
3374 __ B(slow_path->GetEntryLabel());
3375 } else if (index == 0) {
3376 __ Blez(length, slow_path->GetEntryLabel());
3377 } else {
3378 DCHECK(IsInt<16>(index + 1)) << index;
3379 __ Sltiu(TMP, length, index + 1);
3380 __ Bnez(TMP, slow_path->GetEntryLabel());
3381 }
3382 } else {
3383 Register index = index_loc.AsRegister<Register>();
3384 __ Bgeu(index, length, slow_path->GetEntryLabel());
3385 }
3386 }
3387 }
3388
3389 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)3390 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
3391 if (kEmitCompilerReadBarrier &&
3392 !(kUseBakerReadBarrier && kBakerReadBarrierThunksEnableForFields) &&
3393 (kUseBakerReadBarrier ||
3394 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
3395 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
3396 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
3397 return 1;
3398 }
3399 return 0;
3400 }
3401
3402 // Extra temp is used for read barrier.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)3403 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
3404 return 1 + NumberOfInstanceOfTemps(type_check_kind);
3405 }
3406
VisitCheckCast(HCheckCast * instruction)3407 void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) {
3408 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3409 LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
3410 LocationSummary* locations =
3411 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
3412 locations->SetInAt(0, Location::RequiresRegister());
3413 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
3414 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
3415 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
3416 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
3417 } else {
3418 locations->SetInAt(1, Location::RequiresRegister());
3419 }
3420 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
3421 }
3422
VisitCheckCast(HCheckCast * instruction)3423 void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) {
3424 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
3425 LocationSummary* locations = instruction->GetLocations();
3426 Location obj_loc = locations->InAt(0);
3427 Register obj = obj_loc.AsRegister<Register>();
3428 Location cls = locations->InAt(1);
3429 Location temp_loc = locations->GetTemp(0);
3430 Register temp = temp_loc.AsRegister<Register>();
3431 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
3432 DCHECK_LE(num_temps, 2u);
3433 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
3434 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
3435 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
3436 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
3437 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
3438 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
3439 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
3440 const uint32_t object_array_data_offset =
3441 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
3442 MipsLabel done;
3443
3444 bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
3445 SlowPathCodeMIPS* slow_path =
3446 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS(
3447 instruction, is_type_check_slow_path_fatal);
3448 codegen_->AddSlowPath(slow_path);
3449
3450 // Avoid this check if we know `obj` is not null.
3451 if (instruction->MustDoNullCheck()) {
3452 __ Beqz(obj, &done);
3453 }
3454
3455 switch (type_check_kind) {
3456 case TypeCheckKind::kExactCheck:
3457 case TypeCheckKind::kArrayCheck: {
3458 // /* HeapReference<Class> */ temp = obj->klass_
3459 GenerateReferenceLoadTwoRegisters(instruction,
3460 temp_loc,
3461 obj_loc,
3462 class_offset,
3463 maybe_temp2_loc,
3464 kWithoutReadBarrier);
3465 // Jump to slow path for throwing the exception or doing a
3466 // more involved array check.
3467 __ Bne(temp, cls.AsRegister<Register>(), slow_path->GetEntryLabel());
3468 break;
3469 }
3470
3471 case TypeCheckKind::kAbstractClassCheck: {
3472 // /* HeapReference<Class> */ temp = obj->klass_
3473 GenerateReferenceLoadTwoRegisters(instruction,
3474 temp_loc,
3475 obj_loc,
3476 class_offset,
3477 maybe_temp2_loc,
3478 kWithoutReadBarrier);
3479 // If the class is abstract, we eagerly fetch the super class of the
3480 // object to avoid doing a comparison we know will fail.
3481 MipsLabel loop;
3482 __ Bind(&loop);
3483 // /* HeapReference<Class> */ temp = temp->super_class_
3484 GenerateReferenceLoadOneRegister(instruction,
3485 temp_loc,
3486 super_offset,
3487 maybe_temp2_loc,
3488 kWithoutReadBarrier);
3489 // If the class reference currently in `temp` is null, jump to the slow path to throw the
3490 // exception.
3491 __ Beqz(temp, slow_path->GetEntryLabel());
3492 // Otherwise, compare the classes.
3493 __ Bne(temp, cls.AsRegister<Register>(), &loop);
3494 break;
3495 }
3496
3497 case TypeCheckKind::kClassHierarchyCheck: {
3498 // /* HeapReference<Class> */ temp = obj->klass_
3499 GenerateReferenceLoadTwoRegisters(instruction,
3500 temp_loc,
3501 obj_loc,
3502 class_offset,
3503 maybe_temp2_loc,
3504 kWithoutReadBarrier);
3505 // Walk over the class hierarchy to find a match.
3506 MipsLabel loop;
3507 __ Bind(&loop);
3508 __ Beq(temp, cls.AsRegister<Register>(), &done);
3509 // /* HeapReference<Class> */ temp = temp->super_class_
3510 GenerateReferenceLoadOneRegister(instruction,
3511 temp_loc,
3512 super_offset,
3513 maybe_temp2_loc,
3514 kWithoutReadBarrier);
3515 // If the class reference currently in `temp` is null, jump to the slow path to throw the
3516 // exception. Otherwise, jump to the beginning of the loop.
3517 __ Bnez(temp, &loop);
3518 __ B(slow_path->GetEntryLabel());
3519 break;
3520 }
3521
3522 case TypeCheckKind::kArrayObjectCheck: {
3523 // /* HeapReference<Class> */ temp = obj->klass_
3524 GenerateReferenceLoadTwoRegisters(instruction,
3525 temp_loc,
3526 obj_loc,
3527 class_offset,
3528 maybe_temp2_loc,
3529 kWithoutReadBarrier);
3530 // Do an exact check.
3531 __ Beq(temp, cls.AsRegister<Register>(), &done);
3532 // Otherwise, we need to check that the object's class is a non-primitive array.
3533 // /* HeapReference<Class> */ temp = temp->component_type_
3534 GenerateReferenceLoadOneRegister(instruction,
3535 temp_loc,
3536 component_offset,
3537 maybe_temp2_loc,
3538 kWithoutReadBarrier);
3539 // If the component type is null, jump to the slow path to throw the exception.
3540 __ Beqz(temp, slow_path->GetEntryLabel());
3541 // Otherwise, the object is indeed an array, further check that this component
3542 // type is not a primitive type.
3543 __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
3544 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
3545 __ Bnez(temp, slow_path->GetEntryLabel());
3546 break;
3547 }
3548
3549 case TypeCheckKind::kUnresolvedCheck:
3550 // We always go into the type check slow path for the unresolved check case.
3551 // We cannot directly call the CheckCast runtime entry point
3552 // without resorting to a type checking slow path here (i.e. by
3553 // calling InvokeRuntime directly), as it would require to
3554 // assign fixed registers for the inputs of this HInstanceOf
3555 // instruction (following the runtime calling convention), which
3556 // might be cluttered by the potential first read barrier
3557 // emission at the beginning of this method.
3558 __ B(slow_path->GetEntryLabel());
3559 break;
3560
3561 case TypeCheckKind::kInterfaceCheck: {
3562 // Avoid read barriers to improve performance of the fast path. We can not get false
3563 // positives by doing this.
3564 // /* HeapReference<Class> */ temp = obj->klass_
3565 GenerateReferenceLoadTwoRegisters(instruction,
3566 temp_loc,
3567 obj_loc,
3568 class_offset,
3569 maybe_temp2_loc,
3570 kWithoutReadBarrier);
3571 // /* HeapReference<Class> */ temp = temp->iftable_
3572 GenerateReferenceLoadTwoRegisters(instruction,
3573 temp_loc,
3574 temp_loc,
3575 iftable_offset,
3576 maybe_temp2_loc,
3577 kWithoutReadBarrier);
3578 // Iftable is never null.
3579 __ Lw(TMP, temp, array_length_offset);
3580 // Loop through the iftable and check if any class matches.
3581 MipsLabel loop;
3582 __ Bind(&loop);
3583 __ Addiu(temp, temp, 2 * kHeapReferenceSize); // Possibly in delay slot on R2.
3584 __ Beqz(TMP, slow_path->GetEntryLabel());
3585 __ Lw(AT, temp, object_array_data_offset - 2 * kHeapReferenceSize);
3586 __ MaybeUnpoisonHeapReference(AT);
3587 // Go to next interface.
3588 __ Addiu(TMP, TMP, -2);
3589 // Compare the classes and continue the loop if they do not match.
3590 __ Bne(AT, cls.AsRegister<Register>(), &loop);
3591 break;
3592 }
3593
3594 case TypeCheckKind::kBitstringCheck: {
3595 // /* HeapReference<Class> */ temp = obj->klass_
3596 GenerateReferenceLoadTwoRegisters(instruction,
3597 temp_loc,
3598 obj_loc,
3599 class_offset,
3600 maybe_temp2_loc,
3601 kWithoutReadBarrier);
3602
3603 GenerateBitstringTypeCheckCompare(instruction, temp);
3604 __ Bnez(temp, slow_path->GetEntryLabel());
3605 break;
3606 }
3607 }
3608
3609 __ Bind(&done);
3610 __ Bind(slow_path->GetExitLabel());
3611 }
3612
VisitClinitCheck(HClinitCheck * check)3613 void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) {
3614 LocationSummary* locations =
3615 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
3616 locations->SetInAt(0, Location::RequiresRegister());
3617 if (check->HasUses()) {
3618 locations->SetOut(Location::SameAsFirstInput());
3619 }
3620 // Rely on the type initialization to save everything we need.
3621 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
3622 }
3623
VisitClinitCheck(HClinitCheck * check)3624 void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) {
3625 // We assume the class is not null.
3626 SlowPathCodeMIPS* slow_path =
3627 new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS(check->GetLoadClass(), check);
3628 codegen_->AddSlowPath(slow_path);
3629 GenerateClassInitializationCheck(slow_path,
3630 check->GetLocations()->InAt(0).AsRegister<Register>());
3631 }
3632
VisitCompare(HCompare * compare)3633 void LocationsBuilderMIPS::VisitCompare(HCompare* compare) {
3634 DataType::Type in_type = compare->InputAt(0)->GetType();
3635
3636 LocationSummary* locations =
3637 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
3638
3639 switch (in_type) {
3640 case DataType::Type::kBool:
3641 case DataType::Type::kUint8:
3642 case DataType::Type::kInt8:
3643 case DataType::Type::kUint16:
3644 case DataType::Type::kInt16:
3645 case DataType::Type::kInt32:
3646 locations->SetInAt(0, Location::RequiresRegister());
3647 locations->SetInAt(1, Location::RequiresRegister());
3648 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3649 break;
3650
3651 case DataType::Type::kInt64:
3652 locations->SetInAt(0, Location::RequiresRegister());
3653 locations->SetInAt(1, Location::RequiresRegister());
3654 // Output overlaps because it is written before doing the low comparison.
3655 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
3656 break;
3657
3658 case DataType::Type::kFloat32:
3659 case DataType::Type::kFloat64:
3660 locations->SetInAt(0, Location::RequiresFpuRegister());
3661 locations->SetInAt(1, Location::RequiresFpuRegister());
3662 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3663 break;
3664
3665 default:
3666 LOG(FATAL) << "Unexpected type for compare operation " << in_type;
3667 }
3668 }
3669
VisitCompare(HCompare * instruction)3670 void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) {
3671 LocationSummary* locations = instruction->GetLocations();
3672 Register res = locations->Out().AsRegister<Register>();
3673 DataType::Type in_type = instruction->InputAt(0)->GetType();
3674 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
3675
3676 // 0 if: left == right
3677 // 1 if: left > right
3678 // -1 if: left < right
3679 switch (in_type) {
3680 case DataType::Type::kBool:
3681 case DataType::Type::kUint8:
3682 case DataType::Type::kInt8:
3683 case DataType::Type::kUint16:
3684 case DataType::Type::kInt16:
3685 case DataType::Type::kInt32: {
3686 Register lhs = locations->InAt(0).AsRegister<Register>();
3687 Register rhs = locations->InAt(1).AsRegister<Register>();
3688 __ Slt(TMP, lhs, rhs);
3689 __ Slt(res, rhs, lhs);
3690 __ Subu(res, res, TMP);
3691 break;
3692 }
3693 case DataType::Type::kInt64: {
3694 MipsLabel done;
3695 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
3696 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
3697 Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
3698 Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
3699 // TODO: more efficient (direct) comparison with a constant.
3700 __ Slt(TMP, lhs_high, rhs_high);
3701 __ Slt(AT, rhs_high, lhs_high); // Inverted: is actually gt.
3702 __ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
3703 __ Bnez(res, &done); // If we compared ==, check if lower bits are also equal.
3704 __ Sltu(TMP, lhs_low, rhs_low);
3705 __ Sltu(AT, rhs_low, lhs_low); // Inverted: is actually gt.
3706 __ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
3707 __ Bind(&done);
3708 break;
3709 }
3710
3711 case DataType::Type::kFloat32: {
3712 bool gt_bias = instruction->IsGtBias();
3713 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
3714 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
3715 MipsLabel done;
3716 if (isR6) {
3717 __ CmpEqS(FTMP, lhs, rhs);
3718 __ LoadConst32(res, 0);
3719 __ Bc1nez(FTMP, &done);
3720 if (gt_bias) {
3721 __ CmpLtS(FTMP, lhs, rhs);
3722 __ LoadConst32(res, -1);
3723 __ Bc1nez(FTMP, &done);
3724 __ LoadConst32(res, 1);
3725 } else {
3726 __ CmpLtS(FTMP, rhs, lhs);
3727 __ LoadConst32(res, 1);
3728 __ Bc1nez(FTMP, &done);
3729 __ LoadConst32(res, -1);
3730 }
3731 } else {
3732 if (gt_bias) {
3733 __ ColtS(0, lhs, rhs);
3734 __ LoadConst32(res, -1);
3735 __ Bc1t(0, &done);
3736 __ CeqS(0, lhs, rhs);
3737 __ LoadConst32(res, 1);
3738 __ Movt(res, ZERO, 0);
3739 } else {
3740 __ ColtS(0, rhs, lhs);
3741 __ LoadConst32(res, 1);
3742 __ Bc1t(0, &done);
3743 __ CeqS(0, lhs, rhs);
3744 __ LoadConst32(res, -1);
3745 __ Movt(res, ZERO, 0);
3746 }
3747 }
3748 __ Bind(&done);
3749 break;
3750 }
3751 case DataType::Type::kFloat64: {
3752 bool gt_bias = instruction->IsGtBias();
3753 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
3754 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
3755 MipsLabel done;
3756 if (isR6) {
3757 __ CmpEqD(FTMP, lhs, rhs);
3758 __ LoadConst32(res, 0);
3759 __ Bc1nez(FTMP, &done);
3760 if (gt_bias) {
3761 __ CmpLtD(FTMP, lhs, rhs);
3762 __ LoadConst32(res, -1);
3763 __ Bc1nez(FTMP, &done);
3764 __ LoadConst32(res, 1);
3765 } else {
3766 __ CmpLtD(FTMP, rhs, lhs);
3767 __ LoadConst32(res, 1);
3768 __ Bc1nez(FTMP, &done);
3769 __ LoadConst32(res, -1);
3770 }
3771 } else {
3772 if (gt_bias) {
3773 __ ColtD(0, lhs, rhs);
3774 __ LoadConst32(res, -1);
3775 __ Bc1t(0, &done);
3776 __ CeqD(0, lhs, rhs);
3777 __ LoadConst32(res, 1);
3778 __ Movt(res, ZERO, 0);
3779 } else {
3780 __ ColtD(0, rhs, lhs);
3781 __ LoadConst32(res, 1);
3782 __ Bc1t(0, &done);
3783 __ CeqD(0, lhs, rhs);
3784 __ LoadConst32(res, -1);
3785 __ Movt(res, ZERO, 0);
3786 }
3787 }
3788 __ Bind(&done);
3789 break;
3790 }
3791
3792 default:
3793 LOG(FATAL) << "Unimplemented compare type " << in_type;
3794 }
3795 }
3796
HandleCondition(HCondition * instruction)3797 void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) {
3798 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3799 switch (instruction->InputAt(0)->GetType()) {
3800 default:
3801 case DataType::Type::kInt64:
3802 locations->SetInAt(0, Location::RequiresRegister());
3803 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
3804 break;
3805
3806 case DataType::Type::kFloat32:
3807 case DataType::Type::kFloat64:
3808 locations->SetInAt(0, Location::RequiresFpuRegister());
3809 locations->SetInAt(1, Location::RequiresFpuRegister());
3810 break;
3811 }
3812 if (!instruction->IsEmittedAtUseSite()) {
3813 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3814 }
3815 }
3816
HandleCondition(HCondition * instruction)3817 void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) {
3818 if (instruction->IsEmittedAtUseSite()) {
3819 return;
3820 }
3821
3822 DataType::Type type = instruction->InputAt(0)->GetType();
3823 LocationSummary* locations = instruction->GetLocations();
3824
3825 switch (type) {
3826 default:
3827 // Integer case.
3828 GenerateIntCompare(instruction->GetCondition(), locations);
3829 return;
3830
3831 case DataType::Type::kInt64:
3832 GenerateLongCompare(instruction->GetCondition(), locations);
3833 return;
3834
3835 case DataType::Type::kFloat32:
3836 case DataType::Type::kFloat64:
3837 GenerateFpCompare(instruction->GetCondition(), instruction->IsGtBias(), type, locations);
3838 return;
3839 }
3840 }
3841
DivRemOneOrMinusOne(HBinaryOperation * instruction)3842 void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
3843 DCHECK(instruction->IsDiv() || instruction->IsRem());
3844
3845 LocationSummary* locations = instruction->GetLocations();
3846 Location second = locations->InAt(1);
3847 DCHECK(second.IsConstant());
3848 int64_t imm = Int64FromConstant(second.GetConstant());
3849 DCHECK(imm == 1 || imm == -1);
3850
3851 if (instruction->GetResultType() == DataType::Type::kInt32) {
3852 Register out = locations->Out().AsRegister<Register>();
3853 Register dividend = locations->InAt(0).AsRegister<Register>();
3854
3855 if (instruction->IsRem()) {
3856 __ Move(out, ZERO);
3857 } else {
3858 if (imm == -1) {
3859 __ Subu(out, ZERO, dividend);
3860 } else if (out != dividend) {
3861 __ Move(out, dividend);
3862 }
3863 }
3864 } else {
3865 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
3866 Register out_high = locations->Out().AsRegisterPairHigh<Register>();
3867 Register out_low = locations->Out().AsRegisterPairLow<Register>();
3868 Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>();
3869 Register in_low = locations->InAt(0).AsRegisterPairLow<Register>();
3870
3871 if (instruction->IsRem()) {
3872 __ Move(out_high, ZERO);
3873 __ Move(out_low, ZERO);
3874 } else {
3875 if (imm == -1) {
3876 __ Subu(out_low, ZERO, in_low);
3877 __ Sltu(AT, ZERO, out_low);
3878 __ Subu(out_high, ZERO, in_high);
3879 __ Subu(out_high, out_high, AT);
3880 } else {
3881 __ Move(out_low, in_low);
3882 __ Move(out_high, in_high);
3883 }
3884 }
3885 }
3886 }
3887
DivRemByPowerOfTwo(HBinaryOperation * instruction)3888 void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
3889 DCHECK(instruction->IsDiv() || instruction->IsRem());
3890
3891 LocationSummary* locations = instruction->GetLocations();
3892 Location second = locations->InAt(1);
3893 const bool is_r2_or_newer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
3894 const bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
3895 DCHECK(second.IsConstant());
3896
3897 if (instruction->GetResultType() == DataType::Type::kInt32) {
3898 Register out = locations->Out().AsRegister<Register>();
3899 Register dividend = locations->InAt(0).AsRegister<Register>();
3900 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
3901 uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
3902 int ctz_imm = CTZ(abs_imm);
3903
3904 if (instruction->IsDiv()) {
3905 if (ctz_imm == 1) {
3906 // Fast path for division by +/-2, which is very common.
3907 __ Srl(TMP, dividend, 31);
3908 } else {
3909 __ Sra(TMP, dividend, 31);
3910 __ Srl(TMP, TMP, 32 - ctz_imm);
3911 }
3912 __ Addu(out, dividend, TMP);
3913 __ Sra(out, out, ctz_imm);
3914 if (imm < 0) {
3915 __ Subu(out, ZERO, out);
3916 }
3917 } else {
3918 if (ctz_imm == 1) {
3919 // Fast path for modulo +/-2, which is very common.
3920 __ Sra(TMP, dividend, 31);
3921 __ Subu(out, dividend, TMP);
3922 __ Andi(out, out, 1);
3923 __ Addu(out, out, TMP);
3924 } else {
3925 __ Sra(TMP, dividend, 31);
3926 __ Srl(TMP, TMP, 32 - ctz_imm);
3927 __ Addu(out, dividend, TMP);
3928 if (IsUint<16>(abs_imm - 1)) {
3929 __ Andi(out, out, abs_imm - 1);
3930 } else {
3931 if (is_r2_or_newer) {
3932 __ Ins(out, ZERO, ctz_imm, 32 - ctz_imm);
3933 } else {
3934 __ Sll(out, out, 32 - ctz_imm);
3935 __ Srl(out, out, 32 - ctz_imm);
3936 }
3937 }
3938 __ Subu(out, out, TMP);
3939 }
3940 }
3941 } else {
3942 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt64);
3943 Register out_high = locations->Out().AsRegisterPairHigh<Register>();
3944 Register out_low = locations->Out().AsRegisterPairLow<Register>();
3945 Register in_high = locations->InAt(0).AsRegisterPairHigh<Register>();
3946 Register in_low = locations->InAt(0).AsRegisterPairLow<Register>();
3947 int64_t imm = Int64FromConstant(second.GetConstant());
3948 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
3949 int ctz_imm = CTZ(abs_imm);
3950
3951 if (instruction->IsDiv()) {
3952 if (ctz_imm < 32) {
3953 if (ctz_imm == 1) {
3954 __ Srl(AT, in_high, 31);
3955 } else {
3956 __ Sra(AT, in_high, 31);
3957 __ Srl(AT, AT, 32 - ctz_imm);
3958 }
3959 __ Addu(AT, AT, in_low);
3960 __ Sltu(TMP, AT, in_low);
3961 __ Addu(out_high, in_high, TMP);
3962 __ Srl(out_low, AT, ctz_imm);
3963 if (is_r2_or_newer) {
3964 __ Ins(out_low, out_high, 32 - ctz_imm, ctz_imm);
3965 __ Sra(out_high, out_high, ctz_imm);
3966 } else {
3967 __ Sll(AT, out_high, 32 - ctz_imm);
3968 __ Sra(out_high, out_high, ctz_imm);
3969 __ Or(out_low, out_low, AT);
3970 }
3971 if (imm < 0) {
3972 __ Subu(out_low, ZERO, out_low);
3973 __ Sltu(AT, ZERO, out_low);
3974 __ Subu(out_high, ZERO, out_high);
3975 __ Subu(out_high, out_high, AT);
3976 }
3977 } else if (ctz_imm == 32) {
3978 __ Sra(AT, in_high, 31);
3979 __ Addu(AT, AT, in_low);
3980 __ Sltu(AT, AT, in_low);
3981 __ Addu(out_low, in_high, AT);
3982 if (imm < 0) {
3983 __ Srl(TMP, out_low, 31);
3984 __ Subu(out_low, ZERO, out_low);
3985 __ Sltu(AT, ZERO, out_low);
3986 __ Subu(out_high, TMP, AT);
3987 } else {
3988 __ Sra(out_high, out_low, 31);
3989 }
3990 } else if (ctz_imm < 63) {
3991 __ Sra(AT, in_high, 31);
3992 __ Srl(TMP, AT, 64 - ctz_imm);
3993 __ Addu(AT, AT, in_low);
3994 __ Sltu(AT, AT, in_low);
3995 __ Addu(out_low, in_high, AT);
3996 __ Addu(out_low, out_low, TMP);
3997 __ Sra(out_low, out_low, ctz_imm - 32);
3998 if (imm < 0) {
3999 __ Subu(out_low, ZERO, out_low);
4000 }
4001 __ Sra(out_high, out_low, 31);
4002 } else {
4003 DCHECK_LT(imm, 0);
4004 if (is_r6) {
4005 __ Aui(AT, in_high, 0x8000);
4006 } else {
4007 __ Lui(AT, 0x8000);
4008 __ Xor(AT, AT, in_high);
4009 }
4010 __ Or(AT, AT, in_low);
4011 __ Sltiu(out_low, AT, 1);
4012 __ Move(out_high, ZERO);
4013 }
4014 } else {
4015 if ((ctz_imm == 1) && !is_r6) {
4016 __ Andi(AT, in_low, 1);
4017 __ Sll(TMP, in_low, 31);
4018 __ And(TMP, in_high, TMP);
4019 __ Sra(out_high, TMP, 31);
4020 __ Or(out_low, out_high, AT);
4021 } else if (ctz_imm < 32) {
4022 __ Sra(AT, in_high, 31);
4023 if (ctz_imm <= 16) {
4024 __ Andi(out_low, in_low, abs_imm - 1);
4025 } else if (is_r2_or_newer) {
4026 __ Ext(out_low, in_low, 0, ctz_imm);
4027 } else {
4028 __ Sll(out_low, in_low, 32 - ctz_imm);
4029 __ Srl(out_low, out_low, 32 - ctz_imm);
4030 }
4031 if (is_r6) {
4032 __ Selnez(out_high, AT, out_low);
4033 } else {
4034 __ Movz(AT, ZERO, out_low);
4035 __ Move(out_high, AT);
4036 }
4037 if (is_r2_or_newer) {
4038 __ Ins(out_low, out_high, ctz_imm, 32 - ctz_imm);
4039 } else {
4040 __ Sll(AT, out_high, ctz_imm);
4041 __ Or(out_low, out_low, AT);
4042 }
4043 } else if (ctz_imm == 32) {
4044 __ Sra(AT, in_high, 31);
4045 __ Move(out_low, in_low);
4046 if (is_r6) {
4047 __ Selnez(out_high, AT, out_low);
4048 } else {
4049 __ Movz(AT, ZERO, out_low);
4050 __ Move(out_high, AT);
4051 }
4052 } else if (ctz_imm < 63) {
4053 __ Sra(AT, in_high, 31);
4054 __ Move(TMP, in_low);
4055 if (ctz_imm - 32 <= 16) {
4056 __ Andi(out_high, in_high, (1 << (ctz_imm - 32)) - 1);
4057 } else if (is_r2_or_newer) {
4058 __ Ext(out_high, in_high, 0, ctz_imm - 32);
4059 } else {
4060 __ Sll(out_high, in_high, 64 - ctz_imm);
4061 __ Srl(out_high, out_high, 64 - ctz_imm);
4062 }
4063 __ Move(out_low, TMP);
4064 __ Or(TMP, TMP, out_high);
4065 if (is_r6) {
4066 __ Selnez(AT, AT, TMP);
4067 } else {
4068 __ Movz(AT, ZERO, TMP);
4069 }
4070 if (is_r2_or_newer) {
4071 __ Ins(out_high, AT, ctz_imm - 32, 64 - ctz_imm);
4072 } else {
4073 __ Sll(AT, AT, ctz_imm - 32);
4074 __ Or(out_high, out_high, AT);
4075 }
4076 } else {
4077 if (is_r6) {
4078 __ Aui(AT, in_high, 0x8000);
4079 } else {
4080 __ Lui(AT, 0x8000);
4081 __ Xor(AT, AT, in_high);
4082 }
4083 __ Or(AT, AT, in_low);
4084 __ Sltiu(AT, AT, 1);
4085 __ Sll(AT, AT, 31);
4086 __ Move(out_low, in_low);
4087 __ Xor(out_high, in_high, AT);
4088 }
4089 }
4090 }
4091 }
4092
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction)4093 void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
4094 DCHECK(instruction->IsDiv() || instruction->IsRem());
4095 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32);
4096
4097 LocationSummary* locations = instruction->GetLocations();
4098 Location second = locations->InAt(1);
4099 DCHECK(second.IsConstant());
4100
4101 Register out = locations->Out().AsRegister<Register>();
4102 Register dividend = locations->InAt(0).AsRegister<Register>();
4103 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
4104
4105 int64_t magic;
4106 int shift;
4107 CalculateMagicAndShiftForDivRem(imm, false /* is_long= */, &magic, &shift);
4108
4109 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
4110
4111 __ LoadConst32(TMP, magic);
4112 if (isR6) {
4113 __ MuhR6(TMP, dividend, TMP);
4114 } else {
4115 __ MultR2(dividend, TMP);
4116 __ Mfhi(TMP);
4117 }
4118 if (imm > 0 && magic < 0) {
4119 __ Addu(TMP, TMP, dividend);
4120 } else if (imm < 0 && magic > 0) {
4121 __ Subu(TMP, TMP, dividend);
4122 }
4123
4124 if (shift != 0) {
4125 __ Sra(TMP, TMP, shift);
4126 }
4127
4128 if (instruction->IsDiv()) {
4129 __ Sra(out, TMP, 31);
4130 __ Subu(out, TMP, out);
4131 } else {
4132 __ Sra(AT, TMP, 31);
4133 __ Subu(AT, TMP, AT);
4134 __ LoadConst32(TMP, imm);
4135 if (isR6) {
4136 __ MulR6(TMP, AT, TMP);
4137 } else {
4138 __ MulR2(TMP, AT, TMP);
4139 }
4140 __ Subu(out, dividend, TMP);
4141 }
4142 }
4143
GenerateDivRemIntegral(HBinaryOperation * instruction)4144 void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) {
4145 DCHECK(instruction->IsDiv() || instruction->IsRem());
4146 DCHECK_EQ(instruction->GetResultType(), DataType::Type::kInt32);
4147
4148 LocationSummary* locations = instruction->GetLocations();
4149 Register out = locations->Out().AsRegister<Register>();
4150 Location second = locations->InAt(1);
4151
4152 if (second.IsConstant()) {
4153 int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
4154 if (imm == 0) {
4155 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
4156 } else if (imm == 1 || imm == -1) {
4157 DivRemOneOrMinusOne(instruction);
4158 } else if (IsPowerOfTwo(AbsOrMin(imm))) {
4159 DivRemByPowerOfTwo(instruction);
4160 } else {
4161 DCHECK(imm <= -2 || imm >= 2);
4162 GenerateDivRemWithAnyConstant(instruction);
4163 }
4164 } else {
4165 Register dividend = locations->InAt(0).AsRegister<Register>();
4166 Register divisor = second.AsRegister<Register>();
4167 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
4168 if (instruction->IsDiv()) {
4169 if (isR6) {
4170 __ DivR6(out, dividend, divisor);
4171 } else {
4172 __ DivR2(out, dividend, divisor);
4173 }
4174 } else {
4175 if (isR6) {
4176 __ ModR6(out, dividend, divisor);
4177 } else {
4178 __ ModR2(out, dividend, divisor);
4179 }
4180 }
4181 }
4182 }
4183
VisitDiv(HDiv * div)4184 void LocationsBuilderMIPS::VisitDiv(HDiv* div) {
4185 DataType::Type type = div->GetResultType();
4186 bool call_long_div = false;
4187 if (type == DataType::Type::kInt64) {
4188 if (div->InputAt(1)->IsConstant()) {
4189 int64_t imm = CodeGenerator::GetInt64ValueOf(div->InputAt(1)->AsConstant());
4190 call_long_div = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)));
4191 } else {
4192 call_long_div = true;
4193 }
4194 }
4195 LocationSummary::CallKind call_kind = call_long_div
4196 ? LocationSummary::kCallOnMainOnly
4197 : LocationSummary::kNoCall;
4198
4199 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(div, call_kind);
4200
4201 switch (type) {
4202 case DataType::Type::kInt32:
4203 locations->SetInAt(0, Location::RequiresRegister());
4204 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
4205 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
4206 break;
4207
4208 case DataType::Type::kInt64: {
4209 if (call_long_div) {
4210 InvokeRuntimeCallingConvention calling_convention;
4211 locations->SetInAt(0, Location::RegisterPairLocation(
4212 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
4213 locations->SetInAt(1, Location::RegisterPairLocation(
4214 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
4215 locations->SetOut(calling_convention.GetReturnLocation(type));
4216 } else {
4217 locations->SetInAt(0, Location::RequiresRegister());
4218 locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
4219 locations->SetOut(Location::RequiresRegister());
4220 }
4221 break;
4222 }
4223
4224 case DataType::Type::kFloat32:
4225 case DataType::Type::kFloat64:
4226 locations->SetInAt(0, Location::RequiresFpuRegister());
4227 locations->SetInAt(1, Location::RequiresFpuRegister());
4228 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
4229 break;
4230
4231 default:
4232 LOG(FATAL) << "Unexpected div type " << type;
4233 }
4234 }
4235
VisitDiv(HDiv * instruction)4236 void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) {
4237 DataType::Type type = instruction->GetType();
4238 LocationSummary* locations = instruction->GetLocations();
4239
4240 switch (type) {
4241 case DataType::Type::kInt32:
4242 GenerateDivRemIntegral(instruction);
4243 break;
4244 case DataType::Type::kInt64: {
4245 if (locations->InAt(1).IsConstant()) {
4246 int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue();
4247 if (imm == 0) {
4248 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
4249 } else if (imm == 1 || imm == -1) {
4250 DivRemOneOrMinusOne(instruction);
4251 } else {
4252 DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))));
4253 DivRemByPowerOfTwo(instruction);
4254 }
4255 } else {
4256 codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
4257 CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
4258 }
4259 break;
4260 }
4261 case DataType::Type::kFloat32:
4262 case DataType::Type::kFloat64: {
4263 FRegister dst = locations->Out().AsFpuRegister<FRegister>();
4264 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
4265 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
4266 if (type == DataType::Type::kFloat32) {
4267 __ DivS(dst, lhs, rhs);
4268 } else {
4269 __ DivD(dst, lhs, rhs);
4270 }
4271 break;
4272 }
4273 default:
4274 LOG(FATAL) << "Unexpected div type " << type;
4275 }
4276 }
4277
VisitDivZeroCheck(HDivZeroCheck * instruction)4278 void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4279 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
4280 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
4281 }
4282
VisitDivZeroCheck(HDivZeroCheck * instruction)4283 void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
4284 SlowPathCodeMIPS* slow_path =
4285 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathMIPS(instruction);
4286 codegen_->AddSlowPath(slow_path);
4287 Location value = instruction->GetLocations()->InAt(0);
4288 DataType::Type type = instruction->GetType();
4289
4290 switch (type) {
4291 case DataType::Type::kBool:
4292 case DataType::Type::kUint8:
4293 case DataType::Type::kInt8:
4294 case DataType::Type::kUint16:
4295 case DataType::Type::kInt16:
4296 case DataType::Type::kInt32: {
4297 if (value.IsConstant()) {
4298 if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
4299 __ B(slow_path->GetEntryLabel());
4300 } else {
4301 // A division by a non-null constant is valid. We don't need to perform
4302 // any check, so simply fall through.
4303 }
4304 } else {
4305 DCHECK(value.IsRegister()) << value;
4306 __ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel());
4307 }
4308 break;
4309 }
4310 case DataType::Type::kInt64: {
4311 if (value.IsConstant()) {
4312 if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
4313 __ B(slow_path->GetEntryLabel());
4314 } else {
4315 // A division by a non-null constant is valid. We don't need to perform
4316 // any check, so simply fall through.
4317 }
4318 } else {
4319 DCHECK(value.IsRegisterPair()) << value;
4320 __ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>());
4321 __ Beqz(TMP, slow_path->GetEntryLabel());
4322 }
4323 break;
4324 }
4325 default:
4326 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
4327 }
4328 }
4329
VisitDoubleConstant(HDoubleConstant * constant)4330 void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) {
4331 LocationSummary* locations =
4332 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
4333 locations->SetOut(Location::ConstantLocation(constant));
4334 }
4335
VisitDoubleConstant(HDoubleConstant * cst ATTRIBUTE_UNUSED)4336 void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) {
4337 // Will be generated at use site.
4338 }
4339
VisitExit(HExit * exit)4340 void LocationsBuilderMIPS::VisitExit(HExit* exit) {
4341 exit->SetLocations(nullptr);
4342 }
4343
VisitExit(HExit * exit ATTRIBUTE_UNUSED)4344 void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
4345 }
4346
VisitFloatConstant(HFloatConstant * constant)4347 void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) {
4348 LocationSummary* locations =
4349 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
4350 locations->SetOut(Location::ConstantLocation(constant));
4351 }
4352
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)4353 void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
4354 // Will be generated at use site.
4355 }
4356
VisitGoto(HGoto * got)4357 void LocationsBuilderMIPS::VisitGoto(HGoto* got) {
4358 got->SetLocations(nullptr);
4359 }
4360
HandleGoto(HInstruction * got,HBasicBlock * successor)4361 void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) {
4362 if (successor->IsExitBlock()) {
4363 DCHECK(got->GetPrevious()->AlwaysThrows());
4364 return; // no code needed
4365 }
4366
4367 HBasicBlock* block = got->GetBlock();
4368 HInstruction* previous = got->GetPrevious();
4369 HLoopInformation* info = block->GetLoopInformation();
4370
4371 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
4372 if (codegen_->GetCompilerOptions().CountHotnessInCompiledCode()) {
4373 __ Lw(AT, SP, kCurrentMethodStackOffset);
4374 __ Lhu(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value());
4375 __ Addiu(TMP, TMP, 1);
4376 __ Sh(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value());
4377 }
4378 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
4379 return;
4380 }
4381 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
4382 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
4383 }
4384 if (!codegen_->GoesToNextBlock(block, successor)) {
4385 __ B(codegen_->GetLabelOf(successor));
4386 }
4387 }
4388
VisitGoto(HGoto * got)4389 void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) {
4390 HandleGoto(got, got->GetSuccessor());
4391 }
4392
VisitTryBoundary(HTryBoundary * try_boundary)4393 void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
4394 try_boundary->SetLocations(nullptr);
4395 }
4396
VisitTryBoundary(HTryBoundary * try_boundary)4397 void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
4398 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
4399 if (!successor->IsExitBlock()) {
4400 HandleGoto(try_boundary, successor);
4401 }
4402 }
4403
GenerateIntCompare(IfCondition cond,LocationSummary * locations)4404 void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond,
4405 LocationSummary* locations) {
4406 Register dst = locations->Out().AsRegister<Register>();
4407 Register lhs = locations->InAt(0).AsRegister<Register>();
4408 Location rhs_location = locations->InAt(1);
4409 Register rhs_reg = ZERO;
4410 int64_t rhs_imm = 0;
4411 bool use_imm = rhs_location.IsConstant();
4412 if (use_imm) {
4413 rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
4414 } else {
4415 rhs_reg = rhs_location.AsRegister<Register>();
4416 }
4417
4418 switch (cond) {
4419 case kCondEQ:
4420 case kCondNE:
4421 if (use_imm && IsInt<16>(-rhs_imm)) {
4422 if (rhs_imm == 0) {
4423 if (cond == kCondEQ) {
4424 __ Sltiu(dst, lhs, 1);
4425 } else {
4426 __ Sltu(dst, ZERO, lhs);
4427 }
4428 } else {
4429 __ Addiu(dst, lhs, -rhs_imm);
4430 if (cond == kCondEQ) {
4431 __ Sltiu(dst, dst, 1);
4432 } else {
4433 __ Sltu(dst, ZERO, dst);
4434 }
4435 }
4436 } else {
4437 if (use_imm && IsUint<16>(rhs_imm)) {
4438 __ Xori(dst, lhs, rhs_imm);
4439 } else {
4440 if (use_imm) {
4441 rhs_reg = TMP;
4442 __ LoadConst32(rhs_reg, rhs_imm);
4443 }
4444 __ Xor(dst, lhs, rhs_reg);
4445 }
4446 if (cond == kCondEQ) {
4447 __ Sltiu(dst, dst, 1);
4448 } else {
4449 __ Sltu(dst, ZERO, dst);
4450 }
4451 }
4452 break;
4453
4454 case kCondLT:
4455 case kCondGE:
4456 if (use_imm && IsInt<16>(rhs_imm)) {
4457 __ Slti(dst, lhs, rhs_imm);
4458 } else {
4459 if (use_imm) {
4460 rhs_reg = TMP;
4461 __ LoadConst32(rhs_reg, rhs_imm);
4462 }
4463 __ Slt(dst, lhs, rhs_reg);
4464 }
4465 if (cond == kCondGE) {
4466 // Simulate lhs >= rhs via !(lhs < rhs) since there's
4467 // only the slt instruction but no sge.
4468 __ Xori(dst, dst, 1);
4469 }
4470 break;
4471
4472 case kCondLE:
4473 case kCondGT:
4474 if (use_imm && IsInt<16>(rhs_imm + 1)) {
4475 // Simulate lhs <= rhs via lhs < rhs + 1.
4476 __ Slti(dst, lhs, rhs_imm + 1);
4477 if (cond == kCondGT) {
4478 // Simulate lhs > rhs via !(lhs <= rhs) since there's
4479 // only the slti instruction but no sgti.
4480 __ Xori(dst, dst, 1);
4481 }
4482 } else {
4483 if (use_imm) {
4484 rhs_reg = TMP;
4485 __ LoadConst32(rhs_reg, rhs_imm);
4486 }
4487 __ Slt(dst, rhs_reg, lhs);
4488 if (cond == kCondLE) {
4489 // Simulate lhs <= rhs via !(rhs < lhs) since there's
4490 // only the slt instruction but no sle.
4491 __ Xori(dst, dst, 1);
4492 }
4493 }
4494 break;
4495
4496 case kCondB:
4497 case kCondAE:
4498 if (use_imm && IsInt<16>(rhs_imm)) {
4499 // Sltiu sign-extends its 16-bit immediate operand before
4500 // the comparison and thus lets us compare directly with
4501 // unsigned values in the ranges [0, 0x7fff] and
4502 // [0xffff8000, 0xffffffff].
4503 __ Sltiu(dst, lhs, rhs_imm);
4504 } else {
4505 if (use_imm) {
4506 rhs_reg = TMP;
4507 __ LoadConst32(rhs_reg, rhs_imm);
4508 }
4509 __ Sltu(dst, lhs, rhs_reg);
4510 }
4511 if (cond == kCondAE) {
4512 // Simulate lhs >= rhs via !(lhs < rhs) since there's
4513 // only the sltu instruction but no sgeu.
4514 __ Xori(dst, dst, 1);
4515 }
4516 break;
4517
4518 case kCondBE:
4519 case kCondA:
4520 if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
4521 // Simulate lhs <= rhs via lhs < rhs + 1.
4522 // Note that this only works if rhs + 1 does not overflow
4523 // to 0, hence the check above.
4524 // Sltiu sign-extends its 16-bit immediate operand before
4525 // the comparison and thus lets us compare directly with
4526 // unsigned values in the ranges [0, 0x7fff] and
4527 // [0xffff8000, 0xffffffff].
4528 __ Sltiu(dst, lhs, rhs_imm + 1);
4529 if (cond == kCondA) {
4530 // Simulate lhs > rhs via !(lhs <= rhs) since there's
4531 // only the sltiu instruction but no sgtiu.
4532 __ Xori(dst, dst, 1);
4533 }
4534 } else {
4535 if (use_imm) {
4536 rhs_reg = TMP;
4537 __ LoadConst32(rhs_reg, rhs_imm);
4538 }
4539 __ Sltu(dst, rhs_reg, lhs);
4540 if (cond == kCondBE) {
4541 // Simulate lhs <= rhs via !(rhs < lhs) since there's
4542 // only the sltu instruction but no sleu.
4543 __ Xori(dst, dst, 1);
4544 }
4545 }
4546 break;
4547 }
4548 }
4549
MaterializeIntCompare(IfCondition cond,LocationSummary * input_locations,Register dst)4550 bool InstructionCodeGeneratorMIPS::MaterializeIntCompare(IfCondition cond,
4551 LocationSummary* input_locations,
4552 Register dst) {
4553 Register lhs = input_locations->InAt(0).AsRegister<Register>();
4554 Location rhs_location = input_locations->InAt(1);
4555 Register rhs_reg = ZERO;
4556 int64_t rhs_imm = 0;
4557 bool use_imm = rhs_location.IsConstant();
4558 if (use_imm) {
4559 rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
4560 } else {
4561 rhs_reg = rhs_location.AsRegister<Register>();
4562 }
4563
4564 switch (cond) {
4565 case kCondEQ:
4566 case kCondNE:
4567 if (use_imm && IsInt<16>(-rhs_imm)) {
4568 __ Addiu(dst, lhs, -rhs_imm);
4569 } else if (use_imm && IsUint<16>(rhs_imm)) {
4570 __ Xori(dst, lhs, rhs_imm);
4571 } else {
4572 if (use_imm) {
4573 rhs_reg = TMP;
4574 __ LoadConst32(rhs_reg, rhs_imm);
4575 }
4576 __ Xor(dst, lhs, rhs_reg);
4577 }
4578 return (cond == kCondEQ);
4579
4580 case kCondLT:
4581 case kCondGE:
4582 if (use_imm && IsInt<16>(rhs_imm)) {
4583 __ Slti(dst, lhs, rhs_imm);
4584 } else {
4585 if (use_imm) {
4586 rhs_reg = TMP;
4587 __ LoadConst32(rhs_reg, rhs_imm);
4588 }
4589 __ Slt(dst, lhs, rhs_reg);
4590 }
4591 return (cond == kCondGE);
4592
4593 case kCondLE:
4594 case kCondGT:
4595 if (use_imm && IsInt<16>(rhs_imm + 1)) {
4596 // Simulate lhs <= rhs via lhs < rhs + 1.
4597 __ Slti(dst, lhs, rhs_imm + 1);
4598 return (cond == kCondGT);
4599 } else {
4600 if (use_imm) {
4601 rhs_reg = TMP;
4602 __ LoadConst32(rhs_reg, rhs_imm);
4603 }
4604 __ Slt(dst, rhs_reg, lhs);
4605 return (cond == kCondLE);
4606 }
4607
4608 case kCondB:
4609 case kCondAE:
4610 if (use_imm && IsInt<16>(rhs_imm)) {
4611 // Sltiu sign-extends its 16-bit immediate operand before
4612 // the comparison and thus lets us compare directly with
4613 // unsigned values in the ranges [0, 0x7fff] and
4614 // [0xffff8000, 0xffffffff].
4615 __ Sltiu(dst, lhs, rhs_imm);
4616 } else {
4617 if (use_imm) {
4618 rhs_reg = TMP;
4619 __ LoadConst32(rhs_reg, rhs_imm);
4620 }
4621 __ Sltu(dst, lhs, rhs_reg);
4622 }
4623 return (cond == kCondAE);
4624
4625 case kCondBE:
4626 case kCondA:
4627 if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
4628 // Simulate lhs <= rhs via lhs < rhs + 1.
4629 // Note that this only works if rhs + 1 does not overflow
4630 // to 0, hence the check above.
4631 // Sltiu sign-extends its 16-bit immediate operand before
4632 // the comparison and thus lets us compare directly with
4633 // unsigned values in the ranges [0, 0x7fff] and
4634 // [0xffff8000, 0xffffffff].
4635 __ Sltiu(dst, lhs, rhs_imm + 1);
4636 return (cond == kCondA);
4637 } else {
4638 if (use_imm) {
4639 rhs_reg = TMP;
4640 __ LoadConst32(rhs_reg, rhs_imm);
4641 }
4642 __ Sltu(dst, rhs_reg, lhs);
4643 return (cond == kCondBE);
4644 }
4645 }
4646 }
4647
GenerateIntCompareAndBranch(IfCondition cond,LocationSummary * locations,MipsLabel * label)4648 void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond,
4649 LocationSummary* locations,
4650 MipsLabel* label) {
4651 Register lhs = locations->InAt(0).AsRegister<Register>();
4652 Location rhs_location = locations->InAt(1);
4653 Register rhs_reg = ZERO;
4654 int64_t rhs_imm = 0;
4655 bool use_imm = rhs_location.IsConstant();
4656 if (use_imm) {
4657 rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
4658 } else {
4659 rhs_reg = rhs_location.AsRegister<Register>();
4660 }
4661
4662 if (use_imm && rhs_imm == 0) {
4663 switch (cond) {
4664 case kCondEQ:
4665 case kCondBE: // <= 0 if zero
4666 __ Beqz(lhs, label);
4667 break;
4668 case kCondNE:
4669 case kCondA: // > 0 if non-zero
4670 __ Bnez(lhs, label);
4671 break;
4672 case kCondLT:
4673 __ Bltz(lhs, label);
4674 break;
4675 case kCondGE:
4676 __ Bgez(lhs, label);
4677 break;
4678 case kCondLE:
4679 __ Blez(lhs, label);
4680 break;
4681 case kCondGT:
4682 __ Bgtz(lhs, label);
4683 break;
4684 case kCondB: // always false
4685 break;
4686 case kCondAE: // always true
4687 __ B(label);
4688 break;
4689 }
4690 } else {
4691 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
4692 if (isR6 || !use_imm) {
4693 if (use_imm) {
4694 rhs_reg = TMP;
4695 __ LoadConst32(rhs_reg, rhs_imm);
4696 }
4697 switch (cond) {
4698 case kCondEQ:
4699 __ Beq(lhs, rhs_reg, label);
4700 break;
4701 case kCondNE:
4702 __ Bne(lhs, rhs_reg, label);
4703 break;
4704 case kCondLT:
4705 __ Blt(lhs, rhs_reg, label);
4706 break;
4707 case kCondGE:
4708 __ Bge(lhs, rhs_reg, label);
4709 break;
4710 case kCondLE:
4711 __ Bge(rhs_reg, lhs, label);
4712 break;
4713 case kCondGT:
4714 __ Blt(rhs_reg, lhs, label);
4715 break;
4716 case kCondB:
4717 __ Bltu(lhs, rhs_reg, label);
4718 break;
4719 case kCondAE:
4720 __ Bgeu(lhs, rhs_reg, label);
4721 break;
4722 case kCondBE:
4723 __ Bgeu(rhs_reg, lhs, label);
4724 break;
4725 case kCondA:
4726 __ Bltu(rhs_reg, lhs, label);
4727 break;
4728 }
4729 } else {
4730 // Special cases for more efficient comparison with constants on R2.
4731 switch (cond) {
4732 case kCondEQ:
4733 __ LoadConst32(TMP, rhs_imm);
4734 __ Beq(lhs, TMP, label);
4735 break;
4736 case kCondNE:
4737 __ LoadConst32(TMP, rhs_imm);
4738 __ Bne(lhs, TMP, label);
4739 break;
4740 case kCondLT:
4741 if (IsInt<16>(rhs_imm)) {
4742 __ Slti(TMP, lhs, rhs_imm);
4743 __ Bnez(TMP, label);
4744 } else {
4745 __ LoadConst32(TMP, rhs_imm);
4746 __ Blt(lhs, TMP, label);
4747 }
4748 break;
4749 case kCondGE:
4750 if (IsInt<16>(rhs_imm)) {
4751 __ Slti(TMP, lhs, rhs_imm);
4752 __ Beqz(TMP, label);
4753 } else {
4754 __ LoadConst32(TMP, rhs_imm);
4755 __ Bge(lhs, TMP, label);
4756 }
4757 break;
4758 case kCondLE:
4759 if (IsInt<16>(rhs_imm + 1)) {
4760 // Simulate lhs <= rhs via lhs < rhs + 1.
4761 __ Slti(TMP, lhs, rhs_imm + 1);
4762 __ Bnez(TMP, label);
4763 } else {
4764 __ LoadConst32(TMP, rhs_imm);
4765 __ Bge(TMP, lhs, label);
4766 }
4767 break;
4768 case kCondGT:
4769 if (IsInt<16>(rhs_imm + 1)) {
4770 // Simulate lhs > rhs via !(lhs < rhs + 1).
4771 __ Slti(TMP, lhs, rhs_imm + 1);
4772 __ Beqz(TMP, label);
4773 } else {
4774 __ LoadConst32(TMP, rhs_imm);
4775 __ Blt(TMP, lhs, label);
4776 }
4777 break;
4778 case kCondB:
4779 if (IsInt<16>(rhs_imm)) {
4780 __ Sltiu(TMP, lhs, rhs_imm);
4781 __ Bnez(TMP, label);
4782 } else {
4783 __ LoadConst32(TMP, rhs_imm);
4784 __ Bltu(lhs, TMP, label);
4785 }
4786 break;
4787 case kCondAE:
4788 if (IsInt<16>(rhs_imm)) {
4789 __ Sltiu(TMP, lhs, rhs_imm);
4790 __ Beqz(TMP, label);
4791 } else {
4792 __ LoadConst32(TMP, rhs_imm);
4793 __ Bgeu(lhs, TMP, label);
4794 }
4795 break;
4796 case kCondBE:
4797 if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
4798 // Simulate lhs <= rhs via lhs < rhs + 1.
4799 // Note that this only works if rhs + 1 does not overflow
4800 // to 0, hence the check above.
4801 __ Sltiu(TMP, lhs, rhs_imm + 1);
4802 __ Bnez(TMP, label);
4803 } else {
4804 __ LoadConst32(TMP, rhs_imm);
4805 __ Bgeu(TMP, lhs, label);
4806 }
4807 break;
4808 case kCondA:
4809 if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
4810 // Simulate lhs > rhs via !(lhs < rhs + 1).
4811 // Note that this only works if rhs + 1 does not overflow
4812 // to 0, hence the check above.
4813 __ Sltiu(TMP, lhs, rhs_imm + 1);
4814 __ Beqz(TMP, label);
4815 } else {
4816 __ LoadConst32(TMP, rhs_imm);
4817 __ Bltu(TMP, lhs, label);
4818 }
4819 break;
4820 }
4821 }
4822 }
4823 }
4824
GenerateLongCompare(IfCondition cond,LocationSummary * locations)4825 void InstructionCodeGeneratorMIPS::GenerateLongCompare(IfCondition cond,
4826 LocationSummary* locations) {
4827 Register dst = locations->Out().AsRegister<Register>();
4828 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
4829 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
4830 Location rhs_location = locations->InAt(1);
4831 Register rhs_high = ZERO;
4832 Register rhs_low = ZERO;
4833 int64_t imm = 0;
4834 uint32_t imm_high = 0;
4835 uint32_t imm_low = 0;
4836 bool use_imm = rhs_location.IsConstant();
4837 if (use_imm) {
4838 imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
4839 imm_high = High32Bits(imm);
4840 imm_low = Low32Bits(imm);
4841 } else {
4842 rhs_high = rhs_location.AsRegisterPairHigh<Register>();
4843 rhs_low = rhs_location.AsRegisterPairLow<Register>();
4844 }
4845 if (use_imm && imm == 0) {
4846 switch (cond) {
4847 case kCondEQ:
4848 case kCondBE: // <= 0 if zero
4849 __ Or(dst, lhs_high, lhs_low);
4850 __ Sltiu(dst, dst, 1);
4851 break;
4852 case kCondNE:
4853 case kCondA: // > 0 if non-zero
4854 __ Or(dst, lhs_high, lhs_low);
4855 __ Sltu(dst, ZERO, dst);
4856 break;
4857 case kCondLT:
4858 __ Slt(dst, lhs_high, ZERO);
4859 break;
4860 case kCondGE:
4861 __ Slt(dst, lhs_high, ZERO);
4862 __ Xori(dst, dst, 1);
4863 break;
4864 case kCondLE:
4865 __ Or(TMP, lhs_high, lhs_low);
4866 __ Sra(AT, lhs_high, 31);
4867 __ Sltu(dst, AT, TMP);
4868 __ Xori(dst, dst, 1);
4869 break;
4870 case kCondGT:
4871 __ Or(TMP, lhs_high, lhs_low);
4872 __ Sra(AT, lhs_high, 31);
4873 __ Sltu(dst, AT, TMP);
4874 break;
4875 case kCondB: // always false
4876 __ Andi(dst, dst, 0);
4877 break;
4878 case kCondAE: // always true
4879 __ Ori(dst, ZERO, 1);
4880 break;
4881 }
4882 } else if (use_imm) {
4883 // TODO: more efficient comparison with constants without loading them into TMP/AT.
4884 switch (cond) {
4885 case kCondEQ:
4886 __ LoadConst32(TMP, imm_high);
4887 __ Xor(TMP, TMP, lhs_high);
4888 __ LoadConst32(AT, imm_low);
4889 __ Xor(AT, AT, lhs_low);
4890 __ Or(dst, TMP, AT);
4891 __ Sltiu(dst, dst, 1);
4892 break;
4893 case kCondNE:
4894 __ LoadConst32(TMP, imm_high);
4895 __ Xor(TMP, TMP, lhs_high);
4896 __ LoadConst32(AT, imm_low);
4897 __ Xor(AT, AT, lhs_low);
4898 __ Or(dst, TMP, AT);
4899 __ Sltu(dst, ZERO, dst);
4900 break;
4901 case kCondLT:
4902 case kCondGE:
4903 if (dst == lhs_low) {
4904 __ LoadConst32(TMP, imm_low);
4905 __ Sltu(dst, lhs_low, TMP);
4906 }
4907 __ LoadConst32(TMP, imm_high);
4908 __ Slt(AT, lhs_high, TMP);
4909 __ Slt(TMP, TMP, lhs_high);
4910 if (dst != lhs_low) {
4911 __ LoadConst32(dst, imm_low);
4912 __ Sltu(dst, lhs_low, dst);
4913 }
4914 __ Slt(dst, TMP, dst);
4915 __ Or(dst, dst, AT);
4916 if (cond == kCondGE) {
4917 __ Xori(dst, dst, 1);
4918 }
4919 break;
4920 case kCondGT:
4921 case kCondLE:
4922 if (dst == lhs_low) {
4923 __ LoadConst32(TMP, imm_low);
4924 __ Sltu(dst, TMP, lhs_low);
4925 }
4926 __ LoadConst32(TMP, imm_high);
4927 __ Slt(AT, TMP, lhs_high);
4928 __ Slt(TMP, lhs_high, TMP);
4929 if (dst != lhs_low) {
4930 __ LoadConst32(dst, imm_low);
4931 __ Sltu(dst, dst, lhs_low);
4932 }
4933 __ Slt(dst, TMP, dst);
4934 __ Or(dst, dst, AT);
4935 if (cond == kCondLE) {
4936 __ Xori(dst, dst, 1);
4937 }
4938 break;
4939 case kCondB:
4940 case kCondAE:
4941 if (dst == lhs_low) {
4942 __ LoadConst32(TMP, imm_low);
4943 __ Sltu(dst, lhs_low, TMP);
4944 }
4945 __ LoadConst32(TMP, imm_high);
4946 __ Sltu(AT, lhs_high, TMP);
4947 __ Sltu(TMP, TMP, lhs_high);
4948 if (dst != lhs_low) {
4949 __ LoadConst32(dst, imm_low);
4950 __ Sltu(dst, lhs_low, dst);
4951 }
4952 __ Slt(dst, TMP, dst);
4953 __ Or(dst, dst, AT);
4954 if (cond == kCondAE) {
4955 __ Xori(dst, dst, 1);
4956 }
4957 break;
4958 case kCondA:
4959 case kCondBE:
4960 if (dst == lhs_low) {
4961 __ LoadConst32(TMP, imm_low);
4962 __ Sltu(dst, TMP, lhs_low);
4963 }
4964 __ LoadConst32(TMP, imm_high);
4965 __ Sltu(AT, TMP, lhs_high);
4966 __ Sltu(TMP, lhs_high, TMP);
4967 if (dst != lhs_low) {
4968 __ LoadConst32(dst, imm_low);
4969 __ Sltu(dst, dst, lhs_low);
4970 }
4971 __ Slt(dst, TMP, dst);
4972 __ Or(dst, dst, AT);
4973 if (cond == kCondBE) {
4974 __ Xori(dst, dst, 1);
4975 }
4976 break;
4977 }
4978 } else {
4979 switch (cond) {
4980 case kCondEQ:
4981 __ Xor(TMP, lhs_high, rhs_high);
4982 __ Xor(AT, lhs_low, rhs_low);
4983 __ Or(dst, TMP, AT);
4984 __ Sltiu(dst, dst, 1);
4985 break;
4986 case kCondNE:
4987 __ Xor(TMP, lhs_high, rhs_high);
4988 __ Xor(AT, lhs_low, rhs_low);
4989 __ Or(dst, TMP, AT);
4990 __ Sltu(dst, ZERO, dst);
4991 break;
4992 case kCondLT:
4993 case kCondGE:
4994 __ Slt(TMP, rhs_high, lhs_high);
4995 __ Sltu(AT, lhs_low, rhs_low);
4996 __ Slt(TMP, TMP, AT);
4997 __ Slt(AT, lhs_high, rhs_high);
4998 __ Or(dst, AT, TMP);
4999 if (cond == kCondGE) {
5000 __ Xori(dst, dst, 1);
5001 }
5002 break;
5003 case kCondGT:
5004 case kCondLE:
5005 __ Slt(TMP, lhs_high, rhs_high);
5006 __ Sltu(AT, rhs_low, lhs_low);
5007 __ Slt(TMP, TMP, AT);
5008 __ Slt(AT, rhs_high, lhs_high);
5009 __ Or(dst, AT, TMP);
5010 if (cond == kCondLE) {
5011 __ Xori(dst, dst, 1);
5012 }
5013 break;
5014 case kCondB:
5015 case kCondAE:
5016 __ Sltu(TMP, rhs_high, lhs_high);
5017 __ Sltu(AT, lhs_low, rhs_low);
5018 __ Slt(TMP, TMP, AT);
5019 __ Sltu(AT, lhs_high, rhs_high);
5020 __ Or(dst, AT, TMP);
5021 if (cond == kCondAE) {
5022 __ Xori(dst, dst, 1);
5023 }
5024 break;
5025 case kCondA:
5026 case kCondBE:
5027 __ Sltu(TMP, lhs_high, rhs_high);
5028 __ Sltu(AT, rhs_low, lhs_low);
5029 __ Slt(TMP, TMP, AT);
5030 __ Sltu(AT, rhs_high, lhs_high);
5031 __ Or(dst, AT, TMP);
5032 if (cond == kCondBE) {
5033 __ Xori(dst, dst, 1);
5034 }
5035 break;
5036 }
5037 }
5038 }
5039
GenerateLongCompareAndBranch(IfCondition cond,LocationSummary * locations,MipsLabel * label)5040 void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond,
5041 LocationSummary* locations,
5042 MipsLabel* label) {
5043 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
5044 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
5045 Location rhs_location = locations->InAt(1);
5046 Register rhs_high = ZERO;
5047 Register rhs_low = ZERO;
5048 int64_t imm = 0;
5049 uint32_t imm_high = 0;
5050 uint32_t imm_low = 0;
5051 bool use_imm = rhs_location.IsConstant();
5052 if (use_imm) {
5053 imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
5054 imm_high = High32Bits(imm);
5055 imm_low = Low32Bits(imm);
5056 } else {
5057 rhs_high = rhs_location.AsRegisterPairHigh<Register>();
5058 rhs_low = rhs_location.AsRegisterPairLow<Register>();
5059 }
5060
5061 if (use_imm && imm == 0) {
5062 switch (cond) {
5063 case kCondEQ:
5064 case kCondBE: // <= 0 if zero
5065 __ Or(TMP, lhs_high, lhs_low);
5066 __ Beqz(TMP, label);
5067 break;
5068 case kCondNE:
5069 case kCondA: // > 0 if non-zero
5070 __ Or(TMP, lhs_high, lhs_low);
5071 __ Bnez(TMP, label);
5072 break;
5073 case kCondLT:
5074 __ Bltz(lhs_high, label);
5075 break;
5076 case kCondGE:
5077 __ Bgez(lhs_high, label);
5078 break;
5079 case kCondLE:
5080 __ Or(TMP, lhs_high, lhs_low);
5081 __ Sra(AT, lhs_high, 31);
5082 __ Bgeu(AT, TMP, label);
5083 break;
5084 case kCondGT:
5085 __ Or(TMP, lhs_high, lhs_low);
5086 __ Sra(AT, lhs_high, 31);
5087 __ Bltu(AT, TMP, label);
5088 break;
5089 case kCondB: // always false
5090 break;
5091 case kCondAE: // always true
5092 __ B(label);
5093 break;
5094 }
5095 } else if (use_imm) {
5096 // TODO: more efficient comparison with constants without loading them into TMP/AT.
5097 switch (cond) {
5098 case kCondEQ:
5099 __ LoadConst32(TMP, imm_high);
5100 __ Xor(TMP, TMP, lhs_high);
5101 __ LoadConst32(AT, imm_low);
5102 __ Xor(AT, AT, lhs_low);
5103 __ Or(TMP, TMP, AT);
5104 __ Beqz(TMP, label);
5105 break;
5106 case kCondNE:
5107 __ LoadConst32(TMP, imm_high);
5108 __ Xor(TMP, TMP, lhs_high);
5109 __ LoadConst32(AT, imm_low);
5110 __ Xor(AT, AT, lhs_low);
5111 __ Or(TMP, TMP, AT);
5112 __ Bnez(TMP, label);
5113 break;
5114 case kCondLT:
5115 __ LoadConst32(TMP, imm_high);
5116 __ Blt(lhs_high, TMP, label);
5117 __ Slt(TMP, TMP, lhs_high);
5118 __ LoadConst32(AT, imm_low);
5119 __ Sltu(AT, lhs_low, AT);
5120 __ Blt(TMP, AT, label);
5121 break;
5122 case kCondGE:
5123 __ LoadConst32(TMP, imm_high);
5124 __ Blt(TMP, lhs_high, label);
5125 __ Slt(TMP, lhs_high, TMP);
5126 __ LoadConst32(AT, imm_low);
5127 __ Sltu(AT, lhs_low, AT);
5128 __ Or(TMP, TMP, AT);
5129 __ Beqz(TMP, label);
5130 break;
5131 case kCondLE:
5132 __ LoadConst32(TMP, imm_high);
5133 __ Blt(lhs_high, TMP, label);
5134 __ Slt(TMP, TMP, lhs_high);
5135 __ LoadConst32(AT, imm_low);
5136 __ Sltu(AT, AT, lhs_low);
5137 __ Or(TMP, TMP, AT);
5138 __ Beqz(TMP, label);
5139 break;
5140 case kCondGT:
5141 __ LoadConst32(TMP, imm_high);
5142 __ Blt(TMP, lhs_high, label);
5143 __ Slt(TMP, lhs_high, TMP);
5144 __ LoadConst32(AT, imm_low);
5145 __ Sltu(AT, AT, lhs_low);
5146 __ Blt(TMP, AT, label);
5147 break;
5148 case kCondB:
5149 __ LoadConst32(TMP, imm_high);
5150 __ Bltu(lhs_high, TMP, label);
5151 __ Sltu(TMP, TMP, lhs_high);
5152 __ LoadConst32(AT, imm_low);
5153 __ Sltu(AT, lhs_low, AT);
5154 __ Blt(TMP, AT, label);
5155 break;
5156 case kCondAE:
5157 __ LoadConst32(TMP, imm_high);
5158 __ Bltu(TMP, lhs_high, label);
5159 __ Sltu(TMP, lhs_high, TMP);
5160 __ LoadConst32(AT, imm_low);
5161 __ Sltu(AT, lhs_low, AT);
5162 __ Or(TMP, TMP, AT);
5163 __ Beqz(TMP, label);
5164 break;
5165 case kCondBE:
5166 __ LoadConst32(TMP, imm_high);
5167 __ Bltu(lhs_high, TMP, label);
5168 __ Sltu(TMP, TMP, lhs_high);
5169 __ LoadConst32(AT, imm_low);
5170 __ Sltu(AT, AT, lhs_low);
5171 __ Or(TMP, TMP, AT);
5172 __ Beqz(TMP, label);
5173 break;
5174 case kCondA:
5175 __ LoadConst32(TMP, imm_high);
5176 __ Bltu(TMP, lhs_high, label);
5177 __ Sltu(TMP, lhs_high, TMP);
5178 __ LoadConst32(AT, imm_low);
5179 __ Sltu(AT, AT, lhs_low);
5180 __ Blt(TMP, AT, label);
5181 break;
5182 }
5183 } else {
5184 switch (cond) {
5185 case kCondEQ:
5186 __ Xor(TMP, lhs_high, rhs_high);
5187 __ Xor(AT, lhs_low, rhs_low);
5188 __ Or(TMP, TMP, AT);
5189 __ Beqz(TMP, label);
5190 break;
5191 case kCondNE:
5192 __ Xor(TMP, lhs_high, rhs_high);
5193 __ Xor(AT, lhs_low, rhs_low);
5194 __ Or(TMP, TMP, AT);
5195 __ Bnez(TMP, label);
5196 break;
5197 case kCondLT:
5198 __ Blt(lhs_high, rhs_high, label);
5199 __ Slt(TMP, rhs_high, lhs_high);
5200 __ Sltu(AT, lhs_low, rhs_low);
5201 __ Blt(TMP, AT, label);
5202 break;
5203 case kCondGE:
5204 __ Blt(rhs_high, lhs_high, label);
5205 __ Slt(TMP, lhs_high, rhs_high);
5206 __ Sltu(AT, lhs_low, rhs_low);
5207 __ Or(TMP, TMP, AT);
5208 __ Beqz(TMP, label);
5209 break;
5210 case kCondLE:
5211 __ Blt(lhs_high, rhs_high, label);
5212 __ Slt(TMP, rhs_high, lhs_high);
5213 __ Sltu(AT, rhs_low, lhs_low);
5214 __ Or(TMP, TMP, AT);
5215 __ Beqz(TMP, label);
5216 break;
5217 case kCondGT:
5218 __ Blt(rhs_high, lhs_high, label);
5219 __ Slt(TMP, lhs_high, rhs_high);
5220 __ Sltu(AT, rhs_low, lhs_low);
5221 __ Blt(TMP, AT, label);
5222 break;
5223 case kCondB:
5224 __ Bltu(lhs_high, rhs_high, label);
5225 __ Sltu(TMP, rhs_high, lhs_high);
5226 __ Sltu(AT, lhs_low, rhs_low);
5227 __ Blt(TMP, AT, label);
5228 break;
5229 case kCondAE:
5230 __ Bltu(rhs_high, lhs_high, label);
5231 __ Sltu(TMP, lhs_high, rhs_high);
5232 __ Sltu(AT, lhs_low, rhs_low);
5233 __ Or(TMP, TMP, AT);
5234 __ Beqz(TMP, label);
5235 break;
5236 case kCondBE:
5237 __ Bltu(lhs_high, rhs_high, label);
5238 __ Sltu(TMP, rhs_high, lhs_high);
5239 __ Sltu(AT, rhs_low, lhs_low);
5240 __ Or(TMP, TMP, AT);
5241 __ Beqz(TMP, label);
5242 break;
5243 case kCondA:
5244 __ Bltu(rhs_high, lhs_high, label);
5245 __ Sltu(TMP, lhs_high, rhs_high);
5246 __ Sltu(AT, rhs_low, lhs_low);
5247 __ Blt(TMP, AT, label);
5248 break;
5249 }
5250 }
5251 }
5252
GenerateFpCompare(IfCondition cond,bool gt_bias,DataType::Type type,LocationSummary * locations)5253 void InstructionCodeGeneratorMIPS::GenerateFpCompare(IfCondition cond,
5254 bool gt_bias,
5255 DataType::Type type,
5256 LocationSummary* locations) {
5257 Register dst = locations->Out().AsRegister<Register>();
5258 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
5259 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
5260 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
5261 if (type == DataType::Type::kFloat32) {
5262 if (isR6) {
5263 switch (cond) {
5264 case kCondEQ:
5265 __ CmpEqS(FTMP, lhs, rhs);
5266 __ Mfc1(dst, FTMP);
5267 __ Andi(dst, dst, 1);
5268 break;
5269 case kCondNE:
5270 __ CmpEqS(FTMP, lhs, rhs);
5271 __ Mfc1(dst, FTMP);
5272 __ Addiu(dst, dst, 1);
5273 break;
5274 case kCondLT:
5275 if (gt_bias) {
5276 __ CmpLtS(FTMP, lhs, rhs);
5277 } else {
5278 __ CmpUltS(FTMP, lhs, rhs);
5279 }
5280 __ Mfc1(dst, FTMP);
5281 __ Andi(dst, dst, 1);
5282 break;
5283 case kCondLE:
5284 if (gt_bias) {
5285 __ CmpLeS(FTMP, lhs, rhs);
5286 } else {
5287 __ CmpUleS(FTMP, lhs, rhs);
5288 }
5289 __ Mfc1(dst, FTMP);
5290 __ Andi(dst, dst, 1);
5291 break;
5292 case kCondGT:
5293 if (gt_bias) {
5294 __ CmpUltS(FTMP, rhs, lhs);
5295 } else {
5296 __ CmpLtS(FTMP, rhs, lhs);
5297 }
5298 __ Mfc1(dst, FTMP);
5299 __ Andi(dst, dst, 1);
5300 break;
5301 case kCondGE:
5302 if (gt_bias) {
5303 __ CmpUleS(FTMP, rhs, lhs);
5304 } else {
5305 __ CmpLeS(FTMP, rhs, lhs);
5306 }
5307 __ Mfc1(dst, FTMP);
5308 __ Andi(dst, dst, 1);
5309 break;
5310 default:
5311 LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
5312 UNREACHABLE();
5313 }
5314 } else {
5315 switch (cond) {
5316 case kCondEQ:
5317 __ CeqS(0, lhs, rhs);
5318 __ LoadConst32(dst, 1);
5319 __ Movf(dst, ZERO, 0);
5320 break;
5321 case kCondNE:
5322 __ CeqS(0, lhs, rhs);
5323 __ LoadConst32(dst, 1);
5324 __ Movt(dst, ZERO, 0);
5325 break;
5326 case kCondLT:
5327 if (gt_bias) {
5328 __ ColtS(0, lhs, rhs);
5329 } else {
5330 __ CultS(0, lhs, rhs);
5331 }
5332 __ LoadConst32(dst, 1);
5333 __ Movf(dst, ZERO, 0);
5334 break;
5335 case kCondLE:
5336 if (gt_bias) {
5337 __ ColeS(0, lhs, rhs);
5338 } else {
5339 __ CuleS(0, lhs, rhs);
5340 }
5341 __ LoadConst32(dst, 1);
5342 __ Movf(dst, ZERO, 0);
5343 break;
5344 case kCondGT:
5345 if (gt_bias) {
5346 __ CultS(0, rhs, lhs);
5347 } else {
5348 __ ColtS(0, rhs, lhs);
5349 }
5350 __ LoadConst32(dst, 1);
5351 __ Movf(dst, ZERO, 0);
5352 break;
5353 case kCondGE:
5354 if (gt_bias) {
5355 __ CuleS(0, rhs, lhs);
5356 } else {
5357 __ ColeS(0, rhs, lhs);
5358 }
5359 __ LoadConst32(dst, 1);
5360 __ Movf(dst, ZERO, 0);
5361 break;
5362 default:
5363 LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
5364 UNREACHABLE();
5365 }
5366 }
5367 } else {
5368 DCHECK_EQ(type, DataType::Type::kFloat64);
5369 if (isR6) {
5370 switch (cond) {
5371 case kCondEQ:
5372 __ CmpEqD(FTMP, lhs, rhs);
5373 __ Mfc1(dst, FTMP);
5374 __ Andi(dst, dst, 1);
5375 break;
5376 case kCondNE:
5377 __ CmpEqD(FTMP, lhs, rhs);
5378 __ Mfc1(dst, FTMP);
5379 __ Addiu(dst, dst, 1);
5380 break;
5381 case kCondLT:
5382 if (gt_bias) {
5383 __ CmpLtD(FTMP, lhs, rhs);
5384 } else {
5385 __ CmpUltD(FTMP, lhs, rhs);
5386 }
5387 __ Mfc1(dst, FTMP);
5388 __ Andi(dst, dst, 1);
5389 break;
5390 case kCondLE:
5391 if (gt_bias) {
5392 __ CmpLeD(FTMP, lhs, rhs);
5393 } else {
5394 __ CmpUleD(FTMP, lhs, rhs);
5395 }
5396 __ Mfc1(dst, FTMP);
5397 __ Andi(dst, dst, 1);
5398 break;
5399 case kCondGT:
5400 if (gt_bias) {
5401 __ CmpUltD(FTMP, rhs, lhs);
5402 } else {
5403 __ CmpLtD(FTMP, rhs, lhs);
5404 }
5405 __ Mfc1(dst, FTMP);
5406 __ Andi(dst, dst, 1);
5407 break;
5408 case kCondGE:
5409 if (gt_bias) {
5410 __ CmpUleD(FTMP, rhs, lhs);
5411 } else {
5412 __ CmpLeD(FTMP, rhs, lhs);
5413 }
5414 __ Mfc1(dst, FTMP);
5415 __ Andi(dst, dst, 1);
5416 break;
5417 default:
5418 LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
5419 UNREACHABLE();
5420 }
5421 } else {
5422 switch (cond) {
5423 case kCondEQ:
5424 __ CeqD(0, lhs, rhs);
5425 __ LoadConst32(dst, 1);
5426 __ Movf(dst, ZERO, 0);
5427 break;
5428 case kCondNE:
5429 __ CeqD(0, lhs, rhs);
5430 __ LoadConst32(dst, 1);
5431 __ Movt(dst, ZERO, 0);
5432 break;
5433 case kCondLT:
5434 if (gt_bias) {
5435 __ ColtD(0, lhs, rhs);
5436 } else {
5437 __ CultD(0, lhs, rhs);
5438 }
5439 __ LoadConst32(dst, 1);
5440 __ Movf(dst, ZERO, 0);
5441 break;
5442 case kCondLE:
5443 if (gt_bias) {
5444 __ ColeD(0, lhs, rhs);
5445 } else {
5446 __ CuleD(0, lhs, rhs);
5447 }
5448 __ LoadConst32(dst, 1);
5449 __ Movf(dst, ZERO, 0);
5450 break;
5451 case kCondGT:
5452 if (gt_bias) {
5453 __ CultD(0, rhs, lhs);
5454 } else {
5455 __ ColtD(0, rhs, lhs);
5456 }
5457 __ LoadConst32(dst, 1);
5458 __ Movf(dst, ZERO, 0);
5459 break;
5460 case kCondGE:
5461 if (gt_bias) {
5462 __ CuleD(0, rhs, lhs);
5463 } else {
5464 __ ColeD(0, rhs, lhs);
5465 }
5466 __ LoadConst32(dst, 1);
5467 __ Movf(dst, ZERO, 0);
5468 break;
5469 default:
5470 LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
5471 UNREACHABLE();
5472 }
5473 }
5474 }
5475 }
5476
MaterializeFpCompareR2(IfCondition cond,bool gt_bias,DataType::Type type,LocationSummary * input_locations,int cc)5477 bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR2(IfCondition cond,
5478 bool gt_bias,
5479 DataType::Type type,
5480 LocationSummary* input_locations,
5481 int cc) {
5482 FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
5483 FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
5484 CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
5485 if (type == DataType::Type::kFloat32) {
5486 switch (cond) {
5487 case kCondEQ:
5488 __ CeqS(cc, lhs, rhs);
5489 return false;
5490 case kCondNE:
5491 __ CeqS(cc, lhs, rhs);
5492 return true;
5493 case kCondLT:
5494 if (gt_bias) {
5495 __ ColtS(cc, lhs, rhs);
5496 } else {
5497 __ CultS(cc, lhs, rhs);
5498 }
5499 return false;
5500 case kCondLE:
5501 if (gt_bias) {
5502 __ ColeS(cc, lhs, rhs);
5503 } else {
5504 __ CuleS(cc, lhs, rhs);
5505 }
5506 return false;
5507 case kCondGT:
5508 if (gt_bias) {
5509 __ CultS(cc, rhs, lhs);
5510 } else {
5511 __ ColtS(cc, rhs, lhs);
5512 }
5513 return false;
5514 case kCondGE:
5515 if (gt_bias) {
5516 __ CuleS(cc, rhs, lhs);
5517 } else {
5518 __ ColeS(cc, rhs, lhs);
5519 }
5520 return false;
5521 default:
5522 LOG(FATAL) << "Unexpected non-floating-point condition";
5523 UNREACHABLE();
5524 }
5525 } else {
5526 DCHECK_EQ(type, DataType::Type::kFloat64);
5527 switch (cond) {
5528 case kCondEQ:
5529 __ CeqD(cc, lhs, rhs);
5530 return false;
5531 case kCondNE:
5532 __ CeqD(cc, lhs, rhs);
5533 return true;
5534 case kCondLT:
5535 if (gt_bias) {
5536 __ ColtD(cc, lhs, rhs);
5537 } else {
5538 __ CultD(cc, lhs, rhs);
5539 }
5540 return false;
5541 case kCondLE:
5542 if (gt_bias) {
5543 __ ColeD(cc, lhs, rhs);
5544 } else {
5545 __ CuleD(cc, lhs, rhs);
5546 }
5547 return false;
5548 case kCondGT:
5549 if (gt_bias) {
5550 __ CultD(cc, rhs, lhs);
5551 } else {
5552 __ ColtD(cc, rhs, lhs);
5553 }
5554 return false;
5555 case kCondGE:
5556 if (gt_bias) {
5557 __ CuleD(cc, rhs, lhs);
5558 } else {
5559 __ ColeD(cc, rhs, lhs);
5560 }
5561 return false;
5562 default:
5563 LOG(FATAL) << "Unexpected non-floating-point condition";
5564 UNREACHABLE();
5565 }
5566 }
5567 }
5568
MaterializeFpCompareR6(IfCondition cond,bool gt_bias,DataType::Type type,LocationSummary * input_locations,FRegister dst)5569 bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR6(IfCondition cond,
5570 bool gt_bias,
5571 DataType::Type type,
5572 LocationSummary* input_locations,
5573 FRegister dst) {
5574 FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
5575 FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
5576 CHECK(codegen_->GetInstructionSetFeatures().IsR6());
5577 if (type == DataType::Type::kFloat32) {
5578 switch (cond) {
5579 case kCondEQ:
5580 __ CmpEqS(dst, lhs, rhs);
5581 return false;
5582 case kCondNE:
5583 __ CmpEqS(dst, lhs, rhs);
5584 return true;
5585 case kCondLT:
5586 if (gt_bias) {
5587 __ CmpLtS(dst, lhs, rhs);
5588 } else {
5589 __ CmpUltS(dst, lhs, rhs);
5590 }
5591 return false;
5592 case kCondLE:
5593 if (gt_bias) {
5594 __ CmpLeS(dst, lhs, rhs);
5595 } else {
5596 __ CmpUleS(dst, lhs, rhs);
5597 }
5598 return false;
5599 case kCondGT:
5600 if (gt_bias) {
5601 __ CmpUltS(dst, rhs, lhs);
5602 } else {
5603 __ CmpLtS(dst, rhs, lhs);
5604 }
5605 return false;
5606 case kCondGE:
5607 if (gt_bias) {
5608 __ CmpUleS(dst, rhs, lhs);
5609 } else {
5610 __ CmpLeS(dst, rhs, lhs);
5611 }
5612 return false;
5613 default:
5614 LOG(FATAL) << "Unexpected non-floating-point condition";
5615 UNREACHABLE();
5616 }
5617 } else {
5618 DCHECK_EQ(type, DataType::Type::kFloat64);
5619 switch (cond) {
5620 case kCondEQ:
5621 __ CmpEqD(dst, lhs, rhs);
5622 return false;
5623 case kCondNE:
5624 __ CmpEqD(dst, lhs, rhs);
5625 return true;
5626 case kCondLT:
5627 if (gt_bias) {
5628 __ CmpLtD(dst, lhs, rhs);
5629 } else {
5630 __ CmpUltD(dst, lhs, rhs);
5631 }
5632 return false;
5633 case kCondLE:
5634 if (gt_bias) {
5635 __ CmpLeD(dst, lhs, rhs);
5636 } else {
5637 __ CmpUleD(dst, lhs, rhs);
5638 }
5639 return false;
5640 case kCondGT:
5641 if (gt_bias) {
5642 __ CmpUltD(dst, rhs, lhs);
5643 } else {
5644 __ CmpLtD(dst, rhs, lhs);
5645 }
5646 return false;
5647 case kCondGE:
5648 if (gt_bias) {
5649 __ CmpUleD(dst, rhs, lhs);
5650 } else {
5651 __ CmpLeD(dst, rhs, lhs);
5652 }
5653 return false;
5654 default:
5655 LOG(FATAL) << "Unexpected non-floating-point condition";
5656 UNREACHABLE();
5657 }
5658 }
5659 }
5660
GenerateFpCompareAndBranch(IfCondition cond,bool gt_bias,DataType::Type type,LocationSummary * locations,MipsLabel * label)5661 void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond,
5662 bool gt_bias,
5663 DataType::Type type,
5664 LocationSummary* locations,
5665 MipsLabel* label) {
5666 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
5667 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
5668 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
5669 if (type == DataType::Type::kFloat32) {
5670 if (isR6) {
5671 switch (cond) {
5672 case kCondEQ:
5673 __ CmpEqS(FTMP, lhs, rhs);
5674 __ Bc1nez(FTMP, label);
5675 break;
5676 case kCondNE:
5677 __ CmpEqS(FTMP, lhs, rhs);
5678 __ Bc1eqz(FTMP, label);
5679 break;
5680 case kCondLT:
5681 if (gt_bias) {
5682 __ CmpLtS(FTMP, lhs, rhs);
5683 } else {
5684 __ CmpUltS(FTMP, lhs, rhs);
5685 }
5686 __ Bc1nez(FTMP, label);
5687 break;
5688 case kCondLE:
5689 if (gt_bias) {
5690 __ CmpLeS(FTMP, lhs, rhs);
5691 } else {
5692 __ CmpUleS(FTMP, lhs, rhs);
5693 }
5694 __ Bc1nez(FTMP, label);
5695 break;
5696 case kCondGT:
5697 if (gt_bias) {
5698 __ CmpUltS(FTMP, rhs, lhs);
5699 } else {
5700 __ CmpLtS(FTMP, rhs, lhs);
5701 }
5702 __ Bc1nez(FTMP, label);
5703 break;
5704 case kCondGE:
5705 if (gt_bias) {
5706 __ CmpUleS(FTMP, rhs, lhs);
5707 } else {
5708 __ CmpLeS(FTMP, rhs, lhs);
5709 }
5710 __ Bc1nez(FTMP, label);
5711 break;
5712 default:
5713 LOG(FATAL) << "Unexpected non-floating-point condition";
5714 UNREACHABLE();
5715 }
5716 } else {
5717 switch (cond) {
5718 case kCondEQ:
5719 __ CeqS(0, lhs, rhs);
5720 __ Bc1t(0, label);
5721 break;
5722 case kCondNE:
5723 __ CeqS(0, lhs, rhs);
5724 __ Bc1f(0, label);
5725 break;
5726 case kCondLT:
5727 if (gt_bias) {
5728 __ ColtS(0, lhs, rhs);
5729 } else {
5730 __ CultS(0, lhs, rhs);
5731 }
5732 __ Bc1t(0, label);
5733 break;
5734 case kCondLE:
5735 if (gt_bias) {
5736 __ ColeS(0, lhs, rhs);
5737 } else {
5738 __ CuleS(0, lhs, rhs);
5739 }
5740 __ Bc1t(0, label);
5741 break;
5742 case kCondGT:
5743 if (gt_bias) {
5744 __ CultS(0, rhs, lhs);
5745 } else {
5746 __ ColtS(0, rhs, lhs);
5747 }
5748 __ Bc1t(0, label);
5749 break;
5750 case kCondGE:
5751 if (gt_bias) {
5752 __ CuleS(0, rhs, lhs);
5753 } else {
5754 __ ColeS(0, rhs, lhs);
5755 }
5756 __ Bc1t(0, label);
5757 break;
5758 default:
5759 LOG(FATAL) << "Unexpected non-floating-point condition";
5760 UNREACHABLE();
5761 }
5762 }
5763 } else {
5764 DCHECK_EQ(type, DataType::Type::kFloat64);
5765 if (isR6) {
5766 switch (cond) {
5767 case kCondEQ:
5768 __ CmpEqD(FTMP, lhs, rhs);
5769 __ Bc1nez(FTMP, label);
5770 break;
5771 case kCondNE:
5772 __ CmpEqD(FTMP, lhs, rhs);
5773 __ Bc1eqz(FTMP, label);
5774 break;
5775 case kCondLT:
5776 if (gt_bias) {
5777 __ CmpLtD(FTMP, lhs, rhs);
5778 } else {
5779 __ CmpUltD(FTMP, lhs, rhs);
5780 }
5781 __ Bc1nez(FTMP, label);
5782 break;
5783 case kCondLE:
5784 if (gt_bias) {
5785 __ CmpLeD(FTMP, lhs, rhs);
5786 } else {
5787 __ CmpUleD(FTMP, lhs, rhs);
5788 }
5789 __ Bc1nez(FTMP, label);
5790 break;
5791 case kCondGT:
5792 if (gt_bias) {
5793 __ CmpUltD(FTMP, rhs, lhs);
5794 } else {
5795 __ CmpLtD(FTMP, rhs, lhs);
5796 }
5797 __ Bc1nez(FTMP, label);
5798 break;
5799 case kCondGE:
5800 if (gt_bias) {
5801 __ CmpUleD(FTMP, rhs, lhs);
5802 } else {
5803 __ CmpLeD(FTMP, rhs, lhs);
5804 }
5805 __ Bc1nez(FTMP, label);
5806 break;
5807 default:
5808 LOG(FATAL) << "Unexpected non-floating-point condition";
5809 UNREACHABLE();
5810 }
5811 } else {
5812 switch (cond) {
5813 case kCondEQ:
5814 __ CeqD(0, lhs, rhs);
5815 __ Bc1t(0, label);
5816 break;
5817 case kCondNE:
5818 __ CeqD(0, lhs, rhs);
5819 __ Bc1f(0, label);
5820 break;
5821 case kCondLT:
5822 if (gt_bias) {
5823 __ ColtD(0, lhs, rhs);
5824 } else {
5825 __ CultD(0, lhs, rhs);
5826 }
5827 __ Bc1t(0, label);
5828 break;
5829 case kCondLE:
5830 if (gt_bias) {
5831 __ ColeD(0, lhs, rhs);
5832 } else {
5833 __ CuleD(0, lhs, rhs);
5834 }
5835 __ Bc1t(0, label);
5836 break;
5837 case kCondGT:
5838 if (gt_bias) {
5839 __ CultD(0, rhs, lhs);
5840 } else {
5841 __ ColtD(0, rhs, lhs);
5842 }
5843 __ Bc1t(0, label);
5844 break;
5845 case kCondGE:
5846 if (gt_bias) {
5847 __ CuleD(0, rhs, lhs);
5848 } else {
5849 __ ColeD(0, rhs, lhs);
5850 }
5851 __ Bc1t(0, label);
5852 break;
5853 default:
5854 LOG(FATAL) << "Unexpected non-floating-point condition";
5855 UNREACHABLE();
5856 }
5857 }
5858 }
5859 }
5860
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,MipsLabel * true_target,MipsLabel * false_target)5861 void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction,
5862 size_t condition_input_index,
5863 MipsLabel* true_target,
5864 MipsLabel* false_target) {
5865 HInstruction* cond = instruction->InputAt(condition_input_index);
5866
5867 if (true_target == nullptr && false_target == nullptr) {
5868 // Nothing to do. The code always falls through.
5869 return;
5870 } else if (cond->IsIntConstant()) {
5871 // Constant condition, statically compared against "true" (integer value 1).
5872 if (cond->AsIntConstant()->IsTrue()) {
5873 if (true_target != nullptr) {
5874 __ B(true_target);
5875 }
5876 } else {
5877 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
5878 if (false_target != nullptr) {
5879 __ B(false_target);
5880 }
5881 }
5882 return;
5883 }
5884
5885 // The following code generates these patterns:
5886 // (1) true_target == nullptr && false_target != nullptr
5887 // - opposite condition true => branch to false_target
5888 // (2) true_target != nullptr && false_target == nullptr
5889 // - condition true => branch to true_target
5890 // (3) true_target != nullptr && false_target != nullptr
5891 // - condition true => branch to true_target
5892 // - branch to false_target
5893 if (IsBooleanValueOrMaterializedCondition(cond)) {
5894 // The condition instruction has been materialized, compare the output to 0.
5895 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
5896 DCHECK(cond_val.IsRegister());
5897 if (true_target == nullptr) {
5898 __ Beqz(cond_val.AsRegister<Register>(), false_target);
5899 } else {
5900 __ Bnez(cond_val.AsRegister<Register>(), true_target);
5901 }
5902 } else {
5903 // The condition instruction has not been materialized, use its inputs as
5904 // the comparison and its condition as the branch condition.
5905 HCondition* condition = cond->AsCondition();
5906 DataType::Type type = condition->InputAt(0)->GetType();
5907 LocationSummary* locations = cond->GetLocations();
5908 IfCondition if_cond = condition->GetCondition();
5909 MipsLabel* branch_target = true_target;
5910
5911 if (true_target == nullptr) {
5912 if_cond = condition->GetOppositeCondition();
5913 branch_target = false_target;
5914 }
5915
5916 switch (type) {
5917 default:
5918 GenerateIntCompareAndBranch(if_cond, locations, branch_target);
5919 break;
5920 case DataType::Type::kInt64:
5921 GenerateLongCompareAndBranch(if_cond, locations, branch_target);
5922 break;
5923 case DataType::Type::kFloat32:
5924 case DataType::Type::kFloat64:
5925 GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target);
5926 break;
5927 }
5928 }
5929
5930 // If neither branch falls through (case 3), the conditional branch to `true_target`
5931 // was already emitted (case 2) and we need to emit a jump to `false_target`.
5932 if (true_target != nullptr && false_target != nullptr) {
5933 __ B(false_target);
5934 }
5935 }
5936
VisitIf(HIf * if_instr)5937 void LocationsBuilderMIPS::VisitIf(HIf* if_instr) {
5938 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
5939 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
5940 locations->SetInAt(0, Location::RequiresRegister());
5941 }
5942 }
5943
VisitIf(HIf * if_instr)5944 void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) {
5945 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
5946 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
5947 MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
5948 nullptr : codegen_->GetLabelOf(true_successor);
5949 MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
5950 nullptr : codegen_->GetLabelOf(false_successor);
5951 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
5952 }
5953
VisitDeoptimize(HDeoptimize * deoptimize)5954 void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
5955 LocationSummary* locations = new (GetGraph()->GetAllocator())
5956 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
5957 InvokeRuntimeCallingConvention calling_convention;
5958 RegisterSet caller_saves = RegisterSet::Empty();
5959 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
5960 locations->SetCustomSlowPathCallerSaves(caller_saves);
5961 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
5962 locations->SetInAt(0, Location::RequiresRegister());
5963 }
5964 }
5965
VisitDeoptimize(HDeoptimize * deoptimize)5966 void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
5967 SlowPathCodeMIPS* slow_path =
5968 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize);
5969 GenerateTestAndBranch(deoptimize,
5970 /* condition_input_index= */ 0,
5971 slow_path->GetEntryLabel(),
5972 /* false_target= */ nullptr);
5973 }
5974
5975 // This function returns true if a conditional move can be generated for HSelect.
5976 // Otherwise it returns false and HSelect must be implemented in terms of conditonal
5977 // branches and regular moves.
5978 //
5979 // If `locations_to_set` isn't nullptr, its inputs and outputs are set for HSelect.
5980 //
5981 // While determining feasibility of a conditional move and setting inputs/outputs
5982 // are two distinct tasks, this function does both because they share quite a bit
5983 // of common logic.
CanMoveConditionally(HSelect * select,bool is_r6,LocationSummary * locations_to_set)5984 static bool CanMoveConditionally(HSelect* select, bool is_r6, LocationSummary* locations_to_set) {
5985 bool materialized = IsBooleanValueOrMaterializedCondition(select->GetCondition());
5986 HInstruction* cond = select->InputAt(/* i= */ 2);
5987 HCondition* condition = cond->AsCondition();
5988
5989 DataType::Type cond_type =
5990 materialized ? DataType::Type::kInt32 : condition->InputAt(0)->GetType();
5991 DataType::Type dst_type = select->GetType();
5992
5993 HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
5994 HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
5995 bool is_true_value_zero_constant =
5996 (cst_true_value != nullptr && cst_true_value->IsZeroBitPattern());
5997 bool is_false_value_zero_constant =
5998 (cst_false_value != nullptr && cst_false_value->IsZeroBitPattern());
5999
6000 bool can_move_conditionally = false;
6001 bool use_const_for_false_in = false;
6002 bool use_const_for_true_in = false;
6003
6004 if (!cond->IsConstant()) {
6005 switch (cond_type) {
6006 default:
6007 switch (dst_type) {
6008 default:
6009 // Moving int on int condition.
6010 if (is_r6) {
6011 if (is_true_value_zero_constant) {
6012 // seleqz out_reg, false_reg, cond_reg
6013 can_move_conditionally = true;
6014 use_const_for_true_in = true;
6015 } else if (is_false_value_zero_constant) {
6016 // selnez out_reg, true_reg, cond_reg
6017 can_move_conditionally = true;
6018 use_const_for_false_in = true;
6019 } else if (materialized) {
6020 // Not materializing unmaterialized int conditions
6021 // to keep the instruction count low.
6022 // selnez AT, true_reg, cond_reg
6023 // seleqz TMP, false_reg, cond_reg
6024 // or out_reg, AT, TMP
6025 can_move_conditionally = true;
6026 }
6027 } else {
6028 // movn out_reg, true_reg/ZERO, cond_reg
6029 can_move_conditionally = true;
6030 use_const_for_true_in = is_true_value_zero_constant;
6031 }
6032 break;
6033 case DataType::Type::kInt64:
6034 // Moving long on int condition.
6035 if (is_r6) {
6036 if (is_true_value_zero_constant) {
6037 // seleqz out_reg_lo, false_reg_lo, cond_reg
6038 // seleqz out_reg_hi, false_reg_hi, cond_reg
6039 can_move_conditionally = true;
6040 use_const_for_true_in = true;
6041 } else if (is_false_value_zero_constant) {
6042 // selnez out_reg_lo, true_reg_lo, cond_reg
6043 // selnez out_reg_hi, true_reg_hi, cond_reg
6044 can_move_conditionally = true;
6045 use_const_for_false_in = true;
6046 }
6047 // Other long conditional moves would generate 6+ instructions,
6048 // which is too many.
6049 } else {
6050 // movn out_reg_lo, true_reg_lo/ZERO, cond_reg
6051 // movn out_reg_hi, true_reg_hi/ZERO, cond_reg
6052 can_move_conditionally = true;
6053 use_const_for_true_in = is_true_value_zero_constant;
6054 }
6055 break;
6056 case DataType::Type::kFloat32:
6057 case DataType::Type::kFloat64:
6058 // Moving float/double on int condition.
6059 if (is_r6) {
6060 if (materialized) {
6061 // Not materializing unmaterialized int conditions
6062 // to keep the instruction count low.
6063 can_move_conditionally = true;
6064 if (is_true_value_zero_constant) {
6065 // sltu TMP, ZERO, cond_reg
6066 // mtc1 TMP, temp_cond_reg
6067 // seleqz.fmt out_reg, false_reg, temp_cond_reg
6068 use_const_for_true_in = true;
6069 } else if (is_false_value_zero_constant) {
6070 // sltu TMP, ZERO, cond_reg
6071 // mtc1 TMP, temp_cond_reg
6072 // selnez.fmt out_reg, true_reg, temp_cond_reg
6073 use_const_for_false_in = true;
6074 } else {
6075 // sltu TMP, ZERO, cond_reg
6076 // mtc1 TMP, temp_cond_reg
6077 // sel.fmt temp_cond_reg, false_reg, true_reg
6078 // mov.fmt out_reg, temp_cond_reg
6079 }
6080 }
6081 } else {
6082 // movn.fmt out_reg, true_reg, cond_reg
6083 can_move_conditionally = true;
6084 }
6085 break;
6086 }
6087 break;
6088 case DataType::Type::kInt64:
6089 // We don't materialize long comparison now
6090 // and use conditional branches instead.
6091 break;
6092 case DataType::Type::kFloat32:
6093 case DataType::Type::kFloat64:
6094 switch (dst_type) {
6095 default:
6096 // Moving int on float/double condition.
6097 if (is_r6) {
6098 if (is_true_value_zero_constant) {
6099 // mfc1 TMP, temp_cond_reg
6100 // seleqz out_reg, false_reg, TMP
6101 can_move_conditionally = true;
6102 use_const_for_true_in = true;
6103 } else if (is_false_value_zero_constant) {
6104 // mfc1 TMP, temp_cond_reg
6105 // selnez out_reg, true_reg, TMP
6106 can_move_conditionally = true;
6107 use_const_for_false_in = true;
6108 } else {
6109 // mfc1 TMP, temp_cond_reg
6110 // selnez AT, true_reg, TMP
6111 // seleqz TMP, false_reg, TMP
6112 // or out_reg, AT, TMP
6113 can_move_conditionally = true;
6114 }
6115 } else {
6116 // movt out_reg, true_reg/ZERO, cc
6117 can_move_conditionally = true;
6118 use_const_for_true_in = is_true_value_zero_constant;
6119 }
6120 break;
6121 case DataType::Type::kInt64:
6122 // Moving long on float/double condition.
6123 if (is_r6) {
6124 if (is_true_value_zero_constant) {
6125 // mfc1 TMP, temp_cond_reg
6126 // seleqz out_reg_lo, false_reg_lo, TMP
6127 // seleqz out_reg_hi, false_reg_hi, TMP
6128 can_move_conditionally = true;
6129 use_const_for_true_in = true;
6130 } else if (is_false_value_zero_constant) {
6131 // mfc1 TMP, temp_cond_reg
6132 // selnez out_reg_lo, true_reg_lo, TMP
6133 // selnez out_reg_hi, true_reg_hi, TMP
6134 can_move_conditionally = true;
6135 use_const_for_false_in = true;
6136 }
6137 // Other long conditional moves would generate 6+ instructions,
6138 // which is too many.
6139 } else {
6140 // movt out_reg_lo, true_reg_lo/ZERO, cc
6141 // movt out_reg_hi, true_reg_hi/ZERO, cc
6142 can_move_conditionally = true;
6143 use_const_for_true_in = is_true_value_zero_constant;
6144 }
6145 break;
6146 case DataType::Type::kFloat32:
6147 case DataType::Type::kFloat64:
6148 // Moving float/double on float/double condition.
6149 if (is_r6) {
6150 can_move_conditionally = true;
6151 if (is_true_value_zero_constant) {
6152 // seleqz.fmt out_reg, false_reg, temp_cond_reg
6153 use_const_for_true_in = true;
6154 } else if (is_false_value_zero_constant) {
6155 // selnez.fmt out_reg, true_reg, temp_cond_reg
6156 use_const_for_false_in = true;
6157 } else {
6158 // sel.fmt temp_cond_reg, false_reg, true_reg
6159 // mov.fmt out_reg, temp_cond_reg
6160 }
6161 } else {
6162 // movt.fmt out_reg, true_reg, cc
6163 can_move_conditionally = true;
6164 }
6165 break;
6166 }
6167 break;
6168 }
6169 }
6170
6171 if (can_move_conditionally) {
6172 DCHECK(!use_const_for_false_in || !use_const_for_true_in);
6173 } else {
6174 DCHECK(!use_const_for_false_in);
6175 DCHECK(!use_const_for_true_in);
6176 }
6177
6178 if (locations_to_set != nullptr) {
6179 if (use_const_for_false_in) {
6180 locations_to_set->SetInAt(0, Location::ConstantLocation(cst_false_value));
6181 } else {
6182 locations_to_set->SetInAt(0,
6183 DataType::IsFloatingPointType(dst_type)
6184 ? Location::RequiresFpuRegister()
6185 : Location::RequiresRegister());
6186 }
6187 if (use_const_for_true_in) {
6188 locations_to_set->SetInAt(1, Location::ConstantLocation(cst_true_value));
6189 } else {
6190 locations_to_set->SetInAt(1,
6191 DataType::IsFloatingPointType(dst_type)
6192 ? Location::RequiresFpuRegister()
6193 : Location::RequiresRegister());
6194 }
6195 if (materialized) {
6196 locations_to_set->SetInAt(2, Location::RequiresRegister());
6197 }
6198 // On R6 we don't require the output to be the same as the
6199 // first input for conditional moves unlike on R2.
6200 bool is_out_same_as_first_in = !can_move_conditionally || !is_r6;
6201 if (is_out_same_as_first_in) {
6202 locations_to_set->SetOut(Location::SameAsFirstInput());
6203 } else {
6204 locations_to_set->SetOut(DataType::IsFloatingPointType(dst_type)
6205 ? Location::RequiresFpuRegister()
6206 : Location::RequiresRegister());
6207 }
6208 }
6209
6210 return can_move_conditionally;
6211 }
6212
GenConditionalMoveR2(HSelect * select)6213 void InstructionCodeGeneratorMIPS::GenConditionalMoveR2(HSelect* select) {
6214 LocationSummary* locations = select->GetLocations();
6215 Location dst = locations->Out();
6216 Location src = locations->InAt(1);
6217 Register src_reg = ZERO;
6218 Register src_reg_high = ZERO;
6219 HInstruction* cond = select->InputAt(/* i= */ 2);
6220 Register cond_reg = TMP;
6221 int cond_cc = 0;
6222 DataType::Type cond_type = DataType::Type::kInt32;
6223 bool cond_inverted = false;
6224 DataType::Type dst_type = select->GetType();
6225
6226 if (IsBooleanValueOrMaterializedCondition(cond)) {
6227 cond_reg = locations->InAt(/* at= */ 2).AsRegister<Register>();
6228 } else {
6229 HCondition* condition = cond->AsCondition();
6230 LocationSummary* cond_locations = cond->GetLocations();
6231 IfCondition if_cond = condition->GetCondition();
6232 cond_type = condition->InputAt(0)->GetType();
6233 switch (cond_type) {
6234 default:
6235 DCHECK_NE(cond_type, DataType::Type::kInt64);
6236 cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
6237 break;
6238 case DataType::Type::kFloat32:
6239 case DataType::Type::kFloat64:
6240 cond_inverted = MaterializeFpCompareR2(if_cond,
6241 condition->IsGtBias(),
6242 cond_type,
6243 cond_locations,
6244 cond_cc);
6245 break;
6246 }
6247 }
6248
6249 DCHECK(dst.Equals(locations->InAt(0)));
6250 if (src.IsRegister()) {
6251 src_reg = src.AsRegister<Register>();
6252 } else if (src.IsRegisterPair()) {
6253 src_reg = src.AsRegisterPairLow<Register>();
6254 src_reg_high = src.AsRegisterPairHigh<Register>();
6255 } else if (src.IsConstant()) {
6256 DCHECK(src.GetConstant()->IsZeroBitPattern());
6257 }
6258
6259 switch (cond_type) {
6260 default:
6261 switch (dst_type) {
6262 default:
6263 if (cond_inverted) {
6264 __ Movz(dst.AsRegister<Register>(), src_reg, cond_reg);
6265 } else {
6266 __ Movn(dst.AsRegister<Register>(), src_reg, cond_reg);
6267 }
6268 break;
6269 case DataType::Type::kInt64:
6270 if (cond_inverted) {
6271 __ Movz(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
6272 __ Movz(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
6273 } else {
6274 __ Movn(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
6275 __ Movn(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
6276 }
6277 break;
6278 case DataType::Type::kFloat32:
6279 if (cond_inverted) {
6280 __ MovzS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
6281 } else {
6282 __ MovnS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
6283 }
6284 break;
6285 case DataType::Type::kFloat64:
6286 if (cond_inverted) {
6287 __ MovzD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
6288 } else {
6289 __ MovnD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
6290 }
6291 break;
6292 }
6293 break;
6294 case DataType::Type::kInt64:
6295 LOG(FATAL) << "Unreachable";
6296 UNREACHABLE();
6297 case DataType::Type::kFloat32:
6298 case DataType::Type::kFloat64:
6299 switch (dst_type) {
6300 default:
6301 if (cond_inverted) {
6302 __ Movf(dst.AsRegister<Register>(), src_reg, cond_cc);
6303 } else {
6304 __ Movt(dst.AsRegister<Register>(), src_reg, cond_cc);
6305 }
6306 break;
6307 case DataType::Type::kInt64:
6308 if (cond_inverted) {
6309 __ Movf(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
6310 __ Movf(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
6311 } else {
6312 __ Movt(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
6313 __ Movt(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
6314 }
6315 break;
6316 case DataType::Type::kFloat32:
6317 if (cond_inverted) {
6318 __ MovfS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
6319 } else {
6320 __ MovtS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
6321 }
6322 break;
6323 case DataType::Type::kFloat64:
6324 if (cond_inverted) {
6325 __ MovfD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
6326 } else {
6327 __ MovtD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
6328 }
6329 break;
6330 }
6331 break;
6332 }
6333 }
6334
GenConditionalMoveR6(HSelect * select)6335 void InstructionCodeGeneratorMIPS::GenConditionalMoveR6(HSelect* select) {
6336 LocationSummary* locations = select->GetLocations();
6337 Location dst = locations->Out();
6338 Location false_src = locations->InAt(0);
6339 Location true_src = locations->InAt(1);
6340 HInstruction* cond = select->InputAt(/* i= */ 2);
6341 Register cond_reg = TMP;
6342 FRegister fcond_reg = FTMP;
6343 DataType::Type cond_type = DataType::Type::kInt32;
6344 bool cond_inverted = false;
6345 DataType::Type dst_type = select->GetType();
6346
6347 if (IsBooleanValueOrMaterializedCondition(cond)) {
6348 cond_reg = locations->InAt(/* at= */ 2).AsRegister<Register>();
6349 } else {
6350 HCondition* condition = cond->AsCondition();
6351 LocationSummary* cond_locations = cond->GetLocations();
6352 IfCondition if_cond = condition->GetCondition();
6353 cond_type = condition->InputAt(0)->GetType();
6354 switch (cond_type) {
6355 default:
6356 DCHECK_NE(cond_type, DataType::Type::kInt64);
6357 cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
6358 break;
6359 case DataType::Type::kFloat32:
6360 case DataType::Type::kFloat64:
6361 cond_inverted = MaterializeFpCompareR6(if_cond,
6362 condition->IsGtBias(),
6363 cond_type,
6364 cond_locations,
6365 fcond_reg);
6366 break;
6367 }
6368 }
6369
6370 if (true_src.IsConstant()) {
6371 DCHECK(true_src.GetConstant()->IsZeroBitPattern());
6372 }
6373 if (false_src.IsConstant()) {
6374 DCHECK(false_src.GetConstant()->IsZeroBitPattern());
6375 }
6376
6377 switch (dst_type) {
6378 default:
6379 if (DataType::IsFloatingPointType(cond_type)) {
6380 __ Mfc1(cond_reg, fcond_reg);
6381 }
6382 if (true_src.IsConstant()) {
6383 if (cond_inverted) {
6384 __ Selnez(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
6385 } else {
6386 __ Seleqz(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
6387 }
6388 } else if (false_src.IsConstant()) {
6389 if (cond_inverted) {
6390 __ Seleqz(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
6391 } else {
6392 __ Selnez(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
6393 }
6394 } else {
6395 DCHECK_NE(cond_reg, AT);
6396 if (cond_inverted) {
6397 __ Seleqz(AT, true_src.AsRegister<Register>(), cond_reg);
6398 __ Selnez(TMP, false_src.AsRegister<Register>(), cond_reg);
6399 } else {
6400 __ Selnez(AT, true_src.AsRegister<Register>(), cond_reg);
6401 __ Seleqz(TMP, false_src.AsRegister<Register>(), cond_reg);
6402 }
6403 __ Or(dst.AsRegister<Register>(), AT, TMP);
6404 }
6405 break;
6406 case DataType::Type::kInt64: {
6407 if (DataType::IsFloatingPointType(cond_type)) {
6408 __ Mfc1(cond_reg, fcond_reg);
6409 }
6410 Register dst_lo = dst.AsRegisterPairLow<Register>();
6411 Register dst_hi = dst.AsRegisterPairHigh<Register>();
6412 if (true_src.IsConstant()) {
6413 Register src_lo = false_src.AsRegisterPairLow<Register>();
6414 Register src_hi = false_src.AsRegisterPairHigh<Register>();
6415 if (cond_inverted) {
6416 __ Selnez(dst_lo, src_lo, cond_reg);
6417 __ Selnez(dst_hi, src_hi, cond_reg);
6418 } else {
6419 __ Seleqz(dst_lo, src_lo, cond_reg);
6420 __ Seleqz(dst_hi, src_hi, cond_reg);
6421 }
6422 } else {
6423 DCHECK(false_src.IsConstant());
6424 Register src_lo = true_src.AsRegisterPairLow<Register>();
6425 Register src_hi = true_src.AsRegisterPairHigh<Register>();
6426 if (cond_inverted) {
6427 __ Seleqz(dst_lo, src_lo, cond_reg);
6428 __ Seleqz(dst_hi, src_hi, cond_reg);
6429 } else {
6430 __ Selnez(dst_lo, src_lo, cond_reg);
6431 __ Selnez(dst_hi, src_hi, cond_reg);
6432 }
6433 }
6434 break;
6435 }
6436 case DataType::Type::kFloat32: {
6437 if (!DataType::IsFloatingPointType(cond_type)) {
6438 // sel*.fmt tests bit 0 of the condition register, account for that.
6439 __ Sltu(TMP, ZERO, cond_reg);
6440 __ Mtc1(TMP, fcond_reg);
6441 }
6442 FRegister dst_reg = dst.AsFpuRegister<FRegister>();
6443 if (true_src.IsConstant()) {
6444 FRegister src_reg = false_src.AsFpuRegister<FRegister>();
6445 if (cond_inverted) {
6446 __ SelnezS(dst_reg, src_reg, fcond_reg);
6447 } else {
6448 __ SeleqzS(dst_reg, src_reg, fcond_reg);
6449 }
6450 } else if (false_src.IsConstant()) {
6451 FRegister src_reg = true_src.AsFpuRegister<FRegister>();
6452 if (cond_inverted) {
6453 __ SeleqzS(dst_reg, src_reg, fcond_reg);
6454 } else {
6455 __ SelnezS(dst_reg, src_reg, fcond_reg);
6456 }
6457 } else {
6458 if (cond_inverted) {
6459 __ SelS(fcond_reg,
6460 true_src.AsFpuRegister<FRegister>(),
6461 false_src.AsFpuRegister<FRegister>());
6462 } else {
6463 __ SelS(fcond_reg,
6464 false_src.AsFpuRegister<FRegister>(),
6465 true_src.AsFpuRegister<FRegister>());
6466 }
6467 __ MovS(dst_reg, fcond_reg);
6468 }
6469 break;
6470 }
6471 case DataType::Type::kFloat64: {
6472 if (!DataType::IsFloatingPointType(cond_type)) {
6473 // sel*.fmt tests bit 0 of the condition register, account for that.
6474 __ Sltu(TMP, ZERO, cond_reg);
6475 __ Mtc1(TMP, fcond_reg);
6476 }
6477 FRegister dst_reg = dst.AsFpuRegister<FRegister>();
6478 if (true_src.IsConstant()) {
6479 FRegister src_reg = false_src.AsFpuRegister<FRegister>();
6480 if (cond_inverted) {
6481 __ SelnezD(dst_reg, src_reg, fcond_reg);
6482 } else {
6483 __ SeleqzD(dst_reg, src_reg, fcond_reg);
6484 }
6485 } else if (false_src.IsConstant()) {
6486 FRegister src_reg = true_src.AsFpuRegister<FRegister>();
6487 if (cond_inverted) {
6488 __ SeleqzD(dst_reg, src_reg, fcond_reg);
6489 } else {
6490 __ SelnezD(dst_reg, src_reg, fcond_reg);
6491 }
6492 } else {
6493 if (cond_inverted) {
6494 __ SelD(fcond_reg,
6495 true_src.AsFpuRegister<FRegister>(),
6496 false_src.AsFpuRegister<FRegister>());
6497 } else {
6498 __ SelD(fcond_reg,
6499 false_src.AsFpuRegister<FRegister>(),
6500 true_src.AsFpuRegister<FRegister>());
6501 }
6502 __ MovD(dst_reg, fcond_reg);
6503 }
6504 break;
6505 }
6506 }
6507 }
6508
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)6509 void LocationsBuilderMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
6510 LocationSummary* locations = new (GetGraph()->GetAllocator())
6511 LocationSummary(flag, LocationSummary::kNoCall);
6512 locations->SetOut(Location::RequiresRegister());
6513 }
6514
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)6515 void InstructionCodeGeneratorMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
6516 __ LoadFromOffset(kLoadWord,
6517 flag->GetLocations()->Out().AsRegister<Register>(),
6518 SP,
6519 codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
6520 }
6521
VisitSelect(HSelect * select)6522 void LocationsBuilderMIPS::VisitSelect(HSelect* select) {
6523 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
6524 CanMoveConditionally(select, codegen_->GetInstructionSetFeatures().IsR6(), locations);
6525 }
6526
VisitSelect(HSelect * select)6527 void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) {
6528 bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
6529 if (CanMoveConditionally(select, is_r6, /* locations_to_set= */ nullptr)) {
6530 if (is_r6) {
6531 GenConditionalMoveR6(select);
6532 } else {
6533 GenConditionalMoveR2(select);
6534 }
6535 } else {
6536 LocationSummary* locations = select->GetLocations();
6537 MipsLabel false_target;
6538 GenerateTestAndBranch(select,
6539 /* condition_input_index= */ 2,
6540 /* true_target= */ nullptr,
6541 &false_target);
6542 codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
6543 __ Bind(&false_target);
6544 }
6545 }
6546
VisitNativeDebugInfo(HNativeDebugInfo * info)6547 void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) {
6548 new (GetGraph()->GetAllocator()) LocationSummary(info);
6549 }
6550
VisitNativeDebugInfo(HNativeDebugInfo *)6551 void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) {
6552 // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
6553 }
6554
GenerateNop()6555 void CodeGeneratorMIPS::GenerateNop() {
6556 __ Nop();
6557 }
6558
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)6559 void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
6560 DataType::Type field_type = field_info.GetFieldType();
6561 bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64);
6562 bool generate_volatile = field_info.IsVolatile() && is_wide;
6563 bool object_field_get_with_read_barrier =
6564 kEmitCompilerReadBarrier && (field_type == DataType::Type::kReference);
6565 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6566 instruction,
6567 generate_volatile
6568 ? LocationSummary::kCallOnMainOnly
6569 : (object_field_get_with_read_barrier
6570 ? LocationSummary::kCallOnSlowPath
6571 : LocationSummary::kNoCall));
6572
6573 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
6574 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
6575 }
6576 locations->SetInAt(0, Location::RequiresRegister());
6577 if (generate_volatile) {
6578 InvokeRuntimeCallingConvention calling_convention;
6579 // need A0 to hold base + offset
6580 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6581 if (field_type == DataType::Type::kInt64) {
6582 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt64));
6583 } else {
6584 // Use Location::Any() to prevent situations when running out of available fp registers.
6585 locations->SetOut(Location::Any());
6586 // Need some temp core regs since FP results are returned in core registers
6587 Location reg = calling_convention.GetReturnLocation(DataType::Type::kInt64);
6588 locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>()));
6589 locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>()));
6590 }
6591 } else {
6592 if (DataType::IsFloatingPointType(instruction->GetType())) {
6593 locations->SetOut(Location::RequiresFpuRegister());
6594 } else {
6595 // The output overlaps in the case of an object field get with
6596 // read barriers enabled: we do not want the move to overwrite the
6597 // object's location, as we need it to emit the read barrier.
6598 locations->SetOut(Location::RequiresRegister(),
6599 object_field_get_with_read_barrier
6600 ? Location::kOutputOverlap
6601 : Location::kNoOutputOverlap);
6602 }
6603 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
6604 // We need a temporary register for the read barrier marking slow
6605 // path in CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier.
6606 if (!kBakerReadBarrierThunksEnableForFields) {
6607 locations->AddTemp(Location::RequiresRegister());
6608 }
6609 }
6610 }
6611 }
6612
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info,uint32_t dex_pc)6613 void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction,
6614 const FieldInfo& field_info,
6615 uint32_t dex_pc) {
6616 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
6617 DataType::Type type = instruction->GetType();
6618 LocationSummary* locations = instruction->GetLocations();
6619 Location obj_loc = locations->InAt(0);
6620 Register obj = obj_loc.AsRegister<Register>();
6621 Location dst_loc = locations->Out();
6622 LoadOperandType load_type = kLoadUnsignedByte;
6623 bool is_volatile = field_info.IsVolatile();
6624 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
6625 auto null_checker = GetImplicitNullChecker(instruction, codegen_);
6626
6627 switch (type) {
6628 case DataType::Type::kBool:
6629 case DataType::Type::kUint8:
6630 load_type = kLoadUnsignedByte;
6631 break;
6632 case DataType::Type::kInt8:
6633 load_type = kLoadSignedByte;
6634 break;
6635 case DataType::Type::kUint16:
6636 load_type = kLoadUnsignedHalfword;
6637 break;
6638 case DataType::Type::kInt16:
6639 load_type = kLoadSignedHalfword;
6640 break;
6641 case DataType::Type::kInt32:
6642 case DataType::Type::kFloat32:
6643 case DataType::Type::kReference:
6644 load_type = kLoadWord;
6645 break;
6646 case DataType::Type::kInt64:
6647 case DataType::Type::kFloat64:
6648 load_type = kLoadDoubleword;
6649 break;
6650 case DataType::Type::kUint32:
6651 case DataType::Type::kUint64:
6652 case DataType::Type::kVoid:
6653 LOG(FATAL) << "Unreachable type " << type;
6654 UNREACHABLE();
6655 }
6656
6657 if (is_volatile && load_type == kLoadDoubleword) {
6658 InvokeRuntimeCallingConvention calling_convention;
6659 __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
6660 // Do implicit Null check
6661 __ LoadFromOffset(kLoadWord,
6662 ZERO,
6663 locations->GetTemp(0).AsRegister<Register>(),
6664 0,
6665 null_checker);
6666 codegen_->InvokeRuntime(kQuickA64Load, instruction, dex_pc);
6667 CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>();
6668 if (type == DataType::Type::kFloat64) {
6669 // FP results are returned in core registers. Need to move them.
6670 if (dst_loc.IsFpuRegister()) {
6671 __ Mtc1(locations->GetTemp(1).AsRegister<Register>(), dst_loc.AsFpuRegister<FRegister>());
6672 __ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
6673 dst_loc.AsFpuRegister<FRegister>());
6674 } else {
6675 DCHECK(dst_loc.IsDoubleStackSlot());
6676 __ StoreToOffset(kStoreWord,
6677 locations->GetTemp(1).AsRegister<Register>(),
6678 SP,
6679 dst_loc.GetStackIndex());
6680 __ StoreToOffset(kStoreWord,
6681 locations->GetTemp(2).AsRegister<Register>(),
6682 SP,
6683 dst_loc.GetStackIndex() + 4);
6684 }
6685 }
6686 } else {
6687 if (type == DataType::Type::kReference) {
6688 // /* HeapReference<Object> */ dst = *(obj + offset)
6689 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
6690 Location temp_loc =
6691 kBakerReadBarrierThunksEnableForFields ? Location::NoLocation() : locations->GetTemp(0);
6692 // Note that a potential implicit null check is handled in this
6693 // CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier call.
6694 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6695 dst_loc,
6696 obj,
6697 offset,
6698 temp_loc,
6699 /* needs_null_check= */ true);
6700 if (is_volatile) {
6701 GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6702 }
6703 } else {
6704 __ LoadFromOffset(kLoadWord, dst_loc.AsRegister<Register>(), obj, offset, null_checker);
6705 if (is_volatile) {
6706 GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6707 }
6708 // If read barriers are enabled, emit read barriers other than
6709 // Baker's using a slow path (and also unpoison the loaded
6710 // reference, if heap poisoning is enabled).
6711 codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset);
6712 }
6713 } else if (!DataType::IsFloatingPointType(type)) {
6714 Register dst;
6715 if (type == DataType::Type::kInt64) {
6716 DCHECK(dst_loc.IsRegisterPair());
6717 dst = dst_loc.AsRegisterPairLow<Register>();
6718 } else {
6719 DCHECK(dst_loc.IsRegister());
6720 dst = dst_loc.AsRegister<Register>();
6721 }
6722 __ LoadFromOffset(load_type, dst, obj, offset, null_checker);
6723 } else {
6724 DCHECK(dst_loc.IsFpuRegister());
6725 FRegister dst = dst_loc.AsFpuRegister<FRegister>();
6726 if (type == DataType::Type::kFloat32) {
6727 __ LoadSFromOffset(dst, obj, offset, null_checker);
6728 } else {
6729 __ LoadDFromOffset(dst, obj, offset, null_checker);
6730 }
6731 }
6732 }
6733
6734 // Memory barriers, in the case of references, are handled in the
6735 // previous switch statement.
6736 if (is_volatile && (type != DataType::Type::kReference)) {
6737 GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
6738 }
6739 }
6740
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info)6741 void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
6742 DataType::Type field_type = field_info.GetFieldType();
6743 bool is_wide = (field_type == DataType::Type::kInt64) || (field_type == DataType::Type::kFloat64);
6744 bool generate_volatile = field_info.IsVolatile() && is_wide;
6745 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6746 instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall);
6747
6748 locations->SetInAt(0, Location::RequiresRegister());
6749 if (generate_volatile) {
6750 InvokeRuntimeCallingConvention calling_convention;
6751 // need A0 to hold base + offset
6752 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
6753 if (field_type == DataType::Type::kInt64) {
6754 locations->SetInAt(1, Location::RegisterPairLocation(
6755 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
6756 } else {
6757 // Use Location::Any() to prevent situations when running out of available fp registers.
6758 locations->SetInAt(1, Location::Any());
6759 // Pass FP parameters in core registers.
6760 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
6761 locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
6762 }
6763 } else {
6764 if (DataType::IsFloatingPointType(field_type)) {
6765 locations->SetInAt(1, FpuRegisterOrConstantForStore(instruction->InputAt(1)));
6766 } else {
6767 locations->SetInAt(1, RegisterOrZeroConstant(instruction->InputAt(1)));
6768 }
6769 }
6770 }
6771
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,uint32_t dex_pc,bool value_can_be_null)6772 void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction,
6773 const FieldInfo& field_info,
6774 uint32_t dex_pc,
6775 bool value_can_be_null) {
6776 DataType::Type type = field_info.GetFieldType();
6777 LocationSummary* locations = instruction->GetLocations();
6778 Register obj = locations->InAt(0).AsRegister<Register>();
6779 Location value_location = locations->InAt(1);
6780 StoreOperandType store_type = kStoreByte;
6781 bool is_volatile = field_info.IsVolatile();
6782 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
6783 bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1));
6784 auto null_checker = GetImplicitNullChecker(instruction, codegen_);
6785
6786 switch (type) {
6787 case DataType::Type::kBool:
6788 case DataType::Type::kUint8:
6789 case DataType::Type::kInt8:
6790 store_type = kStoreByte;
6791 break;
6792 case DataType::Type::kUint16:
6793 case DataType::Type::kInt16:
6794 store_type = kStoreHalfword;
6795 break;
6796 case DataType::Type::kInt32:
6797 case DataType::Type::kFloat32:
6798 case DataType::Type::kReference:
6799 store_type = kStoreWord;
6800 break;
6801 case DataType::Type::kInt64:
6802 case DataType::Type::kFloat64:
6803 store_type = kStoreDoubleword;
6804 break;
6805 case DataType::Type::kUint32:
6806 case DataType::Type::kUint64:
6807 case DataType::Type::kVoid:
6808 LOG(FATAL) << "Unreachable type " << type;
6809 UNREACHABLE();
6810 }
6811
6812 if (is_volatile) {
6813 GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
6814 }
6815
6816 if (is_volatile && store_type == kStoreDoubleword) {
6817 InvokeRuntimeCallingConvention calling_convention;
6818 __ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
6819 // Do implicit Null check.
6820 __ LoadFromOffset(kLoadWord,
6821 ZERO,
6822 locations->GetTemp(0).AsRegister<Register>(),
6823 0,
6824 null_checker);
6825 if (type == DataType::Type::kFloat64) {
6826 // Pass FP parameters in core registers.
6827 if (value_location.IsFpuRegister()) {
6828 __ Mfc1(locations->GetTemp(1).AsRegister<Register>(),
6829 value_location.AsFpuRegister<FRegister>());
6830 __ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
6831 value_location.AsFpuRegister<FRegister>());
6832 } else if (value_location.IsDoubleStackSlot()) {
6833 __ LoadFromOffset(kLoadWord,
6834 locations->GetTemp(1).AsRegister<Register>(),
6835 SP,
6836 value_location.GetStackIndex());
6837 __ LoadFromOffset(kLoadWord,
6838 locations->GetTemp(2).AsRegister<Register>(),
6839 SP,
6840 value_location.GetStackIndex() + 4);
6841 } else {
6842 DCHECK(value_location.IsConstant());
6843 DCHECK(value_location.GetConstant()->IsDoubleConstant());
6844 int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
6845 __ LoadConst64(locations->GetTemp(2).AsRegister<Register>(),
6846 locations->GetTemp(1).AsRegister<Register>(),
6847 value);
6848 }
6849 }
6850 codegen_->InvokeRuntime(kQuickA64Store, instruction, dex_pc);
6851 CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>();
6852 } else {
6853 if (value_location.IsConstant()) {
6854 int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
6855 __ StoreConstToOffset(store_type, value, obj, offset, TMP, null_checker);
6856 } else if (!DataType::IsFloatingPointType(type)) {
6857 Register src;
6858 if (type == DataType::Type::kInt64) {
6859 src = value_location.AsRegisterPairLow<Register>();
6860 } else {
6861 src = value_location.AsRegister<Register>();
6862 }
6863 if (kPoisonHeapReferences && needs_write_barrier) {
6864 // Note that in the case where `value` is a null reference,
6865 // we do not enter this block, as a null reference does not
6866 // need poisoning.
6867 DCHECK_EQ(type, DataType::Type::kReference);
6868 __ PoisonHeapReference(TMP, src);
6869 __ StoreToOffset(store_type, TMP, obj, offset, null_checker);
6870 } else {
6871 __ StoreToOffset(store_type, src, obj, offset, null_checker);
6872 }
6873 } else {
6874 FRegister src = value_location.AsFpuRegister<FRegister>();
6875 if (type == DataType::Type::kFloat32) {
6876 __ StoreSToOffset(src, obj, offset, null_checker);
6877 } else {
6878 __ StoreDToOffset(src, obj, offset, null_checker);
6879 }
6880 }
6881 }
6882
6883 if (needs_write_barrier) {
6884 Register src = value_location.AsRegister<Register>();
6885 codegen_->MarkGCCard(obj, src, value_can_be_null);
6886 }
6887
6888 if (is_volatile) {
6889 GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
6890 }
6891 }
6892
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6893 void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6894 HandleFieldGet(instruction, instruction->GetFieldInfo());
6895 }
6896
VisitInstanceFieldGet(HInstanceFieldGet * instruction)6897 void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
6898 HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
6899 }
6900
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6901 void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6902 HandleFieldSet(instruction, instruction->GetFieldInfo());
6903 }
6904
VisitInstanceFieldSet(HInstanceFieldSet * instruction)6905 void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
6906 HandleFieldSet(instruction,
6907 instruction->GetFieldInfo(),
6908 instruction->GetDexPc(),
6909 instruction->GetValueCanBeNull());
6910 }
6911
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6912 void InstructionCodeGeneratorMIPS::GenerateReferenceLoadOneRegister(
6913 HInstruction* instruction,
6914 Location out,
6915 uint32_t offset,
6916 Location maybe_temp,
6917 ReadBarrierOption read_barrier_option) {
6918 Register out_reg = out.AsRegister<Register>();
6919 if (read_barrier_option == kWithReadBarrier) {
6920 CHECK(kEmitCompilerReadBarrier);
6921 if (!kUseBakerReadBarrier || !kBakerReadBarrierThunksEnableForFields) {
6922 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6923 }
6924 if (kUseBakerReadBarrier) {
6925 // Load with fast path based Baker's read barrier.
6926 // /* HeapReference<Object> */ out = *(out + offset)
6927 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6928 out,
6929 out_reg,
6930 offset,
6931 maybe_temp,
6932 /* needs_null_check= */ false);
6933 } else {
6934 // Load with slow path based read barrier.
6935 // Save the value of `out` into `maybe_temp` before overwriting it
6936 // in the following move operation, as we will need it for the
6937 // read barrier below.
6938 __ Move(maybe_temp.AsRegister<Register>(), out_reg);
6939 // /* HeapReference<Object> */ out = *(out + offset)
6940 __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6941 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6942 }
6943 } else {
6944 // Plain load with no read barrier.
6945 // /* HeapReference<Object> */ out = *(out + offset)
6946 __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
6947 __ MaybeUnpoisonHeapReference(out_reg);
6948 }
6949 }
6950
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6951 void InstructionCodeGeneratorMIPS::GenerateReferenceLoadTwoRegisters(
6952 HInstruction* instruction,
6953 Location out,
6954 Location obj,
6955 uint32_t offset,
6956 Location maybe_temp,
6957 ReadBarrierOption read_barrier_option) {
6958 Register out_reg = out.AsRegister<Register>();
6959 Register obj_reg = obj.AsRegister<Register>();
6960 if (read_barrier_option == kWithReadBarrier) {
6961 CHECK(kEmitCompilerReadBarrier);
6962 if (kUseBakerReadBarrier) {
6963 if (!kBakerReadBarrierThunksEnableForFields) {
6964 DCHECK(maybe_temp.IsRegister()) << maybe_temp;
6965 }
6966 // Load with fast path based Baker's read barrier.
6967 // /* HeapReference<Object> */ out = *(obj + offset)
6968 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6969 out,
6970 obj_reg,
6971 offset,
6972 maybe_temp,
6973 /* needs_null_check= */ false);
6974 } else {
6975 // Load with slow path based read barrier.
6976 // /* HeapReference<Object> */ out = *(obj + offset)
6977 __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6978 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6979 }
6980 } else {
6981 // Plain load with no read barrier.
6982 // /* HeapReference<Object> */ out = *(obj + offset)
6983 __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
6984 __ MaybeUnpoisonHeapReference(out_reg);
6985 }
6986 }
6987
GetBakerMarkThunkNumber(Register reg)6988 static inline int GetBakerMarkThunkNumber(Register reg) {
6989 static_assert(BAKER_MARK_INTROSPECTION_REGISTER_COUNT == 21, "Expecting equal");
6990 if (reg >= V0 && reg <= T7) { // 14 consequtive regs.
6991 return reg - V0;
6992 } else if (reg >= S2 && reg <= S7) { // 6 consequtive regs.
6993 return 14 + (reg - S2);
6994 } else if (reg == FP) { // One more.
6995 return 20;
6996 }
6997 LOG(FATAL) << "Unexpected register " << reg;
6998 UNREACHABLE();
6999 }
7000
GetBakerMarkFieldArrayThunkDisplacement(Register reg,bool short_offset)7001 static inline int GetBakerMarkFieldArrayThunkDisplacement(Register reg, bool short_offset) {
7002 int num = GetBakerMarkThunkNumber(reg) +
7003 (short_offset ? BAKER_MARK_INTROSPECTION_REGISTER_COUNT : 0);
7004 return num * BAKER_MARK_INTROSPECTION_FIELD_ARRAY_ENTRY_SIZE;
7005 }
7006
GetBakerMarkGcRootThunkDisplacement(Register reg)7007 static inline int GetBakerMarkGcRootThunkDisplacement(Register reg) {
7008 return GetBakerMarkThunkNumber(reg) * BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRY_SIZE +
7009 BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRIES_OFFSET;
7010 }
7011
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,Register obj,uint32_t offset,ReadBarrierOption read_barrier_option,MipsLabel * label_low)7012 void InstructionCodeGeneratorMIPS::GenerateGcRootFieldLoad(HInstruction* instruction,
7013 Location root,
7014 Register obj,
7015 uint32_t offset,
7016 ReadBarrierOption read_barrier_option,
7017 MipsLabel* label_low) {
7018 bool reordering;
7019 if (label_low != nullptr) {
7020 DCHECK_EQ(offset, 0x5678u);
7021 }
7022 Register root_reg = root.AsRegister<Register>();
7023 if (read_barrier_option == kWithReadBarrier) {
7024 DCHECK(kEmitCompilerReadBarrier);
7025 if (kUseBakerReadBarrier) {
7026 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
7027 // Baker's read barrier are used:
7028 if (kBakerReadBarrierThunksEnableForGcRoots) {
7029 // Note that we do not actually check the value of `GetIsGcMarking()`
7030 // to decide whether to mark the loaded GC root or not. Instead, we
7031 // load into `temp` (T9) the read barrier mark introspection entrypoint.
7032 // If `temp` is null, it means that `GetIsGcMarking()` is false, and
7033 // vice versa.
7034 //
7035 // We use thunks for the slow path. That thunk checks the reference
7036 // and jumps to the entrypoint if needed.
7037 //
7038 // temp = Thread::Current()->pReadBarrierMarkReg00
7039 // // AKA &art_quick_read_barrier_mark_introspection.
7040 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
7041 // if (temp != nullptr) {
7042 // temp = &gc_root_thunk<root_reg>
7043 // root = temp(root)
7044 // }
7045
7046 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
7047 const int32_t entry_point_offset =
7048 Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0);
7049 const int thunk_disp = GetBakerMarkGcRootThunkDisplacement(root_reg);
7050 int16_t offset_low = Low16Bits(offset);
7051 int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign
7052 // extension in lw.
7053 bool short_offset = IsInt<16>(static_cast<int32_t>(offset));
7054 Register base = short_offset ? obj : TMP;
7055 // Loading the entrypoint does not require a load acquire since it is only changed when
7056 // threads are suspended or running a checkpoint.
7057 __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
7058 reordering = __ SetReorder(false);
7059 if (!short_offset) {
7060 DCHECK(!label_low);
7061 __ AddUpper(base, obj, offset_high);
7062 }
7063 MipsLabel skip_call;
7064 __ Beqz(T9, &skip_call, /* is_bare= */ true);
7065 if (label_low != nullptr) {
7066 DCHECK(short_offset);
7067 __ Bind(label_low);
7068 }
7069 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
7070 __ LoadFromOffset(kLoadWord, root_reg, base, offset_low); // Single instruction
7071 // in delay slot.
7072 if (isR6) {
7073 __ Jialc(T9, thunk_disp);
7074 } else {
7075 __ Addiu(T9, T9, thunk_disp);
7076 __ Jalr(T9);
7077 __ Nop();
7078 }
7079 __ Bind(&skip_call);
7080 __ SetReorder(reordering);
7081 } else {
7082 // Note that we do not actually check the value of `GetIsGcMarking()`
7083 // to decide whether to mark the loaded GC root or not. Instead, we
7084 // load into `temp` (T9) the read barrier mark entry point corresponding
7085 // to register `root`. If `temp` is null, it means that `GetIsGcMarking()`
7086 // is false, and vice versa.
7087 //
7088 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
7089 // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
7090 // if (temp != null) {
7091 // root = temp(root)
7092 // }
7093
7094 if (label_low != nullptr) {
7095 reordering = __ SetReorder(false);
7096 __ Bind(label_low);
7097 }
7098 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
7099 __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
7100 if (label_low != nullptr) {
7101 __ SetReorder(reordering);
7102 }
7103 static_assert(
7104 sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
7105 "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
7106 "have different sizes.");
7107 static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
7108 "art::mirror::CompressedReference<mirror::Object> and int32_t "
7109 "have different sizes.");
7110
7111 // Slow path marking the GC root `root`.
7112 Location temp = Location::RegisterLocation(T9);
7113 SlowPathCodeMIPS* slow_path =
7114 new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS(
7115 instruction,
7116 root,
7117 /*entrypoint*/ temp);
7118 codegen_->AddSlowPath(slow_path);
7119
7120 const int32_t entry_point_offset =
7121 Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(root.reg() - 1);
7122 // Loading the entrypoint does not require a load acquire since it is only changed when
7123 // threads are suspended or running a checkpoint.
7124 __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset);
7125 __ Bnez(temp.AsRegister<Register>(), slow_path->GetEntryLabel());
7126 __ Bind(slow_path->GetExitLabel());
7127 }
7128 } else {
7129 if (label_low != nullptr) {
7130 reordering = __ SetReorder(false);
7131 __ Bind(label_low);
7132 }
7133 // GC root loaded through a slow path for read barriers other
7134 // than Baker's.
7135 // /* GcRoot<mirror::Object>* */ root = obj + offset
7136 __ Addiu32(root_reg, obj, offset);
7137 if (label_low != nullptr) {
7138 __ SetReorder(reordering);
7139 }
7140 // /* mirror::Object* */ root = root->Read()
7141 codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
7142 }
7143 } else {
7144 if (label_low != nullptr) {
7145 reordering = __ SetReorder(false);
7146 __ Bind(label_low);
7147 }
7148 // Plain GC root load with no read barrier.
7149 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
7150 __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
7151 // Note that GC roots are not affected by heap poisoning, thus we
7152 // do not have to unpoison `root_reg` here.
7153 if (label_low != nullptr) {
7154 __ SetReorder(reordering);
7155 }
7156 }
7157 }
7158
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location temp,bool needs_null_check)7159 void CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
7160 Location ref,
7161 Register obj,
7162 uint32_t offset,
7163 Location temp,
7164 bool needs_null_check) {
7165 DCHECK(kEmitCompilerReadBarrier);
7166 DCHECK(kUseBakerReadBarrier);
7167
7168 if (kBakerReadBarrierThunksEnableForFields) {
7169 // Note that we do not actually check the value of `GetIsGcMarking()`
7170 // to decide whether to mark the loaded reference or not. Instead, we
7171 // load into `temp` (T9) the read barrier mark introspection entrypoint.
7172 // If `temp` is null, it means that `GetIsGcMarking()` is false, and
7173 // vice versa.
7174 //
7175 // We use thunks for the slow path. That thunk checks the reference
7176 // and jumps to the entrypoint if needed. If the holder is not gray,
7177 // it issues a load-load memory barrier and returns to the original
7178 // reference load.
7179 //
7180 // temp = Thread::Current()->pReadBarrierMarkReg00
7181 // // AKA &art_quick_read_barrier_mark_introspection.
7182 // if (temp != nullptr) {
7183 // temp = &field_array_thunk<holder_reg>
7184 // temp()
7185 // }
7186 // not_gray_return_address:
7187 // // If the offset is too large to fit into the lw instruction, we
7188 // // use an adjusted base register (TMP) here. This register
7189 // // receives bits 16 ... 31 of the offset before the thunk invocation
7190 // // and the thunk benefits from it.
7191 // HeapReference<mirror::Object> reference = *(obj+offset); // Original reference load.
7192 // gray_return_address:
7193
7194 DCHECK(temp.IsInvalid());
7195 bool isR6 = GetInstructionSetFeatures().IsR6();
7196 int16_t offset_low = Low16Bits(offset);
7197 int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign extension in lw.
7198 bool short_offset = IsInt<16>(static_cast<int32_t>(offset));
7199 bool reordering = __ SetReorder(false);
7200 const int32_t entry_point_offset =
7201 Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0);
7202 // There may have or may have not been a null check if the field offset is smaller than
7203 // the page size.
7204 // There must've been a null check in case it's actually a load from an array.
7205 // We will, however, perform an explicit null check in the thunk as it's easier to
7206 // do it than not.
7207 if (instruction->IsArrayGet()) {
7208 DCHECK(!needs_null_check);
7209 }
7210 const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, short_offset);
7211 // Loading the entrypoint does not require a load acquire since it is only changed when
7212 // threads are suspended or running a checkpoint.
7213 __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
7214 Register ref_reg = ref.AsRegister<Register>();
7215 Register base = short_offset ? obj : TMP;
7216 MipsLabel skip_call;
7217 if (short_offset) {
7218 if (isR6) {
7219 __ Beqzc(T9, &skip_call, /* is_bare= */ true);
7220 __ Nop(); // In forbidden slot.
7221 __ Jialc(T9, thunk_disp);
7222 } else {
7223 __ Beqz(T9, &skip_call, /* is_bare= */ true);
7224 __ Addiu(T9, T9, thunk_disp); // In delay slot.
7225 __ Jalr(T9);
7226 __ Nop(); // In delay slot.
7227 }
7228 __ Bind(&skip_call);
7229 } else {
7230 if (isR6) {
7231 __ Beqz(T9, &skip_call, /* is_bare= */ true);
7232 __ Aui(base, obj, offset_high); // In delay slot.
7233 __ Jialc(T9, thunk_disp);
7234 __ Bind(&skip_call);
7235 } else {
7236 __ Lui(base, offset_high);
7237 __ Beqz(T9, &skip_call, /* is_bare= */ true);
7238 __ Addiu(T9, T9, thunk_disp); // In delay slot.
7239 __ Jalr(T9);
7240 __ Bind(&skip_call);
7241 __ Addu(base, base, obj); // In delay slot.
7242 }
7243 }
7244 // /* HeapReference<Object> */ ref = *(obj + offset)
7245 __ LoadFromOffset(kLoadWord, ref_reg, base, offset_low); // Single instruction.
7246 if (needs_null_check) {
7247 MaybeRecordImplicitNullCheck(instruction);
7248 }
7249 __ MaybeUnpoisonHeapReference(ref_reg);
7250 __ SetReorder(reordering);
7251 return;
7252 }
7253
7254 // /* HeapReference<Object> */ ref = *(obj + offset)
7255 Location no_index = Location::NoLocation();
7256 ScaleFactor no_scale_factor = TIMES_1;
7257 GenerateReferenceLoadWithBakerReadBarrier(instruction,
7258 ref,
7259 obj,
7260 offset,
7261 no_index,
7262 no_scale_factor,
7263 temp,
7264 needs_null_check);
7265 }
7266
GenerateArrayLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t data_offset,Location index,Location temp,bool needs_null_check)7267 void CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
7268 Location ref,
7269 Register obj,
7270 uint32_t data_offset,
7271 Location index,
7272 Location temp,
7273 bool needs_null_check) {
7274 DCHECK(kEmitCompilerReadBarrier);
7275 DCHECK(kUseBakerReadBarrier);
7276
7277 static_assert(
7278 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
7279 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
7280 ScaleFactor scale_factor = TIMES_4;
7281
7282 if (kBakerReadBarrierThunksEnableForArrays) {
7283 // Note that we do not actually check the value of `GetIsGcMarking()`
7284 // to decide whether to mark the loaded reference or not. Instead, we
7285 // load into `temp` (T9) the read barrier mark introspection entrypoint.
7286 // If `temp` is null, it means that `GetIsGcMarking()` is false, and
7287 // vice versa.
7288 //
7289 // We use thunks for the slow path. That thunk checks the reference
7290 // and jumps to the entrypoint if needed. If the holder is not gray,
7291 // it issues a load-load memory barrier and returns to the original
7292 // reference load.
7293 //
7294 // temp = Thread::Current()->pReadBarrierMarkReg00
7295 // // AKA &art_quick_read_barrier_mark_introspection.
7296 // if (temp != nullptr) {
7297 // temp = &field_array_thunk<holder_reg>
7298 // temp()
7299 // }
7300 // not_gray_return_address:
7301 // // The element address is pre-calculated in the TMP register before the
7302 // // thunk invocation and the thunk benefits from it.
7303 // HeapReference<mirror::Object> reference = data[index]; // Original reference load.
7304 // gray_return_address:
7305
7306 DCHECK(temp.IsInvalid());
7307 DCHECK(index.IsValid());
7308 bool reordering = __ SetReorder(false);
7309 const int32_t entry_point_offset =
7310 Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(0);
7311 // We will not do the explicit null check in the thunk as some form of a null check
7312 // must've been done earlier.
7313 DCHECK(!needs_null_check);
7314 const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, /* short_offset= */ false);
7315 // Loading the entrypoint does not require a load acquire since it is only changed when
7316 // threads are suspended or running a checkpoint.
7317 __ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
7318 Register ref_reg = ref.AsRegister<Register>();
7319 Register index_reg = index.IsRegisterPair()
7320 ? index.AsRegisterPairLow<Register>()
7321 : index.AsRegister<Register>();
7322 MipsLabel skip_call;
7323 if (GetInstructionSetFeatures().IsR6()) {
7324 __ Beqz(T9, &skip_call, /* is_bare= */ true);
7325 __ Lsa(TMP, index_reg, obj, scale_factor); // In delay slot.
7326 __ Jialc(T9, thunk_disp);
7327 __ Bind(&skip_call);
7328 } else {
7329 __ Sll(TMP, index_reg, scale_factor);
7330 __ Beqz(T9, &skip_call, /* is_bare= */ true);
7331 __ Addiu(T9, T9, thunk_disp); // In delay slot.
7332 __ Jalr(T9);
7333 __ Bind(&skip_call);
7334 __ Addu(TMP, TMP, obj); // In delay slot.
7335 }
7336 // /* HeapReference<Object> */ ref = *(obj + data_offset + (index << scale_factor))
7337 DCHECK(IsInt<16>(static_cast<int32_t>(data_offset))) << data_offset;
7338 __ LoadFromOffset(kLoadWord, ref_reg, TMP, data_offset); // Single instruction.
7339 __ MaybeUnpoisonHeapReference(ref_reg);
7340 __ SetReorder(reordering);
7341 return;
7342 }
7343
7344 // /* HeapReference<Object> */ ref =
7345 // *(obj + data_offset + index * sizeof(HeapReference<Object>))
7346 GenerateReferenceLoadWithBakerReadBarrier(instruction,
7347 ref,
7348 obj,
7349 data_offset,
7350 index,
7351 scale_factor,
7352 temp,
7353 needs_null_check);
7354 }
7355
GenerateReferenceLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location index,ScaleFactor scale_factor,Location temp,bool needs_null_check,bool always_update_field)7356 void CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
7357 Location ref,
7358 Register obj,
7359 uint32_t offset,
7360 Location index,
7361 ScaleFactor scale_factor,
7362 Location temp,
7363 bool needs_null_check,
7364 bool always_update_field) {
7365 DCHECK(kEmitCompilerReadBarrier);
7366 DCHECK(kUseBakerReadBarrier);
7367
7368 // In slow path based read barriers, the read barrier call is
7369 // inserted after the original load. However, in fast path based
7370 // Baker's read barriers, we need to perform the load of
7371 // mirror::Object::monitor_ *before* the original reference load.
7372 // This load-load ordering is required by the read barrier.
7373 // The fast path/slow path (for Baker's algorithm) should look like:
7374 //
7375 // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
7376 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
7377 // HeapReference<Object> ref = *src; // Original reference load.
7378 // bool is_gray = (rb_state == ReadBarrier::GrayState());
7379 // if (is_gray) {
7380 // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
7381 // }
7382 //
7383 // Note: the original implementation in ReadBarrier::Barrier is
7384 // slightly more complex as it performs additional checks that we do
7385 // not do here for performance reasons.
7386
7387 Register ref_reg = ref.AsRegister<Register>();
7388 Register temp_reg = temp.AsRegister<Register>();
7389 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
7390
7391 // /* int32_t */ monitor = obj->monitor_
7392 __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
7393 if (needs_null_check) {
7394 MaybeRecordImplicitNullCheck(instruction);
7395 }
7396 // /* LockWord */ lock_word = LockWord(monitor)
7397 static_assert(sizeof(LockWord) == sizeof(int32_t),
7398 "art::LockWord and int32_t have different sizes.");
7399
7400 __ Sync(0); // Barrier to prevent load-load reordering.
7401
7402 // The actual reference load.
7403 if (index.IsValid()) {
7404 // Load types involving an "index": ArrayGet,
7405 // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
7406 // intrinsics.
7407 // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
7408 if (index.IsConstant()) {
7409 size_t computed_offset =
7410 (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
7411 __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
7412 } else {
7413 // Handle the special case of the
7414 // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
7415 // intrinsics, which use a register pair as index ("long
7416 // offset"), of which only the low part contains data.
7417 Register index_reg = index.IsRegisterPair()
7418 ? index.AsRegisterPairLow<Register>()
7419 : index.AsRegister<Register>();
7420 __ ShiftAndAdd(TMP, index_reg, obj, scale_factor, TMP);
7421 __ LoadFromOffset(kLoadWord, ref_reg, TMP, offset);
7422 }
7423 } else {
7424 // /* HeapReference<Object> */ ref = *(obj + offset)
7425 __ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
7426 }
7427
7428 // Object* ref = ref_addr->AsMirrorPtr()
7429 __ MaybeUnpoisonHeapReference(ref_reg);
7430
7431 // Slow path marking the object `ref` when it is gray.
7432 SlowPathCodeMIPS* slow_path;
7433 if (always_update_field) {
7434 // ReadBarrierMarkAndUpdateFieldSlowPathMIPS only supports address
7435 // of the form `obj + field_offset`, where `obj` is a register and
7436 // `field_offset` is a register pair (of which only the lower half
7437 // is used). Thus `offset` and `scale_factor` above are expected
7438 // to be null in this code path.
7439 DCHECK_EQ(offset, 0u);
7440 DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1);
7441 slow_path = new (GetScopedAllocator())
7442 ReadBarrierMarkAndUpdateFieldSlowPathMIPS(instruction,
7443 ref,
7444 obj,
7445 /* field_offset= */ index,
7446 temp_reg);
7447 } else {
7448 slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS(instruction, ref);
7449 }
7450 AddSlowPath(slow_path);
7451
7452 // if (rb_state == ReadBarrier::GrayState())
7453 // ref = ReadBarrier::Mark(ref);
7454 // Given the numeric representation, it's enough to check the low bit of the
7455 // rb_state. We do that by shifting the bit into the sign bit (31) and
7456 // performing a branch on less than zero.
7457 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
7458 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7459 static_assert(LockWord::kReadBarrierStateSize == 1, "Expecting 1-bit read barrier state size");
7460 __ Sll(temp_reg, temp_reg, 31 - LockWord::kReadBarrierStateShift);
7461 __ Bltz(temp_reg, slow_path->GetEntryLabel());
7462 __ Bind(slow_path->GetExitLabel());
7463 }
7464
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7465 void CodeGeneratorMIPS::GenerateReadBarrierSlow(HInstruction* instruction,
7466 Location out,
7467 Location ref,
7468 Location obj,
7469 uint32_t offset,
7470 Location index) {
7471 DCHECK(kEmitCompilerReadBarrier);
7472
7473 // Insert a slow path based read barrier *after* the reference load.
7474 //
7475 // If heap poisoning is enabled, the unpoisoning of the loaded
7476 // reference will be carried out by the runtime within the slow
7477 // path.
7478 //
7479 // Note that `ref` currently does not get unpoisoned (when heap
7480 // poisoning is enabled), which is alright as the `ref` argument is
7481 // not used by the artReadBarrierSlow entry point.
7482 //
7483 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
7484 SlowPathCodeMIPS* slow_path = new (GetScopedAllocator())
7485 ReadBarrierForHeapReferenceSlowPathMIPS(instruction, out, ref, obj, offset, index);
7486 AddSlowPath(slow_path);
7487
7488 __ B(slow_path->GetEntryLabel());
7489 __ Bind(slow_path->GetExitLabel());
7490 }
7491
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)7492 void CodeGeneratorMIPS::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
7493 Location out,
7494 Location ref,
7495 Location obj,
7496 uint32_t offset,
7497 Location index) {
7498 if (kEmitCompilerReadBarrier) {
7499 // Baker's read barriers shall be handled by the fast path
7500 // (CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier).
7501 DCHECK(!kUseBakerReadBarrier);
7502 // If heap poisoning is enabled, unpoisoning will be taken care of
7503 // by the runtime within the slow path.
7504 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
7505 } else if (kPoisonHeapReferences) {
7506 __ UnpoisonHeapReference(out.AsRegister<Register>());
7507 }
7508 }
7509
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)7510 void CodeGeneratorMIPS::GenerateReadBarrierForRootSlow(HInstruction* instruction,
7511 Location out,
7512 Location root) {
7513 DCHECK(kEmitCompilerReadBarrier);
7514
7515 // Insert a slow path based read barrier *after* the GC root load.
7516 //
7517 // Note that GC roots are not affected by heap poisoning, so we do
7518 // not need to do anything special for this here.
7519 SlowPathCodeMIPS* slow_path =
7520 new (GetScopedAllocator()) ReadBarrierForRootSlowPathMIPS(instruction, out, root);
7521 AddSlowPath(slow_path);
7522
7523 __ B(slow_path->GetEntryLabel());
7524 __ Bind(slow_path->GetExitLabel());
7525 }
7526
VisitInstanceOf(HInstanceOf * instruction)7527 void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) {
7528 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
7529 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7530 bool baker_read_barrier_slow_path = false;
7531 switch (type_check_kind) {
7532 case TypeCheckKind::kExactCheck:
7533 case TypeCheckKind::kAbstractClassCheck:
7534 case TypeCheckKind::kClassHierarchyCheck:
7535 case TypeCheckKind::kArrayObjectCheck: {
7536 bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
7537 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
7538 baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
7539 break;
7540 }
7541 case TypeCheckKind::kArrayCheck:
7542 case TypeCheckKind::kUnresolvedCheck:
7543 case TypeCheckKind::kInterfaceCheck:
7544 call_kind = LocationSummary::kCallOnSlowPath;
7545 break;
7546 case TypeCheckKind::kBitstringCheck:
7547 break;
7548 }
7549
7550 LocationSummary* locations =
7551 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
7552 if (baker_read_barrier_slow_path) {
7553 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
7554 }
7555 locations->SetInAt(0, Location::RequiresRegister());
7556 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
7557 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
7558 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant()));
7559 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant()));
7560 } else {
7561 locations->SetInAt(1, Location::RequiresRegister());
7562 }
7563 // The output does overlap inputs.
7564 // Note that TypeCheckSlowPathMIPS uses this register too.
7565 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
7566 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
7567 }
7568
VisitInstanceOf(HInstanceOf * instruction)7569 void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) {
7570 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
7571 LocationSummary* locations = instruction->GetLocations();
7572 Location obj_loc = locations->InAt(0);
7573 Register obj = obj_loc.AsRegister<Register>();
7574 Location cls = locations->InAt(1);
7575 Location out_loc = locations->Out();
7576 Register out = out_loc.AsRegister<Register>();
7577 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
7578 DCHECK_LE(num_temps, 1u);
7579 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
7580 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7581 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
7582 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
7583 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
7584 MipsLabel done;
7585 SlowPathCodeMIPS* slow_path = nullptr;
7586
7587 // Return 0 if `obj` is null.
7588 // Avoid this check if we know `obj` is not null.
7589 if (instruction->MustDoNullCheck()) {
7590 __ Move(out, ZERO);
7591 __ Beqz(obj, &done);
7592 }
7593
7594 switch (type_check_kind) {
7595 case TypeCheckKind::kExactCheck: {
7596 ReadBarrierOption read_barrier_option =
7597 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7598 // /* HeapReference<Class> */ out = obj->klass_
7599 GenerateReferenceLoadTwoRegisters(instruction,
7600 out_loc,
7601 obj_loc,
7602 class_offset,
7603 maybe_temp_loc,
7604 read_barrier_option);
7605 // Classes must be equal for the instanceof to succeed.
7606 __ Xor(out, out, cls.AsRegister<Register>());
7607 __ Sltiu(out, out, 1);
7608 break;
7609 }
7610
7611 case TypeCheckKind::kAbstractClassCheck: {
7612 ReadBarrierOption read_barrier_option =
7613 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7614 // /* HeapReference<Class> */ out = obj->klass_
7615 GenerateReferenceLoadTwoRegisters(instruction,
7616 out_loc,
7617 obj_loc,
7618 class_offset,
7619 maybe_temp_loc,
7620 read_barrier_option);
7621 // If the class is abstract, we eagerly fetch the super class of the
7622 // object to avoid doing a comparison we know will fail.
7623 MipsLabel loop;
7624 __ Bind(&loop);
7625 // /* HeapReference<Class> */ out = out->super_class_
7626 GenerateReferenceLoadOneRegister(instruction,
7627 out_loc,
7628 super_offset,
7629 maybe_temp_loc,
7630 read_barrier_option);
7631 // If `out` is null, we use it for the result, and jump to `done`.
7632 __ Beqz(out, &done);
7633 __ Bne(out, cls.AsRegister<Register>(), &loop);
7634 __ LoadConst32(out, 1);
7635 break;
7636 }
7637
7638 case TypeCheckKind::kClassHierarchyCheck: {
7639 ReadBarrierOption read_barrier_option =
7640 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7641 // /* HeapReference<Class> */ out = obj->klass_
7642 GenerateReferenceLoadTwoRegisters(instruction,
7643 out_loc,
7644 obj_loc,
7645 class_offset,
7646 maybe_temp_loc,
7647 read_barrier_option);
7648 // Walk over the class hierarchy to find a match.
7649 MipsLabel loop, success;
7650 __ Bind(&loop);
7651 __ Beq(out, cls.AsRegister<Register>(), &success);
7652 // /* HeapReference<Class> */ out = out->super_class_
7653 GenerateReferenceLoadOneRegister(instruction,
7654 out_loc,
7655 super_offset,
7656 maybe_temp_loc,
7657 read_barrier_option);
7658 __ Bnez(out, &loop);
7659 // If `out` is null, we use it for the result, and jump to `done`.
7660 __ B(&done);
7661 __ Bind(&success);
7662 __ LoadConst32(out, 1);
7663 break;
7664 }
7665
7666 case TypeCheckKind::kArrayObjectCheck: {
7667 ReadBarrierOption read_barrier_option =
7668 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
7669 // /* HeapReference<Class> */ out = obj->klass_
7670 GenerateReferenceLoadTwoRegisters(instruction,
7671 out_loc,
7672 obj_loc,
7673 class_offset,
7674 maybe_temp_loc,
7675 read_barrier_option);
7676 // Do an exact check.
7677 MipsLabel success;
7678 __ Beq(out, cls.AsRegister<Register>(), &success);
7679 // Otherwise, we need to check that the object's class is a non-primitive array.
7680 // /* HeapReference<Class> */ out = out->component_type_
7681 GenerateReferenceLoadOneRegister(instruction,
7682 out_loc,
7683 component_offset,
7684 maybe_temp_loc,
7685 read_barrier_option);
7686 // If `out` is null, we use it for the result, and jump to `done`.
7687 __ Beqz(out, &done);
7688 __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
7689 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
7690 __ Sltiu(out, out, 1);
7691 __ B(&done);
7692 __ Bind(&success);
7693 __ LoadConst32(out, 1);
7694 break;
7695 }
7696
7697 case TypeCheckKind::kArrayCheck: {
7698 // No read barrier since the slow path will retry upon failure.
7699 // /* HeapReference<Class> */ out = obj->klass_
7700 GenerateReferenceLoadTwoRegisters(instruction,
7701 out_loc,
7702 obj_loc,
7703 class_offset,
7704 maybe_temp_loc,
7705 kWithoutReadBarrier);
7706 DCHECK(locations->OnlyCallsOnSlowPath());
7707 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS(
7708 instruction, /* is_fatal= */ false);
7709 codegen_->AddSlowPath(slow_path);
7710 __ Bne(out, cls.AsRegister<Register>(), slow_path->GetEntryLabel());
7711 __ LoadConst32(out, 1);
7712 break;
7713 }
7714
7715 case TypeCheckKind::kUnresolvedCheck:
7716 case TypeCheckKind::kInterfaceCheck: {
7717 // Note that we indeed only call on slow path, but we always go
7718 // into the slow path for the unresolved and interface check
7719 // cases.
7720 //
7721 // We cannot directly call the InstanceofNonTrivial runtime
7722 // entry point without resorting to a type checking slow path
7723 // here (i.e. by calling InvokeRuntime directly), as it would
7724 // require to assign fixed registers for the inputs of this
7725 // HInstanceOf instruction (following the runtime calling
7726 // convention), which might be cluttered by the potential first
7727 // read barrier emission at the beginning of this method.
7728 //
7729 // TODO: Introduce a new runtime entry point taking the object
7730 // to test (instead of its class) as argument, and let it deal
7731 // with the read barrier issues. This will let us refactor this
7732 // case of the `switch` code as it was previously (with a direct
7733 // call to the runtime not using a type checking slow path).
7734 // This should also be beneficial for the other cases above.
7735 DCHECK(locations->OnlyCallsOnSlowPath());
7736 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS(
7737 instruction, /* is_fatal= */ false);
7738 codegen_->AddSlowPath(slow_path);
7739 __ B(slow_path->GetEntryLabel());
7740 break;
7741 }
7742
7743 case TypeCheckKind::kBitstringCheck: {
7744 // /* HeapReference<Class> */ temp = obj->klass_
7745 GenerateReferenceLoadTwoRegisters(instruction,
7746 out_loc,
7747 obj_loc,
7748 class_offset,
7749 maybe_temp_loc,
7750 kWithoutReadBarrier);
7751
7752 GenerateBitstringTypeCheckCompare(instruction, out);
7753 __ Sltiu(out, out, 1);
7754 break;
7755 }
7756 }
7757
7758 __ Bind(&done);
7759
7760 if (slow_path != nullptr) {
7761 __ Bind(slow_path->GetExitLabel());
7762 }
7763 }
7764
VisitIntConstant(HIntConstant * constant)7765 void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) {
7766 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
7767 locations->SetOut(Location::ConstantLocation(constant));
7768 }
7769
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)7770 void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
7771 // Will be generated at use site.
7772 }
7773
VisitNullConstant(HNullConstant * constant)7774 void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) {
7775 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
7776 locations->SetOut(Location::ConstantLocation(constant));
7777 }
7778
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)7779 void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
7780 // Will be generated at use site.
7781 }
7782
HandleInvoke(HInvoke * invoke)7783 void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) {
7784 InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
7785 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
7786 }
7787
VisitInvokeInterface(HInvokeInterface * invoke)7788 void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
7789 HandleInvoke(invoke);
7790 // The register T7 is required to be used for the hidden argument in
7791 // art_quick_imt_conflict_trampoline, so add the hidden argument.
7792 invoke->GetLocations()->AddTemp(Location::RegisterLocation(T7));
7793 }
7794
VisitInvokeInterface(HInvokeInterface * invoke)7795 void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
7796 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
7797 Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
7798 Location receiver = invoke->GetLocations()->InAt(0);
7799 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
7800 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
7801
7802 // temp = object->GetClass();
7803 if (receiver.IsStackSlot()) {
7804 __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
7805 __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
7806 } else {
7807 __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
7808 }
7809 codegen_->MaybeRecordImplicitNullCheck(invoke);
7810 // Instead of simply (possibly) unpoisoning `temp` here, we should
7811 // emit a read barrier for the previous class reference load.
7812 // However this is not required in practice, as this is an
7813 // intermediate/temporary reference and because the current
7814 // concurrent copying collector keeps the from-space memory
7815 // intact/accessible until the end of the marking phase (the
7816 // concurrent copying collector may not in the future).
7817 __ MaybeUnpoisonHeapReference(temp);
7818 __ LoadFromOffset(kLoadWord, temp, temp,
7819 mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
7820 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
7821 invoke->GetImtIndex(), kMipsPointerSize));
7822 // temp = temp->GetImtEntryAt(method_offset);
7823 __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
7824 // T9 = temp->GetEntryPoint();
7825 __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
7826 // Set the hidden argument.
7827 __ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
7828 invoke->GetDexMethodIndex());
7829 // T9();
7830 __ Jalr(T9);
7831 __ NopIfNoReordering();
7832 DCHECK(!codegen_->IsLeafMethod());
7833 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
7834 }
7835
VisitInvokeVirtual(HInvokeVirtual * invoke)7836 void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
7837 IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
7838 if (intrinsic.TryDispatch(invoke)) {
7839 return;
7840 }
7841
7842 HandleInvoke(invoke);
7843 }
7844
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)7845 void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
7846 // Explicit clinit checks triggered by static invokes must have been pruned by
7847 // art::PrepareForRegisterAllocation.
7848 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
7849
7850 bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
7851 bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops();
7852 bool has_extra_input = invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops;
7853
7854 IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
7855 if (intrinsic.TryDispatch(invoke)) {
7856 if (invoke->GetLocations()->CanCall() && has_extra_input) {
7857 invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
7858 }
7859 return;
7860 }
7861
7862 HandleInvoke(invoke);
7863
7864 // Add the extra input register if either the dex cache array base register
7865 // or the PC-relative base register for accessing literals is needed.
7866 if (has_extra_input) {
7867 invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
7868 }
7869 }
7870
VisitInvokePolymorphic(HInvokePolymorphic * invoke)7871 void LocationsBuilderMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
7872 HandleInvoke(invoke);
7873 }
7874
VisitInvokePolymorphic(HInvokePolymorphic * invoke)7875 void InstructionCodeGeneratorMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
7876 codegen_->GenerateInvokePolymorphicCall(invoke);
7877 }
7878
VisitInvokeCustom(HInvokeCustom * invoke)7879 void LocationsBuilderMIPS::VisitInvokeCustom(HInvokeCustom* invoke) {
7880 HandleInvoke(invoke);
7881 }
7882
VisitInvokeCustom(HInvokeCustom * invoke)7883 void InstructionCodeGeneratorMIPS::VisitInvokeCustom(HInvokeCustom* invoke) {
7884 codegen_->GenerateInvokeCustomCall(invoke);
7885 }
7886
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorMIPS * codegen)7887 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
7888 if (invoke->GetLocations()->Intrinsified()) {
7889 IntrinsicCodeGeneratorMIPS intrinsic(codegen);
7890 intrinsic.Dispatch(invoke);
7891 return true;
7892 }
7893 return false;
7894 }
7895
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)7896 HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind(
7897 HLoadString::LoadKind desired_string_load_kind) {
7898 switch (desired_string_load_kind) {
7899 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
7900 case HLoadString::LoadKind::kBootImageRelRo:
7901 case HLoadString::LoadKind::kBssEntry:
7902 DCHECK(!Runtime::Current()->UseJitCompilation());
7903 break;
7904 case HLoadString::LoadKind::kJitBootImageAddress:
7905 case HLoadString::LoadKind::kJitTableAddress:
7906 DCHECK(Runtime::Current()->UseJitCompilation());
7907 break;
7908 case HLoadString::LoadKind::kRuntimeCall:
7909 break;
7910 }
7911 return desired_string_load_kind;
7912 }
7913
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)7914 HLoadClass::LoadKind CodeGeneratorMIPS::GetSupportedLoadClassKind(
7915 HLoadClass::LoadKind desired_class_load_kind) {
7916 switch (desired_class_load_kind) {
7917 case HLoadClass::LoadKind::kInvalid:
7918 LOG(FATAL) << "UNREACHABLE";
7919 UNREACHABLE();
7920 case HLoadClass::LoadKind::kReferrersClass:
7921 break;
7922 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
7923 case HLoadClass::LoadKind::kBootImageRelRo:
7924 case HLoadClass::LoadKind::kBssEntry:
7925 DCHECK(!Runtime::Current()->UseJitCompilation());
7926 break;
7927 case HLoadClass::LoadKind::kJitBootImageAddress:
7928 case HLoadClass::LoadKind::kJitTableAddress:
7929 DCHECK(Runtime::Current()->UseJitCompilation());
7930 break;
7931 case HLoadClass::LoadKind::kRuntimeCall:
7932 break;
7933 }
7934 return desired_class_load_kind;
7935 }
7936
GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect * invoke,Register temp)7937 Register CodeGeneratorMIPS::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
7938 Register temp) {
7939 CHECK(!GetInstructionSetFeatures().IsR6());
7940 CHECK(!GetGraph()->HasIrreducibleLoops());
7941 CHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
7942 Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7943 if (!invoke->GetLocations()->Intrinsified()) {
7944 return location.AsRegister<Register>();
7945 }
7946 // For intrinsics we allow any location, so it may be on the stack.
7947 if (!location.IsRegister()) {
7948 __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
7949 return temp;
7950 }
7951 // For register locations, check if the register was saved. If so, get it from the stack.
7952 // Note: There is a chance that the register was saved but not overwritten, so we could
7953 // save one load. However, since this is just an intrinsic slow path we prefer this
7954 // simple and more robust approach rather that trying to determine if that's the case.
7955 SlowPathCode* slow_path = GetCurrentSlowPath();
7956 DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path.
7957 if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
7958 int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
7959 __ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
7960 return temp;
7961 }
7962 return location.AsRegister<Register>();
7963 }
7964
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method ATTRIBUTE_UNUSED)7965 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch(
7966 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
7967 ArtMethod* method ATTRIBUTE_UNUSED) {
7968 return desired_dispatch_info;
7969 }
7970
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)7971 void CodeGeneratorMIPS::GenerateStaticOrDirectCall(
7972 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
7973 // All registers are assumed to be correctly set up per the calling convention.
7974 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
7975 HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind();
7976 HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation();
7977 bool is_r6 = GetInstructionSetFeatures().IsR6();
7978 bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
7979 Register base_reg = (invoke->HasPcRelativeMethodLoadKind() && !is_r6 && !has_irreducible_loops)
7980 ? GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>())
7981 : ZERO;
7982
7983 switch (method_load_kind) {
7984 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
7985 // temp = thread->string_init_entrypoint
7986 uint32_t offset =
7987 GetThreadOffset<kMipsPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
7988 __ LoadFromOffset(kLoadWord,
7989 temp.AsRegister<Register>(),
7990 TR,
7991 offset);
7992 break;
7993 }
7994 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
7995 callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
7996 break;
7997 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
7998 DCHECK(GetCompilerOptions().IsBootImage());
7999 PcRelativePatchInfo* info_high = NewBootImageMethodPatch(invoke->GetTargetMethod());
8000 PcRelativePatchInfo* info_low =
8001 NewBootImageMethodPatch(invoke->GetTargetMethod(), info_high);
8002 Register temp_reg = temp.AsRegister<Register>();
8003 EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg);
8004 __ Addiu(temp_reg, TMP, /* imm16= */ 0x5678, &info_low->label);
8005 break;
8006 }
8007 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: {
8008 uint32_t boot_image_offset = GetBootImageOffset(invoke);
8009 PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_offset);
8010 PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_offset, info_high);
8011 Register temp_reg = temp.AsRegister<Register>();
8012 EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg);
8013 __ Lw(temp_reg, TMP, /* imm16= */ 0x5678, &info_low->label);
8014 break;
8015 }
8016 case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
8017 PcRelativePatchInfo* info_high = NewMethodBssEntryPatch(
8018 MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()));
8019 PcRelativePatchInfo* info_low = NewMethodBssEntryPatch(
8020 MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()), info_high);
8021 Register temp_reg = temp.AsRegister<Register>();
8022 EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg);
8023 __ Lw(temp_reg, TMP, /* imm16= */ 0x5678, &info_low->label);
8024 break;
8025 }
8026 case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress:
8027 __ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress());
8028 break;
8029 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
8030 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
8031 return; // No code pointer retrieval; the runtime performs the call directly.
8032 }
8033 }
8034
8035 switch (code_ptr_location) {
8036 case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
8037 __ Bal(&frame_entry_label_);
8038 break;
8039 case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
8040 // T9 = callee_method->entry_point_from_quick_compiled_code_;
8041 __ LoadFromOffset(kLoadWord,
8042 T9,
8043 callee_method.AsRegister<Register>(),
8044 ArtMethod::EntryPointFromQuickCompiledCodeOffset(
8045 kMipsPointerSize).Int32Value());
8046 // T9()
8047 __ Jalr(T9);
8048 __ NopIfNoReordering();
8049 break;
8050 }
8051 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
8052
8053 DCHECK(!IsLeafMethod());
8054 }
8055
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)8056 void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
8057 // Explicit clinit checks triggered by static invokes must have been pruned by
8058 // art::PrepareForRegisterAllocation.
8059 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
8060
8061 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
8062 return;
8063 }
8064
8065 LocationSummary* locations = invoke->GetLocations();
8066 codegen_->GenerateStaticOrDirectCall(invoke,
8067 locations->HasTemps()
8068 ? locations->GetTemp(0)
8069 : Location::NoLocation());
8070 }
8071
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_location,SlowPathCode * slow_path)8072 void CodeGeneratorMIPS::GenerateVirtualCall(
8073 HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
8074 // Use the calling convention instead of the location of the receiver, as
8075 // intrinsics may have put the receiver in a different register. In the intrinsics
8076 // slow path, the arguments have been moved to the right place, so here we are
8077 // guaranteed that the receiver is the first register of the calling convention.
8078 InvokeDexCallingConvention calling_convention;
8079 Register receiver = calling_convention.GetRegisterAt(0);
8080
8081 Register temp = temp_location.AsRegister<Register>();
8082 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
8083 invoke->GetVTableIndex(), kMipsPointerSize).SizeValue();
8084 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
8085 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
8086
8087 // temp = object->GetClass();
8088 __ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
8089 MaybeRecordImplicitNullCheck(invoke);
8090 // Instead of simply (possibly) unpoisoning `temp` here, we should
8091 // emit a read barrier for the previous class reference load.
8092 // However this is not required in practice, as this is an
8093 // intermediate/temporary reference and because the current
8094 // concurrent copying collector keeps the from-space memory
8095 // intact/accessible until the end of the marking phase (the
8096 // concurrent copying collector may not in the future).
8097 __ MaybeUnpoisonHeapReference(temp);
8098 // temp = temp->GetMethodAt(method_offset);
8099 __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
8100 // T9 = temp->GetEntryPoint();
8101 __ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
8102 // T9();
8103 __ Jalr(T9);
8104 __ NopIfNoReordering();
8105 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
8106 }
8107
VisitInvokeVirtual(HInvokeVirtual * invoke)8108 void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
8109 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
8110 return;
8111 }
8112
8113 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
8114 DCHECK(!codegen_->IsLeafMethod());
8115 }
8116
VisitLoadClass(HLoadClass * cls)8117 void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) {
8118 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
8119 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
8120 InvokeRuntimeCallingConvention calling_convention;
8121 Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
8122 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(cls, loc, loc);
8123 return;
8124 }
8125 DCHECK(!cls->NeedsAccessCheck());
8126 const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
8127 const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops();
8128 const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
8129 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
8130 ? LocationSummary::kCallOnSlowPath
8131 : LocationSummary::kNoCall;
8132 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
8133 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
8134 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
8135 }
8136 switch (load_kind) {
8137 // We need an extra register for PC-relative literals on R2.
8138 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
8139 case HLoadClass::LoadKind::kBootImageRelRo:
8140 case HLoadClass::LoadKind::kBssEntry:
8141 case HLoadClass::LoadKind::kJitBootImageAddress:
8142 if (isR6) {
8143 break;
8144 }
8145 if (has_irreducible_loops) {
8146 if (load_kind != HLoadClass::LoadKind::kJitBootImageAddress) {
8147 codegen_->ClobberRA();
8148 }
8149 break;
8150 }
8151 FALLTHROUGH_INTENDED;
8152 case HLoadClass::LoadKind::kReferrersClass:
8153 locations->SetInAt(0, Location::RequiresRegister());
8154 break;
8155 default:
8156 break;
8157 }
8158 locations->SetOut(Location::RequiresRegister());
8159 if (load_kind == HLoadClass::LoadKind::kBssEntry) {
8160 if (!kUseReadBarrier || kUseBakerReadBarrier) {
8161 // Rely on the type resolution or initialization and marking to save everything we need.
8162 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
8163 } else {
8164 // For non-Baker read barriers we have a temp-clobbering call.
8165 }
8166 }
8167 }
8168
8169 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
8170 // move.
VisitLoadClass(HLoadClass * cls)8171 void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
8172 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
8173 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
8174 codegen_->GenerateLoadClassRuntimeCall(cls);
8175 return;
8176 }
8177 DCHECK(!cls->NeedsAccessCheck());
8178
8179 LocationSummary* locations = cls->GetLocations();
8180 Location out_loc = locations->Out();
8181 Register out = out_loc.AsRegister<Register>();
8182 Register base_or_current_method_reg;
8183 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
8184 bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
8185 switch (load_kind) {
8186 // We need an extra register for PC-relative literals on R2.
8187 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
8188 case HLoadClass::LoadKind::kBootImageRelRo:
8189 case HLoadClass::LoadKind::kBssEntry:
8190 case HLoadClass::LoadKind::kJitBootImageAddress:
8191 base_or_current_method_reg =
8192 (isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>();
8193 break;
8194 case HLoadClass::LoadKind::kReferrersClass:
8195 case HLoadClass::LoadKind::kRuntimeCall:
8196 base_or_current_method_reg = locations->InAt(0).AsRegister<Register>();
8197 break;
8198 default:
8199 base_or_current_method_reg = ZERO;
8200 break;
8201 }
8202
8203 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
8204 ? kWithoutReadBarrier
8205 : kCompilerReadBarrierOption;
8206 bool generate_null_check = false;
8207 switch (load_kind) {
8208 case HLoadClass::LoadKind::kReferrersClass: {
8209 DCHECK(!cls->CanCallRuntime());
8210 DCHECK(!cls->MustGenerateClinitCheck());
8211 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
8212 GenerateGcRootFieldLoad(cls,
8213 out_loc,
8214 base_or_current_method_reg,
8215 ArtMethod::DeclaringClassOffset().Int32Value(),
8216 read_barrier_option);
8217 break;
8218 }
8219 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
8220 DCHECK(codegen_->GetCompilerOptions().IsBootImage());
8221 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
8222 CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
8223 codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
8224 CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
8225 codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex(), info_high);
8226 codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
8227 out,
8228 base_or_current_method_reg);
8229 __ Addiu(out, out, /* imm16= */ 0x5678, &info_low->label);
8230 break;
8231 }
8232 case HLoadClass::LoadKind::kBootImageRelRo: {
8233 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
8234 uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls);
8235 CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
8236 codegen_->NewBootImageRelRoPatch(boot_image_offset);
8237 CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
8238 codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high);
8239 codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
8240 out,
8241 base_or_current_method_reg);
8242 __ Lw(out, out, /* imm16= */ 0x5678, &info_low->label);
8243 break;
8244 }
8245 case HLoadClass::LoadKind::kBssEntry: {
8246 CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high =
8247 codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
8248 CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
8249 codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex(), bss_info_high);
8250 codegen_->EmitPcRelativeAddressPlaceholderHigh(bss_info_high,
8251 out,
8252 base_or_current_method_reg);
8253 GenerateGcRootFieldLoad(cls,
8254 out_loc,
8255 out,
8256 /* offset= */ 0x5678,
8257 read_barrier_option,
8258 &info_low->label);
8259 generate_null_check = true;
8260 break;
8261 }
8262 case HLoadClass::LoadKind::kJitBootImageAddress: {
8263 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
8264 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
8265 DCHECK_NE(address, 0u);
8266 if (isR6 || !has_irreducible_loops) {
8267 __ LoadLiteral(out,
8268 base_or_current_method_reg,
8269 codegen_->DeduplicateBootImageAddressLiteral(address));
8270 } else {
8271 __ LoadConst32(out, address);
8272 }
8273 break;
8274 }
8275 case HLoadClass::LoadKind::kJitTableAddress: {
8276 CodeGeneratorMIPS::JitPatchInfo* info = codegen_->NewJitRootClassPatch(cls->GetDexFile(),
8277 cls->GetTypeIndex(),
8278 cls->GetClass());
8279 bool reordering = __ SetReorder(false);
8280 __ Bind(&info->high_label);
8281 __ Lui(out, /* imm16= */ 0x1234);
8282 __ SetReorder(reordering);
8283 GenerateGcRootFieldLoad(cls,
8284 out_loc,
8285 out,
8286 /* offset= */ 0x5678,
8287 read_barrier_option,
8288 &info->low_label);
8289 break;
8290 }
8291 case HLoadClass::LoadKind::kRuntimeCall:
8292 case HLoadClass::LoadKind::kInvalid:
8293 LOG(FATAL) << "UNREACHABLE";
8294 UNREACHABLE();
8295 }
8296
8297 if (generate_null_check || cls->MustGenerateClinitCheck()) {
8298 DCHECK(cls->CanCallRuntime());
8299 SlowPathCodeMIPS* slow_path =
8300 new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS(cls, cls);
8301 codegen_->AddSlowPath(slow_path);
8302 if (generate_null_check) {
8303 __ Beqz(out, slow_path->GetEntryLabel());
8304 }
8305 if (cls->MustGenerateClinitCheck()) {
8306 GenerateClassInitializationCheck(slow_path, out);
8307 } else {
8308 __ Bind(slow_path->GetExitLabel());
8309 }
8310 }
8311 }
8312
VisitLoadMethodHandle(HLoadMethodHandle * load)8313 void LocationsBuilderMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) {
8314 InvokeRuntimeCallingConvention calling_convention;
8315 Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
8316 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, loc, loc);
8317 }
8318
VisitLoadMethodHandle(HLoadMethodHandle * load)8319 void InstructionCodeGeneratorMIPS::VisitLoadMethodHandle(HLoadMethodHandle* load) {
8320 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
8321 }
8322
VisitLoadMethodType(HLoadMethodType * load)8323 void LocationsBuilderMIPS::VisitLoadMethodType(HLoadMethodType* load) {
8324 InvokeRuntimeCallingConvention calling_convention;
8325 Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
8326 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, loc, loc);
8327 }
8328
VisitLoadMethodType(HLoadMethodType * load)8329 void InstructionCodeGeneratorMIPS::VisitLoadMethodType(HLoadMethodType* load) {
8330 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
8331 }
8332
GetExceptionTlsOffset()8333 static int32_t GetExceptionTlsOffset() {
8334 return Thread::ExceptionOffset<kMipsPointerSize>().Int32Value();
8335 }
8336
VisitLoadException(HLoadException * load)8337 void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) {
8338 LocationSummary* locations =
8339 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
8340 locations->SetOut(Location::RequiresRegister());
8341 }
8342
VisitLoadException(HLoadException * load)8343 void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) {
8344 Register out = load->GetLocations()->Out().AsRegister<Register>();
8345 __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
8346 }
8347
VisitClearException(HClearException * clear)8348 void LocationsBuilderMIPS::VisitClearException(HClearException* clear) {
8349 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
8350 }
8351
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)8352 void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
8353 __ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset());
8354 }
8355
VisitLoadString(HLoadString * load)8356 void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) {
8357 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
8358 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
8359 HLoadString::LoadKind load_kind = load->GetLoadKind();
8360 const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
8361 const bool has_irreducible_loops = codegen_->GetGraph()->HasIrreducibleLoops();
8362 switch (load_kind) {
8363 // We need an extra register for PC-relative literals on R2.
8364 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
8365 case HLoadString::LoadKind::kBootImageRelRo:
8366 case HLoadString::LoadKind::kBssEntry:
8367 case HLoadString::LoadKind::kJitBootImageAddress:
8368 if (isR6) {
8369 break;
8370 }
8371 if (has_irreducible_loops) {
8372 if (load_kind != HLoadString::LoadKind::kJitBootImageAddress) {
8373 codegen_->ClobberRA();
8374 }
8375 break;
8376 }
8377 FALLTHROUGH_INTENDED;
8378 // We need an extra register for PC-relative dex cache accesses.
8379 case HLoadString::LoadKind::kRuntimeCall:
8380 locations->SetInAt(0, Location::RequiresRegister());
8381 break;
8382 default:
8383 break;
8384 }
8385 if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
8386 InvokeRuntimeCallingConvention calling_convention;
8387 locations->SetOut(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
8388 } else {
8389 locations->SetOut(Location::RequiresRegister());
8390 if (load_kind == HLoadString::LoadKind::kBssEntry) {
8391 if (!kUseReadBarrier || kUseBakerReadBarrier) {
8392 // Rely on the pResolveString and marking to save everything we need.
8393 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
8394 } else {
8395 // For non-Baker read barriers we have a temp-clobbering call.
8396 }
8397 }
8398 }
8399 }
8400
8401 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
8402 // move.
VisitLoadString(HLoadString * load)8403 void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
8404 HLoadString::LoadKind load_kind = load->GetLoadKind();
8405 LocationSummary* locations = load->GetLocations();
8406 Location out_loc = locations->Out();
8407 Register out = out_loc.AsRegister<Register>();
8408 Register base_or_current_method_reg;
8409 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
8410 bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
8411 switch (load_kind) {
8412 // We need an extra register for PC-relative literals on R2.
8413 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
8414 case HLoadString::LoadKind::kBootImageRelRo:
8415 case HLoadString::LoadKind::kBssEntry:
8416 case HLoadString::LoadKind::kJitBootImageAddress:
8417 base_or_current_method_reg =
8418 (isR6 || has_irreducible_loops) ? ZERO : locations->InAt(0).AsRegister<Register>();
8419 break;
8420 default:
8421 base_or_current_method_reg = ZERO;
8422 break;
8423 }
8424
8425 switch (load_kind) {
8426 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
8427 DCHECK(codegen_->GetCompilerOptions().IsBootImage());
8428 CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
8429 codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex());
8430 CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
8431 codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex(), info_high);
8432 codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
8433 out,
8434 base_or_current_method_reg);
8435 __ Addiu(out, out, /* imm16= */ 0x5678, &info_low->label);
8436 return;
8437 }
8438 case HLoadString::LoadKind::kBootImageRelRo: {
8439 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
8440 uint32_t boot_image_offset = codegen_->GetBootImageOffset(load);
8441 CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
8442 codegen_->NewBootImageRelRoPatch(boot_image_offset);
8443 CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
8444 codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high);
8445 codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
8446 out,
8447 base_or_current_method_reg);
8448 __ Lw(out, out, /* imm16= */ 0x5678, &info_low->label);
8449 return;
8450 }
8451 case HLoadString::LoadKind::kBssEntry: {
8452 CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
8453 codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex());
8454 CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
8455 codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex(), info_high);
8456 codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
8457 out,
8458 base_or_current_method_reg);
8459 GenerateGcRootFieldLoad(load,
8460 out_loc,
8461 out,
8462 /* offset= */ 0x5678,
8463 kCompilerReadBarrierOption,
8464 &info_low->label);
8465 SlowPathCodeMIPS* slow_path =
8466 new (codegen_->GetScopedAllocator()) LoadStringSlowPathMIPS(load);
8467 codegen_->AddSlowPath(slow_path);
8468 __ Beqz(out, slow_path->GetEntryLabel());
8469 __ Bind(slow_path->GetExitLabel());
8470 return;
8471 }
8472 case HLoadString::LoadKind::kJitBootImageAddress: {
8473 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
8474 DCHECK_NE(address, 0u);
8475 if (isR6 || !has_irreducible_loops) {
8476 __ LoadLiteral(out,
8477 base_or_current_method_reg,
8478 codegen_->DeduplicateBootImageAddressLiteral(address));
8479 } else {
8480 __ LoadConst32(out, address);
8481 }
8482 return;
8483 }
8484 case HLoadString::LoadKind::kJitTableAddress: {
8485 CodeGeneratorMIPS::JitPatchInfo* info =
8486 codegen_->NewJitRootStringPatch(load->GetDexFile(),
8487 load->GetStringIndex(),
8488 load->GetString());
8489 bool reordering = __ SetReorder(false);
8490 __ Bind(&info->high_label);
8491 __ Lui(out, /* imm16= */ 0x1234);
8492 __ SetReorder(reordering);
8493 GenerateGcRootFieldLoad(load,
8494 out_loc,
8495 out,
8496 /* offset= */ 0x5678,
8497 kCompilerReadBarrierOption,
8498 &info->low_label);
8499 return;
8500 }
8501 default:
8502 break;
8503 }
8504
8505 // TODO: Re-add the compiler code to do string dex cache lookup again.
8506 DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall);
8507 InvokeRuntimeCallingConvention calling_convention;
8508 DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
8509 __ LoadConst32(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
8510 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
8511 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
8512 }
8513
VisitLongConstant(HLongConstant * constant)8514 void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) {
8515 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
8516 locations->SetOut(Location::ConstantLocation(constant));
8517 }
8518
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)8519 void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
8520 // Will be generated at use site.
8521 }
8522
VisitMonitorOperation(HMonitorOperation * instruction)8523 void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
8524 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
8525 instruction, LocationSummary::kCallOnMainOnly);
8526 InvokeRuntimeCallingConvention calling_convention;
8527 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
8528 }
8529
VisitMonitorOperation(HMonitorOperation * instruction)8530 void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
8531 if (instruction->IsEnter()) {
8532 codegen_->InvokeRuntime(kQuickLockObject, instruction, instruction->GetDexPc());
8533 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
8534 } else {
8535 codegen_->InvokeRuntime(kQuickUnlockObject, instruction, instruction->GetDexPc());
8536 }
8537 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
8538 }
8539
VisitMul(HMul * mul)8540 void LocationsBuilderMIPS::VisitMul(HMul* mul) {
8541 LocationSummary* locations =
8542 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
8543 switch (mul->GetResultType()) {
8544 case DataType::Type::kInt32:
8545 case DataType::Type::kInt64:
8546 locations->SetInAt(0, Location::RequiresRegister());
8547 locations->SetInAt(1, Location::RequiresRegister());
8548 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8549 break;
8550
8551 case DataType::Type::kFloat32:
8552 case DataType::Type::kFloat64:
8553 locations->SetInAt(0, Location::RequiresFpuRegister());
8554 locations->SetInAt(1, Location::RequiresFpuRegister());
8555 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
8556 break;
8557
8558 default:
8559 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
8560 }
8561 }
8562
VisitMul(HMul * instruction)8563 void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) {
8564 DataType::Type type = instruction->GetType();
8565 LocationSummary* locations = instruction->GetLocations();
8566 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
8567
8568 switch (type) {
8569 case DataType::Type::kInt32: {
8570 Register dst = locations->Out().AsRegister<Register>();
8571 Register lhs = locations->InAt(0).AsRegister<Register>();
8572 Register rhs = locations->InAt(1).AsRegister<Register>();
8573
8574 if (isR6) {
8575 __ MulR6(dst, lhs, rhs);
8576 } else {
8577 __ MulR2(dst, lhs, rhs);
8578 }
8579 break;
8580 }
8581 case DataType::Type::kInt64: {
8582 Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
8583 Register dst_low = locations->Out().AsRegisterPairLow<Register>();
8584 Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
8585 Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
8586 Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
8587 Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
8588
8589 // Extra checks to protect caused by the existance of A1_A2.
8590 // The algorithm is wrong if dst_high is either lhs_lo or rhs_lo:
8591 // (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2).
8592 DCHECK_NE(dst_high, lhs_low);
8593 DCHECK_NE(dst_high, rhs_low);
8594
8595 // A_B * C_D
8596 // dst_hi: [ low(A*D) + low(B*C) + hi(B*D) ]
8597 // dst_lo: [ low(B*D) ]
8598 // Note: R2 and R6 MUL produce the low 32 bit of the multiplication result.
8599
8600 if (isR6) {
8601 __ MulR6(TMP, lhs_high, rhs_low);
8602 __ MulR6(dst_high, lhs_low, rhs_high);
8603 __ Addu(dst_high, dst_high, TMP);
8604 __ MuhuR6(TMP, lhs_low, rhs_low);
8605 __ Addu(dst_high, dst_high, TMP);
8606 __ MulR6(dst_low, lhs_low, rhs_low);
8607 } else {
8608 __ MulR2(TMP, lhs_high, rhs_low);
8609 __ MulR2(dst_high, lhs_low, rhs_high);
8610 __ Addu(dst_high, dst_high, TMP);
8611 __ MultuR2(lhs_low, rhs_low);
8612 __ Mfhi(TMP);
8613 __ Addu(dst_high, dst_high, TMP);
8614 __ Mflo(dst_low);
8615 }
8616 break;
8617 }
8618 case DataType::Type::kFloat32:
8619 case DataType::Type::kFloat64: {
8620 FRegister dst = locations->Out().AsFpuRegister<FRegister>();
8621 FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
8622 FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
8623 if (type == DataType::Type::kFloat32) {
8624 __ MulS(dst, lhs, rhs);
8625 } else {
8626 __ MulD(dst, lhs, rhs);
8627 }
8628 break;
8629 }
8630 default:
8631 LOG(FATAL) << "Unexpected mul type " << type;
8632 }
8633 }
8634
VisitNeg(HNeg * neg)8635 void LocationsBuilderMIPS::VisitNeg(HNeg* neg) {
8636 LocationSummary* locations =
8637 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
8638 switch (neg->GetResultType()) {
8639 case DataType::Type::kInt32:
8640 case DataType::Type::kInt64:
8641 locations->SetInAt(0, Location::RequiresRegister());
8642 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8643 break;
8644
8645 case DataType::Type::kFloat32:
8646 case DataType::Type::kFloat64:
8647 locations->SetInAt(0, Location::RequiresFpuRegister());
8648 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
8649 break;
8650
8651 default:
8652 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
8653 }
8654 }
8655
VisitNeg(HNeg * instruction)8656 void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) {
8657 DataType::Type type = instruction->GetType();
8658 LocationSummary* locations = instruction->GetLocations();
8659
8660 switch (type) {
8661 case DataType::Type::kInt32: {
8662 Register dst = locations->Out().AsRegister<Register>();
8663 Register src = locations->InAt(0).AsRegister<Register>();
8664 __ Subu(dst, ZERO, src);
8665 break;
8666 }
8667 case DataType::Type::kInt64: {
8668 Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
8669 Register dst_low = locations->Out().AsRegisterPairLow<Register>();
8670 Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
8671 Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
8672 __ Subu(dst_low, ZERO, src_low);
8673 __ Sltu(TMP, ZERO, dst_low);
8674 __ Subu(dst_high, ZERO, src_high);
8675 __ Subu(dst_high, dst_high, TMP);
8676 break;
8677 }
8678 case DataType::Type::kFloat32:
8679 case DataType::Type::kFloat64: {
8680 FRegister dst = locations->Out().AsFpuRegister<FRegister>();
8681 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
8682 if (type == DataType::Type::kFloat32) {
8683 __ NegS(dst, src);
8684 } else {
8685 __ NegD(dst, src);
8686 }
8687 break;
8688 }
8689 default:
8690 LOG(FATAL) << "Unexpected neg type " << type;
8691 }
8692 }
8693
VisitNewArray(HNewArray * instruction)8694 void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) {
8695 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
8696 instruction, LocationSummary::kCallOnMainOnly);
8697 InvokeRuntimeCallingConvention calling_convention;
8698 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
8699 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
8700 locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
8701 }
8702
VisitNewArray(HNewArray * instruction)8703 void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) {
8704 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
8705 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
8706 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
8707 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
8708 DCHECK(!codegen_->IsLeafMethod());
8709 }
8710
VisitNewInstance(HNewInstance * instruction)8711 void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) {
8712 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
8713 instruction, LocationSummary::kCallOnMainOnly);
8714 InvokeRuntimeCallingConvention calling_convention;
8715 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
8716 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
8717 }
8718
VisitNewInstance(HNewInstance * instruction)8719 void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) {
8720 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
8721 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
8722 }
8723
VisitNot(HNot * instruction)8724 void LocationsBuilderMIPS::VisitNot(HNot* instruction) {
8725 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
8726 locations->SetInAt(0, Location::RequiresRegister());
8727 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8728 }
8729
VisitNot(HNot * instruction)8730 void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) {
8731 DataType::Type type = instruction->GetType();
8732 LocationSummary* locations = instruction->GetLocations();
8733
8734 switch (type) {
8735 case DataType::Type::kInt32: {
8736 Register dst = locations->Out().AsRegister<Register>();
8737 Register src = locations->InAt(0).AsRegister<Register>();
8738 __ Nor(dst, src, ZERO);
8739 break;
8740 }
8741
8742 case DataType::Type::kInt64: {
8743 Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
8744 Register dst_low = locations->Out().AsRegisterPairLow<Register>();
8745 Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
8746 Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
8747 __ Nor(dst_high, src_high, ZERO);
8748 __ Nor(dst_low, src_low, ZERO);
8749 break;
8750 }
8751
8752 default:
8753 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
8754 }
8755 }
8756
VisitBooleanNot(HBooleanNot * instruction)8757 void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) {
8758 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
8759 locations->SetInAt(0, Location::RequiresRegister());
8760 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8761 }
8762
VisitBooleanNot(HBooleanNot * instruction)8763 void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) {
8764 LocationSummary* locations = instruction->GetLocations();
8765 __ Xori(locations->Out().AsRegister<Register>(),
8766 locations->InAt(0).AsRegister<Register>(),
8767 1);
8768 }
8769
VisitNullCheck(HNullCheck * instruction)8770 void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) {
8771 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
8772 locations->SetInAt(0, Location::RequiresRegister());
8773 }
8774
GenerateImplicitNullCheck(HNullCheck * instruction)8775 void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) {
8776 if (CanMoveNullCheckToUser(instruction)) {
8777 return;
8778 }
8779 Location obj = instruction->GetLocations()->InAt(0);
8780
8781 __ Lw(ZERO, obj.AsRegister<Register>(), 0);
8782 RecordPcInfo(instruction, instruction->GetDexPc());
8783 }
8784
GenerateExplicitNullCheck(HNullCheck * instruction)8785 void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) {
8786 SlowPathCodeMIPS* slow_path = new (GetScopedAllocator()) NullCheckSlowPathMIPS(instruction);
8787 AddSlowPath(slow_path);
8788
8789 Location obj = instruction->GetLocations()->InAt(0);
8790
8791 __ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
8792 }
8793
VisitNullCheck(HNullCheck * instruction)8794 void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) {
8795 codegen_->GenerateNullCheck(instruction);
8796 }
8797
VisitOr(HOr * instruction)8798 void LocationsBuilderMIPS::VisitOr(HOr* instruction) {
8799 HandleBinaryOp(instruction);
8800 }
8801
VisitOr(HOr * instruction)8802 void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) {
8803 HandleBinaryOp(instruction);
8804 }
8805
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)8806 void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
8807 LOG(FATAL) << "Unreachable";
8808 }
8809
VisitParallelMove(HParallelMove * instruction)8810 void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) {
8811 if (instruction->GetNext()->IsSuspendCheck() &&
8812 instruction->GetBlock()->GetLoopInformation() != nullptr) {
8813 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
8814 // The back edge will generate the suspend check.
8815 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
8816 }
8817
8818 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
8819 }
8820
VisitParameterValue(HParameterValue * instruction)8821 void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) {
8822 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
8823 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
8824 if (location.IsStackSlot()) {
8825 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
8826 } else if (location.IsDoubleStackSlot()) {
8827 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
8828 }
8829 locations->SetOut(location);
8830 }
8831
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)8832 void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction
8833 ATTRIBUTE_UNUSED) {
8834 // Nothing to do, the parameter is already at its location.
8835 }
8836
VisitCurrentMethod(HCurrentMethod * instruction)8837 void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) {
8838 LocationSummary* locations =
8839 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
8840 locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
8841 }
8842
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)8843 void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction
8844 ATTRIBUTE_UNUSED) {
8845 // Nothing to do, the method is already at its location.
8846 }
8847
VisitPhi(HPhi * instruction)8848 void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) {
8849 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
8850 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
8851 locations->SetInAt(i, Location::Any());
8852 }
8853 locations->SetOut(Location::Any());
8854 }
8855
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)8856 void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
8857 LOG(FATAL) << "Unreachable";
8858 }
8859
VisitRem(HRem * rem)8860 void LocationsBuilderMIPS::VisitRem(HRem* rem) {
8861 DataType::Type type = rem->GetResultType();
8862 bool call_rem;
8863 if ((type == DataType::Type::kInt64) && rem->InputAt(1)->IsConstant()) {
8864 int64_t imm = CodeGenerator::GetInt64ValueOf(rem->InputAt(1)->AsConstant());
8865 call_rem = (imm != 0) && !IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm)));
8866 } else {
8867 call_rem = (type != DataType::Type::kInt32);
8868 }
8869 LocationSummary::CallKind call_kind = call_rem
8870 ? LocationSummary::kCallOnMainOnly
8871 : LocationSummary::kNoCall;
8872 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
8873
8874 switch (type) {
8875 case DataType::Type::kInt32:
8876 locations->SetInAt(0, Location::RequiresRegister());
8877 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
8878 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8879 break;
8880
8881 case DataType::Type::kInt64: {
8882 if (call_rem) {
8883 InvokeRuntimeCallingConvention calling_convention;
8884 locations->SetInAt(0, Location::RegisterPairLocation(
8885 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
8886 locations->SetInAt(1, Location::RegisterPairLocation(
8887 calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
8888 locations->SetOut(calling_convention.GetReturnLocation(type));
8889 } else {
8890 locations->SetInAt(0, Location::RequiresRegister());
8891 locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
8892 locations->SetOut(Location::RequiresRegister());
8893 }
8894 break;
8895 }
8896
8897 case DataType::Type::kFloat32:
8898 case DataType::Type::kFloat64: {
8899 InvokeRuntimeCallingConvention calling_convention;
8900 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
8901 locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
8902 locations->SetOut(calling_convention.GetReturnLocation(type));
8903 break;
8904 }
8905
8906 default:
8907 LOG(FATAL) << "Unexpected rem type " << type;
8908 }
8909 }
8910
VisitRem(HRem * instruction)8911 void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) {
8912 DataType::Type type = instruction->GetType();
8913 LocationSummary* locations = instruction->GetLocations();
8914
8915 switch (type) {
8916 case DataType::Type::kInt32:
8917 GenerateDivRemIntegral(instruction);
8918 break;
8919 case DataType::Type::kInt64: {
8920 if (locations->InAt(1).IsConstant()) {
8921 int64_t imm = locations->InAt(1).GetConstant()->AsLongConstant()->GetValue();
8922 if (imm == 0) {
8923 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
8924 } else if (imm == 1 || imm == -1) {
8925 DivRemOneOrMinusOne(instruction);
8926 } else {
8927 DCHECK(IsPowerOfTwo(static_cast<uint64_t>(AbsOrMin(imm))));
8928 DivRemByPowerOfTwo(instruction);
8929 }
8930 } else {
8931 codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
8932 CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
8933 }
8934 break;
8935 }
8936 case DataType::Type::kFloat32: {
8937 codegen_->InvokeRuntime(kQuickFmodf, instruction, instruction->GetDexPc());
8938 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
8939 break;
8940 }
8941 case DataType::Type::kFloat64: {
8942 codegen_->InvokeRuntime(kQuickFmod, instruction, instruction->GetDexPc());
8943 CheckEntrypointTypes<kQuickFmod, double, double, double>();
8944 break;
8945 }
8946 default:
8947 LOG(FATAL) << "Unexpected rem type " << type;
8948 }
8949 }
8950
CreateMinMaxLocations(ArenaAllocator * allocator,HBinaryOperation * minmax)8951 static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) {
8952 LocationSummary* locations = new (allocator) LocationSummary(minmax);
8953 switch (minmax->GetResultType()) {
8954 case DataType::Type::kInt32:
8955 case DataType::Type::kInt64:
8956 locations->SetInAt(0, Location::RequiresRegister());
8957 locations->SetInAt(1, Location::RequiresRegister());
8958 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
8959 break;
8960 case DataType::Type::kFloat32:
8961 case DataType::Type::kFloat64:
8962 locations->SetInAt(0, Location::RequiresFpuRegister());
8963 locations->SetInAt(1, Location::RequiresFpuRegister());
8964 locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap);
8965 break;
8966 default:
8967 LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType();
8968 }
8969 }
8970
GenerateMinMaxInt(LocationSummary * locations,bool is_min,bool isR6,DataType::Type type)8971 void InstructionCodeGeneratorMIPS::GenerateMinMaxInt(LocationSummary* locations,
8972 bool is_min,
8973 bool isR6,
8974 DataType::Type type) {
8975 if (isR6) {
8976 // Some architectures, such as ARM and MIPS (prior to r6), have a
8977 // conditional move instruction which only changes the target
8978 // (output) register if the condition is true (MIPS prior to r6 had
8979 // MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions
8980 // always change the target (output) register. If the condition is
8981 // true the output register gets the contents of the "rs" register;
8982 // otherwise, the output register is set to zero. One consequence
8983 // of this is that to implement something like "rd = c==0 ? rs : rt"
8984 // MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions.
8985 // After executing this pair of instructions one of the output
8986 // registers from the pair will necessarily contain zero. Then the
8987 // code ORs the output registers from the SELEQZ/SELNEZ instructions
8988 // to get the final result.
8989 //
8990 // The initial test to see if the output register is same as the
8991 // first input register is needed to make sure that value in the
8992 // first input register isn't clobbered before we've finished
8993 // computing the output value. The logic in the corresponding else
8994 // clause performs the same task but makes sure the second input
8995 // register isn't clobbered in the event that it's the same register
8996 // as the output register; the else clause also handles the case
8997 // where the output register is distinct from both the first, and the
8998 // second input registers.
8999 if (type == DataType::Type::kInt64) {
9000 Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
9001 Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
9002 Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
9003 Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
9004 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
9005 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
9006
9007 MipsLabel compare_done;
9008
9009 if (a_lo == b_lo) {
9010 if (out_lo != a_lo) {
9011 __ Move(out_lo, a_lo);
9012 __ Move(out_hi, a_hi);
9013 }
9014 } else {
9015 __ Slt(TMP, b_hi, a_hi);
9016 __ Bne(b_hi, a_hi, &compare_done);
9017
9018 __ Sltu(TMP, b_lo, a_lo);
9019
9020 __ Bind(&compare_done);
9021
9022 if (is_min) {
9023 __ Seleqz(AT, a_lo, TMP);
9024 __ Selnez(out_lo, b_lo, TMP); // Safe even if out_lo == a_lo/b_lo
9025 // because at this point we're
9026 // done using a_lo/b_lo.
9027 } else {
9028 __ Selnez(AT, a_lo, TMP);
9029 __ Seleqz(out_lo, b_lo, TMP); // ditto
9030 }
9031 __ Or(out_lo, out_lo, AT);
9032 if (is_min) {
9033 __ Seleqz(AT, a_hi, TMP);
9034 __ Selnez(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
9035 } else {
9036 __ Selnez(AT, a_hi, TMP);
9037 __ Seleqz(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
9038 }
9039 __ Or(out_hi, out_hi, AT);
9040 }
9041 } else {
9042 DCHECK_EQ(type, DataType::Type::kInt32);
9043 Register a = locations->InAt(0).AsRegister<Register>();
9044 Register b = locations->InAt(1).AsRegister<Register>();
9045 Register out = locations->Out().AsRegister<Register>();
9046
9047 if (a == b) {
9048 if (out != a) {
9049 __ Move(out, a);
9050 }
9051 } else {
9052 __ Slt(AT, b, a);
9053 if (is_min) {
9054 __ Seleqz(TMP, a, AT);
9055 __ Selnez(AT, b, AT);
9056 } else {
9057 __ Selnez(TMP, a, AT);
9058 __ Seleqz(AT, b, AT);
9059 }
9060 __ Or(out, TMP, AT);
9061 }
9062 }
9063 } else { // !isR6
9064 if (type == DataType::Type::kInt64) {
9065 Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
9066 Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
9067 Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
9068 Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
9069 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
9070 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
9071
9072 MipsLabel compare_done;
9073
9074 if (a_lo == b_lo) {
9075 if (out_lo != a_lo) {
9076 __ Move(out_lo, a_lo);
9077 __ Move(out_hi, a_hi);
9078 }
9079 } else {
9080 __ Slt(TMP, a_hi, b_hi);
9081 __ Bne(a_hi, b_hi, &compare_done);
9082
9083 __ Sltu(TMP, a_lo, b_lo);
9084
9085 __ Bind(&compare_done);
9086
9087 if (is_min) {
9088 if (out_lo != a_lo) {
9089 __ Movn(out_hi, a_hi, TMP);
9090 __ Movn(out_lo, a_lo, TMP);
9091 }
9092 if (out_lo != b_lo) {
9093 __ Movz(out_hi, b_hi, TMP);
9094 __ Movz(out_lo, b_lo, TMP);
9095 }
9096 } else {
9097 if (out_lo != a_lo) {
9098 __ Movz(out_hi, a_hi, TMP);
9099 __ Movz(out_lo, a_lo, TMP);
9100 }
9101 if (out_lo != b_lo) {
9102 __ Movn(out_hi, b_hi, TMP);
9103 __ Movn(out_lo, b_lo, TMP);
9104 }
9105 }
9106 }
9107 } else {
9108 DCHECK_EQ(type, DataType::Type::kInt32);
9109 Register a = locations->InAt(0).AsRegister<Register>();
9110 Register b = locations->InAt(1).AsRegister<Register>();
9111 Register out = locations->Out().AsRegister<Register>();
9112
9113 if (a == b) {
9114 if (out != a) {
9115 __ Move(out, a);
9116 }
9117 } else {
9118 __ Slt(AT, a, b);
9119 if (is_min) {
9120 if (out != a) {
9121 __ Movn(out, a, AT);
9122 }
9123 if (out != b) {
9124 __ Movz(out, b, AT);
9125 }
9126 } else {
9127 if (out != a) {
9128 __ Movz(out, a, AT);
9129 }
9130 if (out != b) {
9131 __ Movn(out, b, AT);
9132 }
9133 }
9134 }
9135 }
9136 }
9137 }
9138
GenerateMinMaxFP(LocationSummary * locations,bool is_min,bool isR6,DataType::Type type)9139 void InstructionCodeGeneratorMIPS::GenerateMinMaxFP(LocationSummary* locations,
9140 bool is_min,
9141 bool isR6,
9142 DataType::Type type) {
9143 FRegister out = locations->Out().AsFpuRegister<FRegister>();
9144 FRegister a = locations->InAt(0).AsFpuRegister<FRegister>();
9145 FRegister b = locations->InAt(1).AsFpuRegister<FRegister>();
9146
9147 if (isR6) {
9148 MipsLabel noNaNs;
9149 MipsLabel done;
9150 FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP;
9151
9152 // When Java computes min/max it prefers a NaN to a number; the
9153 // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of
9154 // the inputs is a NaN and the other is a valid number, the MIPS
9155 // instruction will return the number; Java wants the NaN value
9156 // returned. This is why there is extra logic preceding the use of
9157 // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a
9158 // NaN, return the NaN, otherwise return the min/max.
9159 if (type == DataType::Type::kFloat64) {
9160 __ CmpUnD(FTMP, a, b);
9161 __ Bc1eqz(FTMP, &noNaNs);
9162
9163 // One of the inputs is a NaN
9164 __ CmpEqD(ftmp, a, a);
9165 // If a == a then b is the NaN, otherwise a is the NaN.
9166 __ SelD(ftmp, a, b);
9167
9168 if (ftmp != out) {
9169 __ MovD(out, ftmp);
9170 }
9171
9172 __ B(&done);
9173
9174 __ Bind(&noNaNs);
9175
9176 if (is_min) {
9177 __ MinD(out, a, b);
9178 } else {
9179 __ MaxD(out, a, b);
9180 }
9181 } else {
9182 DCHECK_EQ(type, DataType::Type::kFloat32);
9183 __ CmpUnS(FTMP, a, b);
9184 __ Bc1eqz(FTMP, &noNaNs);
9185
9186 // One of the inputs is a NaN
9187 __ CmpEqS(ftmp, a, a);
9188 // If a == a then b is the NaN, otherwise a is the NaN.
9189 __ SelS(ftmp, a, b);
9190
9191 if (ftmp != out) {
9192 __ MovS(out, ftmp);
9193 }
9194
9195 __ B(&done);
9196
9197 __ Bind(&noNaNs);
9198
9199 if (is_min) {
9200 __ MinS(out, a, b);
9201 } else {
9202 __ MaxS(out, a, b);
9203 }
9204 }
9205
9206 __ Bind(&done);
9207
9208 } else { // !isR6
9209 MipsLabel ordered;
9210 MipsLabel compare;
9211 MipsLabel select;
9212 MipsLabel done;
9213
9214 if (type == DataType::Type::kFloat64) {
9215 __ CunD(a, b);
9216 } else {
9217 DCHECK_EQ(type, DataType::Type::kFloat32);
9218 __ CunS(a, b);
9219 }
9220 __ Bc1f(&ordered);
9221
9222 // a or b (or both) is a NaN. Return one, which is a NaN.
9223 if (type == DataType::Type::kFloat64) {
9224 __ CeqD(b, b);
9225 } else {
9226 __ CeqS(b, b);
9227 }
9228 __ B(&select);
9229
9230 __ Bind(&ordered);
9231
9232 // Neither is a NaN.
9233 // a == b? (-0.0 compares equal with +0.0)
9234 // If equal, handle zeroes, else compare further.
9235 if (type == DataType::Type::kFloat64) {
9236 __ CeqD(a, b);
9237 } else {
9238 __ CeqS(a, b);
9239 }
9240 __ Bc1f(&compare);
9241
9242 // a == b either bit for bit or one is -0.0 and the other is +0.0.
9243 if (type == DataType::Type::kFloat64) {
9244 __ MoveFromFpuHigh(TMP, a);
9245 __ MoveFromFpuHigh(AT, b);
9246 } else {
9247 __ Mfc1(TMP, a);
9248 __ Mfc1(AT, b);
9249 }
9250
9251 if (is_min) {
9252 // -0.0 prevails over +0.0.
9253 __ Or(TMP, TMP, AT);
9254 } else {
9255 // +0.0 prevails over -0.0.
9256 __ And(TMP, TMP, AT);
9257 }
9258
9259 if (type == DataType::Type::kFloat64) {
9260 __ Mfc1(AT, a);
9261 __ Mtc1(AT, out);
9262 __ MoveToFpuHigh(TMP, out);
9263 } else {
9264 __ Mtc1(TMP, out);
9265 }
9266 __ B(&done);
9267
9268 __ Bind(&compare);
9269
9270 if (type == DataType::Type::kFloat64) {
9271 if (is_min) {
9272 // return (a <= b) ? a : b;
9273 __ ColeD(a, b);
9274 } else {
9275 // return (a >= b) ? a : b;
9276 __ ColeD(b, a); // b <= a
9277 }
9278 } else {
9279 if (is_min) {
9280 // return (a <= b) ? a : b;
9281 __ ColeS(a, b);
9282 } else {
9283 // return (a >= b) ? a : b;
9284 __ ColeS(b, a); // b <= a
9285 }
9286 }
9287
9288 __ Bind(&select);
9289
9290 if (type == DataType::Type::kFloat64) {
9291 __ MovtD(out, a);
9292 __ MovfD(out, b);
9293 } else {
9294 __ MovtS(out, a);
9295 __ MovfS(out, b);
9296 }
9297
9298 __ Bind(&done);
9299 }
9300 }
9301
GenerateMinMax(HBinaryOperation * minmax,bool is_min)9302 void InstructionCodeGeneratorMIPS::GenerateMinMax(HBinaryOperation* minmax, bool is_min) {
9303 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
9304 DataType::Type type = minmax->GetResultType();
9305 switch (type) {
9306 case DataType::Type::kInt32:
9307 case DataType::Type::kInt64:
9308 GenerateMinMaxInt(minmax->GetLocations(), is_min, isR6, type);
9309 break;
9310 case DataType::Type::kFloat32:
9311 case DataType::Type::kFloat64:
9312 GenerateMinMaxFP(minmax->GetLocations(), is_min, isR6, type);
9313 break;
9314 default:
9315 LOG(FATAL) << "Unexpected type for HMinMax " << type;
9316 }
9317 }
9318
VisitMin(HMin * min)9319 void LocationsBuilderMIPS::VisitMin(HMin* min) {
9320 CreateMinMaxLocations(GetGraph()->GetAllocator(), min);
9321 }
9322
VisitMin(HMin * min)9323 void InstructionCodeGeneratorMIPS::VisitMin(HMin* min) {
9324 GenerateMinMax(min, /*is_min*/ true);
9325 }
9326
VisitMax(HMax * max)9327 void LocationsBuilderMIPS::VisitMax(HMax* max) {
9328 CreateMinMaxLocations(GetGraph()->GetAllocator(), max);
9329 }
9330
VisitMax(HMax * max)9331 void InstructionCodeGeneratorMIPS::VisitMax(HMax* max) {
9332 GenerateMinMax(max, /*is_min*/ false);
9333 }
9334
VisitAbs(HAbs * abs)9335 void LocationsBuilderMIPS::VisitAbs(HAbs* abs) {
9336 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
9337 switch (abs->GetResultType()) {
9338 case DataType::Type::kInt32:
9339 case DataType::Type::kInt64:
9340 locations->SetInAt(0, Location::RequiresRegister());
9341 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
9342 break;
9343 case DataType::Type::kFloat32:
9344 case DataType::Type::kFloat64:
9345 locations->SetInAt(0, Location::RequiresFpuRegister());
9346 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
9347 break;
9348 default:
9349 LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
9350 }
9351 }
9352
GenerateAbsFP(LocationSummary * locations,DataType::Type type,bool isR2OrNewer,bool isR6)9353 void InstructionCodeGeneratorMIPS::GenerateAbsFP(LocationSummary* locations,
9354 DataType::Type type,
9355 bool isR2OrNewer,
9356 bool isR6) {
9357 FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
9358 FRegister out = locations->Out().AsFpuRegister<FRegister>();
9359
9360 // Note, as a "quality of implementation", rather than pure "spec compliance", we require that
9361 // Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN
9362 // (signaling NaN may become quiet though).
9363 //
9364 // The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case,
9365 // both regular floating point numbers and NAN values are treated alike, only the sign bit is
9366 // affected by this instruction.
9367 // But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any
9368 // NaN operand signals invalid operation. This means that other bits (not just sign bit) might be
9369 // changed when doing abs(NaN). Because of that, we clear sign bit in a different way.
9370 if (isR6) {
9371 if (type == DataType::Type::kFloat64) {
9372 __ AbsD(out, in);
9373 } else {
9374 DCHECK_EQ(type, DataType::Type::kFloat32);
9375 __ AbsS(out, in);
9376 }
9377 } else {
9378 if (type == DataType::Type::kFloat64) {
9379 if (in != out) {
9380 __ MovD(out, in);
9381 }
9382 __ MoveFromFpuHigh(TMP, in);
9383 // ins instruction is not available for R1.
9384 if (isR2OrNewer) {
9385 __ Ins(TMP, ZERO, 31, 1);
9386 } else {
9387 __ Sll(TMP, TMP, 1);
9388 __ Srl(TMP, TMP, 1);
9389 }
9390 __ MoveToFpuHigh(TMP, out);
9391 } else {
9392 DCHECK_EQ(type, DataType::Type::kFloat32);
9393 __ Mfc1(TMP, in);
9394 // ins instruction is not available for R1.
9395 if (isR2OrNewer) {
9396 __ Ins(TMP, ZERO, 31, 1);
9397 } else {
9398 __ Sll(TMP, TMP, 1);
9399 __ Srl(TMP, TMP, 1);
9400 }
9401 __ Mtc1(TMP, out);
9402 }
9403 }
9404 }
9405
VisitAbs(HAbs * abs)9406 void InstructionCodeGeneratorMIPS::VisitAbs(HAbs* abs) {
9407 LocationSummary* locations = abs->GetLocations();
9408 bool isR2OrNewer = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
9409 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
9410 switch (abs->GetResultType()) {
9411 case DataType::Type::kInt32: {
9412 Register in = locations->InAt(0).AsRegister<Register>();
9413 Register out = locations->Out().AsRegister<Register>();
9414 __ Sra(AT, in, 31);
9415 __ Xor(out, in, AT);
9416 __ Subu(out, out, AT);
9417 break;
9418 }
9419 case DataType::Type::kInt64: {
9420 Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
9421 Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
9422 Register out_lo = locations->Out().AsRegisterPairLow<Register>();
9423 Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
9424 // The comments in this section show the analogous operations which would
9425 // be performed if we had 64-bit registers "in", and "out".
9426 // __ Dsra32(AT, in, 31);
9427 __ Sra(AT, in_hi, 31);
9428 // __ Xor(out, in, AT);
9429 __ Xor(TMP, in_lo, AT);
9430 __ Xor(out_hi, in_hi, AT);
9431 // __ Dsubu(out, out, AT);
9432 __ Subu(out_lo, TMP, AT);
9433 __ Sltu(TMP, out_lo, TMP);
9434 __ Addu(out_hi, out_hi, TMP);
9435 break;
9436 }
9437 case DataType::Type::kFloat32:
9438 case DataType::Type::kFloat64:
9439 GenerateAbsFP(locations, abs->GetResultType(), isR2OrNewer, isR6);
9440 break;
9441 default:
9442 LOG(FATAL) << "Unexpected abs type " << abs->GetResultType();
9443 }
9444 }
9445
VisitConstructorFence(HConstructorFence * constructor_fence)9446 void LocationsBuilderMIPS::VisitConstructorFence(HConstructorFence* constructor_fence) {
9447 constructor_fence->SetLocations(nullptr);
9448 }
9449
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)9450 void InstructionCodeGeneratorMIPS::VisitConstructorFence(
9451 HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
9452 GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
9453 }
9454
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)9455 void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
9456 memory_barrier->SetLocations(nullptr);
9457 }
9458
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)9459 void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
9460 GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
9461 }
9462
VisitReturn(HReturn * ret)9463 void LocationsBuilderMIPS::VisitReturn(HReturn* ret) {
9464 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(ret);
9465 DataType::Type return_type = ret->InputAt(0)->GetType();
9466 locations->SetInAt(0, MipsReturnLocation(return_type));
9467 }
9468
VisitReturn(HReturn * ret ATTRIBUTE_UNUSED)9469 void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
9470 codegen_->GenerateFrameExit();
9471 }
9472
VisitReturnVoid(HReturnVoid * ret)9473 void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) {
9474 ret->SetLocations(nullptr);
9475 }
9476
VisitReturnVoid(HReturnVoid * ret ATTRIBUTE_UNUSED)9477 void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
9478 codegen_->GenerateFrameExit();
9479 }
9480
VisitRor(HRor * ror)9481 void LocationsBuilderMIPS::VisitRor(HRor* ror) {
9482 HandleShift(ror);
9483 }
9484
VisitRor(HRor * ror)9485 void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) {
9486 HandleShift(ror);
9487 }
9488
VisitShl(HShl * shl)9489 void LocationsBuilderMIPS::VisitShl(HShl* shl) {
9490 HandleShift(shl);
9491 }
9492
VisitShl(HShl * shl)9493 void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) {
9494 HandleShift(shl);
9495 }
9496
VisitShr(HShr * shr)9497 void LocationsBuilderMIPS::VisitShr(HShr* shr) {
9498 HandleShift(shr);
9499 }
9500
VisitShr(HShr * shr)9501 void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) {
9502 HandleShift(shr);
9503 }
9504
VisitSub(HSub * instruction)9505 void LocationsBuilderMIPS::VisitSub(HSub* instruction) {
9506 HandleBinaryOp(instruction);
9507 }
9508
VisitSub(HSub * instruction)9509 void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) {
9510 HandleBinaryOp(instruction);
9511 }
9512
VisitStaticFieldGet(HStaticFieldGet * instruction)9513 void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
9514 HandleFieldGet(instruction, instruction->GetFieldInfo());
9515 }
9516
VisitStaticFieldGet(HStaticFieldGet * instruction)9517 void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
9518 HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
9519 }
9520
VisitStaticFieldSet(HStaticFieldSet * instruction)9521 void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
9522 HandleFieldSet(instruction, instruction->GetFieldInfo());
9523 }
9524
VisitStaticFieldSet(HStaticFieldSet * instruction)9525 void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
9526 HandleFieldSet(instruction,
9527 instruction->GetFieldInfo(),
9528 instruction->GetDexPc(),
9529 instruction->GetValueCanBeNull());
9530 }
9531
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)9532 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet(
9533 HUnresolvedInstanceFieldGet* instruction) {
9534 FieldAccessCallingConventionMIPS calling_convention;
9535 codegen_->CreateUnresolvedFieldLocationSummary(instruction,
9536 instruction->GetFieldType(),
9537 calling_convention);
9538 }
9539
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)9540 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet(
9541 HUnresolvedInstanceFieldGet* instruction) {
9542 FieldAccessCallingConventionMIPS calling_convention;
9543 codegen_->GenerateUnresolvedFieldAccess(instruction,
9544 instruction->GetFieldType(),
9545 instruction->GetFieldIndex(),
9546 instruction->GetDexPc(),
9547 calling_convention);
9548 }
9549
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)9550 void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet(
9551 HUnresolvedInstanceFieldSet* instruction) {
9552 FieldAccessCallingConventionMIPS calling_convention;
9553 codegen_->CreateUnresolvedFieldLocationSummary(instruction,
9554 instruction->GetFieldType(),
9555 calling_convention);
9556 }
9557
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)9558 void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet(
9559 HUnresolvedInstanceFieldSet* instruction) {
9560 FieldAccessCallingConventionMIPS calling_convention;
9561 codegen_->GenerateUnresolvedFieldAccess(instruction,
9562 instruction->GetFieldType(),
9563 instruction->GetFieldIndex(),
9564 instruction->GetDexPc(),
9565 calling_convention);
9566 }
9567
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)9568 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet(
9569 HUnresolvedStaticFieldGet* instruction) {
9570 FieldAccessCallingConventionMIPS calling_convention;
9571 codegen_->CreateUnresolvedFieldLocationSummary(instruction,
9572 instruction->GetFieldType(),
9573 calling_convention);
9574 }
9575
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)9576 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet(
9577 HUnresolvedStaticFieldGet* instruction) {
9578 FieldAccessCallingConventionMIPS calling_convention;
9579 codegen_->GenerateUnresolvedFieldAccess(instruction,
9580 instruction->GetFieldType(),
9581 instruction->GetFieldIndex(),
9582 instruction->GetDexPc(),
9583 calling_convention);
9584 }
9585
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)9586 void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet(
9587 HUnresolvedStaticFieldSet* instruction) {
9588 FieldAccessCallingConventionMIPS calling_convention;
9589 codegen_->CreateUnresolvedFieldLocationSummary(instruction,
9590 instruction->GetFieldType(),
9591 calling_convention);
9592 }
9593
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)9594 void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet(
9595 HUnresolvedStaticFieldSet* instruction) {
9596 FieldAccessCallingConventionMIPS calling_convention;
9597 codegen_->GenerateUnresolvedFieldAccess(instruction,
9598 instruction->GetFieldType(),
9599 instruction->GetFieldIndex(),
9600 instruction->GetDexPc(),
9601 calling_convention);
9602 }
9603
VisitSuspendCheck(HSuspendCheck * instruction)9604 void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
9605 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
9606 instruction, LocationSummary::kCallOnSlowPath);
9607 // In suspend check slow path, usually there are no caller-save registers at all.
9608 // If SIMD instructions are present, however, we force spilling all live SIMD
9609 // registers in full width (since the runtime only saves/restores lower part).
9610 locations->SetCustomSlowPathCallerSaves(
9611 GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
9612 }
9613
VisitSuspendCheck(HSuspendCheck * instruction)9614 void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
9615 HBasicBlock* block = instruction->GetBlock();
9616 if (block->GetLoopInformation() != nullptr) {
9617 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
9618 // The back edge will generate the suspend check.
9619 return;
9620 }
9621 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
9622 // The goto will generate the suspend check.
9623 return;
9624 }
9625 GenerateSuspendCheck(instruction, nullptr);
9626 }
9627
VisitThrow(HThrow * instruction)9628 void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) {
9629 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
9630 instruction, LocationSummary::kCallOnMainOnly);
9631 InvokeRuntimeCallingConvention calling_convention;
9632 locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
9633 }
9634
VisitThrow(HThrow * instruction)9635 void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) {
9636 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
9637 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
9638 }
9639
VisitTypeConversion(HTypeConversion * conversion)9640 void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) {
9641 DataType::Type input_type = conversion->GetInputType();
9642 DataType::Type result_type = conversion->GetResultType();
9643 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
9644 << input_type << " -> " << result_type;
9645 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
9646
9647 if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
9648 (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
9649 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
9650 }
9651
9652 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
9653 if (!isR6 &&
9654 ((DataType::IsFloatingPointType(result_type) && input_type == DataType::Type::kInt64) ||
9655 (result_type == DataType::Type::kInt64 && DataType::IsFloatingPointType(input_type)))) {
9656 call_kind = LocationSummary::kCallOnMainOnly;
9657 }
9658
9659 LocationSummary* locations =
9660 new (GetGraph()->GetAllocator()) LocationSummary(conversion, call_kind);
9661
9662 if (call_kind == LocationSummary::kNoCall) {
9663 if (DataType::IsFloatingPointType(input_type)) {
9664 locations->SetInAt(0, Location::RequiresFpuRegister());
9665 } else {
9666 locations->SetInAt(0, Location::RequiresRegister());
9667 }
9668
9669 if (DataType::IsFloatingPointType(result_type)) {
9670 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
9671 } else {
9672 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
9673 }
9674 } else {
9675 InvokeRuntimeCallingConvention calling_convention;
9676
9677 if (DataType::IsFloatingPointType(input_type)) {
9678 locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
9679 } else {
9680 DCHECK_EQ(input_type, DataType::Type::kInt64);
9681 locations->SetInAt(0, Location::RegisterPairLocation(
9682 calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
9683 }
9684
9685 locations->SetOut(calling_convention.GetReturnLocation(result_type));
9686 }
9687 }
9688
VisitTypeConversion(HTypeConversion * conversion)9689 void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) {
9690 LocationSummary* locations = conversion->GetLocations();
9691 DataType::Type result_type = conversion->GetResultType();
9692 DataType::Type input_type = conversion->GetInputType();
9693 bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
9694 bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
9695
9696 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
9697 << input_type << " -> " << result_type;
9698
9699 if (result_type == DataType::Type::kInt64 && DataType::IsIntegralType(input_type)) {
9700 Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
9701 Register dst_low = locations->Out().AsRegisterPairLow<Register>();
9702 Register src = locations->InAt(0).AsRegister<Register>();
9703
9704 if (dst_low != src) {
9705 __ Move(dst_low, src);
9706 }
9707 __ Sra(dst_high, src, 31);
9708 } else if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
9709 Register dst = locations->Out().AsRegister<Register>();
9710 Register src = (input_type == DataType::Type::kInt64)
9711 ? locations->InAt(0).AsRegisterPairLow<Register>()
9712 : locations->InAt(0).AsRegister<Register>();
9713
9714 switch (result_type) {
9715 case DataType::Type::kUint8:
9716 __ Andi(dst, src, 0xFF);
9717 break;
9718 case DataType::Type::kInt8:
9719 if (has_sign_extension) {
9720 __ Seb(dst, src);
9721 } else {
9722 __ Sll(dst, src, 24);
9723 __ Sra(dst, dst, 24);
9724 }
9725 break;
9726 case DataType::Type::kUint16:
9727 __ Andi(dst, src, 0xFFFF);
9728 break;
9729 case DataType::Type::kInt16:
9730 if (has_sign_extension) {
9731 __ Seh(dst, src);
9732 } else {
9733 __ Sll(dst, src, 16);
9734 __ Sra(dst, dst, 16);
9735 }
9736 break;
9737 case DataType::Type::kInt32:
9738 if (dst != src) {
9739 __ Move(dst, src);
9740 }
9741 break;
9742
9743 default:
9744 LOG(FATAL) << "Unexpected type conversion from " << input_type
9745 << " to " << result_type;
9746 }
9747 } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
9748 if (input_type == DataType::Type::kInt64) {
9749 if (isR6) {
9750 // cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
9751 // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
9752 Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
9753 Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
9754 FRegister dst = locations->Out().AsFpuRegister<FRegister>();
9755 __ Mtc1(src_low, FTMP);
9756 __ Mthc1(src_high, FTMP);
9757 if (result_type == DataType::Type::kFloat32) {
9758 __ Cvtsl(dst, FTMP);
9759 } else {
9760 __ Cvtdl(dst, FTMP);
9761 }
9762 } else {
9763 QuickEntrypointEnum entrypoint =
9764 (result_type == DataType::Type::kFloat32) ? kQuickL2f : kQuickL2d;
9765 codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
9766 if (result_type == DataType::Type::kFloat32) {
9767 CheckEntrypointTypes<kQuickL2f, float, int64_t>();
9768 } else {
9769 CheckEntrypointTypes<kQuickL2d, double, int64_t>();
9770 }
9771 }
9772 } else {
9773 Register src = locations->InAt(0).AsRegister<Register>();
9774 FRegister dst = locations->Out().AsFpuRegister<FRegister>();
9775 __ Mtc1(src, FTMP);
9776 if (result_type == DataType::Type::kFloat32) {
9777 __ Cvtsw(dst, FTMP);
9778 } else {
9779 __ Cvtdw(dst, FTMP);
9780 }
9781 }
9782 } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
9783 CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
9784
9785 // When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum
9786 // value of the output type if the input is outside of the range after the truncation or
9787 // produces 0 when the input is a NaN. IOW, the three special cases produce three distinct
9788 // results. This matches the desired float/double-to-int/long conversion exactly.
9789 //
9790 // When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive
9791 // value when the input is either a NaN or is outside of the range of the output type
9792 // after the truncation. IOW, the three special cases (NaN, too small, too big) produce
9793 // the same result.
9794 //
9795 // The code takes care of the different behaviors by first comparing the input to the
9796 // minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int).
9797 // If the input is greater than or equal to the minimum, it procedes to the truncate
9798 // instruction, which will handle such an input the same way irrespective of NAN2008.
9799 // Otherwise the input is compared to itself to determine whether it is a NaN or not
9800 // in order to return either zero or the minimum value.
9801 if (result_type == DataType::Type::kInt64) {
9802 if (isR6) {
9803 // trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
9804 // architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
9805 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
9806 Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
9807 Register dst_low = locations->Out().AsRegisterPairLow<Register>();
9808
9809 if (input_type == DataType::Type::kFloat32) {
9810 __ TruncLS(FTMP, src);
9811 } else {
9812 __ TruncLD(FTMP, src);
9813 }
9814 __ Mfc1(dst_low, FTMP);
9815 __ Mfhc1(dst_high, FTMP);
9816 } else {
9817 QuickEntrypointEnum entrypoint =
9818 (input_type == DataType::Type::kFloat32) ? kQuickF2l : kQuickD2l;
9819 codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
9820 if (input_type == DataType::Type::kFloat32) {
9821 CheckEntrypointTypes<kQuickF2l, int64_t, float>();
9822 } else {
9823 CheckEntrypointTypes<kQuickD2l, int64_t, double>();
9824 }
9825 }
9826 } else {
9827 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
9828 Register dst = locations->Out().AsRegister<Register>();
9829 MipsLabel truncate;
9830 MipsLabel done;
9831
9832 if (!isR6) {
9833 if (input_type == DataType::Type::kFloat32) {
9834 uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min());
9835 __ LoadConst32(TMP, min_val);
9836 __ Mtc1(TMP, FTMP);
9837 } else {
9838 uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min());
9839 __ LoadConst32(TMP, High32Bits(min_val));
9840 __ Mtc1(ZERO, FTMP);
9841 __ MoveToFpuHigh(TMP, FTMP);
9842 }
9843
9844 if (input_type == DataType::Type::kFloat32) {
9845 __ ColeS(0, FTMP, src);
9846 } else {
9847 __ ColeD(0, FTMP, src);
9848 }
9849 __ Bc1t(0, &truncate);
9850
9851 if (input_type == DataType::Type::kFloat32) {
9852 __ CeqS(0, src, src);
9853 } else {
9854 __ CeqD(0, src, src);
9855 }
9856 __ LoadConst32(dst, std::numeric_limits<int32_t>::min());
9857 __ Movf(dst, ZERO, 0);
9858
9859 __ B(&done);
9860
9861 __ Bind(&truncate);
9862 }
9863
9864 if (input_type == DataType::Type::kFloat32) {
9865 __ TruncWS(FTMP, src);
9866 } else {
9867 __ TruncWD(FTMP, src);
9868 }
9869 __ Mfc1(dst, FTMP);
9870
9871 if (!isR6) {
9872 __ Bind(&done);
9873 }
9874 }
9875 } else if (DataType::IsFloatingPointType(result_type) &&
9876 DataType::IsFloatingPointType(input_type)) {
9877 FRegister dst = locations->Out().AsFpuRegister<FRegister>();
9878 FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
9879 if (result_type == DataType::Type::kFloat32) {
9880 __ Cvtsd(dst, src);
9881 } else {
9882 __ Cvtds(dst, src);
9883 }
9884 } else {
9885 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
9886 << " to " << result_type;
9887 }
9888 }
9889
VisitUShr(HUShr * ushr)9890 void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) {
9891 HandleShift(ushr);
9892 }
9893
VisitUShr(HUShr * ushr)9894 void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) {
9895 HandleShift(ushr);
9896 }
9897
VisitXor(HXor * instruction)9898 void LocationsBuilderMIPS::VisitXor(HXor* instruction) {
9899 HandleBinaryOp(instruction);
9900 }
9901
VisitXor(HXor * instruction)9902 void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) {
9903 HandleBinaryOp(instruction);
9904 }
9905
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9906 void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9907 // Nothing to do, this should be removed during prepare for register allocator.
9908 LOG(FATAL) << "Unreachable";
9909 }
9910
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)9911 void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
9912 // Nothing to do, this should be removed during prepare for register allocator.
9913 LOG(FATAL) << "Unreachable";
9914 }
9915
VisitEqual(HEqual * comp)9916 void LocationsBuilderMIPS::VisitEqual(HEqual* comp) {
9917 HandleCondition(comp);
9918 }
9919
VisitEqual(HEqual * comp)9920 void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) {
9921 HandleCondition(comp);
9922 }
9923
VisitNotEqual(HNotEqual * comp)9924 void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) {
9925 HandleCondition(comp);
9926 }
9927
VisitNotEqual(HNotEqual * comp)9928 void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) {
9929 HandleCondition(comp);
9930 }
9931
VisitLessThan(HLessThan * comp)9932 void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) {
9933 HandleCondition(comp);
9934 }
9935
VisitLessThan(HLessThan * comp)9936 void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) {
9937 HandleCondition(comp);
9938 }
9939
VisitLessThanOrEqual(HLessThanOrEqual * comp)9940 void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
9941 HandleCondition(comp);
9942 }
9943
VisitLessThanOrEqual(HLessThanOrEqual * comp)9944 void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
9945 HandleCondition(comp);
9946 }
9947
VisitGreaterThan(HGreaterThan * comp)9948 void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) {
9949 HandleCondition(comp);
9950 }
9951
VisitGreaterThan(HGreaterThan * comp)9952 void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) {
9953 HandleCondition(comp);
9954 }
9955
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)9956 void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
9957 HandleCondition(comp);
9958 }
9959
VisitGreaterThanOrEqual(HGreaterThanOrEqual * comp)9960 void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
9961 HandleCondition(comp);
9962 }
9963
VisitBelow(HBelow * comp)9964 void LocationsBuilderMIPS::VisitBelow(HBelow* comp) {
9965 HandleCondition(comp);
9966 }
9967
VisitBelow(HBelow * comp)9968 void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) {
9969 HandleCondition(comp);
9970 }
9971
VisitBelowOrEqual(HBelowOrEqual * comp)9972 void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
9973 HandleCondition(comp);
9974 }
9975
VisitBelowOrEqual(HBelowOrEqual * comp)9976 void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
9977 HandleCondition(comp);
9978 }
9979
VisitAbove(HAbove * comp)9980 void LocationsBuilderMIPS::VisitAbove(HAbove* comp) {
9981 HandleCondition(comp);
9982 }
9983
VisitAbove(HAbove * comp)9984 void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) {
9985 HandleCondition(comp);
9986 }
9987
VisitAboveOrEqual(HAboveOrEqual * comp)9988 void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
9989 HandleCondition(comp);
9990 }
9991
VisitAboveOrEqual(HAboveOrEqual * comp)9992 void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
9993 HandleCondition(comp);
9994 }
9995
VisitPackedSwitch(HPackedSwitch * switch_instr)9996 void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
9997 LocationSummary* locations =
9998 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
9999 locations->SetInAt(0, Location::RequiresRegister());
10000 if (!codegen_->GetInstructionSetFeatures().IsR6()) {
10001 uint32_t num_entries = switch_instr->GetNumEntries();
10002 if (num_entries > InstructionCodeGeneratorMIPS::kPackedSwitchJumpTableThreshold) {
10003 // When there's no HMipsComputeBaseMethodAddress input, R2 uses the NAL
10004 // instruction to simulate PC-relative addressing when accessing the jump table.
10005 // NAL clobbers RA. Make sure RA is preserved.
10006 codegen_->ClobberRA();
10007 }
10008 }
10009 }
10010
GenPackedSwitchWithCompares(Register value_reg,int32_t lower_bound,uint32_t num_entries,HBasicBlock * switch_block,HBasicBlock * default_block)10011 void InstructionCodeGeneratorMIPS::GenPackedSwitchWithCompares(Register value_reg,
10012 int32_t lower_bound,
10013 uint32_t num_entries,
10014 HBasicBlock* switch_block,
10015 HBasicBlock* default_block) {
10016 // Create a set of compare/jumps.
10017 Register temp_reg = TMP;
10018 __ Addiu32(temp_reg, value_reg, -lower_bound);
10019 // Jump to default if index is negative
10020 // Note: We don't check the case that index is positive while value < lower_bound, because in
10021 // this case, index >= num_entries must be true. So that we can save one branch instruction.
10022 __ Bltz(temp_reg, codegen_->GetLabelOf(default_block));
10023
10024 const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
10025 // Jump to successors[0] if value == lower_bound.
10026 __ Beqz(temp_reg, codegen_->GetLabelOf(successors[0]));
10027 int32_t last_index = 0;
10028 for (; num_entries - last_index > 2; last_index += 2) {
10029 __ Addiu(temp_reg, temp_reg, -2);
10030 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
10031 __ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
10032 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
10033 __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2]));
10034 }
10035 if (num_entries - last_index == 2) {
10036 // The last missing case_value.
10037 __ Addiu(temp_reg, temp_reg, -1);
10038 __ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
10039 }
10040
10041 // And the default for any other value.
10042 if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
10043 __ B(codegen_->GetLabelOf(default_block));
10044 }
10045 }
10046
GenTableBasedPackedSwitch(Register value_reg,Register constant_area,int32_t lower_bound,uint32_t num_entries,HBasicBlock * switch_block,HBasicBlock * default_block)10047 void InstructionCodeGeneratorMIPS::GenTableBasedPackedSwitch(Register value_reg,
10048 Register constant_area,
10049 int32_t lower_bound,
10050 uint32_t num_entries,
10051 HBasicBlock* switch_block,
10052 HBasicBlock* default_block) {
10053 // Create a jump table.
10054 std::vector<MipsLabel*> labels(num_entries);
10055 const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
10056 for (uint32_t i = 0; i < num_entries; i++) {
10057 labels[i] = codegen_->GetLabelOf(successors[i]);
10058 }
10059 JumpTable* table = __ CreateJumpTable(std::move(labels));
10060
10061 // Is the value in range?
10062 __ Addiu32(TMP, value_reg, -lower_bound);
10063 if (IsInt<16>(static_cast<int32_t>(num_entries))) {
10064 __ Sltiu(AT, TMP, num_entries);
10065 __ Beqz(AT, codegen_->GetLabelOf(default_block));
10066 } else {
10067 __ LoadConst32(AT, num_entries);
10068 __ Bgeu(TMP, AT, codegen_->GetLabelOf(default_block));
10069 }
10070
10071 // We are in the range of the table.
10072 // Load the target address from the jump table, indexing by the value.
10073 __ LoadLabelAddress(AT, constant_area, table->GetLabel());
10074 __ ShiftAndAdd(TMP, TMP, AT, 2, TMP);
10075 __ Lw(TMP, TMP, 0);
10076 // Compute the absolute target address by adding the table start address
10077 // (the table contains offsets to targets relative to its start).
10078 __ Addu(TMP, TMP, AT);
10079 // And jump.
10080 __ Jr(TMP);
10081 __ NopIfNoReordering();
10082 }
10083
VisitPackedSwitch(HPackedSwitch * switch_instr)10084 void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
10085 int32_t lower_bound = switch_instr->GetStartValue();
10086 uint32_t num_entries = switch_instr->GetNumEntries();
10087 LocationSummary* locations = switch_instr->GetLocations();
10088 Register value_reg = locations->InAt(0).AsRegister<Register>();
10089 HBasicBlock* switch_block = switch_instr->GetBlock();
10090 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
10091
10092 if (num_entries > kPackedSwitchJumpTableThreshold) {
10093 // R6 uses PC-relative addressing to access the jump table.
10094 //
10095 // R2, OTOH, uses an HMipsComputeBaseMethodAddress input (when available)
10096 // to access the jump table and it is implemented by changing HPackedSwitch to
10097 // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress (see
10098 // VisitMipsPackedSwitch()).
10099 //
10100 // When there's no HMipsComputeBaseMethodAddress input (e.g. in presence of
10101 // irreducible loops), R2 uses the NAL instruction to simulate PC-relative
10102 // addressing.
10103 GenTableBasedPackedSwitch(value_reg,
10104 ZERO,
10105 lower_bound,
10106 num_entries,
10107 switch_block,
10108 default_block);
10109 } else {
10110 GenPackedSwitchWithCompares(value_reg,
10111 lower_bound,
10112 num_entries,
10113 switch_block,
10114 default_block);
10115 }
10116 }
10117
VisitMipsPackedSwitch(HMipsPackedSwitch * switch_instr)10118 void LocationsBuilderMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
10119 LocationSummary* locations =
10120 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
10121 locations->SetInAt(0, Location::RequiresRegister());
10122 // Constant area pointer (HMipsComputeBaseMethodAddress).
10123 locations->SetInAt(1, Location::RequiresRegister());
10124 }
10125
VisitMipsPackedSwitch(HMipsPackedSwitch * switch_instr)10126 void InstructionCodeGeneratorMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
10127 int32_t lower_bound = switch_instr->GetStartValue();
10128 uint32_t num_entries = switch_instr->GetNumEntries();
10129 LocationSummary* locations = switch_instr->GetLocations();
10130 Register value_reg = locations->InAt(0).AsRegister<Register>();
10131 Register constant_area = locations->InAt(1).AsRegister<Register>();
10132 HBasicBlock* switch_block = switch_instr->GetBlock();
10133 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
10134
10135 // This is an R2-only path. HPackedSwitch has been changed to
10136 // HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress
10137 // required to address the jump table relative to PC.
10138 GenTableBasedPackedSwitch(value_reg,
10139 constant_area,
10140 lower_bound,
10141 num_entries,
10142 switch_block,
10143 default_block);
10144 }
10145
VisitMipsComputeBaseMethodAddress(HMipsComputeBaseMethodAddress * insn)10146 void LocationsBuilderMIPS::VisitMipsComputeBaseMethodAddress(
10147 HMipsComputeBaseMethodAddress* insn) {
10148 LocationSummary* locations =
10149 new (GetGraph()->GetAllocator()) LocationSummary(insn, LocationSummary::kNoCall);
10150 locations->SetOut(Location::RequiresRegister());
10151 }
10152
VisitMipsComputeBaseMethodAddress(HMipsComputeBaseMethodAddress * insn)10153 void InstructionCodeGeneratorMIPS::VisitMipsComputeBaseMethodAddress(
10154 HMipsComputeBaseMethodAddress* insn) {
10155 LocationSummary* locations = insn->GetLocations();
10156 Register reg = locations->Out().AsRegister<Register>();
10157
10158 CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
10159
10160 // Generate a dummy PC-relative call to obtain PC.
10161 __ Nal();
10162 // Grab the return address off RA.
10163 __ Move(reg, RA);
10164
10165 // Remember this offset (the obtained PC value) for later use with constant area.
10166 __ BindPcRelBaseLabel();
10167 }
10168
VisitInvokeUnresolved(HInvokeUnresolved * invoke)10169 void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
10170 // The trampoline uses the same calling convention as dex calling conventions,
10171 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
10172 // the method_idx.
10173 HandleInvoke(invoke);
10174 }
10175
VisitInvokeUnresolved(HInvokeUnresolved * invoke)10176 void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
10177 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
10178 }
10179
VisitClassTableGet(HClassTableGet * instruction)10180 void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) {
10181 LocationSummary* locations =
10182 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
10183 locations->SetInAt(0, Location::RequiresRegister());
10184 locations->SetOut(Location::RequiresRegister());
10185 }
10186
VisitClassTableGet(HClassTableGet * instruction)10187 void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) {
10188 LocationSummary* locations = instruction->GetLocations();
10189 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
10190 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
10191 instruction->GetIndex(), kMipsPointerSize).SizeValue();
10192 __ LoadFromOffset(kLoadWord,
10193 locations->Out().AsRegister<Register>(),
10194 locations->InAt(0).AsRegister<Register>(),
10195 method_offset);
10196 } else {
10197 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
10198 instruction->GetIndex(), kMipsPointerSize));
10199 __ LoadFromOffset(kLoadWord,
10200 locations->Out().AsRegister<Register>(),
10201 locations->InAt(0).AsRegister<Register>(),
10202 mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
10203 __ LoadFromOffset(kLoadWord,
10204 locations->Out().AsRegister<Register>(),
10205 locations->Out().AsRegister<Register>(),
10206 method_offset);
10207 }
10208 }
10209
VisitIntermediateAddress(HIntermediateAddress * instruction ATTRIBUTE_UNUSED)10210 void LocationsBuilderMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction
10211 ATTRIBUTE_UNUSED) {
10212 LOG(FATAL) << "Unreachable";
10213 }
10214
VisitIntermediateAddress(HIntermediateAddress * instruction ATTRIBUTE_UNUSED)10215 void InstructionCodeGeneratorMIPS::VisitIntermediateAddress(HIntermediateAddress* instruction
10216 ATTRIBUTE_UNUSED) {
10217 LOG(FATAL) << "Unreachable";
10218 }
10219
10220 #undef __
10221 #undef QUICK_ENTRY_POINT
10222
10223 } // namespace mips
10224 } // namespace art
10225