• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* @(#)k_cos.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 #include  <LibConfig.h>
13 #include  <sys/EfiCdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: k_cos.c,v 1.11 2002/05/26 22:01:53 wiz Exp $");
16 #endif
17 
18 /*
19  * __kernel_cos( x,  y )
20  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
21  * Input x is assumed to be bounded by ~pi/4 in magnitude.
22  * Input y is the tail of x.
23  *
24  * Algorithm
25  *  1. Since cos(-x) = cos(x), we need only to consider positive x.
26  *  2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
27  *  3. cos(x) is approximated by a polynomial of degree 14 on
28  *     [0,pi/4]
29  *                         4            14
30  *      cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
31  *     where the remez error is
32  *
33  *  |              2     4     6     8     10    12     14 |     -58
34  *  |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
35  *  |                            |
36  *
37  *                 4     6     8     10    12     14
38  *  4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
39  *         cos(x) = 1 - x*x/2 + r
40  *     since cos(x+y) ~ cos(x) - sin(x)*y
41  *        ~ cos(x) - x*y,
42  *     a correction term is necessary in cos(x) and hence
43  *    cos(x+y) = 1 - (x*x/2 - (r - x*y))
44  *     For better accuracy when x > 0.3, let qx = |x|/4 with
45  *     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
46  *     Then
47  *    cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
48  *     Note that 1-qx and (x*x/2-qx) is EXACT here, and the
49  *     magnitude of the latter is at least a quarter of x*x/2,
50  *     thus, reducing the rounding error in the subtraction.
51  */
52 
53 #include "math.h"
54 #include "math_private.h"
55 
56 static const double
57 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
58 C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
59 C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
60 C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
61 C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
62 C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
63 C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
64 
65 double
__kernel_cos(double x,double y)66 __kernel_cos(double x, double y)
67 {
68   double a,hz,z,r,qx;
69   int32_t ix;
70   GET_HIGH_WORD(ix,x);
71   ix &= 0x7fffffff;     /* ix = |x|'s high word*/
72   if(ix<0x3e400000) {     /* if x < 2**27 */
73       if(((int)x)==0) return one;   /* generate inexact */
74   }
75   z  = x*x;
76   r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
77   if(ix < 0x3FD33333)       /* if |x| < 0.3 */
78       return one - (0.5*z - (z*r - x*y));
79   else {
80       if(ix > 0x3fe90000) {   /* x > 0.78125 */
81     qx = 0.28125;
82       } else {
83           INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
84       }
85       hz = 0.5*z-qx;
86       a  = one-qx;
87       return a - (hz - (z*r-x*y));
88   }
89 }
90