1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <functional>
18 #include <memory>
19
20 #include "base/macros.h"
21 #include "base/utils.h"
22 #include "builder.h"
23 #include "codegen_test_utils.h"
24 #include "dex/dex_file.h"
25 #include "dex/dex_instruction.h"
26 #include "driver/compiler_options.h"
27 #include "nodes.h"
28 #include "optimizing_unit_test.h"
29 #include "register_allocator_linear_scan.h"
30 #include "utils/arm/assembler_arm_vixl.h"
31 #include "utils/arm/managed_register_arm.h"
32 #include "utils/mips/managed_register_mips.h"
33 #include "utils/mips64/managed_register_mips64.h"
34 #include "utils/x86/managed_register_x86.h"
35
36 #include "gtest/gtest.h"
37
38 namespace art {
39
40 // Return all combinations of ISA and code generator that are executable on
41 // hardware, or on simulator, and that we'd like to test.
GetTargetConfigs()42 static ::std::vector<CodegenTargetConfig> GetTargetConfigs() {
43 ::std::vector<CodegenTargetConfig> v;
44 ::std::vector<CodegenTargetConfig> test_config_candidates = {
45 #ifdef ART_ENABLE_CODEGEN_arm
46 // TODO: Should't this be `kThumb2` instead of `kArm` here?
47 CodegenTargetConfig(InstructionSet::kArm, create_codegen_arm_vixl32),
48 #endif
49 #ifdef ART_ENABLE_CODEGEN_arm64
50 CodegenTargetConfig(InstructionSet::kArm64, create_codegen_arm64),
51 #endif
52 #ifdef ART_ENABLE_CODEGEN_x86
53 CodegenTargetConfig(InstructionSet::kX86, create_codegen_x86),
54 #endif
55 #ifdef ART_ENABLE_CODEGEN_x86_64
56 CodegenTargetConfig(InstructionSet::kX86_64, create_codegen_x86_64),
57 #endif
58 #ifdef ART_ENABLE_CODEGEN_mips
59 CodegenTargetConfig(InstructionSet::kMips, create_codegen_mips),
60 #endif
61 #ifdef ART_ENABLE_CODEGEN_mips64
62 CodegenTargetConfig(InstructionSet::kMips64, create_codegen_mips64)
63 #endif
64 };
65
66 for (const CodegenTargetConfig& test_config : test_config_candidates) {
67 if (CanExecute(test_config.GetInstructionSet())) {
68 v.push_back(test_config);
69 }
70 }
71
72 return v;
73 }
74
75 class CodegenTest : public OptimizingUnitTest {
76 protected:
77 void TestCode(const std::vector<uint16_t>& data, bool has_result = false, int32_t expected = 0);
78 void TestCodeLong(const std::vector<uint16_t>& data, bool has_result, int64_t expected);
79 void TestComparison(IfCondition condition,
80 int64_t i,
81 int64_t j,
82 DataType::Type type,
83 const CodegenTargetConfig target_config);
84 };
85
TestCode(const std::vector<uint16_t> & data,bool has_result,int32_t expected)86 void CodegenTest::TestCode(const std::vector<uint16_t>& data, bool has_result, int32_t expected) {
87 for (const CodegenTargetConfig& target_config : GetTargetConfigs()) {
88 ResetPoolAndAllocator();
89 HGraph* graph = CreateCFG(data);
90 // Remove suspend checks, they cannot be executed in this context.
91 RemoveSuspendChecks(graph);
92 OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default");
93 RunCode(target_config, *compiler_options_, graph, [](HGraph*) {}, has_result, expected);
94 }
95 }
96
TestCodeLong(const std::vector<uint16_t> & data,bool has_result,int64_t expected)97 void CodegenTest::TestCodeLong(const std::vector<uint16_t>& data,
98 bool has_result, int64_t expected) {
99 for (const CodegenTargetConfig& target_config : GetTargetConfigs()) {
100 ResetPoolAndAllocator();
101 HGraph* graph = CreateCFG(data, DataType::Type::kInt64);
102 // Remove suspend checks, they cannot be executed in this context.
103 RemoveSuspendChecks(graph);
104 OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default");
105 RunCode(target_config, *compiler_options_, graph, [](HGraph*) {}, has_result, expected);
106 }
107 }
108
TEST_F(CodegenTest,ReturnVoid)109 TEST_F(CodegenTest, ReturnVoid) {
110 const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID);
111 TestCode(data);
112 }
113
TEST_F(CodegenTest,CFG1)114 TEST_F(CodegenTest, CFG1) {
115 const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(
116 Instruction::GOTO | 0x100,
117 Instruction::RETURN_VOID);
118
119 TestCode(data);
120 }
121
TEST_F(CodegenTest,CFG2)122 TEST_F(CodegenTest, CFG2) {
123 const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(
124 Instruction::GOTO | 0x100,
125 Instruction::GOTO | 0x100,
126 Instruction::RETURN_VOID);
127
128 TestCode(data);
129 }
130
TEST_F(CodegenTest,CFG3)131 TEST_F(CodegenTest, CFG3) {
132 const std::vector<uint16_t> data1 = ZERO_REGISTER_CODE_ITEM(
133 Instruction::GOTO | 0x200,
134 Instruction::RETURN_VOID,
135 Instruction::GOTO | 0xFF00);
136
137 TestCode(data1);
138
139 const std::vector<uint16_t> data2 = ZERO_REGISTER_CODE_ITEM(
140 Instruction::GOTO_16, 3,
141 Instruction::RETURN_VOID,
142 Instruction::GOTO_16, 0xFFFF);
143
144 TestCode(data2);
145
146 const std::vector<uint16_t> data3 = ZERO_REGISTER_CODE_ITEM(
147 Instruction::GOTO_32, 4, 0,
148 Instruction::RETURN_VOID,
149 Instruction::GOTO_32, 0xFFFF, 0xFFFF);
150
151 TestCode(data3);
152 }
153
TEST_F(CodegenTest,CFG4)154 TEST_F(CodegenTest, CFG4) {
155 const std::vector<uint16_t> data = ZERO_REGISTER_CODE_ITEM(
156 Instruction::RETURN_VOID,
157 Instruction::GOTO | 0x100,
158 Instruction::GOTO | 0xFE00);
159
160 TestCode(data);
161 }
162
TEST_F(CodegenTest,CFG5)163 TEST_F(CodegenTest, CFG5) {
164 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
165 Instruction::CONST_4 | 0 | 0,
166 Instruction::IF_EQ, 3,
167 Instruction::GOTO | 0x100,
168 Instruction::RETURN_VOID);
169
170 TestCode(data);
171 }
172
TEST_F(CodegenTest,IntConstant)173 TEST_F(CodegenTest, IntConstant) {
174 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
175 Instruction::CONST_4 | 0 | 0,
176 Instruction::RETURN_VOID);
177
178 TestCode(data);
179 }
180
TEST_F(CodegenTest,Return1)181 TEST_F(CodegenTest, Return1) {
182 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
183 Instruction::CONST_4 | 0 | 0,
184 Instruction::RETURN | 0);
185
186 TestCode(data, true, 0);
187 }
188
TEST_F(CodegenTest,Return2)189 TEST_F(CodegenTest, Return2) {
190 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
191 Instruction::CONST_4 | 0 | 0,
192 Instruction::CONST_4 | 0 | 1 << 8,
193 Instruction::RETURN | 1 << 8);
194
195 TestCode(data, true, 0);
196 }
197
TEST_F(CodegenTest,Return3)198 TEST_F(CodegenTest, Return3) {
199 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
200 Instruction::CONST_4 | 0 | 0,
201 Instruction::CONST_4 | 1 << 8 | 1 << 12,
202 Instruction::RETURN | 1 << 8);
203
204 TestCode(data, true, 1);
205 }
206
TEST_F(CodegenTest,ReturnIf1)207 TEST_F(CodegenTest, ReturnIf1) {
208 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
209 Instruction::CONST_4 | 0 | 0,
210 Instruction::CONST_4 | 1 << 8 | 1 << 12,
211 Instruction::IF_EQ, 3,
212 Instruction::RETURN | 0 << 8,
213 Instruction::RETURN | 1 << 8);
214
215 TestCode(data, true, 1);
216 }
217
TEST_F(CodegenTest,ReturnIf2)218 TEST_F(CodegenTest, ReturnIf2) {
219 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
220 Instruction::CONST_4 | 0 | 0,
221 Instruction::CONST_4 | 1 << 8 | 1 << 12,
222 Instruction::IF_EQ | 0 << 4 | 1 << 8, 3,
223 Instruction::RETURN | 0 << 8,
224 Instruction::RETURN | 1 << 8);
225
226 TestCode(data, true, 0);
227 }
228
229 // Exercise bit-wise (one's complement) not-int instruction.
230 #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
231 TEST_F(CodegenTest, TEST_NAME) { \
232 const int32_t input = INPUT; \
233 const uint16_t input_lo = Low16Bits(input); \
234 const uint16_t input_hi = High16Bits(input); \
235 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM( \
236 Instruction::CONST | 0 << 8, input_lo, input_hi, \
237 Instruction::NOT_INT | 1 << 8 | 0 << 12 , \
238 Instruction::RETURN | 1 << 8); \
239 \
240 TestCode(data, true, EXPECTED_OUTPUT); \
241 }
242
243 NOT_INT_TEST(ReturnNotIntMinus2, -2, 1)
244 NOT_INT_TEST(ReturnNotIntMinus1, -1, 0)
245 NOT_INT_TEST(ReturnNotInt0, 0, -1)
246 NOT_INT_TEST(ReturnNotInt1, 1, -2)
247 NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1
248 NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2
249 NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1
250 NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31)
251
252 #undef NOT_INT_TEST
253
254 // Exercise bit-wise (one's complement) not-long instruction.
255 #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
256 TEST_F(CodegenTest, TEST_NAME) { \
257 const int64_t input = INPUT; \
258 const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \
259 const uint16_t word1 = High16Bits(Low32Bits(input)); \
260 const uint16_t word2 = Low16Bits(High32Bits(input)); \
261 const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \
262 const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM( \
263 Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \
264 Instruction::NOT_LONG | 2 << 8 | 0 << 12, \
265 Instruction::RETURN_WIDE | 2 << 8); \
266 \
267 TestCodeLong(data, true, EXPECTED_OUTPUT); \
268 }
269
270 NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1))
271 NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0))
272 NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1))
273 NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2))
274
275 NOT_LONG_TEST(ReturnNotLongINT32_MIN,
276 INT64_C(-2147483648),
277 INT64_C(2147483647)) // (2^31) - 1
278 NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1,
279 INT64_C(-2147483647),
280 INT64_C(2147483646)) // (2^31) - 2
281 NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1,
282 INT64_C(2147483646),
283 INT64_C(-2147483647)) // -(2^31) - 1
284 NOT_LONG_TEST(ReturnNotLongINT32_MAX,
285 INT64_C(2147483647),
286 INT64_C(-2147483648)) // -(2^31)
287
288 // Note that the C++ compiler won't accept
289 // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid
290 // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead.
291 NOT_LONG_TEST(ReturnNotINT64_MIN,
292 INT64_C(-9223372036854775807)-1,
293 INT64_C(9223372036854775807)); // (2^63) - 1
294 NOT_LONG_TEST(ReturnNotINT64_MINPlus1,
295 INT64_C(-9223372036854775807),
296 INT64_C(9223372036854775806)); // (2^63) - 2
297 NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1,
298 INT64_C(9223372036854775806),
299 INT64_C(-9223372036854775807)); // -(2^63) - 1
300 NOT_LONG_TEST(ReturnNotLongINT64_MAX,
301 INT64_C(9223372036854775807),
302 INT64_C(-9223372036854775807)-1); // -(2^63)
303
304 #undef NOT_LONG_TEST
305
TEST_F(CodegenTest,IntToLongOfLongToInt)306 TEST_F(CodegenTest, IntToLongOfLongToInt) {
307 const int64_t input = INT64_C(4294967296); // 2^32
308 const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW.
309 const uint16_t word1 = High16Bits(Low32Bits(input));
310 const uint16_t word2 = Low16Bits(High32Bits(input));
311 const uint16_t word3 = High16Bits(High32Bits(input)); // MSW.
312 const std::vector<uint16_t> data = FIVE_REGISTERS_CODE_ITEM(
313 Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,
314 Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0,
315 Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1
316 Instruction::LONG_TO_INT | 4 << 8 | 0 << 12,
317 Instruction::INT_TO_LONG | 2 << 8 | 4 << 12,
318 Instruction::RETURN_WIDE | 2 << 8);
319
320 TestCodeLong(data, true, 1);
321 }
322
TEST_F(CodegenTest,ReturnAdd1)323 TEST_F(CodegenTest, ReturnAdd1) {
324 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
325 Instruction::CONST_4 | 3 << 12 | 0,
326 Instruction::CONST_4 | 4 << 12 | 1 << 8,
327 Instruction::ADD_INT, 1 << 8 | 0,
328 Instruction::RETURN);
329
330 TestCode(data, true, 7);
331 }
332
TEST_F(CodegenTest,ReturnAdd2)333 TEST_F(CodegenTest, ReturnAdd2) {
334 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
335 Instruction::CONST_4 | 3 << 12 | 0,
336 Instruction::CONST_4 | 4 << 12 | 1 << 8,
337 Instruction::ADD_INT_2ADDR | 1 << 12,
338 Instruction::RETURN);
339
340 TestCode(data, true, 7);
341 }
342
TEST_F(CodegenTest,ReturnAdd3)343 TEST_F(CodegenTest, ReturnAdd3) {
344 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
345 Instruction::CONST_4 | 4 << 12 | 0 << 8,
346 Instruction::ADD_INT_LIT8, 3 << 8 | 0,
347 Instruction::RETURN);
348
349 TestCode(data, true, 7);
350 }
351
TEST_F(CodegenTest,ReturnAdd4)352 TEST_F(CodegenTest, ReturnAdd4) {
353 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
354 Instruction::CONST_4 | 4 << 12 | 0 << 8,
355 Instruction::ADD_INT_LIT16, 3,
356 Instruction::RETURN);
357
358 TestCode(data, true, 7);
359 }
360
TEST_F(CodegenTest,ReturnMulInt)361 TEST_F(CodegenTest, ReturnMulInt) {
362 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
363 Instruction::CONST_4 | 3 << 12 | 0,
364 Instruction::CONST_4 | 4 << 12 | 1 << 8,
365 Instruction::MUL_INT, 1 << 8 | 0,
366 Instruction::RETURN);
367
368 TestCode(data, true, 12);
369 }
370
TEST_F(CodegenTest,ReturnMulInt2addr)371 TEST_F(CodegenTest, ReturnMulInt2addr) {
372 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
373 Instruction::CONST_4 | 3 << 12 | 0,
374 Instruction::CONST_4 | 4 << 12 | 1 << 8,
375 Instruction::MUL_INT_2ADDR | 1 << 12,
376 Instruction::RETURN);
377
378 TestCode(data, true, 12);
379 }
380
TEST_F(CodegenTest,ReturnMulLong)381 TEST_F(CodegenTest, ReturnMulLong) {
382 const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM(
383 Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
384 Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
385 Instruction::MUL_LONG, 2 << 8 | 0,
386 Instruction::RETURN_WIDE);
387
388 TestCodeLong(data, true, 12);
389 }
390
TEST_F(CodegenTest,ReturnMulLong2addr)391 TEST_F(CodegenTest, ReturnMulLong2addr) {
392 const std::vector<uint16_t> data = FOUR_REGISTERS_CODE_ITEM(
393 Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
394 Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
395 Instruction::MUL_LONG_2ADDR | 2 << 12,
396 Instruction::RETURN_WIDE);
397
398 TestCodeLong(data, true, 12);
399 }
400
TEST_F(CodegenTest,ReturnMulIntLit8)401 TEST_F(CodegenTest, ReturnMulIntLit8) {
402 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
403 Instruction::CONST_4 | 4 << 12 | 0 << 8,
404 Instruction::MUL_INT_LIT8, 3 << 8 | 0,
405 Instruction::RETURN);
406
407 TestCode(data, true, 12);
408 }
409
TEST_F(CodegenTest,ReturnMulIntLit16)410 TEST_F(CodegenTest, ReturnMulIntLit16) {
411 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
412 Instruction::CONST_4 | 4 << 12 | 0 << 8,
413 Instruction::MUL_INT_LIT16, 3,
414 Instruction::RETURN);
415
416 TestCode(data, true, 12);
417 }
418
TEST_F(CodegenTest,NonMaterializedCondition)419 TEST_F(CodegenTest, NonMaterializedCondition) {
420 for (CodegenTargetConfig target_config : GetTargetConfigs()) {
421 HGraph* graph = CreateGraph();
422
423 HBasicBlock* entry = new (GetAllocator()) HBasicBlock(graph);
424 graph->AddBlock(entry);
425 graph->SetEntryBlock(entry);
426 entry->AddInstruction(new (GetAllocator()) HGoto());
427
428 HBasicBlock* first_block = new (GetAllocator()) HBasicBlock(graph);
429 graph->AddBlock(first_block);
430 entry->AddSuccessor(first_block);
431 HIntConstant* constant0 = graph->GetIntConstant(0);
432 HIntConstant* constant1 = graph->GetIntConstant(1);
433 HEqual* equal = new (GetAllocator()) HEqual(constant0, constant0);
434 first_block->AddInstruction(equal);
435 first_block->AddInstruction(new (GetAllocator()) HIf(equal));
436
437 HBasicBlock* then_block = new (GetAllocator()) HBasicBlock(graph);
438 HBasicBlock* else_block = new (GetAllocator()) HBasicBlock(graph);
439 HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
440 graph->SetExitBlock(exit_block);
441
442 graph->AddBlock(then_block);
443 graph->AddBlock(else_block);
444 graph->AddBlock(exit_block);
445 first_block->AddSuccessor(then_block);
446 first_block->AddSuccessor(else_block);
447 then_block->AddSuccessor(exit_block);
448 else_block->AddSuccessor(exit_block);
449
450 exit_block->AddInstruction(new (GetAllocator()) HExit());
451 then_block->AddInstruction(new (GetAllocator()) HReturn(constant0));
452 else_block->AddInstruction(new (GetAllocator()) HReturn(constant1));
453
454 ASSERT_FALSE(equal->IsEmittedAtUseSite());
455 graph->BuildDominatorTree();
456 PrepareForRegisterAllocation(graph, *compiler_options_).Run();
457 ASSERT_TRUE(equal->IsEmittedAtUseSite());
458
459 auto hook_before_codegen = [](HGraph* graph_in) {
460 HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
461 HParallelMove* move = new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator());
462 block->InsertInstructionBefore(move, block->GetLastInstruction());
463 };
464
465 OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default");
466 RunCode(target_config, *compiler_options_, graph, hook_before_codegen, true, 0);
467 }
468 }
469
TEST_F(CodegenTest,MaterializedCondition1)470 TEST_F(CodegenTest, MaterializedCondition1) {
471 for (CodegenTargetConfig target_config : GetTargetConfigs()) {
472 // Check that condition are materialized correctly. A materialized condition
473 // should yield `1` if it evaluated to true, and `0` otherwise.
474 // We force the materialization of comparisons for different combinations of
475
476 // inputs and check the results.
477
478 int lhs[] = {1, 2, -1, 2, 0xabc};
479 int rhs[] = {2, 1, 2, -1, 0xabc};
480
481 for (size_t i = 0; i < arraysize(lhs); i++) {
482 HGraph* graph = CreateGraph();
483
484 HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
485 graph->AddBlock(entry_block);
486 graph->SetEntryBlock(entry_block);
487 entry_block->AddInstruction(new (GetAllocator()) HGoto());
488 HBasicBlock* code_block = new (GetAllocator()) HBasicBlock(graph);
489 graph->AddBlock(code_block);
490 HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
491 graph->AddBlock(exit_block);
492 exit_block->AddInstruction(new (GetAllocator()) HExit());
493
494 entry_block->AddSuccessor(code_block);
495 code_block->AddSuccessor(exit_block);
496 graph->SetExitBlock(exit_block);
497
498 HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
499 HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
500 HLessThan cmp_lt(cst_lhs, cst_rhs);
501 code_block->AddInstruction(&cmp_lt);
502 HReturn ret(&cmp_lt);
503 code_block->AddInstruction(&ret);
504
505 graph->BuildDominatorTree();
506 auto hook_before_codegen = [](HGraph* graph_in) {
507 HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
508 HParallelMove* move =
509 new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator());
510 block->InsertInstructionBefore(move, block->GetLastInstruction());
511 };
512 OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default");
513 RunCode(target_config, *compiler_options_, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
514 }
515 }
516 }
517
TEST_F(CodegenTest,MaterializedCondition2)518 TEST_F(CodegenTest, MaterializedCondition2) {
519 for (CodegenTargetConfig target_config : GetTargetConfigs()) {
520 // Check that HIf correctly interprets a materialized condition.
521 // We force the materialization of comparisons for different combinations of
522 // inputs. An HIf takes the materialized combination as input and returns a
523 // value that we verify.
524
525 int lhs[] = {1, 2, -1, 2, 0xabc};
526 int rhs[] = {2, 1, 2, -1, 0xabc};
527
528
529 for (size_t i = 0; i < arraysize(lhs); i++) {
530 HGraph* graph = CreateGraph();
531
532 HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
533 graph->AddBlock(entry_block);
534 graph->SetEntryBlock(entry_block);
535 entry_block->AddInstruction(new (GetAllocator()) HGoto());
536
537 HBasicBlock* if_block = new (GetAllocator()) HBasicBlock(graph);
538 graph->AddBlock(if_block);
539 HBasicBlock* if_true_block = new (GetAllocator()) HBasicBlock(graph);
540 graph->AddBlock(if_true_block);
541 HBasicBlock* if_false_block = new (GetAllocator()) HBasicBlock(graph);
542 graph->AddBlock(if_false_block);
543 HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
544 graph->AddBlock(exit_block);
545 exit_block->AddInstruction(new (GetAllocator()) HExit());
546
547 graph->SetEntryBlock(entry_block);
548 entry_block->AddSuccessor(if_block);
549 if_block->AddSuccessor(if_true_block);
550 if_block->AddSuccessor(if_false_block);
551 if_true_block->AddSuccessor(exit_block);
552 if_false_block->AddSuccessor(exit_block);
553 graph->SetExitBlock(exit_block);
554
555 HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
556 HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
557 HLessThan cmp_lt(cst_lhs, cst_rhs);
558 if_block->AddInstruction(&cmp_lt);
559 // We insert a dummy instruction to separate the HIf from the HLessThan
560 // and force the materialization of the condition.
561 HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0);
562 if_block->AddInstruction(&force_materialization);
563 HIf if_lt(&cmp_lt);
564 if_block->AddInstruction(&if_lt);
565
566 HIntConstant* cst_lt = graph->GetIntConstant(1);
567 HReturn ret_lt(cst_lt);
568 if_true_block->AddInstruction(&ret_lt);
569 HIntConstant* cst_ge = graph->GetIntConstant(0);
570 HReturn ret_ge(cst_ge);
571 if_false_block->AddInstruction(&ret_ge);
572
573 graph->BuildDominatorTree();
574 auto hook_before_codegen = [](HGraph* graph_in) {
575 HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
576 HParallelMove* move =
577 new (graph_in->GetAllocator()) HParallelMove(graph_in->GetAllocator());
578 block->InsertInstructionBefore(move, block->GetLastInstruction());
579 };
580 OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default");
581 RunCode(target_config, *compiler_options_, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
582 }
583 }
584 }
585
TEST_F(CodegenTest,ReturnDivIntLit8)586 TEST_F(CodegenTest, ReturnDivIntLit8) {
587 const std::vector<uint16_t> data = ONE_REGISTER_CODE_ITEM(
588 Instruction::CONST_4 | 4 << 12 | 0 << 8,
589 Instruction::DIV_INT_LIT8, 3 << 8 | 0,
590 Instruction::RETURN);
591
592 TestCode(data, true, 1);
593 }
594
TEST_F(CodegenTest,ReturnDivInt2Addr)595 TEST_F(CodegenTest, ReturnDivInt2Addr) {
596 const std::vector<uint16_t> data = TWO_REGISTERS_CODE_ITEM(
597 Instruction::CONST_4 | 4 << 12 | 0,
598 Instruction::CONST_4 | 2 << 12 | 1 << 8,
599 Instruction::DIV_INT_2ADDR | 1 << 12,
600 Instruction::RETURN);
601
602 TestCode(data, true, 2);
603 }
604
605 // Helper method.
TestComparison(IfCondition condition,int64_t i,int64_t j,DataType::Type type,const CodegenTargetConfig target_config)606 void CodegenTest::TestComparison(IfCondition condition,
607 int64_t i,
608 int64_t j,
609 DataType::Type type,
610 const CodegenTargetConfig target_config) {
611 HGraph* graph = CreateGraph();
612
613 HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
614 graph->AddBlock(entry_block);
615 graph->SetEntryBlock(entry_block);
616 entry_block->AddInstruction(new (GetAllocator()) HGoto());
617
618 HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
619 graph->AddBlock(block);
620
621 HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
622 graph->AddBlock(exit_block);
623 graph->SetExitBlock(exit_block);
624 exit_block->AddInstruction(new (GetAllocator()) HExit());
625
626 entry_block->AddSuccessor(block);
627 block->AddSuccessor(exit_block);
628
629 HInstruction* op1;
630 HInstruction* op2;
631 if (type == DataType::Type::kInt32) {
632 op1 = graph->GetIntConstant(i);
633 op2 = graph->GetIntConstant(j);
634 } else {
635 DCHECK_EQ(type, DataType::Type::kInt64);
636 op1 = graph->GetLongConstant(i);
637 op2 = graph->GetLongConstant(j);
638 }
639
640 HInstruction* comparison = nullptr;
641 bool expected_result = false;
642 const uint64_t x = i;
643 const uint64_t y = j;
644 switch (condition) {
645 case kCondEQ:
646 comparison = new (GetAllocator()) HEqual(op1, op2);
647 expected_result = (i == j);
648 break;
649 case kCondNE:
650 comparison = new (GetAllocator()) HNotEqual(op1, op2);
651 expected_result = (i != j);
652 break;
653 case kCondLT:
654 comparison = new (GetAllocator()) HLessThan(op1, op2);
655 expected_result = (i < j);
656 break;
657 case kCondLE:
658 comparison = new (GetAllocator()) HLessThanOrEqual(op1, op2);
659 expected_result = (i <= j);
660 break;
661 case kCondGT:
662 comparison = new (GetAllocator()) HGreaterThan(op1, op2);
663 expected_result = (i > j);
664 break;
665 case kCondGE:
666 comparison = new (GetAllocator()) HGreaterThanOrEqual(op1, op2);
667 expected_result = (i >= j);
668 break;
669 case kCondB:
670 comparison = new (GetAllocator()) HBelow(op1, op2);
671 expected_result = (x < y);
672 break;
673 case kCondBE:
674 comparison = new (GetAllocator()) HBelowOrEqual(op1, op2);
675 expected_result = (x <= y);
676 break;
677 case kCondA:
678 comparison = new (GetAllocator()) HAbove(op1, op2);
679 expected_result = (x > y);
680 break;
681 case kCondAE:
682 comparison = new (GetAllocator()) HAboveOrEqual(op1, op2);
683 expected_result = (x >= y);
684 break;
685 }
686 block->AddInstruction(comparison);
687 block->AddInstruction(new (GetAllocator()) HReturn(comparison));
688
689 graph->BuildDominatorTree();
690 OverrideInstructionSetFeatures(target_config.GetInstructionSet(), "default");
691 RunCode(target_config, *compiler_options_, graph, [](HGraph*) {}, true, expected_result);
692 }
693
TEST_F(CodegenTest,ComparisonsInt)694 TEST_F(CodegenTest, ComparisonsInt) {
695 for (CodegenTargetConfig target_config : GetTargetConfigs()) {
696 for (int64_t i = -1; i <= 1; i++) {
697 for (int64_t j = -1; j <= 1; j++) {
698 for (int cond = kCondFirst; cond <= kCondLast; cond++) {
699 TestComparison(
700 static_cast<IfCondition>(cond), i, j, DataType::Type::kInt32, target_config);
701 }
702 }
703 }
704 }
705 }
706
TEST_F(CodegenTest,ComparisonsLong)707 TEST_F(CodegenTest, ComparisonsLong) {
708 for (CodegenTargetConfig target_config : GetTargetConfigs()) {
709 for (int64_t i = -1; i <= 1; i++) {
710 for (int64_t j = -1; j <= 1; j++) {
711 for (int cond = kCondFirst; cond <= kCondLast; cond++) {
712 TestComparison(
713 static_cast<IfCondition>(cond), i, j, DataType::Type::kInt64, target_config);
714 }
715 }
716 }
717 }
718 }
719
720 #ifdef ART_ENABLE_CODEGEN_arm
TEST_F(CodegenTest,ARMVIXLParallelMoveResolver)721 TEST_F(CodegenTest, ARMVIXLParallelMoveResolver) {
722 OverrideInstructionSetFeatures(InstructionSet::kThumb2, "default");
723 HGraph* graph = CreateGraph();
724 arm::CodeGeneratorARMVIXL codegen(graph, *compiler_options_);
725
726 codegen.Initialize();
727
728 // This will result in calling EmitSwap -> void ParallelMoveResolverARMVIXL::Exchange(int mem1,
729 // int mem2) which was faulty (before the fix). So previously GPR and FP scratch registers were
730 // used as temps; however GPR scratch register is required for big stack offsets which don't fit
731 // LDR encoding. So the following code is a regression test for that situation.
732 HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator());
733 move->AddMove(Location::StackSlot(0), Location::StackSlot(8192), DataType::Type::kInt32, nullptr);
734 move->AddMove(Location::StackSlot(8192), Location::StackSlot(0), DataType::Type::kInt32, nullptr);
735 codegen.GetMoveResolver()->EmitNativeCode(move);
736
737 InternalCodeAllocator code_allocator;
738 codegen.Finalize(&code_allocator);
739 }
740 #endif
741
742 #ifdef ART_ENABLE_CODEGEN_arm64
743 // Regression test for b/34760542.
TEST_F(CodegenTest,ARM64ParallelMoveResolverB34760542)744 TEST_F(CodegenTest, ARM64ParallelMoveResolverB34760542) {
745 OverrideInstructionSetFeatures(InstructionSet::kArm64, "default");
746 HGraph* graph = CreateGraph();
747 arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_);
748
749 codegen.Initialize();
750
751 // The following ParallelMove used to fail this assertion:
752 //
753 // Assertion failed (!available->IsEmpty())
754 //
755 // in vixl::aarch64::UseScratchRegisterScope::AcquireNextAvailable,
756 // because of the following situation:
757 //
758 // 1. a temp register (IP0) is allocated as a scratch register by
759 // the parallel move resolver to solve a cycle (swap):
760 //
761 // [ source=DS0 destination=DS257 type=PrimDouble instruction=null ]
762 // [ source=DS257 destination=DS0 type=PrimDouble instruction=null ]
763 //
764 // 2. within CodeGeneratorARM64::MoveLocation, another temp
765 // register (IP1) is allocated to generate the swap between two
766 // double stack slots;
767 //
768 // 3. VIXL requires a third temp register to emit the `Ldr` or
769 // `Str` operation from CodeGeneratorARM64::MoveLocation (as
770 // one of the stack slots' offsets cannot be encoded as an
771 // immediate), but the pool of (core) temp registers is now
772 // empty.
773 //
774 // The solution used so far is to use a floating-point temp register
775 // (D31) in step #2, so that IP1 is available for step #3.
776
777 HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator());
778 move->AddMove(Location::DoubleStackSlot(0),
779 Location::DoubleStackSlot(257),
780 DataType::Type::kFloat64,
781 nullptr);
782 move->AddMove(Location::DoubleStackSlot(257),
783 Location::DoubleStackSlot(0),
784 DataType::Type::kFloat64,
785 nullptr);
786 codegen.GetMoveResolver()->EmitNativeCode(move);
787
788 InternalCodeAllocator code_allocator;
789 codegen.Finalize(&code_allocator);
790 }
791
792 // Check that ParallelMoveResolver works fine for ARM64 for both cases when SIMD is on and off.
TEST_F(CodegenTest,ARM64ParallelMoveResolverSIMD)793 TEST_F(CodegenTest, ARM64ParallelMoveResolverSIMD) {
794 OverrideInstructionSetFeatures(InstructionSet::kArm64, "default");
795 HGraph* graph = CreateGraph();
796 arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_);
797
798 codegen.Initialize();
799
800 graph->SetHasSIMD(true);
801 for (int i = 0; i < 2; i++) {
802 HParallelMove* move = new (graph->GetAllocator()) HParallelMove(graph->GetAllocator());
803 move->AddMove(Location::SIMDStackSlot(0),
804 Location::SIMDStackSlot(257),
805 DataType::Type::kFloat64,
806 nullptr);
807 move->AddMove(Location::SIMDStackSlot(257),
808 Location::SIMDStackSlot(0),
809 DataType::Type::kFloat64,
810 nullptr);
811 move->AddMove(Location::FpuRegisterLocation(0),
812 Location::FpuRegisterLocation(1),
813 DataType::Type::kFloat64,
814 nullptr);
815 move->AddMove(Location::FpuRegisterLocation(1),
816 Location::FpuRegisterLocation(0),
817 DataType::Type::kFloat64,
818 nullptr);
819 codegen.GetMoveResolver()->EmitNativeCode(move);
820 graph->SetHasSIMD(false);
821 }
822
823 InternalCodeAllocator code_allocator;
824 codegen.Finalize(&code_allocator);
825 }
826
827 // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a75 as example).
TEST_F(CodegenTest,ARM64IsaVIXLFeaturesA75)828 TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA75) {
829 OverrideInstructionSetFeatures(InstructionSet::kArm64, "cortex-a75");
830 HGraph* graph = CreateGraph();
831 arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_);
832 vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures();
833
834 EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32));
835 EXPECT_TRUE(features->Has(vixl::CPUFeatures::kDotProduct));
836 EXPECT_TRUE(features->Has(vixl::CPUFeatures::kFPHalf));
837 EXPECT_TRUE(features->Has(vixl::CPUFeatures::kAtomics));
838 }
839
840 // Check that ART ISA Features are propagated to VIXL for arm64 (using cortex-a53 as example).
TEST_F(CodegenTest,ARM64IsaVIXLFeaturesA53)841 TEST_F(CodegenTest, ARM64IsaVIXLFeaturesA53) {
842 OverrideInstructionSetFeatures(InstructionSet::kArm64, "cortex-a53");
843 HGraph* graph = CreateGraph();
844 arm64::CodeGeneratorARM64 codegen(graph, *compiler_options_);
845 vixl::CPUFeatures* features = codegen.GetVIXLAssembler()->GetCPUFeatures();
846
847 EXPECT_TRUE(features->Has(vixl::CPUFeatures::kCRC32));
848 EXPECT_FALSE(features->Has(vixl::CPUFeatures::kDotProduct));
849 EXPECT_FALSE(features->Has(vixl::CPUFeatures::kFPHalf));
850 EXPECT_FALSE(features->Has(vixl::CPUFeatures::kAtomics));
851 }
852
853 #endif
854
855 #ifdef ART_ENABLE_CODEGEN_mips
TEST_F(CodegenTest,MipsClobberRA)856 TEST_F(CodegenTest, MipsClobberRA) {
857 OverrideInstructionSetFeatures(InstructionSet::kMips, "mips32r");
858 CHECK(!instruction_set_features_->AsMipsInstructionSetFeatures()->IsR6());
859 if (!CanExecute(InstructionSet::kMips)) {
860 // HMipsComputeBaseMethodAddress and the NAL instruction behind it
861 // should only be generated on non-R6.
862 return;
863 }
864
865 HGraph* graph = CreateGraph();
866
867 HBasicBlock* entry_block = new (GetAllocator()) HBasicBlock(graph);
868 graph->AddBlock(entry_block);
869 graph->SetEntryBlock(entry_block);
870 entry_block->AddInstruction(new (GetAllocator()) HGoto());
871
872 HBasicBlock* block = new (GetAllocator()) HBasicBlock(graph);
873 graph->AddBlock(block);
874
875 HBasicBlock* exit_block = new (GetAllocator()) HBasicBlock(graph);
876 graph->AddBlock(exit_block);
877 graph->SetExitBlock(exit_block);
878 exit_block->AddInstruction(new (GetAllocator()) HExit());
879
880 entry_block->AddSuccessor(block);
881 block->AddSuccessor(exit_block);
882
883 // To simplify matters, don't create PC-relative HLoadClass or HLoadString.
884 // Instead, generate HMipsComputeBaseMethodAddress directly.
885 HMipsComputeBaseMethodAddress* base = new (GetAllocator()) HMipsComputeBaseMethodAddress();
886 block->AddInstruction(base);
887 // HMipsComputeBaseMethodAddress is defined as int, so just make the
888 // compiled method return it.
889 block->AddInstruction(new (GetAllocator()) HReturn(base));
890
891 graph->BuildDominatorTree();
892
893 mips::CodeGeneratorMIPS codegenMIPS(graph, *compiler_options_);
894 // Since there isn't HLoadClass or HLoadString, we need to manually indicate
895 // that RA is clobbered and the method entry code should generate a stack frame
896 // and preserve RA in it. And this is what we're testing here.
897 codegenMIPS.ClobberRA();
898 // Without ClobberRA() the code would be:
899 // nal # Sets RA to point to the jr instruction below
900 // move v0, ra # and the CPU falls into an infinite loop.
901 // jr ra
902 // nop
903 // The expected code is:
904 // addiu sp, sp, -16
905 // sw ra, 12(sp)
906 // sw a0, 0(sp)
907 // nal # Sets RA to point to the lw instruction below.
908 // move v0, ra
909 // lw ra, 12(sp)
910 // jr ra
911 // addiu sp, sp, 16
912 RunCode(&codegenMIPS, graph, [](HGraph*) {}, false, 0);
913 }
914 #endif
915
916 } // namespace art
917