1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "inliner.h"
18
19 #include "art_method-inl.h"
20 #include "base/enums.h"
21 #include "base/logging.h"
22 #include "builder.h"
23 #include "class_linker.h"
24 #include "class_root.h"
25 #include "constant_folding.h"
26 #include "data_type-inl.h"
27 #include "dead_code_elimination.h"
28 #include "dex/inline_method_analyser.h"
29 #include "dex/verification_results.h"
30 #include "dex/verified_method.h"
31 #include "driver/compiler_options.h"
32 #include "driver/dex_compilation_unit.h"
33 #include "instruction_simplifier.h"
34 #include "intrinsics.h"
35 #include "jit/jit.h"
36 #include "jit/jit_code_cache.h"
37 #include "mirror/class_loader.h"
38 #include "mirror/dex_cache.h"
39 #include "mirror/object_array-alloc-inl.h"
40 #include "mirror/object_array-inl.h"
41 #include "nodes.h"
42 #include "reference_type_propagation.h"
43 #include "register_allocator_linear_scan.h"
44 #include "scoped_thread_state_change-inl.h"
45 #include "sharpening.h"
46 #include "ssa_builder.h"
47 #include "ssa_phi_elimination.h"
48 #include "thread.h"
49
50 namespace art {
51
52 // Instruction limit to control memory.
53 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
54
55 // Maximum number of instructions for considering a method small,
56 // which we will always try to inline if the other non-instruction limits
57 // are not reached.
58 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
59
60 // Limit the number of dex registers that we accumulate while inlining
61 // to avoid creating large amount of nested environments.
62 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
63
64 // Limit recursive call inlining, which do not benefit from too
65 // much inlining compared to code locality.
66 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
67
68 // Controls the use of inline caches in AOT mode.
69 static constexpr bool kUseAOTInlineCaches = true;
70
71 // We check for line numbers to make sure the DepthString implementation
72 // aligns the output nicely.
73 #define LOG_INTERNAL(msg) \
74 static_assert(__LINE__ > 10, "Unhandled line number"); \
75 static_assert(__LINE__ < 10000, "Unhandled line number"); \
76 VLOG(compiler) << DepthString(__LINE__) << msg
77
78 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
79 #define LOG_NOTE() LOG_INTERNAL("Note: ")
80 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
81 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
82 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
83
DepthString(int line) const84 std::string HInliner::DepthString(int line) const {
85 std::string value;
86 // Indent according to the inlining depth.
87 size_t count = depth_;
88 // Line numbers get printed in the log, so add a space if the log's line is less
89 // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
90 if (!kIsTargetBuild) {
91 if (line < 100) {
92 value += " ";
93 }
94 if (line < 1000) {
95 value += " ";
96 }
97 // Safeguard if this file reaches more than 10000 lines.
98 DCHECK_LT(line, 10000);
99 }
100 for (size_t i = 0; i < count; ++i) {
101 value += " ";
102 }
103 return value;
104 }
105
CountNumberOfInstructions(HGraph * graph)106 static size_t CountNumberOfInstructions(HGraph* graph) {
107 size_t number_of_instructions = 0;
108 for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
109 for (HInstructionIterator instr_it(block->GetInstructions());
110 !instr_it.Done();
111 instr_it.Advance()) {
112 ++number_of_instructions;
113 }
114 }
115 return number_of_instructions;
116 }
117
UpdateInliningBudget()118 void HInliner::UpdateInliningBudget() {
119 if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
120 // Always try to inline small methods.
121 inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
122 } else {
123 inlining_budget_ = std::max(
124 kMaximumNumberOfInstructionsForSmallMethod,
125 kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
126 }
127 }
128
Run()129 bool HInliner::Run() {
130 if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) {
131 // Inlining effectively disabled.
132 return false;
133 } else if (graph_->IsDebuggable()) {
134 // For simplicity, we currently never inline when the graph is debuggable. This avoids
135 // doing some logic in the runtime to discover if a method could have been inlined.
136 return false;
137 }
138
139 bool didInline = false;
140
141 // Initialize the number of instructions for the method being compiled. Recursive calls
142 // to HInliner::Run have already updated the instruction count.
143 if (outermost_graph_ == graph_) {
144 total_number_of_instructions_ = CountNumberOfInstructions(graph_);
145 }
146
147 UpdateInliningBudget();
148 DCHECK_NE(total_number_of_instructions_, 0u);
149 DCHECK_NE(inlining_budget_, 0u);
150
151 // If we're compiling with a core image (which is only used for
152 // test purposes), honor inlining directives in method names:
153 // - if a method's name contains the substring "$noinline$", do not
154 // inline that method;
155 // - if a method's name contains the substring "$inline$", ensure
156 // that this method is actually inlined.
157 // We limit the latter to AOT compilation, as the JIT may or may not inline
158 // depending on the state of classes at runtime.
159 const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompilingWithCoreImage();
160 const bool honor_inline_directives =
161 honor_noinline_directives && Runtime::Current()->IsAotCompiler();
162
163 // Keep a copy of all blocks when starting the visit.
164 ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
165 DCHECK(!blocks.empty());
166 // Because we are changing the graph when inlining,
167 // we just iterate over the blocks of the outer method.
168 // This avoids doing the inlining work again on the inlined blocks.
169 for (HBasicBlock* block : blocks) {
170 for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
171 HInstruction* next = instruction->GetNext();
172 HInvoke* call = instruction->AsInvoke();
173 // As long as the call is not intrinsified, it is worth trying to inline.
174 if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
175 if (honor_noinline_directives) {
176 // Debugging case: directives in method names control or assert on inlining.
177 std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod(
178 call->GetDexMethodIndex(), /* with_signature= */ false);
179 // Tests prevent inlining by having $noinline$ in their method names.
180 if (callee_name.find("$noinline$") == std::string::npos) {
181 if (TryInline(call)) {
182 didInline = true;
183 } else if (honor_inline_directives) {
184 bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
185 CHECK(!should_have_inlined) << "Could not inline " << callee_name;
186 }
187 }
188 } else {
189 DCHECK(!honor_inline_directives);
190 // Normal case: try to inline.
191 if (TryInline(call)) {
192 didInline = true;
193 }
194 }
195 }
196 instruction = next;
197 }
198 }
199
200 return didInline;
201 }
202
IsMethodOrDeclaringClassFinal(ArtMethod * method)203 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
204 REQUIRES_SHARED(Locks::mutator_lock_) {
205 return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
206 }
207
208 /**
209 * Given the `resolved_method` looked up in the dex cache, try to find
210 * the actual runtime target of an interface or virtual call.
211 * Return nullptr if the runtime target cannot be proven.
212 */
FindVirtualOrInterfaceTarget(HInvoke * invoke,ArtMethod * resolved_method)213 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method)
214 REQUIRES_SHARED(Locks::mutator_lock_) {
215 if (IsMethodOrDeclaringClassFinal(resolved_method)) {
216 // No need to lookup further, the resolved method will be the target.
217 return resolved_method;
218 }
219
220 HInstruction* receiver = invoke->InputAt(0);
221 if (receiver->IsNullCheck()) {
222 // Due to multiple levels of inlining within the same pass, it might be that
223 // null check does not have the reference type of the actual receiver.
224 receiver = receiver->InputAt(0);
225 }
226 ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
227 DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
228 if (!info.IsExact()) {
229 // We currently only support inlining with known receivers.
230 // TODO: Remove this check, we should be able to inline final methods
231 // on unknown receivers.
232 return nullptr;
233 } else if (info.GetTypeHandle()->IsInterface()) {
234 // Statically knowing that the receiver has an interface type cannot
235 // help us find what is the target method.
236 return nullptr;
237 } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
238 // The method that we're trying to call is not in the receiver's class or super classes.
239 return nullptr;
240 } else if (info.GetTypeHandle()->IsErroneous()) {
241 // If the type is erroneous, do not go further, as we are going to query the vtable or
242 // imt table, that we can only safely do on non-erroneous classes.
243 return nullptr;
244 }
245
246 ClassLinker* cl = Runtime::Current()->GetClassLinker();
247 PointerSize pointer_size = cl->GetImagePointerSize();
248 if (invoke->IsInvokeInterface()) {
249 resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
250 resolved_method, pointer_size);
251 } else {
252 DCHECK(invoke->IsInvokeVirtual());
253 resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
254 resolved_method, pointer_size);
255 }
256
257 if (resolved_method == nullptr) {
258 // The information we had on the receiver was not enough to find
259 // the target method. Since we check above the exact type of the receiver,
260 // the only reason this can happen is an IncompatibleClassChangeError.
261 return nullptr;
262 } else if (!resolved_method->IsInvokable()) {
263 // The information we had on the receiver was not enough to find
264 // the target method. Since we check above the exact type of the receiver,
265 // the only reason this can happen is an IncompatibleClassChangeError.
266 return nullptr;
267 } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
268 // A final method has to be the target method.
269 return resolved_method;
270 } else if (info.IsExact()) {
271 // If we found a method and the receiver's concrete type is statically
272 // known, we know for sure the target.
273 return resolved_method;
274 } else {
275 // Even if we did find a method, the receiver type was not enough to
276 // statically find the runtime target.
277 return nullptr;
278 }
279 }
280
FindMethodIndexIn(ArtMethod * method,const DexFile & dex_file,uint32_t name_and_signature_index)281 static uint32_t FindMethodIndexIn(ArtMethod* method,
282 const DexFile& dex_file,
283 uint32_t name_and_signature_index)
284 REQUIRES_SHARED(Locks::mutator_lock_) {
285 if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
286 return method->GetDexMethodIndex();
287 } else {
288 return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
289 }
290 }
291
FindClassIndexIn(ObjPtr<mirror::Class> cls,const DexCompilationUnit & compilation_unit)292 static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls,
293 const DexCompilationUnit& compilation_unit)
294 REQUIRES_SHARED(Locks::mutator_lock_) {
295 const DexFile& dex_file = *compilation_unit.GetDexFile();
296 dex::TypeIndex index;
297 if (cls->GetDexCache() == nullptr) {
298 DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
299 index = cls->FindTypeIndexInOtherDexFile(dex_file);
300 } else if (!cls->GetDexTypeIndex().IsValid()) {
301 DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
302 // TODO: deal with proxy classes.
303 } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
304 DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
305 index = cls->GetDexTypeIndex();
306 } else {
307 index = cls->FindTypeIndexInOtherDexFile(dex_file);
308 // We cannot guarantee the entry will resolve to the same class,
309 // as there may be different class loaders. So only return the index if it's
310 // the right class already resolved with the class loader.
311 if (index.IsValid()) {
312 ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
313 index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
314 if (resolved != cls) {
315 index = dex::TypeIndex::Invalid();
316 }
317 }
318 }
319
320 return index;
321 }
322
323 class ScopedProfilingInfoInlineUse {
324 public:
ScopedProfilingInfoInlineUse(ArtMethod * method,Thread * self)325 explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self)
326 : method_(method),
327 self_(self),
328 // Fetch the profiling info ahead of using it. If it's null when fetching,
329 // we should not call JitCodeCache::DoneInlining.
330 profiling_info_(
331 Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) {
332 }
333
~ScopedProfilingInfoInlineUse()334 ~ScopedProfilingInfoInlineUse() {
335 if (profiling_info_ != nullptr) {
336 PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
337 DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size));
338 Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_);
339 }
340 }
341
GetProfilingInfo() const342 ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
343
344 private:
345 ArtMethod* const method_;
346 Thread* const self_;
347 ProfilingInfo* const profiling_info_;
348 };
349
GetInlineCacheType(const Handle<mirror::ObjectArray<mirror::Class>> & classes)350 HInliner::InlineCacheType HInliner::GetInlineCacheType(
351 const Handle<mirror::ObjectArray<mirror::Class>>& classes)
352 REQUIRES_SHARED(Locks::mutator_lock_) {
353 uint8_t number_of_types = 0;
354 for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) {
355 if (classes->Get(number_of_types) == nullptr) {
356 break;
357 }
358 }
359
360 if (number_of_types == 0) {
361 return kInlineCacheUninitialized;
362 } else if (number_of_types == 1) {
363 return kInlineCacheMonomorphic;
364 } else if (number_of_types == InlineCache::kIndividualCacheSize) {
365 return kInlineCacheMegamorphic;
366 } else {
367 return kInlineCachePolymorphic;
368 }
369 }
370
GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes)371 static ObjPtr<mirror::Class> GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes)
372 REQUIRES_SHARED(Locks::mutator_lock_) {
373 DCHECK(classes->Get(0) != nullptr);
374 return classes->Get(0);
375 }
376
TryCHADevirtualization(ArtMethod * resolved_method)377 ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) {
378 if (!resolved_method->HasSingleImplementation()) {
379 return nullptr;
380 }
381 if (Runtime::Current()->IsAotCompiler()) {
382 // No CHA-based devirtulization for AOT compiler (yet).
383 return nullptr;
384 }
385 if (Runtime::Current()->IsZygote()) {
386 // No CHA-based devirtulization for Zygote, as it compiles with
387 // offline information.
388 return nullptr;
389 }
390 if (outermost_graph_->IsCompilingOsr()) {
391 // We do not support HDeoptimize in OSR methods.
392 return nullptr;
393 }
394 PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
395 ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
396 if (single_impl == nullptr) {
397 return nullptr;
398 }
399 if (single_impl->IsProxyMethod()) {
400 // Proxy method is a generic invoker that's not worth
401 // devirtualizing/inlining. It also causes issues when the proxy
402 // method is in another dex file if we try to rewrite invoke-interface to
403 // invoke-virtual because a proxy method doesn't have a real dex file.
404 return nullptr;
405 }
406 if (!single_impl->GetDeclaringClass()->IsResolved()) {
407 // There's a race with the class loading, which updates the CHA info
408 // before setting the class to resolved. So we just bail for this
409 // rare occurence.
410 return nullptr;
411 }
412 return single_impl;
413 }
414
IsMethodUnverified(const CompilerOptions & compiler_options,ArtMethod * method)415 static bool IsMethodUnverified(const CompilerOptions& compiler_options, ArtMethod* method)
416 REQUIRES_SHARED(Locks::mutator_lock_) {
417 if (!method->GetDeclaringClass()->IsVerified()) {
418 if (Runtime::Current()->UseJitCompilation()) {
419 // We're at runtime, we know this is cold code if the class
420 // is not verified, so don't bother analyzing.
421 return true;
422 }
423 uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
424 if (!compiler_options.IsMethodVerifiedWithoutFailures(method->GetDexMethodIndex(),
425 class_def_idx,
426 *method->GetDexFile())) {
427 // Method has soft or hard failures, don't analyze.
428 return true;
429 }
430 }
431 return false;
432 }
433
AlwaysThrows(const CompilerOptions & compiler_options,ArtMethod * method)434 static bool AlwaysThrows(const CompilerOptions& compiler_options, ArtMethod* method)
435 REQUIRES_SHARED(Locks::mutator_lock_) {
436 DCHECK(method != nullptr);
437 // Skip non-compilable and unverified methods.
438 if (!method->IsCompilable() || IsMethodUnverified(compiler_options, method)) {
439 return false;
440 }
441 // Skip native methods, methods with try blocks, and methods that are too large.
442 CodeItemDataAccessor accessor(method->DexInstructionData());
443 if (!accessor.HasCodeItem() ||
444 accessor.TriesSize() != 0 ||
445 accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
446 return false;
447 }
448 // Scan for exits.
449 bool throw_seen = false;
450 for (const DexInstructionPcPair& pair : accessor) {
451 switch (pair.Inst().Opcode()) {
452 case Instruction::RETURN:
453 case Instruction::RETURN_VOID:
454 case Instruction::RETURN_WIDE:
455 case Instruction::RETURN_OBJECT:
456 case Instruction::RETURN_VOID_NO_BARRIER:
457 return false; // found regular control flow back
458 case Instruction::THROW:
459 throw_seen = true;
460 break;
461 default:
462 break;
463 }
464 }
465 return throw_seen;
466 }
467
TryInline(HInvoke * invoke_instruction)468 bool HInliner::TryInline(HInvoke* invoke_instruction) {
469 if (invoke_instruction->IsInvokeUnresolved() ||
470 invoke_instruction->IsInvokePolymorphic() ||
471 invoke_instruction->IsInvokeCustom()) {
472 return false; // Don't bother to move further if we know the method is unresolved or the
473 // invocation is polymorphic (invoke-{polymorphic,custom}).
474 }
475
476 ScopedObjectAccess soa(Thread::Current());
477 uint32_t method_index = invoke_instruction->GetDexMethodIndex();
478 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
479 LOG_TRY() << caller_dex_file.PrettyMethod(method_index);
480
481 ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
482 if (resolved_method == nullptr) {
483 DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
484 DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
485 LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
486 return false;
487 }
488 ArtMethod* actual_method = nullptr;
489
490 if (invoke_instruction->IsInvokeStaticOrDirect()) {
491 actual_method = resolved_method;
492 } else {
493 // Check if we can statically find the method.
494 actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method);
495 }
496
497 bool cha_devirtualize = false;
498 if (actual_method == nullptr) {
499 ArtMethod* method = TryCHADevirtualization(resolved_method);
500 if (method != nullptr) {
501 cha_devirtualize = true;
502 actual_method = method;
503 LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod();
504 }
505 }
506
507 if (actual_method != nullptr) {
508 // Single target.
509 bool result = TryInlineAndReplace(invoke_instruction,
510 actual_method,
511 ReferenceTypeInfo::CreateInvalid(),
512 /* do_rtp= */ true,
513 cha_devirtualize);
514 if (result) {
515 // Successfully inlined.
516 if (!invoke_instruction->IsInvokeStaticOrDirect()) {
517 if (cha_devirtualize) {
518 // Add dependency due to devirtualization. We've assumed resolved_method
519 // has single implementation.
520 outermost_graph_->AddCHASingleImplementationDependency(resolved_method);
521 MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
522 } else {
523 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
524 }
525 }
526 } else if (!cha_devirtualize && AlwaysThrows(codegen_->GetCompilerOptions(), actual_method)) {
527 // Set always throws property for non-inlined method call with single target
528 // (unless it was obtained through CHA, because that would imply we have
529 // to add the CHA dependency, which seems not worth it).
530 invoke_instruction->SetAlwaysThrows(true);
531 }
532 return result;
533 }
534 DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
535
536 // Try using inline caches.
537 return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method);
538 }
539
AllocateInlineCacheHolder(const DexCompilationUnit & compilation_unit,StackHandleScope<1> * hs)540 static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder(
541 const DexCompilationUnit& compilation_unit,
542 StackHandleScope<1>* hs)
543 REQUIRES_SHARED(Locks::mutator_lock_) {
544 Thread* self = Thread::Current();
545 ClassLinker* class_linker = compilation_unit.GetClassLinker();
546 Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle(
547 mirror::ObjectArray<mirror::Class>::Alloc(
548 self,
549 GetClassRoot<mirror::ObjectArray<mirror::Class>>(class_linker),
550 InlineCache::kIndividualCacheSize));
551 if (inline_cache == nullptr) {
552 // We got an OOME. Just clear the exception, and don't inline.
553 DCHECK(self->IsExceptionPending());
554 self->ClearException();
555 VLOG(compiler) << "Out of memory in the compiler when trying to inline";
556 }
557 return inline_cache;
558 }
559
UseOnlyPolymorphicInliningWithNoDeopt()560 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
561 // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
562 // do not generate a deopt.
563 //
564 // For AOT:
565 // Generating a deopt does not ensure that we will actually capture the new types;
566 // and the danger is that we could be stuck in a loop with "forever" deoptimizations.
567 // Take for example the following scenario:
568 // - we capture the inline cache in one run
569 // - the next run, we deoptimize because we miss a type check, but the method
570 // never becomes hot again
571 // In this case, the inline cache will not be updated in the profile and the AOT code
572 // will keep deoptimizing.
573 // Another scenario is if we use profile compilation for a process which is not allowed
574 // to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
575 // rest of the lifetime.
576 // TODO(calin):
577 // This is a compromise because we will most likely never update the inline cache
578 // in the profile (unless there's another reason to deopt). So we might be stuck with
579 // a sub-optimal inline cache.
580 // We could be smarter when capturing inline caches to mitigate this.
581 // (e.g. by having different thresholds for new and old methods).
582 //
583 // For OSR:
584 // We may come from the interpreter and it may have seen different receiver types.
585 return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
586 }
TryInlineFromInlineCache(const DexFile & caller_dex_file,HInvoke * invoke_instruction,ArtMethod * resolved_method)587 bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file,
588 HInvoke* invoke_instruction,
589 ArtMethod* resolved_method)
590 REQUIRES_SHARED(Locks::mutator_lock_) {
591 if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
592 return false;
593 }
594
595 StackHandleScope<1> hs(Thread::Current());
596 Handle<mirror::ObjectArray<mirror::Class>> inline_cache;
597 // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches
598 // for it.
599 InlineCacheType inline_cache_type =
600 (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote())
601 ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache)
602 : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache);
603
604 switch (inline_cache_type) {
605 case kInlineCacheNoData: {
606 LOG_FAIL_NO_STAT()
607 << "Interface or virtual call to "
608 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
609 << " could not be statically determined";
610 return false;
611 }
612
613 case kInlineCacheUninitialized: {
614 LOG_FAIL_NO_STAT()
615 << "Interface or virtual call to "
616 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
617 << " is not hit and not inlined";
618 return false;
619 }
620
621 case kInlineCacheMonomorphic: {
622 MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
623 if (UseOnlyPolymorphicInliningWithNoDeopt()) {
624 return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
625 } else {
626 return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache);
627 }
628 }
629
630 case kInlineCachePolymorphic: {
631 MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
632 return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
633 }
634
635 case kInlineCacheMegamorphic: {
636 LOG_FAIL_NO_STAT()
637 << "Interface or virtual call to "
638 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
639 << " is megamorphic and not inlined";
640 MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
641 return false;
642 }
643
644 case kInlineCacheMissingTypes: {
645 LOG_FAIL_NO_STAT()
646 << "Interface or virtual call to "
647 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
648 << " is missing types and not inlined";
649 return false;
650 }
651 }
652 UNREACHABLE();
653 }
654
GetInlineCacheJIT(HInvoke * invoke_instruction,StackHandleScope<1> * hs,Handle<mirror::ObjectArray<mirror::Class>> * inline_cache)655 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
656 HInvoke* invoke_instruction,
657 StackHandleScope<1>* hs,
658 /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
659 REQUIRES_SHARED(Locks::mutator_lock_) {
660 DCHECK(Runtime::Current()->UseJitCompilation());
661
662 ArtMethod* caller = graph_->GetArtMethod();
663 // Under JIT, we should always know the caller.
664 DCHECK(caller != nullptr);
665 ScopedProfilingInfoInlineUse spiis(caller, Thread::Current());
666 ProfilingInfo* profiling_info = spiis.GetProfilingInfo();
667
668 if (profiling_info == nullptr) {
669 return kInlineCacheNoData;
670 }
671
672 *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
673 if (inline_cache->Get() == nullptr) {
674 // We can't extract any data if we failed to allocate;
675 return kInlineCacheNoData;
676 } else {
677 Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(
678 *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()),
679 *inline_cache);
680 return GetInlineCacheType(*inline_cache);
681 }
682 }
683
GetInlineCacheAOT(const DexFile & caller_dex_file,HInvoke * invoke_instruction,StackHandleScope<1> * hs,Handle<mirror::ObjectArray<mirror::Class>> * inline_cache)684 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
685 const DexFile& caller_dex_file,
686 HInvoke* invoke_instruction,
687 StackHandleScope<1>* hs,
688 /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
689 REQUIRES_SHARED(Locks::mutator_lock_) {
690 const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo();
691 if (pci == nullptr) {
692 return kInlineCacheNoData;
693 }
694
695 std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile =
696 pci->GetMethod(caller_dex_file.GetLocation(),
697 caller_dex_file.GetLocationChecksum(),
698 caller_compilation_unit_.GetDexMethodIndex());
699 if (offline_profile == nullptr) {
700 return kInlineCacheNoData; // no profile information for this invocation.
701 }
702
703 *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
704 if (inline_cache == nullptr) {
705 // We can't extract any data if we failed to allocate;
706 return kInlineCacheNoData;
707 } else {
708 return ExtractClassesFromOfflineProfile(invoke_instruction,
709 *(offline_profile.get()),
710 *inline_cache);
711 }
712 }
713
ExtractClassesFromOfflineProfile(const HInvoke * invoke_instruction,const ProfileCompilationInfo::OfflineProfileMethodInfo & offline_profile,Handle<mirror::ObjectArray<mirror::Class>> inline_cache)714 HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile(
715 const HInvoke* invoke_instruction,
716 const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile,
717 /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache)
718 REQUIRES_SHARED(Locks::mutator_lock_) {
719 const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc());
720 if (it == offline_profile.inline_caches->end()) {
721 return kInlineCacheUninitialized;
722 }
723
724 const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
725
726 if (dex_pc_data.is_missing_types) {
727 return kInlineCacheMissingTypes;
728 }
729 if (dex_pc_data.is_megamorphic) {
730 return kInlineCacheMegamorphic;
731 }
732
733 DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
734 Thread* self = Thread::Current();
735 // We need to resolve the class relative to the containing dex file.
736 // So first, build a mapping from the index of dex file in the profile to
737 // its dex cache. This will avoid repeating the lookup when walking over
738 // the inline cache types.
739 std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache(
740 offline_profile.dex_references.size());
741 for (size_t i = 0; i < offline_profile.dex_references.size(); i++) {
742 bool found = false;
743 for (const DexFile* dex_file : codegen_->GetCompilerOptions().GetDexFilesForOatFile()) {
744 if (offline_profile.dex_references[i].MatchesDex(dex_file)) {
745 dex_profile_index_to_dex_cache[i] =
746 caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file);
747 found = true;
748 }
749 }
750 if (!found) {
751 VLOG(compiler) << "Could not find profiled dex file: "
752 << offline_profile.dex_references[i].dex_location;
753 return kInlineCacheMissingTypes;
754 }
755 }
756
757 // Walk over the classes and resolve them. If we cannot find a type we return
758 // kInlineCacheMissingTypes.
759 int ic_index = 0;
760 for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) {
761 ObjPtr<mirror::DexCache> dex_cache =
762 dex_profile_index_to_dex_cache[class_ref.dex_profile_index];
763 DCHECK(dex_cache != nullptr);
764
765 if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) {
766 VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index
767 << "is invalid in location" << dex_cache->GetDexFile()->GetLocation();
768 return kInlineCacheNoData;
769 }
770 ObjPtr<mirror::Class> clazz = caller_compilation_unit_.GetClassLinker()->LookupResolvedType(
771 class_ref.type_index,
772 dex_cache,
773 caller_compilation_unit_.GetClassLoader().Get());
774 if (clazz != nullptr) {
775 inline_cache->Set(ic_index++, clazz);
776 } else {
777 VLOG(compiler) << "Could not resolve class from inline cache in AOT mode "
778 << caller_compilation_unit_.GetDexFile()->PrettyMethod(
779 invoke_instruction->GetDexMethodIndex()) << " : "
780 << caller_compilation_unit_
781 .GetDexFile()->StringByTypeIdx(class_ref.type_index);
782 return kInlineCacheMissingTypes;
783 }
784 }
785 return GetInlineCacheType(inline_cache);
786 }
787
BuildGetReceiverClass(ClassLinker * class_linker,HInstruction * receiver,uint32_t dex_pc) const788 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
789 HInstruction* receiver,
790 uint32_t dex_pc) const {
791 ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0);
792 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
793 HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
794 receiver,
795 field,
796 DataType::Type::kReference,
797 field->GetOffset(),
798 field->IsVolatile(),
799 field->GetDexFieldIndex(),
800 field->GetDeclaringClass()->GetDexClassDefIndex(),
801 *field->GetDexFile(),
802 dex_pc);
803 // The class of a field is effectively final, and does not have any memory dependencies.
804 result->SetSideEffects(SideEffects::None());
805 return result;
806 }
807
ResolveMethodFromInlineCache(Handle<mirror::Class> klass,ArtMethod * resolved_method,HInstruction * invoke_instruction,PointerSize pointer_size)808 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
809 ArtMethod* resolved_method,
810 HInstruction* invoke_instruction,
811 PointerSize pointer_size)
812 REQUIRES_SHARED(Locks::mutator_lock_) {
813 if (Runtime::Current()->IsAotCompiler()) {
814 // We can get unrelated types when working with profiles (corruption,
815 // systme updates, or anyone can write to it). So first check if the class
816 // actually implements the declaring class of the method that is being
817 // called in bytecode.
818 // Note: the lookup methods used below require to have assignable types.
819 if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
820 return nullptr;
821 }
822 }
823
824 if (invoke_instruction->IsInvokeInterface()) {
825 resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
826 } else {
827 DCHECK(invoke_instruction->IsInvokeVirtual());
828 resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
829 }
830 DCHECK(resolved_method != nullptr);
831 return resolved_method;
832 }
833
TryInlineMonomorphicCall(HInvoke * invoke_instruction,ArtMethod * resolved_method,Handle<mirror::ObjectArray<mirror::Class>> classes)834 bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction,
835 ArtMethod* resolved_method,
836 Handle<mirror::ObjectArray<mirror::Class>> classes) {
837 DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
838 << invoke_instruction->DebugName();
839
840 dex::TypeIndex class_index = FindClassIndexIn(
841 GetMonomorphicType(classes), caller_compilation_unit_);
842 if (!class_index.IsValid()) {
843 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
844 << "Call to " << ArtMethod::PrettyMethod(resolved_method)
845 << " from inline cache is not inlined because its class is not"
846 << " accessible to the caller";
847 return false;
848 }
849
850 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
851 PointerSize pointer_size = class_linker->GetImagePointerSize();
852 Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes));
853 resolved_method = ResolveMethodFromInlineCache(
854 monomorphic_type, resolved_method, invoke_instruction, pointer_size);
855
856 LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
857 if (resolved_method == nullptr) {
858 // Bogus AOT profile, bail.
859 DCHECK(Runtime::Current()->IsAotCompiler());
860 return false;
861 }
862
863 HInstruction* receiver = invoke_instruction->InputAt(0);
864 HInstruction* cursor = invoke_instruction->GetPrevious();
865 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
866 if (!TryInlineAndReplace(invoke_instruction,
867 resolved_method,
868 ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true),
869 /* do_rtp= */ false,
870 /* cha_devirtualize= */ false)) {
871 return false;
872 }
873
874 // We successfully inlined, now add a guard.
875 AddTypeGuard(receiver,
876 cursor,
877 bb_cursor,
878 class_index,
879 monomorphic_type,
880 invoke_instruction,
881 /* with_deoptimization= */ true);
882
883 // Run type propagation to get the guard typed, and eventually propagate the
884 // type of the receiver.
885 ReferenceTypePropagation rtp_fixup(graph_,
886 outer_compilation_unit_.GetClassLoader(),
887 outer_compilation_unit_.GetDexCache(),
888 handles_,
889 /* is_first_run= */ false);
890 rtp_fixup.Run();
891
892 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
893 return true;
894 }
895
AddCHAGuard(HInstruction * invoke_instruction,uint32_t dex_pc,HInstruction * cursor,HBasicBlock * bb_cursor)896 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
897 uint32_t dex_pc,
898 HInstruction* cursor,
899 HBasicBlock* bb_cursor) {
900 HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
901 HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
902 HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
903 deopt_flag, graph_->GetIntConstant(0, dex_pc));
904 HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
905 graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);
906
907 if (cursor != nullptr) {
908 bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
909 } else {
910 bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
911 }
912 bb_cursor->InsertInstructionAfter(compare, deopt_flag);
913 bb_cursor->InsertInstructionAfter(deopt, compare);
914
915 // Add receiver as input to aid CHA guard optimization later.
916 deopt_flag->AddInput(invoke_instruction->InputAt(0));
917 DCHECK_EQ(deopt_flag->InputCount(), 1u);
918 deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
919 outermost_graph_->IncrementNumberOfCHAGuards();
920 }
921
AddTypeGuard(HInstruction * receiver,HInstruction * cursor,HBasicBlock * bb_cursor,dex::TypeIndex class_index,Handle<mirror::Class> klass,HInstruction * invoke_instruction,bool with_deoptimization)922 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
923 HInstruction* cursor,
924 HBasicBlock* bb_cursor,
925 dex::TypeIndex class_index,
926 Handle<mirror::Class> klass,
927 HInstruction* invoke_instruction,
928 bool with_deoptimization) {
929 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
930 HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
931 class_linker, receiver, invoke_instruction->GetDexPc());
932 if (cursor != nullptr) {
933 bb_cursor->InsertInstructionAfter(receiver_class, cursor);
934 } else {
935 bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
936 }
937
938 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
939 bool is_referrer;
940 ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
941 if (outermost_art_method == nullptr) {
942 DCHECK(Runtime::Current()->IsAotCompiler());
943 // We are in AOT mode and we don't have an ART method to determine
944 // if the inlined method belongs to the referrer. Assume it doesn't.
945 is_referrer = false;
946 } else {
947 is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
948 }
949
950 // Note that we will just compare the classes, so we don't need Java semantics access checks.
951 // Note that the type index and the dex file are relative to the method this type guard is
952 // inlined into.
953 HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
954 class_index,
955 caller_dex_file,
956 klass,
957 is_referrer,
958 invoke_instruction->GetDexPc(),
959 /* needs_access_check= */ false);
960 HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
961 load_class, codegen_, caller_compilation_unit_);
962 DCHECK(kind != HLoadClass::LoadKind::kInvalid)
963 << "We should always be able to reference a class for inline caches";
964 // Load kind must be set before inserting the instruction into the graph.
965 load_class->SetLoadKind(kind);
966 bb_cursor->InsertInstructionAfter(load_class, receiver_class);
967 // In AOT mode, we will most likely load the class from BSS, which will involve a call
968 // to the runtime. In this case, the load instruction will need an environment so copy
969 // it from the invoke instruction.
970 if (load_class->NeedsEnvironment()) {
971 DCHECK(Runtime::Current()->IsAotCompiler());
972 load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
973 }
974
975 HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
976 bb_cursor->InsertInstructionAfter(compare, load_class);
977 if (with_deoptimization) {
978 HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
979 graph_->GetAllocator(),
980 compare,
981 receiver,
982 Runtime::Current()->IsAotCompiler()
983 ? DeoptimizationKind::kAotInlineCache
984 : DeoptimizationKind::kJitInlineCache,
985 invoke_instruction->GetDexPc());
986 bb_cursor->InsertInstructionAfter(deoptimize, compare);
987 deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
988 DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
989 receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
990 deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
991 }
992 return compare;
993 }
994
TryInlinePolymorphicCall(HInvoke * invoke_instruction,ArtMethod * resolved_method,Handle<mirror::ObjectArray<mirror::Class>> classes)995 bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction,
996 ArtMethod* resolved_method,
997 Handle<mirror::ObjectArray<mirror::Class>> classes) {
998 DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
999 << invoke_instruction->DebugName();
1000
1001 if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) {
1002 return true;
1003 }
1004
1005 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1006 PointerSize pointer_size = class_linker->GetImagePointerSize();
1007
1008 bool all_targets_inlined = true;
1009 bool one_target_inlined = false;
1010 for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
1011 if (classes->Get(i) == nullptr) {
1012 break;
1013 }
1014 ArtMethod* method = nullptr;
1015
1016 Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i));
1017 method = ResolveMethodFromInlineCache(
1018 handle, resolved_method, invoke_instruction, pointer_size);
1019 if (method == nullptr) {
1020 DCHECK(Runtime::Current()->IsAotCompiler());
1021 // AOT profile is bogus. This loop expects to iterate over all entries,
1022 // so just just continue.
1023 all_targets_inlined = false;
1024 continue;
1025 }
1026
1027 HInstruction* receiver = invoke_instruction->InputAt(0);
1028 HInstruction* cursor = invoke_instruction->GetPrevious();
1029 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1030
1031 dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
1032 HInstruction* return_replacement = nullptr;
1033 LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
1034 if (!class_index.IsValid() ||
1035 !TryBuildAndInline(invoke_instruction,
1036 method,
1037 ReferenceTypeInfo::Create(handle, /* is_exact= */ true),
1038 &return_replacement)) {
1039 all_targets_inlined = false;
1040 } else {
1041 one_target_inlined = true;
1042
1043 LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method)
1044 << " has inlined " << ArtMethod::PrettyMethod(method);
1045
1046 // If we have inlined all targets before, and this receiver is the last seen,
1047 // we deoptimize instead of keeping the original invoke instruction.
1048 bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
1049 all_targets_inlined &&
1050 (i != InlineCache::kIndividualCacheSize - 1) &&
1051 (classes->Get(i + 1) == nullptr);
1052
1053 HInstruction* compare = AddTypeGuard(receiver,
1054 cursor,
1055 bb_cursor,
1056 class_index,
1057 handle,
1058 invoke_instruction,
1059 deoptimize);
1060 if (deoptimize) {
1061 if (return_replacement != nullptr) {
1062 invoke_instruction->ReplaceWith(return_replacement);
1063 }
1064 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
1065 // Because the inline cache data can be populated concurrently, we force the end of the
1066 // iteration. Otherwise, we could see a new receiver type.
1067 break;
1068 } else {
1069 CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1070 }
1071 }
1072 }
1073
1074 if (!one_target_inlined) {
1075 LOG_FAIL_NO_STAT()
1076 << "Call to " << ArtMethod::PrettyMethod(resolved_method)
1077 << " from inline cache is not inlined because none"
1078 << " of its targets could be inlined";
1079 return false;
1080 }
1081
1082 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1083
1084 // Run type propagation to get the guards typed.
1085 ReferenceTypePropagation rtp_fixup(graph_,
1086 outer_compilation_unit_.GetClassLoader(),
1087 outer_compilation_unit_.GetDexCache(),
1088 handles_,
1089 /* is_first_run= */ false);
1090 rtp_fixup.Run();
1091 return true;
1092 }
1093
CreateDiamondPatternForPolymorphicInline(HInstruction * compare,HInstruction * return_replacement,HInstruction * invoke_instruction)1094 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
1095 HInstruction* return_replacement,
1096 HInstruction* invoke_instruction) {
1097 uint32_t dex_pc = invoke_instruction->GetDexPc();
1098 HBasicBlock* cursor_block = compare->GetBlock();
1099 HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
1100 ArenaAllocator* allocator = graph_->GetAllocator();
1101
1102 // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
1103 // and the returned block is the start of the then branch (that could contain multiple blocks).
1104 HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
1105
1106 // Split the block containing the invoke before and after the invoke. The returned block
1107 // of the split before will contain the invoke and will be the otherwise branch of
1108 // the diamond. The returned block of the split after will be the merge block
1109 // of the diamond.
1110 HBasicBlock* end_then = invoke_instruction->GetBlock();
1111 HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
1112 HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
1113
1114 // If the methods we are inlining return a value, we create a phi in the merge block
1115 // that will have the `invoke_instruction and the `return_replacement` as inputs.
1116 if (return_replacement != nullptr) {
1117 HPhi* phi = new (allocator) HPhi(
1118 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
1119 merge->AddPhi(phi);
1120 invoke_instruction->ReplaceWith(phi);
1121 phi->AddInput(return_replacement);
1122 phi->AddInput(invoke_instruction);
1123 }
1124
1125 // Add the control flow instructions.
1126 otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
1127 end_then->AddInstruction(new (allocator) HGoto(dex_pc));
1128 cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
1129
1130 // Add the newly created blocks to the graph.
1131 graph_->AddBlock(then);
1132 graph_->AddBlock(otherwise);
1133 graph_->AddBlock(merge);
1134
1135 // Set up successor (and implictly predecessor) relations.
1136 cursor_block->AddSuccessor(otherwise);
1137 cursor_block->AddSuccessor(then);
1138 end_then->AddSuccessor(merge);
1139 otherwise->AddSuccessor(merge);
1140
1141 // Set up dominance information.
1142 then->SetDominator(cursor_block);
1143 cursor_block->AddDominatedBlock(then);
1144 otherwise->SetDominator(cursor_block);
1145 cursor_block->AddDominatedBlock(otherwise);
1146 merge->SetDominator(cursor_block);
1147 cursor_block->AddDominatedBlock(merge);
1148
1149 // Update the revert post order.
1150 size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
1151 MakeRoomFor(&graph_->reverse_post_order_, 1, index);
1152 graph_->reverse_post_order_[++index] = then;
1153 index = IndexOfElement(graph_->reverse_post_order_, end_then);
1154 MakeRoomFor(&graph_->reverse_post_order_, 2, index);
1155 graph_->reverse_post_order_[++index] = otherwise;
1156 graph_->reverse_post_order_[++index] = merge;
1157
1158
1159 graph_->UpdateLoopAndTryInformationOfNewBlock(
1160 then, original_invoke_block, /* replace_if_back_edge= */ false);
1161 graph_->UpdateLoopAndTryInformationOfNewBlock(
1162 otherwise, original_invoke_block, /* replace_if_back_edge= */ false);
1163
1164 // In case the original invoke location was a back edge, we need to update
1165 // the loop to now have the merge block as a back edge.
1166 graph_->UpdateLoopAndTryInformationOfNewBlock(
1167 merge, original_invoke_block, /* replace_if_back_edge= */ true);
1168 }
1169
TryInlinePolymorphicCallToSameTarget(HInvoke * invoke_instruction,ArtMethod * resolved_method,Handle<mirror::ObjectArray<mirror::Class>> classes)1170 bool HInliner::TryInlinePolymorphicCallToSameTarget(
1171 HInvoke* invoke_instruction,
1172 ArtMethod* resolved_method,
1173 Handle<mirror::ObjectArray<mirror::Class>> classes) {
1174 // This optimization only works under JIT for now.
1175 if (!Runtime::Current()->UseJitCompilation()) {
1176 return false;
1177 }
1178
1179 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1180 PointerSize pointer_size = class_linker->GetImagePointerSize();
1181
1182 DCHECK(resolved_method != nullptr);
1183 ArtMethod* actual_method = nullptr;
1184 size_t method_index = invoke_instruction->IsInvokeVirtual()
1185 ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
1186 : invoke_instruction->AsInvokeInterface()->GetImtIndex();
1187
1188 // Check whether we are actually calling the same method among
1189 // the different types seen.
1190 for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
1191 if (classes->Get(i) == nullptr) {
1192 break;
1193 }
1194 ArtMethod* new_method = nullptr;
1195 if (invoke_instruction->IsInvokeInterface()) {
1196 new_method = classes->Get(i)->GetImt(pointer_size)->Get(
1197 method_index, pointer_size);
1198 if (new_method->IsRuntimeMethod()) {
1199 // Bail out as soon as we see a conflict trampoline in one of the target's
1200 // interface table.
1201 return false;
1202 }
1203 } else {
1204 DCHECK(invoke_instruction->IsInvokeVirtual());
1205 new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size);
1206 }
1207 DCHECK(new_method != nullptr);
1208 if (actual_method == nullptr) {
1209 actual_method = new_method;
1210 } else if (actual_method != new_method) {
1211 // Different methods, bailout.
1212 return false;
1213 }
1214 }
1215
1216 HInstruction* receiver = invoke_instruction->InputAt(0);
1217 HInstruction* cursor = invoke_instruction->GetPrevious();
1218 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1219
1220 HInstruction* return_replacement = nullptr;
1221 if (!TryBuildAndInline(invoke_instruction,
1222 actual_method,
1223 ReferenceTypeInfo::CreateInvalid(),
1224 &return_replacement)) {
1225 return false;
1226 }
1227
1228 // We successfully inlined, now add a guard.
1229 HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
1230 class_linker, receiver, invoke_instruction->GetDexPc());
1231
1232 DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
1233 ? DataType::Type::kInt64
1234 : DataType::Type::kInt32;
1235 HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
1236 receiver_class,
1237 type,
1238 invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
1239 : HClassTableGet::TableKind::kIMTable,
1240 method_index,
1241 invoke_instruction->GetDexPc());
1242
1243 HConstant* constant;
1244 if (type == DataType::Type::kInt64) {
1245 constant = graph_->GetLongConstant(
1246 reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
1247 } else {
1248 constant = graph_->GetIntConstant(
1249 reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
1250 }
1251
1252 HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
1253 if (cursor != nullptr) {
1254 bb_cursor->InsertInstructionAfter(receiver_class, cursor);
1255 } else {
1256 bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
1257 }
1258 bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
1259 bb_cursor->InsertInstructionAfter(compare, class_table_get);
1260
1261 if (outermost_graph_->IsCompilingOsr()) {
1262 CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1263 } else {
1264 HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
1265 graph_->GetAllocator(),
1266 compare,
1267 receiver,
1268 DeoptimizationKind::kJitSameTarget,
1269 invoke_instruction->GetDexPc());
1270 bb_cursor->InsertInstructionAfter(deoptimize, compare);
1271 deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1272 if (return_replacement != nullptr) {
1273 invoke_instruction->ReplaceWith(return_replacement);
1274 }
1275 receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
1276 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
1277 deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
1278 }
1279
1280 // Run type propagation to get the guard typed.
1281 ReferenceTypePropagation rtp_fixup(graph_,
1282 outer_compilation_unit_.GetClassLoader(),
1283 outer_compilation_unit_.GetDexCache(),
1284 handles_,
1285 /* is_first_run= */ false);
1286 rtp_fixup.Run();
1287
1288 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1289
1290 LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
1291 return true;
1292 }
1293
TryInlineAndReplace(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,bool do_rtp,bool cha_devirtualize)1294 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
1295 ArtMethod* method,
1296 ReferenceTypeInfo receiver_type,
1297 bool do_rtp,
1298 bool cha_devirtualize) {
1299 DCHECK(!invoke_instruction->IsIntrinsic());
1300 HInstruction* return_replacement = nullptr;
1301 uint32_t dex_pc = invoke_instruction->GetDexPc();
1302 HInstruction* cursor = invoke_instruction->GetPrevious();
1303 HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1304 bool should_remove_invoke_instruction = false;
1305
1306 // If invoke_instruction is devirtualized to a different method, give intrinsics
1307 // another chance before we try to inline it.
1308 if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) {
1309 MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
1310 if (invoke_instruction->IsInvokeInterface()) {
1311 // We don't intrinsify an invoke-interface directly.
1312 // Replace the invoke-interface with an invoke-virtual.
1313 HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
1314 graph_->GetAllocator(),
1315 invoke_instruction->GetNumberOfArguments(),
1316 invoke_instruction->GetType(),
1317 invoke_instruction->GetDexPc(),
1318 invoke_instruction->GetDexMethodIndex(), // Use interface method's dex method index.
1319 method,
1320 method->GetMethodIndex());
1321 DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
1322 HInputsRef inputs = invoke_instruction->GetInputs();
1323 for (size_t index = 0; index != inputs.size(); ++index) {
1324 new_invoke->SetArgumentAt(index, inputs[index]);
1325 }
1326 invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1327 new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1328 if (invoke_instruction->GetType() == DataType::Type::kReference) {
1329 new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
1330 }
1331 return_replacement = new_invoke;
1332 // invoke_instruction is replaced with new_invoke.
1333 should_remove_invoke_instruction = true;
1334 } else {
1335 invoke_instruction->SetResolvedMethod(method);
1336 }
1337 } else if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) {
1338 if (invoke_instruction->IsInvokeInterface()) {
1339 DCHECK(!method->IsProxyMethod());
1340 // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always
1341 // better than an invoke-interface because:
1342 // 1) In the best case, the interface call has one more indirection (to fetch the IMT).
1343 // 2) We will not go to the conflict trampoline with an invoke-virtual.
1344 // TODO: Consider sharpening once it is not dependent on the compiler driver.
1345
1346 if (method->IsDefault() && !method->IsCopied()) {
1347 // Changing to invoke-virtual cannot be done on an original default method
1348 // since it's not in any vtable. Devirtualization by exact type/inline-cache
1349 // always uses a method in the iftable which is never an original default
1350 // method.
1351 // On the other hand, inlining an original default method by CHA is fine.
1352 DCHECK(cha_devirtualize);
1353 return false;
1354 }
1355
1356 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
1357 uint32_t dex_method_index = FindMethodIndexIn(
1358 method, caller_dex_file, invoke_instruction->GetDexMethodIndex());
1359 if (dex_method_index == dex::kDexNoIndex) {
1360 return false;
1361 }
1362 HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
1363 graph_->GetAllocator(),
1364 invoke_instruction->GetNumberOfArguments(),
1365 invoke_instruction->GetType(),
1366 invoke_instruction->GetDexPc(),
1367 dex_method_index,
1368 method,
1369 method->GetMethodIndex());
1370 HInputsRef inputs = invoke_instruction->GetInputs();
1371 for (size_t index = 0; index != inputs.size(); ++index) {
1372 new_invoke->SetArgumentAt(index, inputs[index]);
1373 }
1374 invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1375 new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1376 if (invoke_instruction->GetType() == DataType::Type::kReference) {
1377 new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
1378 }
1379 return_replacement = new_invoke;
1380 // invoke_instruction is replaced with new_invoke.
1381 should_remove_invoke_instruction = true;
1382 } else {
1383 // TODO: Consider sharpening an invoke virtual once it is not dependent on the
1384 // compiler driver.
1385 return false;
1386 }
1387 } else {
1388 // invoke_instruction is inlined.
1389 should_remove_invoke_instruction = true;
1390 }
1391
1392 if (cha_devirtualize) {
1393 AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
1394 }
1395 if (return_replacement != nullptr) {
1396 invoke_instruction->ReplaceWith(return_replacement);
1397 }
1398 if (should_remove_invoke_instruction) {
1399 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
1400 }
1401 FixUpReturnReferenceType(method, return_replacement);
1402 if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) {
1403 // Actual return value has a more specific type than the method's declared
1404 // return type. Run RTP again on the outer graph to propagate it.
1405 ReferenceTypePropagation(graph_,
1406 outer_compilation_unit_.GetClassLoader(),
1407 outer_compilation_unit_.GetDexCache(),
1408 handles_,
1409 /* is_first_run= */ false).Run();
1410 }
1411 return true;
1412 }
1413
CountRecursiveCallsOf(ArtMethod * method) const1414 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
1415 const HInliner* current = this;
1416 size_t count = 0;
1417 do {
1418 if (current->graph_->GetArtMethod() == method) {
1419 ++count;
1420 }
1421 current = current->parent_;
1422 } while (current != nullptr);
1423 return count;
1424 }
1425
MayInline(const CompilerOptions & compiler_options,const DexFile & inlined_from,const DexFile & inlined_into)1426 static inline bool MayInline(const CompilerOptions& compiler_options,
1427 const DexFile& inlined_from,
1428 const DexFile& inlined_into) {
1429 // We're not allowed to inline across dex files if we're the no-inline-from dex file.
1430 if (!IsSameDexFile(inlined_from, inlined_into) &&
1431 ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) {
1432 return false;
1433 }
1434
1435 return true;
1436 }
1437
TryBuildAndInline(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement)1438 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
1439 ArtMethod* method,
1440 ReferenceTypeInfo receiver_type,
1441 HInstruction** return_replacement) {
1442 if (method->IsProxyMethod()) {
1443 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
1444 << "Method " << method->PrettyMethod()
1445 << " is not inlined because of unimplemented inline support for proxy methods.";
1446 return false;
1447 }
1448
1449 if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
1450 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
1451 << "Method "
1452 << method->PrettyMethod()
1453 << " is not inlined because it has reached its recursive call budget.";
1454 return false;
1455 }
1456
1457 // Check whether we're allowed to inline. The outermost compilation unit is the relevant
1458 // dex file here (though the transitivity of an inline chain would allow checking the calller).
1459 if (!MayInline(codegen_->GetCompilerOptions(),
1460 *method->GetDexFile(),
1461 *outer_compilation_unit_.GetDexFile())) {
1462 if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
1463 LOG_SUCCESS() << "Successfully replaced pattern of invoke "
1464 << method->PrettyMethod();
1465 MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
1466 return true;
1467 }
1468 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
1469 << "Won't inline " << method->PrettyMethod() << " in "
1470 << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
1471 << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
1472 << method->GetDexFile()->GetLocation();
1473 return false;
1474 }
1475
1476 bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile());
1477
1478 CodeItemDataAccessor accessor(method->DexInstructionData());
1479
1480 if (!accessor.HasCodeItem()) {
1481 LOG_FAIL_NO_STAT()
1482 << "Method " << method->PrettyMethod() << " is not inlined because it is native";
1483 return false;
1484 }
1485
1486 size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits();
1487 if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
1488 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
1489 << "Method " << method->PrettyMethod()
1490 << " is not inlined because its code item is too big: "
1491 << accessor.InsnsSizeInCodeUnits()
1492 << " > "
1493 << inline_max_code_units;
1494 return false;
1495 }
1496
1497 if (accessor.TriesSize() != 0) {
1498 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
1499 << "Method " << method->PrettyMethod() << " is not inlined because of try block";
1500 return false;
1501 }
1502
1503 if (!method->IsCompilable()) {
1504 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1505 << "Method " << method->PrettyMethod()
1506 << " has soft failures un-handled by the compiler, so it cannot be inlined";
1507 return false;
1508 }
1509
1510 if (IsMethodUnverified(codegen_->GetCompilerOptions(), method)) {
1511 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1512 << "Method " << method->PrettyMethod()
1513 << " couldn't be verified, so it cannot be inlined";
1514 return false;
1515 }
1516
1517 if (invoke_instruction->IsInvokeStaticOrDirect() &&
1518 invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
1519 // Case of a static method that cannot be inlined because it implicitly
1520 // requires an initialization check of its declaring class.
1521 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
1522 << "Method " << method->PrettyMethod()
1523 << " is not inlined because it is static and requires a clinit"
1524 << " check that cannot be emitted due to Dex cache limitations";
1525 return false;
1526 }
1527
1528 if (!TryBuildAndInlineHelper(
1529 invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) {
1530 return false;
1531 }
1532
1533 LOG_SUCCESS() << method->PrettyMethod();
1534 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
1535 return true;
1536 }
1537
GetInvokeInputForArgVRegIndex(HInvoke * invoke_instruction,size_t arg_vreg_index)1538 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
1539 size_t arg_vreg_index)
1540 REQUIRES_SHARED(Locks::mutator_lock_) {
1541 size_t input_index = 0;
1542 for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
1543 DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1544 if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
1545 ++i;
1546 DCHECK_NE(i, arg_vreg_index);
1547 }
1548 }
1549 DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1550 return invoke_instruction->InputAt(input_index);
1551 }
1552
1553 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
TryPatternSubstitution(HInvoke * invoke_instruction,ArtMethod * resolved_method,HInstruction ** return_replacement)1554 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
1555 ArtMethod* resolved_method,
1556 HInstruction** return_replacement) {
1557 InlineMethod inline_method;
1558 if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) {
1559 return false;
1560 }
1561
1562 switch (inline_method.opcode) {
1563 case kInlineOpNop:
1564 DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
1565 *return_replacement = nullptr;
1566 break;
1567 case kInlineOpReturnArg:
1568 *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
1569 inline_method.d.return_data.arg);
1570 break;
1571 case kInlineOpNonWideConst:
1572 if (resolved_method->GetShorty()[0] == 'L') {
1573 DCHECK_EQ(inline_method.d.data, 0u);
1574 *return_replacement = graph_->GetNullConstant();
1575 } else {
1576 *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
1577 }
1578 break;
1579 case kInlineOpIGet: {
1580 const InlineIGetIPutData& data = inline_method.d.ifield_data;
1581 if (data.method_is_static || data.object_arg != 0u) {
1582 // TODO: Needs null check.
1583 return false;
1584 }
1585 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1586 HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj);
1587 DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
1588 DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
1589 invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
1590 *return_replacement = iget;
1591 break;
1592 }
1593 case kInlineOpIPut: {
1594 const InlineIGetIPutData& data = inline_method.d.ifield_data;
1595 if (data.method_is_static || data.object_arg != 0u) {
1596 // TODO: Needs null check.
1597 return false;
1598 }
1599 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1600 HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
1601 HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value);
1602 DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
1603 DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
1604 invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1605 if (data.return_arg_plus1 != 0u) {
1606 size_t return_arg = data.return_arg_plus1 - 1u;
1607 *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
1608 }
1609 break;
1610 }
1611 case kInlineOpConstructor: {
1612 const InlineConstructorData& data = inline_method.d.constructor_data;
1613 // Get the indexes to arrays for easier processing.
1614 uint16_t iput_field_indexes[] = {
1615 data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
1616 };
1617 uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
1618 static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
1619 // Count valid field indexes.
1620 size_t number_of_iputs = 0u;
1621 while (number_of_iputs != arraysize(iput_field_indexes) &&
1622 iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
1623 // Check that there are no duplicate valid field indexes.
1624 DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
1625 iput_field_indexes + arraysize(iput_field_indexes),
1626 iput_field_indexes[number_of_iputs]));
1627 ++number_of_iputs;
1628 }
1629 // Check that there are no valid field indexes in the rest of the array.
1630 DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
1631 iput_field_indexes + arraysize(iput_field_indexes),
1632 [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
1633
1634 // Create HInstanceFieldSet for each IPUT that stores non-zero data.
1635 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction,
1636 /* arg_vreg_index= */ 0u);
1637 bool needs_constructor_barrier = false;
1638 for (size_t i = 0; i != number_of_iputs; ++i) {
1639 HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
1640 if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) {
1641 uint16_t field_index = iput_field_indexes[i];
1642 bool is_final;
1643 HInstanceFieldSet* iput =
1644 CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final);
1645 invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1646
1647 // Check whether the field is final. If it is, we need to add a barrier.
1648 if (is_final) {
1649 needs_constructor_barrier = true;
1650 }
1651 }
1652 }
1653 if (needs_constructor_barrier) {
1654 // See DexCompilationUnit::RequiresConstructorBarrier for more details.
1655 DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
1656
1657 HConstructorFence* constructor_fence =
1658 new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
1659 invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
1660 invoke_instruction);
1661 }
1662 *return_replacement = nullptr;
1663 break;
1664 }
1665 default:
1666 LOG(FATAL) << "UNREACHABLE";
1667 UNREACHABLE();
1668 }
1669 return true;
1670 }
1671
CreateInstanceFieldGet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj)1672 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
1673 ArtMethod* referrer,
1674 HInstruction* obj)
1675 REQUIRES_SHARED(Locks::mutator_lock_) {
1676 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1677 ArtField* resolved_field =
1678 class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1679 DCHECK(resolved_field != nullptr);
1680 HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
1681 obj,
1682 resolved_field,
1683 DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1684 resolved_field->GetOffset(),
1685 resolved_field->IsVolatile(),
1686 field_index,
1687 resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1688 *referrer->GetDexFile(),
1689 // Read barrier generates a runtime call in slow path and we need a valid
1690 // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1691 /* dex_pc= */ 0);
1692 if (iget->GetType() == DataType::Type::kReference) {
1693 // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
1694 Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache());
1695 ReferenceTypePropagation rtp(graph_,
1696 outer_compilation_unit_.GetClassLoader(),
1697 dex_cache,
1698 handles_,
1699 /* is_first_run= */ false);
1700 rtp.Visit(iget);
1701 }
1702 return iget;
1703 }
1704
CreateInstanceFieldSet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj,HInstruction * value,bool * is_final)1705 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
1706 ArtMethod* referrer,
1707 HInstruction* obj,
1708 HInstruction* value,
1709 bool* is_final)
1710 REQUIRES_SHARED(Locks::mutator_lock_) {
1711 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1712 ArtField* resolved_field =
1713 class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1714 DCHECK(resolved_field != nullptr);
1715 if (is_final != nullptr) {
1716 // This information is needed only for constructors.
1717 DCHECK(referrer->IsConstructor());
1718 *is_final = resolved_field->IsFinal();
1719 }
1720 HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
1721 obj,
1722 value,
1723 resolved_field,
1724 DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1725 resolved_field->GetOffset(),
1726 resolved_field->IsVolatile(),
1727 field_index,
1728 resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1729 *referrer->GetDexFile(),
1730 // Read barrier generates a runtime call in slow path and we need a valid
1731 // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1732 /* dex_pc= */ 0);
1733 return iput;
1734 }
1735
1736 template <typename T>
NewHandleIfDifferent(ObjPtr<T> object,Handle<T> hint,VariableSizedHandleScope * handles)1737 static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object,
1738 Handle<T> hint,
1739 VariableSizedHandleScope* handles)
1740 REQUIRES_SHARED(Locks::mutator_lock_) {
1741 return (object != hint.Get()) ? handles->NewHandle(object) : hint;
1742 }
1743
CanEncodeInlinedMethodInStackMap(const DexFile & caller_dex_file,ArtMethod * callee)1744 static bool CanEncodeInlinedMethodInStackMap(const DexFile& caller_dex_file, ArtMethod* callee)
1745 REQUIRES_SHARED(Locks::mutator_lock_) {
1746 if (!Runtime::Current()->IsAotCompiler()) {
1747 // JIT can always encode methods in stack maps.
1748 return true;
1749 }
1750 if (IsSameDexFile(caller_dex_file, *callee->GetDexFile())) {
1751 return true;
1752 }
1753 // TODO(ngeoffray): Support more AOT cases for inlining:
1754 // - methods in multidex
1755 // - methods in boot image for on-device non-PIC compilation.
1756 return false;
1757 }
1758
TryBuildAndInlineHelper(HInvoke * invoke_instruction,ArtMethod * resolved_method,ReferenceTypeInfo receiver_type,bool same_dex_file,HInstruction ** return_replacement)1759 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
1760 ArtMethod* resolved_method,
1761 ReferenceTypeInfo receiver_type,
1762 bool same_dex_file,
1763 HInstruction** return_replacement) {
1764 DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid()));
1765 ScopedObjectAccess soa(Thread::Current());
1766 const dex::CodeItem* code_item = resolved_method->GetCodeItem();
1767 const DexFile& callee_dex_file = *resolved_method->GetDexFile();
1768 uint32_t method_index = resolved_method->GetDexMethodIndex();
1769 CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
1770 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1771 Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
1772 caller_compilation_unit_.GetDexCache(),
1773 handles_);
1774 Handle<mirror::ClassLoader> class_loader =
1775 NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
1776 caller_compilation_unit_.GetClassLoader(),
1777 handles_);
1778
1779 Handle<mirror::Class> compiling_class = handles_->NewHandle(resolved_method->GetDeclaringClass());
1780 DexCompilationUnit dex_compilation_unit(
1781 class_loader,
1782 class_linker,
1783 callee_dex_file,
1784 code_item,
1785 resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
1786 method_index,
1787 resolved_method->GetAccessFlags(),
1788 /* verified_method= */ nullptr,
1789 dex_cache,
1790 compiling_class);
1791
1792 InvokeType invoke_type = invoke_instruction->GetInvokeType();
1793 if (invoke_type == kInterface) {
1794 // We have statically resolved the dispatch. To please the class linker
1795 // at runtime, we change this call as if it was a virtual call.
1796 invoke_type = kVirtual;
1797 }
1798
1799 bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe();
1800 const dex::ClassDef& callee_class = resolved_method->GetClassDef();
1801 // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
1802 // is currently rarely true.
1803 bool callee_dead_reference_safe =
1804 annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class)
1805 && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index);
1806
1807 const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
1808 HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
1809 graph_->GetAllocator(),
1810 graph_->GetArenaStack(),
1811 callee_dex_file,
1812 method_index,
1813 codegen_->GetCompilerOptions().GetInstructionSet(),
1814 invoke_type,
1815 callee_dead_reference_safe,
1816 graph_->IsDebuggable(),
1817 /* osr= */ false,
1818 caller_instruction_counter);
1819 callee_graph->SetArtMethod(resolved_method);
1820
1821 // When they are needed, allocate `inline_stats_` on the Arena instead
1822 // of on the stack, as Clang might produce a stack frame too large
1823 // for this function, that would not fit the requirements of the
1824 // `-Wframe-larger-than` option.
1825 if (stats_ != nullptr) {
1826 // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
1827 if (inline_stats_ == nullptr) {
1828 void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
1829 inline_stats_ = new (storage) OptimizingCompilerStats;
1830 } else {
1831 inline_stats_->Reset();
1832 }
1833 }
1834 HGraphBuilder builder(callee_graph,
1835 code_item_accessor,
1836 &dex_compilation_unit,
1837 &outer_compilation_unit_,
1838 codegen_,
1839 inline_stats_,
1840 resolved_method->GetQuickenedInfo(),
1841 handles_);
1842
1843 if (builder.BuildGraph() != kAnalysisSuccess) {
1844 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
1845 << "Method " << callee_dex_file.PrettyMethod(method_index)
1846 << " could not be built, so cannot be inlined";
1847 return false;
1848 }
1849
1850 if (!RegisterAllocator::CanAllocateRegistersFor(
1851 *callee_graph, codegen_->GetCompilerOptions().GetInstructionSet())) {
1852 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRegisterAllocator)
1853 << "Method " << callee_dex_file.PrettyMethod(method_index)
1854 << " cannot be inlined because of the register allocator";
1855 return false;
1856 }
1857
1858 size_t parameter_index = 0;
1859 bool run_rtp = false;
1860 for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
1861 !instructions.Done();
1862 instructions.Advance()) {
1863 HInstruction* current = instructions.Current();
1864 if (current->IsParameterValue()) {
1865 HInstruction* argument = invoke_instruction->InputAt(parameter_index);
1866 if (argument->IsNullConstant()) {
1867 current->ReplaceWith(callee_graph->GetNullConstant());
1868 } else if (argument->IsIntConstant()) {
1869 current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
1870 } else if (argument->IsLongConstant()) {
1871 current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
1872 } else if (argument->IsFloatConstant()) {
1873 current->ReplaceWith(
1874 callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
1875 } else if (argument->IsDoubleConstant()) {
1876 current->ReplaceWith(
1877 callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
1878 } else if (argument->GetType() == DataType::Type::kReference) {
1879 if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
1880 run_rtp = true;
1881 current->SetReferenceTypeInfo(receiver_type);
1882 } else {
1883 current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
1884 }
1885 current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
1886 }
1887 ++parameter_index;
1888 }
1889 }
1890
1891 // We have replaced formal arguments with actual arguments. If actual types
1892 // are more specific than the declared ones, run RTP again on the inner graph.
1893 if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
1894 ReferenceTypePropagation(callee_graph,
1895 outer_compilation_unit_.GetClassLoader(),
1896 dex_compilation_unit.GetDexCache(),
1897 handles_,
1898 /* is_first_run= */ false).Run();
1899 }
1900
1901 RunOptimizations(callee_graph, code_item, dex_compilation_unit);
1902
1903 HBasicBlock* exit_block = callee_graph->GetExitBlock();
1904 if (exit_block == nullptr) {
1905 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1906 << "Method " << callee_dex_file.PrettyMethod(method_index)
1907 << " could not be inlined because it has an infinite loop";
1908 return false;
1909 }
1910
1911 bool has_one_return = false;
1912 for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
1913 if (predecessor->GetLastInstruction()->IsThrow()) {
1914 if (invoke_instruction->GetBlock()->IsTryBlock()) {
1915 // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto.
1916 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
1917 << "Method " << callee_dex_file.PrettyMethod(method_index)
1918 << " could not be inlined because one branch always throws and"
1919 << " caller is in a try/catch block";
1920 return false;
1921 } else if (graph_->GetExitBlock() == nullptr) {
1922 // TODO(ngeoffray): Support adding HExit in the caller graph.
1923 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1924 << "Method " << callee_dex_file.PrettyMethod(method_index)
1925 << " could not be inlined because one branch always throws and"
1926 << " caller does not have an exit block";
1927 return false;
1928 } else if (graph_->HasIrreducibleLoops()) {
1929 // TODO(ngeoffray): Support re-computing loop information to graphs with
1930 // irreducible loops?
1931 VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index)
1932 << " could not be inlined because one branch always throws and"
1933 << " caller has irreducible loops";
1934 return false;
1935 }
1936 } else {
1937 has_one_return = true;
1938 }
1939 }
1940
1941 if (!has_one_return) {
1942 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
1943 << "Method " << callee_dex_file.PrettyMethod(method_index)
1944 << " could not be inlined because it always throws";
1945 return false;
1946 }
1947
1948 size_t number_of_instructions = 0;
1949 // Skip the entry block, it does not contain instructions that prevent inlining.
1950 for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
1951 if (block->IsLoopHeader()) {
1952 if (block->GetLoopInformation()->IsIrreducible()) {
1953 // Don't inline methods with irreducible loops, they could prevent some
1954 // optimizations to run.
1955 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop)
1956 << "Method " << callee_dex_file.PrettyMethod(method_index)
1957 << " could not be inlined because it contains an irreducible loop";
1958 return false;
1959 }
1960 if (!block->GetLoopInformation()->HasExitEdge()) {
1961 // Don't inline methods with loops without exit, since they cause the
1962 // loop information to be computed incorrectly when updating after
1963 // inlining.
1964 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
1965 << "Method " << callee_dex_file.PrettyMethod(method_index)
1966 << " could not be inlined because it contains a loop with no exit";
1967 return false;
1968 }
1969 }
1970
1971 for (HInstructionIterator instr_it(block->GetInstructions());
1972 !instr_it.Done();
1973 instr_it.Advance()) {
1974 if (++number_of_instructions >= inlining_budget_) {
1975 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
1976 << "Method " << callee_dex_file.PrettyMethod(method_index)
1977 << " is not inlined because the outer method has reached"
1978 << " its instruction budget limit.";
1979 return false;
1980 }
1981 HInstruction* current = instr_it.Current();
1982 if (current->NeedsEnvironment() &&
1983 (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) {
1984 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
1985 << "Method " << callee_dex_file.PrettyMethod(method_index)
1986 << " is not inlined because its caller has reached"
1987 << " its environment budget limit.";
1988 return false;
1989 }
1990
1991 if (current->NeedsEnvironment() &&
1992 !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(),
1993 resolved_method)) {
1994 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
1995 << "Method " << callee_dex_file.PrettyMethod(method_index)
1996 << " could not be inlined because " << current->DebugName()
1997 << " needs an environment, is in a different dex file"
1998 << ", and cannot be encoded in the stack maps.";
1999 return false;
2000 }
2001
2002 if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) {
2003 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
2004 << "Method " << callee_dex_file.PrettyMethod(method_index)
2005 << " could not be inlined because " << current->DebugName()
2006 << " it is in a different dex file and requires access to the dex cache";
2007 return false;
2008 }
2009
2010 if (current->IsUnresolvedStaticFieldGet() ||
2011 current->IsUnresolvedInstanceFieldGet() ||
2012 current->IsUnresolvedStaticFieldSet() ||
2013 current->IsUnresolvedInstanceFieldSet()) {
2014 // Entrypoint for unresolved fields does not handle inlined frames.
2015 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
2016 << "Method " << callee_dex_file.PrettyMethod(method_index)
2017 << " could not be inlined because it is using an unresolved"
2018 << " entrypoint";
2019 return false;
2020 }
2021 }
2022 }
2023 DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
2024 << "No instructions can be added to the outer graph while inner graph is being built";
2025
2026 // Inline the callee graph inside the caller graph.
2027 const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
2028 graph_->SetCurrentInstructionId(callee_instruction_counter);
2029 *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
2030 // Update our budget for other inlining attempts in `caller_graph`.
2031 total_number_of_instructions_ += number_of_instructions;
2032 UpdateInliningBudget();
2033
2034 DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
2035 << "No instructions can be added to the inner graph during inlining into the outer graph";
2036
2037 if (stats_ != nullptr) {
2038 DCHECK(inline_stats_ != nullptr);
2039 inline_stats_->AddTo(stats_);
2040 }
2041
2042 if (caller_dead_reference_safe && !callee_dead_reference_safe) {
2043 // Caller was dead reference safe, but is not anymore, since we inlined dead
2044 // reference unsafe code. Prior transformations remain valid, since they did not
2045 // affect the inlined code.
2046 graph_->MarkDeadReferenceUnsafe();
2047 }
2048
2049 return true;
2050 }
2051
RunOptimizations(HGraph * callee_graph,const dex::CodeItem * code_item,const DexCompilationUnit & dex_compilation_unit)2052 void HInliner::RunOptimizations(HGraph* callee_graph,
2053 const dex::CodeItem* code_item,
2054 const DexCompilationUnit& dex_compilation_unit) {
2055 // Note: if the outermost_graph_ is being compiled OSR, we should not run any
2056 // optimization that could lead to a HDeoptimize. The following optimizations do not.
2057 HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
2058 HConstantFolding fold(callee_graph, "constant_folding$inliner");
2059 InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_);
2060
2061 HOptimization* optimizations[] = {
2062 &simplify,
2063 &fold,
2064 &dce,
2065 };
2066
2067 for (size_t i = 0; i < arraysize(optimizations); ++i) {
2068 HOptimization* optimization = optimizations[i];
2069 optimization->Run();
2070 }
2071
2072 // Bail early for pathological cases on the environment (for example recursive calls,
2073 // or too large environment).
2074 if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) {
2075 LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2076 << " will not be inlined because the outer method has reached"
2077 << " its environment budget limit.";
2078 return;
2079 }
2080
2081 // Bail early if we know we already are over the limit.
2082 size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
2083 if (number_of_instructions > inlining_budget_) {
2084 LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2085 << " will not be inlined because the outer method has reached"
2086 << " its instruction budget limit. " << number_of_instructions;
2087 return;
2088 }
2089
2090 CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
2091 HInliner inliner(callee_graph,
2092 outermost_graph_,
2093 codegen_,
2094 outer_compilation_unit_,
2095 dex_compilation_unit,
2096 handles_,
2097 inline_stats_,
2098 total_number_of_dex_registers_ + accessor.RegistersSize(),
2099 total_number_of_instructions_ + number_of_instructions,
2100 this,
2101 depth_ + 1);
2102 inliner.Run();
2103 }
2104
IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,bool declared_can_be_null,HInstruction * actual_obj)2105 static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,
2106 bool declared_can_be_null,
2107 HInstruction* actual_obj)
2108 REQUIRES_SHARED(Locks::mutator_lock_) {
2109 if (declared_can_be_null && !actual_obj->CanBeNull()) {
2110 return true;
2111 }
2112
2113 ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
2114 return (actual_rti.IsExact() && !declared_rti.IsExact()) ||
2115 declared_rti.IsStrictSupertypeOf(actual_rti);
2116 }
2117
GetClassRTI(ObjPtr<mirror::Class> klass)2118 ReferenceTypeInfo HInliner::GetClassRTI(ObjPtr<mirror::Class> klass) {
2119 return ReferenceTypePropagation::IsAdmissible(klass)
2120 ? ReferenceTypeInfo::Create(handles_->NewHandle(klass))
2121 : graph_->GetInexactObjectRti();
2122 }
2123
ArgumentTypesMoreSpecific(HInvoke * invoke_instruction,ArtMethod * resolved_method)2124 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
2125 // If this is an instance call, test whether the type of the `this` argument
2126 // is more specific than the class which declares the method.
2127 if (!resolved_method->IsStatic()) {
2128 if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()),
2129 /* declared_can_be_null= */ false,
2130 invoke_instruction->InputAt(0u))) {
2131 return true;
2132 }
2133 }
2134
2135 // Iterate over the list of parameter types and test whether any of the
2136 // actual inputs has a more specific reference type than the type declared in
2137 // the signature.
2138 const dex::TypeList* param_list = resolved_method->GetParameterTypeList();
2139 for (size_t param_idx = 0,
2140 input_idx = resolved_method->IsStatic() ? 0 : 1,
2141 e = (param_list == nullptr ? 0 : param_list->Size());
2142 param_idx < e;
2143 ++param_idx, ++input_idx) {
2144 HInstruction* input = invoke_instruction->InputAt(input_idx);
2145 if (input->GetType() == DataType::Type::kReference) {
2146 ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
2147 param_list->GetTypeItem(param_idx).type_idx_);
2148 if (IsReferenceTypeRefinement(GetClassRTI(param_cls),
2149 /* declared_can_be_null= */ true,
2150 input)) {
2151 return true;
2152 }
2153 }
2154 }
2155
2156 return false;
2157 }
2158
ReturnTypeMoreSpecific(HInvoke * invoke_instruction,HInstruction * return_replacement)2159 bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction,
2160 HInstruction* return_replacement) {
2161 // Check the integrity of reference types and run another type propagation if needed.
2162 if (return_replacement != nullptr) {
2163 if (return_replacement->GetType() == DataType::Type::kReference) {
2164 // Test if the return type is a refinement of the declared return type.
2165 if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(),
2166 /* declared_can_be_null= */ true,
2167 return_replacement)) {
2168 return true;
2169 } else if (return_replacement->IsInstanceFieldGet()) {
2170 HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
2171 if (field_get->GetFieldInfo().GetField() ==
2172 GetClassRoot<mirror::Object>()->GetInstanceField(0)) {
2173 return true;
2174 }
2175 }
2176 } else if (return_replacement->IsInstanceOf()) {
2177 // Inlining InstanceOf into an If may put a tighter bound on reference types.
2178 return true;
2179 }
2180 }
2181
2182 return false;
2183 }
2184
FixUpReturnReferenceType(ArtMethod * resolved_method,HInstruction * return_replacement)2185 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
2186 HInstruction* return_replacement) {
2187 if (return_replacement != nullptr) {
2188 if (return_replacement->GetType() == DataType::Type::kReference) {
2189 if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
2190 // Make sure that we have a valid type for the return. We may get an invalid one when
2191 // we inline invokes with multiple branches and create a Phi for the result.
2192 // TODO: we could be more precise by merging the phi inputs but that requires
2193 // some functionality from the reference type propagation.
2194 DCHECK(return_replacement->IsPhi());
2195 ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
2196 return_replacement->SetReferenceTypeInfo(GetClassRTI(cls));
2197 }
2198 }
2199 }
2200 }
2201
2202 } // namespace art
2203