• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1'''"Executable documentation" for the pickle module.
2
3Extensive comments about the pickle protocols and pickle-machine opcodes
4can be found here.  Some functions meant for external use:
5
6genops(pickle)
7   Generate all the opcodes in a pickle, as (opcode, arg, position) triples.
8
9dis(pickle, out=None, memo=None, indentlevel=4)
10   Print a symbolic disassembly of a pickle.
11'''
12
13__all__ = ['dis', 'genops', 'optimize']
14
15# Other ideas:
16#
17# - A pickle verifier:  read a pickle and check it exhaustively for
18#   well-formedness.  dis() does a lot of this already.
19#
20# - A protocol identifier:  examine a pickle and return its protocol number
21#   (== the highest .proto attr value among all the opcodes in the pickle).
22#   dis() already prints this info at the end.
23#
24# - A pickle optimizer:  for example, tuple-building code is sometimes more
25#   elaborate than necessary, catering for the possibility that the tuple
26#   is recursive.  Or lots of times a PUT is generated that's never accessed
27#   by a later GET.
28
29
30"""
31"A pickle" is a program for a virtual pickle machine (PM, but more accurately
32called an unpickling machine).  It's a sequence of opcodes, interpreted by the
33PM, building an arbitrarily complex Python object.
34
35For the most part, the PM is very simple:  there are no looping, testing, or
36conditional instructions, no arithmetic and no function calls.  Opcodes are
37executed once each, from first to last, until a STOP opcode is reached.
38
39The PM has two data areas, "the stack" and "the memo".
40
41Many opcodes push Python objects onto the stack; e.g., INT pushes a Python
42integer object on the stack, whose value is gotten from a decimal string
43literal immediately following the INT opcode in the pickle bytestream.  Other
44opcodes take Python objects off the stack.  The result of unpickling is
45whatever object is left on the stack when the final STOP opcode is executed.
46
47The memo is simply an array of objects, or it can be implemented as a dict
48mapping little integers to objects.  The memo serves as the PM's "long term
49memory", and the little integers indexing the memo are akin to variable
50names.  Some opcodes pop a stack object into the memo at a given index,
51and others push a memo object at a given index onto the stack again.
52
53At heart, that's all the PM has.  Subtleties arise for these reasons:
54
55+ Object identity.  Objects can be arbitrarily complex, and subobjects
56  may be shared (for example, the list [a, a] refers to the same object a
57  twice).  It can be vital that unpickling recreate an isomorphic object
58  graph, faithfully reproducing sharing.
59
60+ Recursive objects.  For example, after "L = []; L.append(L)", L is a
61  list, and L[0] is the same list.  This is related to the object identity
62  point, and some sequences of pickle opcodes are subtle in order to
63  get the right result in all cases.
64
65+ Things pickle doesn't know everything about.  Examples of things pickle
66  does know everything about are Python's builtin scalar and container
67  types, like ints and tuples.  They generally have opcodes dedicated to
68  them.  For things like module references and instances of user-defined
69  classes, pickle's knowledge is limited.  Historically, many enhancements
70  have been made to the pickle protocol in order to do a better (faster,
71  and/or more compact) job on those.
72
73+ Backward compatibility and micro-optimization.  As explained below,
74  pickle opcodes never go away, not even when better ways to do a thing
75  get invented.  The repertoire of the PM just keeps growing over time.
76  For example, protocol 0 had two opcodes for building Python integers (INT
77  and LONG), protocol 1 added three more for more-efficient pickling of short
78  integers, and protocol 2 added two more for more-efficient pickling of
79  long integers (before protocol 2, the only ways to pickle a Python long
80  took time quadratic in the number of digits, for both pickling and
81  unpickling).  "Opcode bloat" isn't so much a subtlety as a source of
82  wearying complication.
83
84
85Pickle protocols:
86
87For compatibility, the meaning of a pickle opcode never changes.  Instead new
88pickle opcodes get added, and each version's unpickler can handle all the
89pickle opcodes in all protocol versions to date.  So old pickles continue to
90be readable forever.  The pickler can generally be told to restrict itself to
91the subset of opcodes available under previous protocol versions too, so that
92users can create pickles under the current version readable by older
93versions.  However, a pickle does not contain its version number embedded
94within it.  If an older unpickler tries to read a pickle using a later
95protocol, the result is most likely an exception due to seeing an unknown (in
96the older unpickler) opcode.
97
98The original pickle used what's now called "protocol 0", and what was called
99"text mode" before Python 2.3.  The entire pickle bytestream is made up of
100printable 7-bit ASCII characters, plus the newline character, in protocol 0.
101That's why it was called text mode.  Protocol 0 is small and elegant, but
102sometimes painfully inefficient.
103
104The second major set of additions is now called "protocol 1", and was called
105"binary mode" before Python 2.3.  This added many opcodes with arguments
106consisting of arbitrary bytes, including NUL bytes and unprintable "high bit"
107bytes.  Binary mode pickles can be substantially smaller than equivalent
108text mode pickles, and sometimes faster too; e.g., BININT represents a 4-byte
109int as 4 bytes following the opcode, which is cheaper to unpickle than the
110(perhaps) 11-character decimal string attached to INT.  Protocol 1 also added
111a number of opcodes that operate on many stack elements at once (like APPENDS
112and SETITEMS), and "shortcut" opcodes (like EMPTY_DICT and EMPTY_TUPLE).
113
114The third major set of additions came in Python 2.3, and is called "protocol
1152".  This added:
116
117- A better way to pickle instances of new-style classes (NEWOBJ).
118
119- A way for a pickle to identify its protocol (PROTO).
120
121- Time- and space- efficient pickling of long ints (LONG{1,4}).
122
123- Shortcuts for small tuples (TUPLE{1,2,3}}.
124
125- Dedicated opcodes for bools (NEWTRUE, NEWFALSE).
126
127- The "extension registry", a vector of popular objects that can be pushed
128  efficiently by index (EXT{1,2,4}).  This is akin to the memo and GET, but
129  the registry contents are predefined (there's nothing akin to the memo's
130  PUT).
131
132Another independent change with Python 2.3 is the abandonment of any
133pretense that it might be safe to load pickles received from untrusted
134parties -- no sufficient security analysis has been done to guarantee
135this and there isn't a use case that warrants the expense of such an
136analysis.
137
138To this end, all tests for __safe_for_unpickling__ or for
139copy_reg.safe_constructors are removed from the unpickling code.
140References to these variables in the descriptions below are to be seen
141as describing unpickling in Python 2.2 and before.
142"""
143
144# Meta-rule:  Descriptions are stored in instances of descriptor objects,
145# with plain constructors.  No meta-language is defined from which
146# descriptors could be constructed.  If you want, e.g., XML, write a little
147# program to generate XML from the objects.
148
149##############################################################################
150# Some pickle opcodes have an argument, following the opcode in the
151# bytestream.  An argument is of a specific type, described by an instance
152# of ArgumentDescriptor.  These are not to be confused with arguments taken
153# off the stack -- ArgumentDescriptor applies only to arguments embedded in
154# the opcode stream, immediately following an opcode.
155
156# Represents the number of bytes consumed by an argument delimited by the
157# next newline character.
158UP_TO_NEWLINE = -1
159
160# Represents the number of bytes consumed by a two-argument opcode where
161# the first argument gives the number of bytes in the second argument.
162TAKEN_FROM_ARGUMENT1 = -2   # num bytes is 1-byte unsigned int
163TAKEN_FROM_ARGUMENT4 = -3   # num bytes is 4-byte signed little-endian int
164
165class ArgumentDescriptor(object):
166    __slots__ = (
167        # name of descriptor record, also a module global name; a string
168        'name',
169
170        # length of argument, in bytes; an int; UP_TO_NEWLINE and
171        # TAKEN_FROM_ARGUMENT{1,4} are negative values for variable-length
172        # cases
173        'n',
174
175        # a function taking a file-like object, reading this kind of argument
176        # from the object at the current position, advancing the current
177        # position by n bytes, and returning the value of the argument
178        'reader',
179
180        # human-readable docs for this arg descriptor; a string
181        'doc',
182    )
183
184    def __init__(self, name, n, reader, doc):
185        assert isinstance(name, str)
186        self.name = name
187
188        assert isinstance(n, int) and (n >= 0 or
189                                       n in (UP_TO_NEWLINE,
190                                             TAKEN_FROM_ARGUMENT1,
191                                             TAKEN_FROM_ARGUMENT4))
192        self.n = n
193
194        self.reader = reader
195
196        assert isinstance(doc, str)
197        self.doc = doc
198
199from struct import unpack as _unpack
200
201def read_uint1(f):
202    r"""
203    >>> import StringIO
204    >>> read_uint1(StringIO.StringIO('\xff'))
205    255
206    """
207
208    data = f.read(1)
209    if data:
210        return ord(data)
211    raise ValueError("not enough data in stream to read uint1")
212
213uint1 = ArgumentDescriptor(
214            name='uint1',
215            n=1,
216            reader=read_uint1,
217            doc="One-byte unsigned integer.")
218
219
220def read_uint2(f):
221    r"""
222    >>> import StringIO
223    >>> read_uint2(StringIO.StringIO('\xff\x00'))
224    255
225    >>> read_uint2(StringIO.StringIO('\xff\xff'))
226    65535
227    """
228
229    data = f.read(2)
230    if len(data) == 2:
231        return _unpack("<H", data)[0]
232    raise ValueError("not enough data in stream to read uint2")
233
234uint2 = ArgumentDescriptor(
235            name='uint2',
236            n=2,
237            reader=read_uint2,
238            doc="Two-byte unsigned integer, little-endian.")
239
240
241def read_int4(f):
242    r"""
243    >>> import StringIO
244    >>> read_int4(StringIO.StringIO('\xff\x00\x00\x00'))
245    255
246    >>> read_int4(StringIO.StringIO('\x00\x00\x00\x80')) == -(2**31)
247    True
248    """
249
250    data = f.read(4)
251    if len(data) == 4:
252        return _unpack("<i", data)[0]
253    raise ValueError("not enough data in stream to read int4")
254
255int4 = ArgumentDescriptor(
256           name='int4',
257           n=4,
258           reader=read_int4,
259           doc="Four-byte signed integer, little-endian, 2's complement.")
260
261
262def read_stringnl(f, decode=True, stripquotes=True):
263    r"""
264    >>> import StringIO
265    >>> read_stringnl(StringIO.StringIO("'abcd'\nefg\n"))
266    'abcd'
267
268    >>> read_stringnl(StringIO.StringIO("\n"))
269    Traceback (most recent call last):
270    ...
271    ValueError: no string quotes around ''
272
273    >>> read_stringnl(StringIO.StringIO("\n"), stripquotes=False)
274    ''
275
276    >>> read_stringnl(StringIO.StringIO("''\n"))
277    ''
278
279    >>> read_stringnl(StringIO.StringIO('"abcd"'))
280    Traceback (most recent call last):
281    ...
282    ValueError: no newline found when trying to read stringnl
283
284    Embedded escapes are undone in the result.
285    >>> read_stringnl(StringIO.StringIO(r"'a\n\\b\x00c\td'" + "\n'e'"))
286    'a\n\\b\x00c\td'
287    """
288
289    data = f.readline()
290    if not data.endswith('\n'):
291        raise ValueError("no newline found when trying to read stringnl")
292    data = data[:-1]    # lose the newline
293
294    if stripquotes:
295        for q in "'\"":
296            if data.startswith(q):
297                if not data.endswith(q):
298                    raise ValueError("strinq quote %r not found at both "
299                                     "ends of %r" % (q, data))
300                data = data[1:-1]
301                break
302        else:
303            raise ValueError("no string quotes around %r" % data)
304
305    # I'm not sure when 'string_escape' was added to the std codecs; it's
306    # crazy not to use it if it's there.
307    if decode:
308        data = data.decode('string_escape')
309    return data
310
311stringnl = ArgumentDescriptor(
312               name='stringnl',
313               n=UP_TO_NEWLINE,
314               reader=read_stringnl,
315               doc="""A newline-terminated string.
316
317                   This is a repr-style string, with embedded escapes, and
318                   bracketing quotes.
319                   """)
320
321def read_stringnl_noescape(f):
322    return read_stringnl(f, decode=False, stripquotes=False)
323
324stringnl_noescape = ArgumentDescriptor(
325                        name='stringnl_noescape',
326                        n=UP_TO_NEWLINE,
327                        reader=read_stringnl_noescape,
328                        doc="""A newline-terminated string.
329
330                        This is a str-style string, without embedded escapes,
331                        or bracketing quotes.  It should consist solely of
332                        printable ASCII characters.
333                        """)
334
335def read_stringnl_noescape_pair(f):
336    r"""
337    >>> import StringIO
338    >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk"))
339    'Queue Empty'
340    """
341
342    return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
343
344stringnl_noescape_pair = ArgumentDescriptor(
345                             name='stringnl_noescape_pair',
346                             n=UP_TO_NEWLINE,
347                             reader=read_stringnl_noescape_pair,
348                             doc="""A pair of newline-terminated strings.
349
350                             These are str-style strings, without embedded
351                             escapes, or bracketing quotes.  They should
352                             consist solely of printable ASCII characters.
353                             The pair is returned as a single string, with
354                             a single blank separating the two strings.
355                             """)
356
357def read_string4(f):
358    r"""
359    >>> import StringIO
360    >>> read_string4(StringIO.StringIO("\x00\x00\x00\x00abc"))
361    ''
362    >>> read_string4(StringIO.StringIO("\x03\x00\x00\x00abcdef"))
363    'abc'
364    >>> read_string4(StringIO.StringIO("\x00\x00\x00\x03abcdef"))
365    Traceback (most recent call last):
366    ...
367    ValueError: expected 50331648 bytes in a string4, but only 6 remain
368    """
369
370    n = read_int4(f)
371    if n < 0:
372        raise ValueError("string4 byte count < 0: %d" % n)
373    data = f.read(n)
374    if len(data) == n:
375        return data
376    raise ValueError("expected %d bytes in a string4, but only %d remain" %
377                     (n, len(data)))
378
379string4 = ArgumentDescriptor(
380              name="string4",
381              n=TAKEN_FROM_ARGUMENT4,
382              reader=read_string4,
383              doc="""A counted string.
384
385              The first argument is a 4-byte little-endian signed int giving
386              the number of bytes in the string, and the second argument is
387              that many bytes.
388              """)
389
390
391def read_string1(f):
392    r"""
393    >>> import StringIO
394    >>> read_string1(StringIO.StringIO("\x00"))
395    ''
396    >>> read_string1(StringIO.StringIO("\x03abcdef"))
397    'abc'
398    """
399
400    n = read_uint1(f)
401    assert n >= 0
402    data = f.read(n)
403    if len(data) == n:
404        return data
405    raise ValueError("expected %d bytes in a string1, but only %d remain" %
406                     (n, len(data)))
407
408string1 = ArgumentDescriptor(
409              name="string1",
410              n=TAKEN_FROM_ARGUMENT1,
411              reader=read_string1,
412              doc="""A counted string.
413
414              The first argument is a 1-byte unsigned int giving the number
415              of bytes in the string, and the second argument is that many
416              bytes.
417              """)
418
419
420def read_unicodestringnl(f):
421    r"""
422    >>> import StringIO
423    >>> read_unicodestringnl(StringIO.StringIO("abc\uabcd\njunk"))
424    u'abc\uabcd'
425    """
426
427    data = f.readline()
428    if not data.endswith('\n'):
429        raise ValueError("no newline found when trying to read "
430                         "unicodestringnl")
431    data = data[:-1]    # lose the newline
432    return unicode(data, 'raw-unicode-escape')
433
434unicodestringnl = ArgumentDescriptor(
435                      name='unicodestringnl',
436                      n=UP_TO_NEWLINE,
437                      reader=read_unicodestringnl,
438                      doc="""A newline-terminated Unicode string.
439
440                      This is raw-unicode-escape encoded, so consists of
441                      printable ASCII characters, and may contain embedded
442                      escape sequences.
443                      """)
444
445def read_unicodestring4(f):
446    r"""
447    >>> import StringIO
448    >>> s = u'abcd\uabcd'
449    >>> enc = s.encode('utf-8')
450    >>> enc
451    'abcd\xea\xaf\x8d'
452    >>> n = chr(len(enc)) + chr(0) * 3  # little-endian 4-byte length
453    >>> t = read_unicodestring4(StringIO.StringIO(n + enc + 'junk'))
454    >>> s == t
455    True
456
457    >>> read_unicodestring4(StringIO.StringIO(n + enc[:-1]))
458    Traceback (most recent call last):
459    ...
460    ValueError: expected 7 bytes in a unicodestring4, but only 6 remain
461    """
462
463    n = read_int4(f)
464    if n < 0:
465        raise ValueError("unicodestring4 byte count < 0: %d" % n)
466    data = f.read(n)
467    if len(data) == n:
468        return unicode(data, 'utf-8')
469    raise ValueError("expected %d bytes in a unicodestring4, but only %d "
470                     "remain" % (n, len(data)))
471
472unicodestring4 = ArgumentDescriptor(
473                    name="unicodestring4",
474                    n=TAKEN_FROM_ARGUMENT4,
475                    reader=read_unicodestring4,
476                    doc="""A counted Unicode string.
477
478                    The first argument is a 4-byte little-endian signed int
479                    giving the number of bytes in the string, and the second
480                    argument-- the UTF-8 encoding of the Unicode string --
481                    contains that many bytes.
482                    """)
483
484
485def read_decimalnl_short(f):
486    r"""
487    >>> import StringIO
488    >>> read_decimalnl_short(StringIO.StringIO("1234\n56"))
489    1234
490
491    >>> read_decimalnl_short(StringIO.StringIO("1234L\n56"))
492    Traceback (most recent call last):
493    ...
494    ValueError: trailing 'L' not allowed in '1234L'
495    """
496
497    s = read_stringnl(f, decode=False, stripquotes=False)
498    if s.endswith("L"):
499        raise ValueError("trailing 'L' not allowed in %r" % s)
500
501    # It's not necessarily true that the result fits in a Python short int:
502    # the pickle may have been written on a 64-bit box.  There's also a hack
503    # for True and False here.
504    if s == "00":
505        return False
506    elif s == "01":
507        return True
508
509    try:
510        return int(s)
511    except OverflowError:
512        return long(s)
513
514def read_decimalnl_long(f):
515    r"""
516    >>> import StringIO
517
518    >>> read_decimalnl_long(StringIO.StringIO("1234\n56"))
519    Traceback (most recent call last):
520    ...
521    ValueError: trailing 'L' required in '1234'
522
523    Someday the trailing 'L' will probably go away from this output.
524
525    >>> read_decimalnl_long(StringIO.StringIO("1234L\n56"))
526    1234L
527
528    >>> read_decimalnl_long(StringIO.StringIO("123456789012345678901234L\n6"))
529    123456789012345678901234L
530    """
531
532    s = read_stringnl(f, decode=False, stripquotes=False)
533    if not s.endswith("L"):
534        raise ValueError("trailing 'L' required in %r" % s)
535    return long(s)
536
537
538decimalnl_short = ArgumentDescriptor(
539                      name='decimalnl_short',
540                      n=UP_TO_NEWLINE,
541                      reader=read_decimalnl_short,
542                      doc="""A newline-terminated decimal integer literal.
543
544                          This never has a trailing 'L', and the integer fit
545                          in a short Python int on the box where the pickle
546                          was written -- but there's no guarantee it will fit
547                          in a short Python int on the box where the pickle
548                          is read.
549                          """)
550
551decimalnl_long = ArgumentDescriptor(
552                     name='decimalnl_long',
553                     n=UP_TO_NEWLINE,
554                     reader=read_decimalnl_long,
555                     doc="""A newline-terminated decimal integer literal.
556
557                         This has a trailing 'L', and can represent integers
558                         of any size.
559                         """)
560
561
562def read_floatnl(f):
563    r"""
564    >>> import StringIO
565    >>> read_floatnl(StringIO.StringIO("-1.25\n6"))
566    -1.25
567    """
568    s = read_stringnl(f, decode=False, stripquotes=False)
569    return float(s)
570
571floatnl = ArgumentDescriptor(
572              name='floatnl',
573              n=UP_TO_NEWLINE,
574              reader=read_floatnl,
575              doc="""A newline-terminated decimal floating literal.
576
577              In general this requires 17 significant digits for roundtrip
578              identity, and pickling then unpickling infinities, NaNs, and
579              minus zero doesn't work across boxes, or on some boxes even
580              on itself (e.g., Windows can't read the strings it produces
581              for infinities or NaNs).
582              """)
583
584def read_float8(f):
585    r"""
586    >>> import StringIO, struct
587    >>> raw = struct.pack(">d", -1.25)
588    >>> raw
589    '\xbf\xf4\x00\x00\x00\x00\x00\x00'
590    >>> read_float8(StringIO.StringIO(raw + "\n"))
591    -1.25
592    """
593
594    data = f.read(8)
595    if len(data) == 8:
596        return _unpack(">d", data)[0]
597    raise ValueError("not enough data in stream to read float8")
598
599
600float8 = ArgumentDescriptor(
601             name='float8',
602             n=8,
603             reader=read_float8,
604             doc="""An 8-byte binary representation of a float, big-endian.
605
606             The format is unique to Python, and shared with the struct
607             module (format string '>d') "in theory" (the struct and cPickle
608             implementations don't share the code -- they should).  It's
609             strongly related to the IEEE-754 double format, and, in normal
610             cases, is in fact identical to the big-endian 754 double format.
611             On other boxes the dynamic range is limited to that of a 754
612             double, and "add a half and chop" rounding is used to reduce
613             the precision to 53 bits.  However, even on a 754 box,
614             infinities, NaNs, and minus zero may not be handled correctly
615             (may not survive roundtrip pickling intact).
616             """)
617
618# Protocol 2 formats
619
620from pickle import decode_long
621
622def read_long1(f):
623    r"""
624    >>> import StringIO
625    >>> read_long1(StringIO.StringIO("\x00"))
626    0L
627    >>> read_long1(StringIO.StringIO("\x02\xff\x00"))
628    255L
629    >>> read_long1(StringIO.StringIO("\x02\xff\x7f"))
630    32767L
631    >>> read_long1(StringIO.StringIO("\x02\x00\xff"))
632    -256L
633    >>> read_long1(StringIO.StringIO("\x02\x00\x80"))
634    -32768L
635    """
636
637    n = read_uint1(f)
638    data = f.read(n)
639    if len(data) != n:
640        raise ValueError("not enough data in stream to read long1")
641    return decode_long(data)
642
643long1 = ArgumentDescriptor(
644    name="long1",
645    n=TAKEN_FROM_ARGUMENT1,
646    reader=read_long1,
647    doc="""A binary long, little-endian, using 1-byte size.
648
649    This first reads one byte as an unsigned size, then reads that
650    many bytes and interprets them as a little-endian 2's-complement long.
651    If the size is 0, that's taken as a shortcut for the long 0L.
652    """)
653
654def read_long4(f):
655    r"""
656    >>> import StringIO
657    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x00"))
658    255L
659    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\xff\x7f"))
660    32767L
661    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\xff"))
662    -256L
663    >>> read_long4(StringIO.StringIO("\x02\x00\x00\x00\x00\x80"))
664    -32768L
665    >>> read_long1(StringIO.StringIO("\x00\x00\x00\x00"))
666    0L
667    """
668
669    n = read_int4(f)
670    if n < 0:
671        raise ValueError("long4 byte count < 0: %d" % n)
672    data = f.read(n)
673    if len(data) != n:
674        raise ValueError("not enough data in stream to read long4")
675    return decode_long(data)
676
677long4 = ArgumentDescriptor(
678    name="long4",
679    n=TAKEN_FROM_ARGUMENT4,
680    reader=read_long4,
681    doc="""A binary representation of a long, little-endian.
682
683    This first reads four bytes as a signed size (but requires the
684    size to be >= 0), then reads that many bytes and interprets them
685    as a little-endian 2's-complement long.  If the size is 0, that's taken
686    as a shortcut for the long 0L, although LONG1 should really be used
687    then instead (and in any case where # of bytes < 256).
688    """)
689
690
691##############################################################################
692# Object descriptors.  The stack used by the pickle machine holds objects,
693# and in the stack_before and stack_after attributes of OpcodeInfo
694# descriptors we need names to describe the various types of objects that can
695# appear on the stack.
696
697class StackObject(object):
698    __slots__ = (
699        # name of descriptor record, for info only
700        'name',
701
702        # type of object, or tuple of type objects (meaning the object can
703        # be of any type in the tuple)
704        'obtype',
705
706        # human-readable docs for this kind of stack object; a string
707        'doc',
708    )
709
710    def __init__(self, name, obtype, doc):
711        assert isinstance(name, str)
712        self.name = name
713
714        assert isinstance(obtype, type) or isinstance(obtype, tuple)
715        if isinstance(obtype, tuple):
716            for contained in obtype:
717                assert isinstance(contained, type)
718        self.obtype = obtype
719
720        assert isinstance(doc, str)
721        self.doc = doc
722
723    def __repr__(self):
724        return self.name
725
726
727pyint = StackObject(
728            name='int',
729            obtype=int,
730            doc="A short (as opposed to long) Python integer object.")
731
732pylong = StackObject(
733             name='long',
734             obtype=long,
735             doc="A long (as opposed to short) Python integer object.")
736
737pyinteger_or_bool = StackObject(
738                        name='int_or_bool',
739                        obtype=(int, long, bool),
740                        doc="A Python integer object (short or long), or "
741                            "a Python bool.")
742
743pybool = StackObject(
744             name='bool',
745             obtype=(bool,),
746             doc="A Python bool object.")
747
748pyfloat = StackObject(
749              name='float',
750              obtype=float,
751              doc="A Python float object.")
752
753pystring = StackObject(
754               name='str',
755               obtype=str,
756               doc="A Python string object.")
757
758pyunicode = StackObject(
759                name='unicode',
760                obtype=unicode,
761                doc="A Python Unicode string object.")
762
763pynone = StackObject(
764             name="None",
765             obtype=type(None),
766             doc="The Python None object.")
767
768pytuple = StackObject(
769              name="tuple",
770              obtype=tuple,
771              doc="A Python tuple object.")
772
773pylist = StackObject(
774             name="list",
775             obtype=list,
776             doc="A Python list object.")
777
778pydict = StackObject(
779             name="dict",
780             obtype=dict,
781             doc="A Python dict object.")
782
783anyobject = StackObject(
784                name='any',
785                obtype=object,
786                doc="Any kind of object whatsoever.")
787
788markobject = StackObject(
789                 name="mark",
790                 obtype=StackObject,
791                 doc="""'The mark' is a unique object.
792
793                 Opcodes that operate on a variable number of objects
794                 generally don't embed the count of objects in the opcode,
795                 or pull it off the stack.  Instead the MARK opcode is used
796                 to push a special marker object on the stack, and then
797                 some other opcodes grab all the objects from the top of
798                 the stack down to (but not including) the topmost marker
799                 object.
800                 """)
801
802stackslice = StackObject(
803                 name="stackslice",
804                 obtype=StackObject,
805                 doc="""An object representing a contiguous slice of the stack.
806
807                 This is used in conjuction with markobject, to represent all
808                 of the stack following the topmost markobject.  For example,
809                 the POP_MARK opcode changes the stack from
810
811                     [..., markobject, stackslice]
812                 to
813                     [...]
814
815                 No matter how many object are on the stack after the topmost
816                 markobject, POP_MARK gets rid of all of them (including the
817                 topmost markobject too).
818                 """)
819
820##############################################################################
821# Descriptors for pickle opcodes.
822
823class OpcodeInfo(object):
824
825    __slots__ = (
826        # symbolic name of opcode; a string
827        'name',
828
829        # the code used in a bytestream to represent the opcode; a
830        # one-character string
831        'code',
832
833        # If the opcode has an argument embedded in the byte string, an
834        # instance of ArgumentDescriptor specifying its type.  Note that
835        # arg.reader(s) can be used to read and decode the argument from
836        # the bytestream s, and arg.doc documents the format of the raw
837        # argument bytes.  If the opcode doesn't have an argument embedded
838        # in the bytestream, arg should be None.
839        'arg',
840
841        # what the stack looks like before this opcode runs; a list
842        'stack_before',
843
844        # what the stack looks like after this opcode runs; a list
845        'stack_after',
846
847        # the protocol number in which this opcode was introduced; an int
848        'proto',
849
850        # human-readable docs for this opcode; a string
851        'doc',
852    )
853
854    def __init__(self, name, code, arg,
855                 stack_before, stack_after, proto, doc):
856        assert isinstance(name, str)
857        self.name = name
858
859        assert isinstance(code, str)
860        assert len(code) == 1
861        self.code = code
862
863        assert arg is None or isinstance(arg, ArgumentDescriptor)
864        self.arg = arg
865
866        assert isinstance(stack_before, list)
867        for x in stack_before:
868            assert isinstance(x, StackObject)
869        self.stack_before = stack_before
870
871        assert isinstance(stack_after, list)
872        for x in stack_after:
873            assert isinstance(x, StackObject)
874        self.stack_after = stack_after
875
876        assert isinstance(proto, int) and 0 <= proto <= 2
877        self.proto = proto
878
879        assert isinstance(doc, str)
880        self.doc = doc
881
882I = OpcodeInfo
883opcodes = [
884
885    # Ways to spell integers.
886
887    I(name='INT',
888      code='I',
889      arg=decimalnl_short,
890      stack_before=[],
891      stack_after=[pyinteger_or_bool],
892      proto=0,
893      doc="""Push an integer or bool.
894
895      The argument is a newline-terminated decimal literal string.
896
897      The intent may have been that this always fit in a short Python int,
898      but INT can be generated in pickles written on a 64-bit box that
899      require a Python long on a 32-bit box.  The difference between this
900      and LONG then is that INT skips a trailing 'L', and produces a short
901      int whenever possible.
902
903      Another difference is due to that, when bool was introduced as a
904      distinct type in 2.3, builtin names True and False were also added to
905      2.2.2, mapping to ints 1 and 0.  For compatibility in both directions,
906      True gets pickled as INT + "I01\\n", and False as INT + "I00\\n".
907      Leading zeroes are never produced for a genuine integer.  The 2.3
908      (and later) unpicklers special-case these and return bool instead;
909      earlier unpicklers ignore the leading "0" and return the int.
910      """),
911
912    I(name='BININT',
913      code='J',
914      arg=int4,
915      stack_before=[],
916      stack_after=[pyint],
917      proto=1,
918      doc="""Push a four-byte signed integer.
919
920      This handles the full range of Python (short) integers on a 32-bit
921      box, directly as binary bytes (1 for the opcode and 4 for the integer).
922      If the integer is non-negative and fits in 1 or 2 bytes, pickling via
923      BININT1 or BININT2 saves space.
924      """),
925
926    I(name='BININT1',
927      code='K',
928      arg=uint1,
929      stack_before=[],
930      stack_after=[pyint],
931      proto=1,
932      doc="""Push a one-byte unsigned integer.
933
934      This is a space optimization for pickling very small non-negative ints,
935      in range(256).
936      """),
937
938    I(name='BININT2',
939      code='M',
940      arg=uint2,
941      stack_before=[],
942      stack_after=[pyint],
943      proto=1,
944      doc="""Push a two-byte unsigned integer.
945
946      This is a space optimization for pickling small positive ints, in
947      range(256, 2**16).  Integers in range(256) can also be pickled via
948      BININT2, but BININT1 instead saves a byte.
949      """),
950
951    I(name='LONG',
952      code='L',
953      arg=decimalnl_long,
954      stack_before=[],
955      stack_after=[pylong],
956      proto=0,
957      doc="""Push a long integer.
958
959      The same as INT, except that the literal ends with 'L', and always
960      unpickles to a Python long.  There doesn't seem a real purpose to the
961      trailing 'L'.
962
963      Note that LONG takes time quadratic in the number of digits when
964      unpickling (this is simply due to the nature of decimal->binary
965      conversion).  Proto 2 added linear-time (in C; still quadratic-time
966      in Python) LONG1 and LONG4 opcodes.
967      """),
968
969    I(name="LONG1",
970      code='\x8a',
971      arg=long1,
972      stack_before=[],
973      stack_after=[pylong],
974      proto=2,
975      doc="""Long integer using one-byte length.
976
977      A more efficient encoding of a Python long; the long1 encoding
978      says it all."""),
979
980    I(name="LONG4",
981      code='\x8b',
982      arg=long4,
983      stack_before=[],
984      stack_after=[pylong],
985      proto=2,
986      doc="""Long integer using found-byte length.
987
988      A more efficient encoding of a Python long; the long4 encoding
989      says it all."""),
990
991    # Ways to spell strings (8-bit, not Unicode).
992
993    I(name='STRING',
994      code='S',
995      arg=stringnl,
996      stack_before=[],
997      stack_after=[pystring],
998      proto=0,
999      doc="""Push a Python string object.
1000
1001      The argument is a repr-style string, with bracketing quote characters,
1002      and perhaps embedded escapes.  The argument extends until the next
1003      newline character.
1004      """),
1005
1006    I(name='BINSTRING',
1007      code='T',
1008      arg=string4,
1009      stack_before=[],
1010      stack_after=[pystring],
1011      proto=1,
1012      doc="""Push a Python string object.
1013
1014      There are two arguments:  the first is a 4-byte little-endian signed int
1015      giving the number of bytes in the string, and the second is that many
1016      bytes, which are taken literally as the string content.
1017      """),
1018
1019    I(name='SHORT_BINSTRING',
1020      code='U',
1021      arg=string1,
1022      stack_before=[],
1023      stack_after=[pystring],
1024      proto=1,
1025      doc="""Push a Python string object.
1026
1027      There are two arguments:  the first is a 1-byte unsigned int giving
1028      the number of bytes in the string, and the second is that many bytes,
1029      which are taken literally as the string content.
1030      """),
1031
1032    # Ways to spell None.
1033
1034    I(name='NONE',
1035      code='N',
1036      arg=None,
1037      stack_before=[],
1038      stack_after=[pynone],
1039      proto=0,
1040      doc="Push None on the stack."),
1041
1042    # Ways to spell bools, starting with proto 2.  See INT for how this was
1043    # done before proto 2.
1044
1045    I(name='NEWTRUE',
1046      code='\x88',
1047      arg=None,
1048      stack_before=[],
1049      stack_after=[pybool],
1050      proto=2,
1051      doc="""True.
1052
1053      Push True onto the stack."""),
1054
1055    I(name='NEWFALSE',
1056      code='\x89',
1057      arg=None,
1058      stack_before=[],
1059      stack_after=[pybool],
1060      proto=2,
1061      doc="""True.
1062
1063      Push False onto the stack."""),
1064
1065    # Ways to spell Unicode strings.
1066
1067    I(name='UNICODE',
1068      code='V',
1069      arg=unicodestringnl,
1070      stack_before=[],
1071      stack_after=[pyunicode],
1072      proto=0,  # this may be pure-text, but it's a later addition
1073      doc="""Push a Python Unicode string object.
1074
1075      The argument is a raw-unicode-escape encoding of a Unicode string,
1076      and so may contain embedded escape sequences.  The argument extends
1077      until the next newline character.
1078      """),
1079
1080    I(name='BINUNICODE',
1081      code='X',
1082      arg=unicodestring4,
1083      stack_before=[],
1084      stack_after=[pyunicode],
1085      proto=1,
1086      doc="""Push a Python Unicode string object.
1087
1088      There are two arguments:  the first is a 4-byte little-endian signed int
1089      giving the number of bytes in the string.  The second is that many
1090      bytes, and is the UTF-8 encoding of the Unicode string.
1091      """),
1092
1093    # Ways to spell floats.
1094
1095    I(name='FLOAT',
1096      code='F',
1097      arg=floatnl,
1098      stack_before=[],
1099      stack_after=[pyfloat],
1100      proto=0,
1101      doc="""Newline-terminated decimal float literal.
1102
1103      The argument is repr(a_float), and in general requires 17 significant
1104      digits for roundtrip conversion to be an identity (this is so for
1105      IEEE-754 double precision values, which is what Python float maps to
1106      on most boxes).
1107
1108      In general, FLOAT cannot be used to transport infinities, NaNs, or
1109      minus zero across boxes (or even on a single box, if the platform C
1110      library can't read the strings it produces for such things -- Windows
1111      is like that), but may do less damage than BINFLOAT on boxes with
1112      greater precision or dynamic range than IEEE-754 double.
1113      """),
1114
1115    I(name='BINFLOAT',
1116      code='G',
1117      arg=float8,
1118      stack_before=[],
1119      stack_after=[pyfloat],
1120      proto=1,
1121      doc="""Float stored in binary form, with 8 bytes of data.
1122
1123      This generally requires less than half the space of FLOAT encoding.
1124      In general, BINFLOAT cannot be used to transport infinities, NaNs, or
1125      minus zero, raises an exception if the exponent exceeds the range of
1126      an IEEE-754 double, and retains no more than 53 bits of precision (if
1127      there are more than that, "add a half and chop" rounding is used to
1128      cut it back to 53 significant bits).
1129      """),
1130
1131    # Ways to build lists.
1132
1133    I(name='EMPTY_LIST',
1134      code=']',
1135      arg=None,
1136      stack_before=[],
1137      stack_after=[pylist],
1138      proto=1,
1139      doc="Push an empty list."),
1140
1141    I(name='APPEND',
1142      code='a',
1143      arg=None,
1144      stack_before=[pylist, anyobject],
1145      stack_after=[pylist],
1146      proto=0,
1147      doc="""Append an object to a list.
1148
1149      Stack before:  ... pylist anyobject
1150      Stack after:   ... pylist+[anyobject]
1151
1152      although pylist is really extended in-place.
1153      """),
1154
1155    I(name='APPENDS',
1156      code='e',
1157      arg=None,
1158      stack_before=[pylist, markobject, stackslice],
1159      stack_after=[pylist],
1160      proto=1,
1161      doc="""Extend a list by a slice of stack objects.
1162
1163      Stack before:  ... pylist markobject stackslice
1164      Stack after:   ... pylist+stackslice
1165
1166      although pylist is really extended in-place.
1167      """),
1168
1169    I(name='LIST',
1170      code='l',
1171      arg=None,
1172      stack_before=[markobject, stackslice],
1173      stack_after=[pylist],
1174      proto=0,
1175      doc="""Build a list out of the topmost stack slice, after markobject.
1176
1177      All the stack entries following the topmost markobject are placed into
1178      a single Python list, which single list object replaces all of the
1179      stack from the topmost markobject onward.  For example,
1180
1181      Stack before: ... markobject 1 2 3 'abc'
1182      Stack after:  ... [1, 2, 3, 'abc']
1183      """),
1184
1185    # Ways to build tuples.
1186
1187    I(name='EMPTY_TUPLE',
1188      code=')',
1189      arg=None,
1190      stack_before=[],
1191      stack_after=[pytuple],
1192      proto=1,
1193      doc="Push an empty tuple."),
1194
1195    I(name='TUPLE',
1196      code='t',
1197      arg=None,
1198      stack_before=[markobject, stackslice],
1199      stack_after=[pytuple],
1200      proto=0,
1201      doc="""Build a tuple out of the topmost stack slice, after markobject.
1202
1203      All the stack entries following the topmost markobject are placed into
1204      a single Python tuple, which single tuple object replaces all of the
1205      stack from the topmost markobject onward.  For example,
1206
1207      Stack before: ... markobject 1 2 3 'abc'
1208      Stack after:  ... (1, 2, 3, 'abc')
1209      """),
1210
1211    I(name='TUPLE1',
1212      code='\x85',
1213      arg=None,
1214      stack_before=[anyobject],
1215      stack_after=[pytuple],
1216      proto=2,
1217      doc="""Build a one-tuple out of the topmost item on the stack.
1218
1219      This code pops one value off the stack and pushes a tuple of
1220      length 1 whose one item is that value back onto it.  In other
1221      words:
1222
1223          stack[-1] = tuple(stack[-1:])
1224      """),
1225
1226    I(name='TUPLE2',
1227      code='\x86',
1228      arg=None,
1229      stack_before=[anyobject, anyobject],
1230      stack_after=[pytuple],
1231      proto=2,
1232      doc="""Build a two-tuple out of the top two items on the stack.
1233
1234      This code pops two values off the stack and pushes a tuple of
1235      length 2 whose items are those values back onto it.  In other
1236      words:
1237
1238          stack[-2:] = [tuple(stack[-2:])]
1239      """),
1240
1241    I(name='TUPLE3',
1242      code='\x87',
1243      arg=None,
1244      stack_before=[anyobject, anyobject, anyobject],
1245      stack_after=[pytuple],
1246      proto=2,
1247      doc="""Build a three-tuple out of the top three items on the stack.
1248
1249      This code pops three values off the stack and pushes a tuple of
1250      length 3 whose items are those values back onto it.  In other
1251      words:
1252
1253          stack[-3:] = [tuple(stack[-3:])]
1254      """),
1255
1256    # Ways to build dicts.
1257
1258    I(name='EMPTY_DICT',
1259      code='}',
1260      arg=None,
1261      stack_before=[],
1262      stack_after=[pydict],
1263      proto=1,
1264      doc="Push an empty dict."),
1265
1266    I(name='DICT',
1267      code='d',
1268      arg=None,
1269      stack_before=[markobject, stackslice],
1270      stack_after=[pydict],
1271      proto=0,
1272      doc="""Build a dict out of the topmost stack slice, after markobject.
1273
1274      All the stack entries following the topmost markobject are placed into
1275      a single Python dict, which single dict object replaces all of the
1276      stack from the topmost markobject onward.  The stack slice alternates
1277      key, value, key, value, ....  For example,
1278
1279      Stack before: ... markobject 1 2 3 'abc'
1280      Stack after:  ... {1: 2, 3: 'abc'}
1281      """),
1282
1283    I(name='SETITEM',
1284      code='s',
1285      arg=None,
1286      stack_before=[pydict, anyobject, anyobject],
1287      stack_after=[pydict],
1288      proto=0,
1289      doc="""Add a key+value pair to an existing dict.
1290
1291      Stack before:  ... pydict key value
1292      Stack after:   ... pydict
1293
1294      where pydict has been modified via pydict[key] = value.
1295      """),
1296
1297    I(name='SETITEMS',
1298      code='u',
1299      arg=None,
1300      stack_before=[pydict, markobject, stackslice],
1301      stack_after=[pydict],
1302      proto=1,
1303      doc="""Add an arbitrary number of key+value pairs to an existing dict.
1304
1305      The slice of the stack following the topmost markobject is taken as
1306      an alternating sequence of keys and values, added to the dict
1307      immediately under the topmost markobject.  Everything at and after the
1308      topmost markobject is popped, leaving the mutated dict at the top
1309      of the stack.
1310
1311      Stack before:  ... pydict markobject key_1 value_1 ... key_n value_n
1312      Stack after:   ... pydict
1313
1314      where pydict has been modified via pydict[key_i] = value_i for i in
1315      1, 2, ..., n, and in that order.
1316      """),
1317
1318    # Stack manipulation.
1319
1320    I(name='POP',
1321      code='0',
1322      arg=None,
1323      stack_before=[anyobject],
1324      stack_after=[],
1325      proto=0,
1326      doc="Discard the top stack item, shrinking the stack by one item."),
1327
1328    I(name='DUP',
1329      code='2',
1330      arg=None,
1331      stack_before=[anyobject],
1332      stack_after=[anyobject, anyobject],
1333      proto=0,
1334      doc="Push the top stack item onto the stack again, duplicating it."),
1335
1336    I(name='MARK',
1337      code='(',
1338      arg=None,
1339      stack_before=[],
1340      stack_after=[markobject],
1341      proto=0,
1342      doc="""Push markobject onto the stack.
1343
1344      markobject is a unique object, used by other opcodes to identify a
1345      region of the stack containing a variable number of objects for them
1346      to work on.  See markobject.doc for more detail.
1347      """),
1348
1349    I(name='POP_MARK',
1350      code='1',
1351      arg=None,
1352      stack_before=[markobject, stackslice],
1353      stack_after=[],
1354      proto=1,
1355      doc="""Pop all the stack objects at and above the topmost markobject.
1356
1357      When an opcode using a variable number of stack objects is done,
1358      POP_MARK is used to remove those objects, and to remove the markobject
1359      that delimited their starting position on the stack.
1360      """),
1361
1362    # Memo manipulation.  There are really only two operations (get and put),
1363    # each in all-text, "short binary", and "long binary" flavors.
1364
1365    I(name='GET',
1366      code='g',
1367      arg=decimalnl_short,
1368      stack_before=[],
1369      stack_after=[anyobject],
1370      proto=0,
1371      doc="""Read an object from the memo and push it on the stack.
1372
1373      The index of the memo object to push is given by the newline-terminated
1374      decimal string following.  BINGET and LONG_BINGET are space-optimized
1375      versions.
1376      """),
1377
1378    I(name='BINGET',
1379      code='h',
1380      arg=uint1,
1381      stack_before=[],
1382      stack_after=[anyobject],
1383      proto=1,
1384      doc="""Read an object from the memo and push it on the stack.
1385
1386      The index of the memo object to push is given by the 1-byte unsigned
1387      integer following.
1388      """),
1389
1390    I(name='LONG_BINGET',
1391      code='j',
1392      arg=int4,
1393      stack_before=[],
1394      stack_after=[anyobject],
1395      proto=1,
1396      doc="""Read an object from the memo and push it on the stack.
1397
1398      The index of the memo object to push is given by the 4-byte signed
1399      little-endian integer following.
1400      """),
1401
1402    I(name='PUT',
1403      code='p',
1404      arg=decimalnl_short,
1405      stack_before=[],
1406      stack_after=[],
1407      proto=0,
1408      doc="""Store the stack top into the memo.  The stack is not popped.
1409
1410      The index of the memo location to write into is given by the newline-
1411      terminated decimal string following.  BINPUT and LONG_BINPUT are
1412      space-optimized versions.
1413      """),
1414
1415    I(name='BINPUT',
1416      code='q',
1417      arg=uint1,
1418      stack_before=[],
1419      stack_after=[],
1420      proto=1,
1421      doc="""Store the stack top into the memo.  The stack is not popped.
1422
1423      The index of the memo location to write into is given by the 1-byte
1424      unsigned integer following.
1425      """),
1426
1427    I(name='LONG_BINPUT',
1428      code='r',
1429      arg=int4,
1430      stack_before=[],
1431      stack_after=[],
1432      proto=1,
1433      doc="""Store the stack top into the memo.  The stack is not popped.
1434
1435      The index of the memo location to write into is given by the 4-byte
1436      signed little-endian integer following.
1437      """),
1438
1439    # Access the extension registry (predefined objects).  Akin to the GET
1440    # family.
1441
1442    I(name='EXT1',
1443      code='\x82',
1444      arg=uint1,
1445      stack_before=[],
1446      stack_after=[anyobject],
1447      proto=2,
1448      doc="""Extension code.
1449
1450      This code and the similar EXT2 and EXT4 allow using a registry
1451      of popular objects that are pickled by name, typically classes.
1452      It is envisioned that through a global negotiation and
1453      registration process, third parties can set up a mapping between
1454      ints and object names.
1455
1456      In order to guarantee pickle interchangeability, the extension
1457      code registry ought to be global, although a range of codes may
1458      be reserved for private use.
1459
1460      EXT1 has a 1-byte integer argument.  This is used to index into the
1461      extension registry, and the object at that index is pushed on the stack.
1462      """),
1463
1464    I(name='EXT2',
1465      code='\x83',
1466      arg=uint2,
1467      stack_before=[],
1468      stack_after=[anyobject],
1469      proto=2,
1470      doc="""Extension code.
1471
1472      See EXT1.  EXT2 has a two-byte integer argument.
1473      """),
1474
1475    I(name='EXT4',
1476      code='\x84',
1477      arg=int4,
1478      stack_before=[],
1479      stack_after=[anyobject],
1480      proto=2,
1481      doc="""Extension code.
1482
1483      See EXT1.  EXT4 has a four-byte integer argument.
1484      """),
1485
1486    # Push a class object, or module function, on the stack, via its module
1487    # and name.
1488
1489    I(name='GLOBAL',
1490      code='c',
1491      arg=stringnl_noescape_pair,
1492      stack_before=[],
1493      stack_after=[anyobject],
1494      proto=0,
1495      doc="""Push a global object (module.attr) on the stack.
1496
1497      Two newline-terminated strings follow the GLOBAL opcode.  The first is
1498      taken as a module name, and the second as a class name.  The class
1499      object module.class is pushed on the stack.  More accurately, the
1500      object returned by self.find_class(module, class) is pushed on the
1501      stack, so unpickling subclasses can override this form of lookup.
1502      """),
1503
1504    # Ways to build objects of classes pickle doesn't know about directly
1505    # (user-defined classes).  I despair of documenting this accurately
1506    # and comprehensibly -- you really have to read the pickle code to
1507    # find all the special cases.
1508
1509    I(name='REDUCE',
1510      code='R',
1511      arg=None,
1512      stack_before=[anyobject, anyobject],
1513      stack_after=[anyobject],
1514      proto=0,
1515      doc="""Push an object built from a callable and an argument tuple.
1516
1517      The opcode is named to remind of the __reduce__() method.
1518
1519      Stack before: ... callable pytuple
1520      Stack after:  ... callable(*pytuple)
1521
1522      The callable and the argument tuple are the first two items returned
1523      by a __reduce__ method.  Applying the callable to the argtuple is
1524      supposed to reproduce the original object, or at least get it started.
1525      If the __reduce__ method returns a 3-tuple, the last component is an
1526      argument to be passed to the object's __setstate__, and then the REDUCE
1527      opcode is followed by code to create setstate's argument, and then a
1528      BUILD opcode to apply  __setstate__ to that argument.
1529
1530      If type(callable) is not ClassType, REDUCE complains unless the
1531      callable has been registered with the copy_reg module's
1532      safe_constructors dict, or the callable has a magic
1533      '__safe_for_unpickling__' attribute with a true value.  I'm not sure
1534      why it does this, but I've sure seen this complaint often enough when
1535      I didn't want to <wink>.
1536      """),
1537
1538    I(name='BUILD',
1539      code='b',
1540      arg=None,
1541      stack_before=[anyobject, anyobject],
1542      stack_after=[anyobject],
1543      proto=0,
1544      doc="""Finish building an object, via __setstate__ or dict update.
1545
1546      Stack before: ... anyobject argument
1547      Stack after:  ... anyobject
1548
1549      where anyobject may have been mutated, as follows:
1550
1551      If the object has a __setstate__ method,
1552
1553          anyobject.__setstate__(argument)
1554
1555      is called.
1556
1557      Else the argument must be a dict, the object must have a __dict__, and
1558      the object is updated via
1559
1560          anyobject.__dict__.update(argument)
1561
1562      This may raise RuntimeError in restricted execution mode (which
1563      disallows access to __dict__ directly); in that case, the object
1564      is updated instead via
1565
1566          for k, v in argument.items():
1567              anyobject[k] = v
1568      """),
1569
1570    I(name='INST',
1571      code='i',
1572      arg=stringnl_noescape_pair,
1573      stack_before=[markobject, stackslice],
1574      stack_after=[anyobject],
1575      proto=0,
1576      doc="""Build a class instance.
1577
1578      This is the protocol 0 version of protocol 1's OBJ opcode.
1579      INST is followed by two newline-terminated strings, giving a
1580      module and class name, just as for the GLOBAL opcode (and see
1581      GLOBAL for more details about that).  self.find_class(module, name)
1582      is used to get a class object.
1583
1584      In addition, all the objects on the stack following the topmost
1585      markobject are gathered into a tuple and popped (along with the
1586      topmost markobject), just as for the TUPLE opcode.
1587
1588      Now it gets complicated.  If all of these are true:
1589
1590        + The argtuple is empty (markobject was at the top of the stack
1591          at the start).
1592
1593        + It's an old-style class object (the type of the class object is
1594          ClassType).
1595
1596        + The class object does not have a __getinitargs__ attribute.
1597
1598      then we want to create an old-style class instance without invoking
1599      its __init__() method (pickle has waffled on this over the years; not
1600      calling __init__() is current wisdom).  In this case, an instance of
1601      an old-style dummy class is created, and then we try to rebind its
1602      __class__ attribute to the desired class object.  If this succeeds,
1603      the new instance object is pushed on the stack, and we're done.  In
1604      restricted execution mode it can fail (assignment to __class__ is
1605      disallowed), and I'm not really sure what happens then -- it looks
1606      like the code ends up calling the class object's __init__ anyway,
1607      via falling into the next case.
1608
1609      Else (the argtuple is not empty, it's not an old-style class object,
1610      or the class object does have a __getinitargs__ attribute), the code
1611      first insists that the class object have a __safe_for_unpickling__
1612      attribute.  Unlike as for the __safe_for_unpickling__ check in REDUCE,
1613      it doesn't matter whether this attribute has a true or false value, it
1614      only matters whether it exists (XXX this is a bug; cPickle
1615      requires the attribute to be true).  If __safe_for_unpickling__
1616      doesn't exist, UnpicklingError is raised.
1617
1618      Else (the class object does have a __safe_for_unpickling__ attr),
1619      the class object obtained from INST's arguments is applied to the
1620      argtuple obtained from the stack, and the resulting instance object
1621      is pushed on the stack.
1622
1623      NOTE:  checks for __safe_for_unpickling__ went away in Python 2.3.
1624      """),
1625
1626    I(name='OBJ',
1627      code='o',
1628      arg=None,
1629      stack_before=[markobject, anyobject, stackslice],
1630      stack_after=[anyobject],
1631      proto=1,
1632      doc="""Build a class instance.
1633
1634      This is the protocol 1 version of protocol 0's INST opcode, and is
1635      very much like it.  The major difference is that the class object
1636      is taken off the stack, allowing it to be retrieved from the memo
1637      repeatedly if several instances of the same class are created.  This
1638      can be much more efficient (in both time and space) than repeatedly
1639      embedding the module and class names in INST opcodes.
1640
1641      Unlike INST, OBJ takes no arguments from the opcode stream.  Instead
1642      the class object is taken off the stack, immediately above the
1643      topmost markobject:
1644
1645      Stack before: ... markobject classobject stackslice
1646      Stack after:  ... new_instance_object
1647
1648      As for INST, the remainder of the stack above the markobject is
1649      gathered into an argument tuple, and then the logic seems identical,
1650      except that no __safe_for_unpickling__ check is done (XXX this is
1651      a bug; cPickle does test __safe_for_unpickling__).  See INST for
1652      the gory details.
1653
1654      NOTE:  In Python 2.3, INST and OBJ are identical except for how they
1655      get the class object.  That was always the intent; the implementations
1656      had diverged for accidental reasons.
1657      """),
1658
1659    I(name='NEWOBJ',
1660      code='\x81',
1661      arg=None,
1662      stack_before=[anyobject, anyobject],
1663      stack_after=[anyobject],
1664      proto=2,
1665      doc="""Build an object instance.
1666
1667      The stack before should be thought of as containing a class
1668      object followed by an argument tuple (the tuple being the stack
1669      top).  Call these cls and args.  They are popped off the stack,
1670      and the value returned by cls.__new__(cls, *args) is pushed back
1671      onto the stack.
1672      """),
1673
1674    # Machine control.
1675
1676    I(name='PROTO',
1677      code='\x80',
1678      arg=uint1,
1679      stack_before=[],
1680      stack_after=[],
1681      proto=2,
1682      doc="""Protocol version indicator.
1683
1684      For protocol 2 and above, a pickle must start with this opcode.
1685      The argument is the protocol version, an int in range(2, 256).
1686      """),
1687
1688    I(name='STOP',
1689      code='.',
1690      arg=None,
1691      stack_before=[anyobject],
1692      stack_after=[],
1693      proto=0,
1694      doc="""Stop the unpickling machine.
1695
1696      Every pickle ends with this opcode.  The object at the top of the stack
1697      is popped, and that's the result of unpickling.  The stack should be
1698      empty then.
1699      """),
1700
1701    # Ways to deal with persistent IDs.
1702
1703    I(name='PERSID',
1704      code='P',
1705      arg=stringnl_noescape,
1706      stack_before=[],
1707      stack_after=[anyobject],
1708      proto=0,
1709      doc="""Push an object identified by a persistent ID.
1710
1711      The pickle module doesn't define what a persistent ID means.  PERSID's
1712      argument is a newline-terminated str-style (no embedded escapes, no
1713      bracketing quote characters) string, which *is* "the persistent ID".
1714      The unpickler passes this string to self.persistent_load().  Whatever
1715      object that returns is pushed on the stack.  There is no implementation
1716      of persistent_load() in Python's unpickler:  it must be supplied by an
1717      unpickler subclass.
1718      """),
1719
1720    I(name='BINPERSID',
1721      code='Q',
1722      arg=None,
1723      stack_before=[anyobject],
1724      stack_after=[anyobject],
1725      proto=1,
1726      doc="""Push an object identified by a persistent ID.
1727
1728      Like PERSID, except the persistent ID is popped off the stack (instead
1729      of being a string embedded in the opcode bytestream).  The persistent
1730      ID is passed to self.persistent_load(), and whatever object that
1731      returns is pushed on the stack.  See PERSID for more detail.
1732      """),
1733]
1734del I
1735
1736# Verify uniqueness of .name and .code members.
1737name2i = {}
1738code2i = {}
1739
1740for i, d in enumerate(opcodes):
1741    if d.name in name2i:
1742        raise ValueError("repeated name %r at indices %d and %d" %
1743                         (d.name, name2i[d.name], i))
1744    if d.code in code2i:
1745        raise ValueError("repeated code %r at indices %d and %d" %
1746                         (d.code, code2i[d.code], i))
1747
1748    name2i[d.name] = i
1749    code2i[d.code] = i
1750
1751del name2i, code2i, i, d
1752
1753##############################################################################
1754# Build a code2op dict, mapping opcode characters to OpcodeInfo records.
1755# Also ensure we've got the same stuff as pickle.py, although the
1756# introspection here is dicey.
1757
1758code2op = {}
1759for d in opcodes:
1760    code2op[d.code] = d
1761del d
1762
1763def assure_pickle_consistency(verbose=False):
1764    import pickle, re
1765
1766    copy = code2op.copy()
1767    for name in pickle.__all__:
1768        if not re.match("[A-Z][A-Z0-9_]+$", name):
1769            if verbose:
1770                print "skipping %r: it doesn't look like an opcode name" % name
1771            continue
1772        picklecode = getattr(pickle, name)
1773        if not isinstance(picklecode, str) or len(picklecode) != 1:
1774            if verbose:
1775                print ("skipping %r: value %r doesn't look like a pickle "
1776                       "code" % (name, picklecode))
1777            continue
1778        if picklecode in copy:
1779            if verbose:
1780                print "checking name %r w/ code %r for consistency" % (
1781                      name, picklecode)
1782            d = copy[picklecode]
1783            if d.name != name:
1784                raise ValueError("for pickle code %r, pickle.py uses name %r "
1785                                 "but we're using name %r" % (picklecode,
1786                                                              name,
1787                                                              d.name))
1788            # Forget this one.  Any left over in copy at the end are a problem
1789            # of a different kind.
1790            del copy[picklecode]
1791        else:
1792            raise ValueError("pickle.py appears to have a pickle opcode with "
1793                             "name %r and code %r, but we don't" %
1794                             (name, picklecode))
1795    if copy:
1796        msg = ["we appear to have pickle opcodes that pickle.py doesn't have:"]
1797        for code, d in copy.items():
1798            msg.append("    name %r with code %r" % (d.name, code))
1799        raise ValueError("\n".join(msg))
1800
1801assure_pickle_consistency()
1802del assure_pickle_consistency
1803
1804##############################################################################
1805# A pickle opcode generator.
1806
1807def genops(pickle):
1808    """Generate all the opcodes in a pickle.
1809
1810    'pickle' is a file-like object, or string, containing the pickle.
1811
1812    Each opcode in the pickle is generated, from the current pickle position,
1813    stopping after a STOP opcode is delivered.  A triple is generated for
1814    each opcode:
1815
1816        opcode, arg, pos
1817
1818    opcode is an OpcodeInfo record, describing the current opcode.
1819
1820    If the opcode has an argument embedded in the pickle, arg is its decoded
1821    value, as a Python object.  If the opcode doesn't have an argument, arg
1822    is None.
1823
1824    If the pickle has a tell() method, pos was the value of pickle.tell()
1825    before reading the current opcode.  If the pickle is a string object,
1826    it's wrapped in a StringIO object, and the latter's tell() result is
1827    used.  Else (the pickle doesn't have a tell(), and it's not obvious how
1828    to query its current position) pos is None.
1829    """
1830
1831    import cStringIO as StringIO
1832
1833    if isinstance(pickle, str):
1834        pickle = StringIO.StringIO(pickle)
1835
1836    if hasattr(pickle, "tell"):
1837        getpos = pickle.tell
1838    else:
1839        getpos = lambda: None
1840
1841    while True:
1842        pos = getpos()
1843        code = pickle.read(1)
1844        opcode = code2op.get(code)
1845        if opcode is None:
1846            if code == "":
1847                raise ValueError("pickle exhausted before seeing STOP")
1848            else:
1849                raise ValueError("at position %s, opcode %r unknown" % (
1850                                 pos is None and "<unknown>" or pos,
1851                                 code))
1852        if opcode.arg is None:
1853            arg = None
1854        else:
1855            arg = opcode.arg.reader(pickle)
1856        yield opcode, arg, pos
1857        if code == '.':
1858            assert opcode.name == 'STOP'
1859            break
1860
1861##############################################################################
1862# A pickle optimizer.
1863
1864def optimize(p):
1865    'Optimize a pickle string by removing unused PUT opcodes'
1866    gets = set()            # set of args used by a GET opcode
1867    puts = []               # (arg, startpos, stoppos) for the PUT opcodes
1868    prevpos = None          # set to pos if previous opcode was a PUT
1869    for opcode, arg, pos in genops(p):
1870        if prevpos is not None:
1871            puts.append((prevarg, prevpos, pos))
1872            prevpos = None
1873        if 'PUT' in opcode.name:
1874            prevarg, prevpos = arg, pos
1875        elif 'GET' in opcode.name:
1876            gets.add(arg)
1877
1878    # Copy the pickle string except for PUTS without a corresponding GET
1879    s = []
1880    i = 0
1881    for arg, start, stop in puts:
1882        j = stop if (arg in gets) else start
1883        s.append(p[i:j])
1884        i = stop
1885    s.append(p[i:])
1886    return ''.join(s)
1887
1888##############################################################################
1889# A symbolic pickle disassembler.
1890
1891def dis(pickle, out=None, memo=None, indentlevel=4):
1892    """Produce a symbolic disassembly of a pickle.
1893
1894    'pickle' is a file-like object, or string, containing a (at least one)
1895    pickle.  The pickle is disassembled from the current position, through
1896    the first STOP opcode encountered.
1897
1898    Optional arg 'out' is a file-like object to which the disassembly is
1899    printed.  It defaults to sys.stdout.
1900
1901    Optional arg 'memo' is a Python dict, used as the pickle's memo.  It
1902    may be mutated by dis(), if the pickle contains PUT or BINPUT opcodes.
1903    Passing the same memo object to another dis() call then allows disassembly
1904    to proceed across multiple pickles that were all created by the same
1905    pickler with the same memo.  Ordinarily you don't need to worry about this.
1906
1907    Optional arg indentlevel is the number of blanks by which to indent
1908    a new MARK level.  It defaults to 4.
1909
1910    In addition to printing the disassembly, some sanity checks are made:
1911
1912    + All embedded opcode arguments "make sense".
1913
1914    + Explicit and implicit pop operations have enough items on the stack.
1915
1916    + When an opcode implicitly refers to a markobject, a markobject is
1917      actually on the stack.
1918
1919    + A memo entry isn't referenced before it's defined.
1920
1921    + The markobject isn't stored in the memo.
1922
1923    + A memo entry isn't redefined.
1924    """
1925
1926    # Most of the hair here is for sanity checks, but most of it is needed
1927    # anyway to detect when a protocol 0 POP takes a MARK off the stack
1928    # (which in turn is needed to indent MARK blocks correctly).
1929
1930    stack = []          # crude emulation of unpickler stack
1931    if memo is None:
1932        memo = {}       # crude emulation of unpicker memo
1933    maxproto = -1       # max protocol number seen
1934    markstack = []      # bytecode positions of MARK opcodes
1935    indentchunk = ' ' * indentlevel
1936    errormsg = None
1937    for opcode, arg, pos in genops(pickle):
1938        if pos is not None:
1939            print >> out, "%5d:" % pos,
1940
1941        line = "%-4s %s%s" % (repr(opcode.code)[1:-1],
1942                              indentchunk * len(markstack),
1943                              opcode.name)
1944
1945        maxproto = max(maxproto, opcode.proto)
1946        before = opcode.stack_before    # don't mutate
1947        after = opcode.stack_after      # don't mutate
1948        numtopop = len(before)
1949
1950        # See whether a MARK should be popped.
1951        markmsg = None
1952        if markobject in before or (opcode.name == "POP" and
1953                                    stack and
1954                                    stack[-1] is markobject):
1955            assert markobject not in after
1956            if __debug__:
1957                if markobject in before:
1958                    assert before[-1] is stackslice
1959            if markstack:
1960                markpos = markstack.pop()
1961                if markpos is None:
1962                    markmsg = "(MARK at unknown opcode offset)"
1963                else:
1964                    markmsg = "(MARK at %d)" % markpos
1965                # Pop everything at and after the topmost markobject.
1966                while stack[-1] is not markobject:
1967                    stack.pop()
1968                stack.pop()
1969                # Stop later code from popping too much.
1970                try:
1971                    numtopop = before.index(markobject)
1972                except ValueError:
1973                    assert opcode.name == "POP"
1974                    numtopop = 0
1975            else:
1976                errormsg = markmsg = "no MARK exists on stack"
1977
1978        # Check for correct memo usage.
1979        if opcode.name in ("PUT", "BINPUT", "LONG_BINPUT"):
1980            assert arg is not None
1981            if arg in memo:
1982                errormsg = "memo key %r already defined" % arg
1983            elif not stack:
1984                errormsg = "stack is empty -- can't store into memo"
1985            elif stack[-1] is markobject:
1986                errormsg = "can't store markobject in the memo"
1987            else:
1988                memo[arg] = stack[-1]
1989
1990        elif opcode.name in ("GET", "BINGET", "LONG_BINGET"):
1991            if arg in memo:
1992                assert len(after) == 1
1993                after = [memo[arg]]     # for better stack emulation
1994            else:
1995                errormsg = "memo key %r has never been stored into" % arg
1996
1997        if arg is not None or markmsg:
1998            # make a mild effort to align arguments
1999            line += ' ' * (10 - len(opcode.name))
2000            if arg is not None:
2001                line += ' ' + repr(arg)
2002            if markmsg:
2003                line += ' ' + markmsg
2004        print >> out, line
2005
2006        if errormsg:
2007            # Note that we delayed complaining until the offending opcode
2008            # was printed.
2009            raise ValueError(errormsg)
2010
2011        # Emulate the stack effects.
2012        if len(stack) < numtopop:
2013            raise ValueError("tries to pop %d items from stack with "
2014                             "only %d items" % (numtopop, len(stack)))
2015        if numtopop:
2016            del stack[-numtopop:]
2017        if markobject in after:
2018            assert markobject not in before
2019            markstack.append(pos)
2020
2021        stack.extend(after)
2022
2023    print >> out, "highest protocol among opcodes =", maxproto
2024    if stack:
2025        raise ValueError("stack not empty after STOP: %r" % stack)
2026
2027# For use in the doctest, simply as an example of a class to pickle.
2028class _Example:
2029    def __init__(self, value):
2030        self.value = value
2031
2032_dis_test = r"""
2033>>> import pickle
2034>>> x = [1, 2, (3, 4), {'abc': u"def"}]
2035>>> pkl = pickle.dumps(x, 0)
2036>>> dis(pkl)
2037    0: (    MARK
2038    1: l        LIST       (MARK at 0)
2039    2: p    PUT        0
2040    5: I    INT        1
2041    8: a    APPEND
2042    9: I    INT        2
2043   12: a    APPEND
2044   13: (    MARK
2045   14: I        INT        3
2046   17: I        INT        4
2047   20: t        TUPLE      (MARK at 13)
2048   21: p    PUT        1
2049   24: a    APPEND
2050   25: (    MARK
2051   26: d        DICT       (MARK at 25)
2052   27: p    PUT        2
2053   30: S    STRING     'abc'
2054   37: p    PUT        3
2055   40: V    UNICODE    u'def'
2056   45: p    PUT        4
2057   48: s    SETITEM
2058   49: a    APPEND
2059   50: .    STOP
2060highest protocol among opcodes = 0
2061
2062Try again with a "binary" pickle.
2063
2064>>> pkl = pickle.dumps(x, 1)
2065>>> dis(pkl)
2066    0: ]    EMPTY_LIST
2067    1: q    BINPUT     0
2068    3: (    MARK
2069    4: K        BININT1    1
2070    6: K        BININT1    2
2071    8: (        MARK
2072    9: K            BININT1    3
2073   11: K            BININT1    4
2074   13: t            TUPLE      (MARK at 8)
2075   14: q        BINPUT     1
2076   16: }        EMPTY_DICT
2077   17: q        BINPUT     2
2078   19: U        SHORT_BINSTRING 'abc'
2079   24: q        BINPUT     3
2080   26: X        BINUNICODE u'def'
2081   34: q        BINPUT     4
2082   36: s        SETITEM
2083   37: e        APPENDS    (MARK at 3)
2084   38: .    STOP
2085highest protocol among opcodes = 1
2086
2087Exercise the INST/OBJ/BUILD family.
2088
2089>>> import pickletools
2090>>> dis(pickle.dumps(pickletools.dis, 0))
2091    0: c    GLOBAL     'pickletools dis'
2092   17: p    PUT        0
2093   20: .    STOP
2094highest protocol among opcodes = 0
2095
2096>>> from pickletools import _Example
2097>>> x = [_Example(42)] * 2
2098>>> dis(pickle.dumps(x, 0))
2099    0: (    MARK
2100    1: l        LIST       (MARK at 0)
2101    2: p    PUT        0
2102    5: (    MARK
2103    6: i        INST       'pickletools _Example' (MARK at 5)
2104   28: p    PUT        1
2105   31: (    MARK
2106   32: d        DICT       (MARK at 31)
2107   33: p    PUT        2
2108   36: S    STRING     'value'
2109   45: p    PUT        3
2110   48: I    INT        42
2111   52: s    SETITEM
2112   53: b    BUILD
2113   54: a    APPEND
2114   55: g    GET        1
2115   58: a    APPEND
2116   59: .    STOP
2117highest protocol among opcodes = 0
2118
2119>>> dis(pickle.dumps(x, 1))
2120    0: ]    EMPTY_LIST
2121    1: q    BINPUT     0
2122    3: (    MARK
2123    4: (        MARK
2124    5: c            GLOBAL     'pickletools _Example'
2125   27: q            BINPUT     1
2126   29: o            OBJ        (MARK at 4)
2127   30: q        BINPUT     2
2128   32: }        EMPTY_DICT
2129   33: q        BINPUT     3
2130   35: U        SHORT_BINSTRING 'value'
2131   42: q        BINPUT     4
2132   44: K        BININT1    42
2133   46: s        SETITEM
2134   47: b        BUILD
2135   48: h        BINGET     2
2136   50: e        APPENDS    (MARK at 3)
2137   51: .    STOP
2138highest protocol among opcodes = 1
2139
2140Try "the canonical" recursive-object test.
2141
2142>>> L = []
2143>>> T = L,
2144>>> L.append(T)
2145>>> L[0] is T
2146True
2147>>> T[0] is L
2148True
2149>>> L[0][0] is L
2150True
2151>>> T[0][0] is T
2152True
2153>>> dis(pickle.dumps(L, 0))
2154    0: (    MARK
2155    1: l        LIST       (MARK at 0)
2156    2: p    PUT        0
2157    5: (    MARK
2158    6: g        GET        0
2159    9: t        TUPLE      (MARK at 5)
2160   10: p    PUT        1
2161   13: a    APPEND
2162   14: .    STOP
2163highest protocol among opcodes = 0
2164
2165>>> dis(pickle.dumps(L, 1))
2166    0: ]    EMPTY_LIST
2167    1: q    BINPUT     0
2168    3: (    MARK
2169    4: h        BINGET     0
2170    6: t        TUPLE      (MARK at 3)
2171    7: q    BINPUT     1
2172    9: a    APPEND
2173   10: .    STOP
2174highest protocol among opcodes = 1
2175
2176Note that, in the protocol 0 pickle of the recursive tuple, the disassembler
2177has to emulate the stack in order to realize that the POP opcode at 16 gets
2178rid of the MARK at 0.
2179
2180>>> dis(pickle.dumps(T, 0))
2181    0: (    MARK
2182    1: (        MARK
2183    2: l            LIST       (MARK at 1)
2184    3: p        PUT        0
2185    6: (        MARK
2186    7: g            GET        0
2187   10: t            TUPLE      (MARK at 6)
2188   11: p        PUT        1
2189   14: a        APPEND
2190   15: 0        POP
2191   16: 0        POP        (MARK at 0)
2192   17: g    GET        1
2193   20: .    STOP
2194highest protocol among opcodes = 0
2195
2196>>> dis(pickle.dumps(T, 1))
2197    0: (    MARK
2198    1: ]        EMPTY_LIST
2199    2: q        BINPUT     0
2200    4: (        MARK
2201    5: h            BINGET     0
2202    7: t            TUPLE      (MARK at 4)
2203    8: q        BINPUT     1
2204   10: a        APPEND
2205   11: 1        POP_MARK   (MARK at 0)
2206   12: h    BINGET     1
2207   14: .    STOP
2208highest protocol among opcodes = 1
2209
2210Try protocol 2.
2211
2212>>> dis(pickle.dumps(L, 2))
2213    0: \x80 PROTO      2
2214    2: ]    EMPTY_LIST
2215    3: q    BINPUT     0
2216    5: h    BINGET     0
2217    7: \x85 TUPLE1
2218    8: q    BINPUT     1
2219   10: a    APPEND
2220   11: .    STOP
2221highest protocol among opcodes = 2
2222
2223>>> dis(pickle.dumps(T, 2))
2224    0: \x80 PROTO      2
2225    2: ]    EMPTY_LIST
2226    3: q    BINPUT     0
2227    5: h    BINGET     0
2228    7: \x85 TUPLE1
2229    8: q    BINPUT     1
2230   10: a    APPEND
2231   11: 0    POP
2232   12: h    BINGET     1
2233   14: .    STOP
2234highest protocol among opcodes = 2
2235"""
2236
2237_memo_test = r"""
2238>>> import pickle
2239>>> from StringIO import StringIO
2240>>> f = StringIO()
2241>>> p = pickle.Pickler(f, 2)
2242>>> x = [1, 2, 3]
2243>>> p.dump(x)
2244>>> p.dump(x)
2245>>> f.seek(0)
2246>>> memo = {}
2247>>> dis(f, memo=memo)
2248    0: \x80 PROTO      2
2249    2: ]    EMPTY_LIST
2250    3: q    BINPUT     0
2251    5: (    MARK
2252    6: K        BININT1    1
2253    8: K        BININT1    2
2254   10: K        BININT1    3
2255   12: e        APPENDS    (MARK at 5)
2256   13: .    STOP
2257highest protocol among opcodes = 2
2258>>> dis(f, memo=memo)
2259   14: \x80 PROTO      2
2260   16: h    BINGET     0
2261   18: .    STOP
2262highest protocol among opcodes = 2
2263"""
2264
2265__test__ = {'disassembler_test': _dis_test,
2266            'disassembler_memo_test': _memo_test,
2267           }
2268
2269def _test():
2270    import doctest
2271    return doctest.testmod()
2272
2273if __name__ == "__main__":
2274    _test()
2275