1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /**************************** AAC decoder library ******************************
96
97 Author(s): Manuel Jander
98
99 Description: USAC FAC
100
101 *******************************************************************************/
102
103 #include "usacdec_fac.h"
104
105 #include "usacdec_const.h"
106 #include "usacdec_lpc.h"
107 #include "usacdec_acelp.h"
108 #include "usacdec_rom.h"
109 #include "dct.h"
110 #include "FDK_tools_rom.h"
111 #include "mdct.h"
112
113 #define SPEC_FAC(ptr, i, gl) ((ptr) + ((i) * (gl)))
114
CLpd_FAC_GetMemory(CAacDecoderChannelInfo * pAacDecoderChannelInfo,UCHAR mod[NB_DIV],int * pState)115 FIXP_DBL *CLpd_FAC_GetMemory(CAacDecoderChannelInfo *pAacDecoderChannelInfo,
116 UCHAR mod[NB_DIV], int *pState) {
117 FIXP_DBL *ptr;
118 int i;
119 int k = 0;
120 int max_windows = 8;
121
122 FDK_ASSERT(*pState >= 0 && *pState < max_windows);
123
124 /* Look for free space to store FAC data. 2 FAC data blocks fit into each TCX
125 * spectral data block. */
126 for (i = *pState; i < max_windows; i++) {
127 if (mod[i >> 1] == 0) {
128 break;
129 }
130 }
131
132 *pState = i + 1;
133
134 if (i == max_windows) {
135 ptr = pAacDecoderChannelInfo->data.usac.fac_data0;
136 } else {
137 FDK_ASSERT(mod[(i >> 1)] == 0);
138 ptr = SPEC_FAC(pAacDecoderChannelInfo->pSpectralCoefficient, i,
139 pAacDecoderChannelInfo->granuleLength << k);
140 }
141
142 return ptr;
143 }
144
CLpd_FAC_Read(HANDLE_FDK_BITSTREAM hBs,FIXP_DBL * pFac,SCHAR * pFacScale,int length,int use_gain,int frame)145 int CLpd_FAC_Read(HANDLE_FDK_BITSTREAM hBs, FIXP_DBL *pFac, SCHAR *pFacScale,
146 int length, int use_gain, int frame) {
147 FIXP_DBL fac_gain;
148 int fac_gain_e = 0;
149
150 if (use_gain) {
151 CLpd_DecodeGain(&fac_gain, &fac_gain_e, FDKreadBits(hBs, 7));
152 }
153
154 if (CLpc_DecodeAVQ(hBs, pFac, 1, 1, length) != 0) {
155 return -1;
156 }
157
158 {
159 int scale;
160
161 scale = getScalefactor(pFac, length);
162 scaleValues(pFac, length, scale);
163 pFacScale[frame] = DFRACT_BITS - 1 - scale;
164 }
165
166 if (use_gain) {
167 int i;
168
169 pFacScale[frame] += fac_gain_e;
170
171 for (i = 0; i < length; i++) {
172 pFac[i] = fMult(pFac[i], fac_gain);
173 }
174 }
175 return 0;
176 }
177
178 /**
179 * \brief Apply synthesis filter with zero input to x. The overall filter gain
180 * is 1.0.
181 * \param a LPC filter coefficients.
182 * \param length length of the input/output data vector x.
183 * \param x input/output vector, where the synthesis filter is applied in place.
184 */
Syn_filt_zero(const FIXP_LPC a[],const INT a_exp,INT length,FIXP_DBL x[])185 static void Syn_filt_zero(const FIXP_LPC a[], const INT a_exp, INT length,
186 FIXP_DBL x[]) {
187 int i, j;
188 FIXP_DBL L_tmp;
189
190 for (i = 0; i < length; i++) {
191 L_tmp = (FIXP_DBL)0;
192
193 for (j = 0; j < fMin(i, M_LP_FILTER_ORDER); j++) {
194 L_tmp -= fMultDiv2(a[j], x[i - (j + 1)]) >> (LP_FILTER_SCALE - 1);
195 }
196
197 L_tmp = scaleValue(L_tmp, a_exp + LP_FILTER_SCALE);
198 x[i] = fAddSaturate(x[i], L_tmp);
199 }
200 }
201
202 /* Table is also correct for coreCoderFrameLength = 768. Factor 3/4 is canceled
203 out: gainFac = 0.5 * sqrt(fac_length/lFrame)
204 */
205 static const FIXP_DBL gainFac[4] = {0x40000000, 0x2d413ccd, 0x20000000,
206 0x16a09e66};
207
CFac_ApplyGains(FIXP_DBL fac_data[LFAC],const INT fac_length,const FIXP_DBL tcx_gain,const FIXP_DBL alfd_gains[],const INT mod)208 void CFac_ApplyGains(FIXP_DBL fac_data[LFAC], const INT fac_length,
209 const FIXP_DBL tcx_gain, const FIXP_DBL alfd_gains[],
210 const INT mod) {
211 FIXP_DBL facFactor;
212 int i;
213
214 FDK_ASSERT((fac_length == 128) || (fac_length == 96));
215
216 /* 2) Apply gain factor to FAC data */
217 facFactor = fMult(gainFac[mod], tcx_gain);
218 for (i = 0; i < fac_length; i++) {
219 fac_data[i] = fMult(fac_data[i], facFactor);
220 }
221
222 /* 3) Apply spectrum deshaping using alfd_gains */
223 for (i = 0; i < fac_length / 4; i++) {
224 int k;
225
226 k = i >> (3 - mod);
227 fac_data[i] = fMult(fac_data[i], alfd_gains[k])
228 << 1; /* alfd_gains is scaled by one bit. */
229 }
230 }
231
CFac_CalcFacSignal(FIXP_DBL * pOut,FIXP_DBL * pFac,const int fac_scale,const int fac_length,const FIXP_LPC A[M_LP_FILTER_ORDER],const INT A_exp,const int fAddZir,const int isFdFac)232 static void CFac_CalcFacSignal(FIXP_DBL *pOut, FIXP_DBL *pFac,
233 const int fac_scale, const int fac_length,
234 const FIXP_LPC A[M_LP_FILTER_ORDER],
235 const INT A_exp, const int fAddZir,
236 const int isFdFac) {
237 FIXP_LPC wA[M_LP_FILTER_ORDER];
238 FIXP_DBL tf_gain = (FIXP_DBL)0;
239 int wlength;
240 int scale = fac_scale;
241
242 /* obtain tranform gain. */
243 imdct_gain(&tf_gain, &scale, isFdFac ? 0 : fac_length);
244
245 /* 4) Compute inverse DCT-IV of FAC data. Output scale of DCT IV is 16 bits.
246 */
247 dct_IV(pFac, fac_length, &scale);
248 /* dct_IV scale = log2(fac_length). "- 7" is a factor of 2/128 */
249 if (tf_gain != (FIXP_DBL)0) { /* non-radix 2 transform gain */
250 int i;
251
252 for (i = 0; i < fac_length; i++) {
253 pFac[i] = fMult(tf_gain, pFac[i]);
254 }
255 }
256 scaleValuesSaturate(pOut, pFac, fac_length,
257 scale); /* Avoid overflow issues and saturate. */
258
259 E_LPC_a_weight(wA, A, M_LP_FILTER_ORDER);
260
261 /* We need the output of the IIR filter to be longer than "fac_length".
262 For this reason we run it with zero input appended to the end of the input
263 sequence, i.e. we generate its ZIR and extend the output signal.*/
264 FDKmemclear(pOut + fac_length, fac_length * sizeof(FIXP_DBL));
265 wlength = 2 * fac_length;
266
267 /* 5) Apply weighted synthesis filter to FAC data, including optional Zir (5.
268 * item 4). */
269 Syn_filt_zero(wA, A_exp, wlength, pOut);
270 }
271
CLpd_FAC_Mdct2Acelp(H_MDCT hMdct,FIXP_DBL * output,FIXP_DBL * pFac,const int fac_scale,FIXP_LPC * A,INT A_exp,INT nrOutSamples,const INT fac_length,const INT isFdFac,UCHAR prevWindowShape)272 INT CLpd_FAC_Mdct2Acelp(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *pFac,
273 const int fac_scale, FIXP_LPC *A, INT A_exp,
274 INT nrOutSamples, const INT fac_length,
275 const INT isFdFac, UCHAR prevWindowShape) {
276 FIXP_DBL *pOvl;
277 FIXP_DBL *pOut0;
278 const FIXP_WTP *pWindow;
279 int i, fl, nrSamples = 0;
280
281 FDK_ASSERT(fac_length <= 1024 / (4 * 2));
282
283 fl = fac_length * 2;
284
285 pWindow = FDKgetWindowSlope(fl, prevWindowShape);
286
287 /* Adapt window slope length in case of frame loss. */
288 if (hMdct->prev_fr != fl) {
289 int nl = 0;
290 imdct_adapt_parameters(hMdct, &fl, &nl, fac_length, pWindow, nrOutSamples);
291 FDK_ASSERT(nl == 0);
292 }
293
294 if (nrSamples < nrOutSamples) {
295 pOut0 = output;
296 nrSamples += hMdct->ov_offset;
297 /* Purge buffered output. */
298 FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
299 hMdct->ov_offset = 0;
300 }
301
302 pOvl = hMdct->overlap.freq + hMdct->ov_size - 1;
303
304 if (nrSamples >= nrOutSamples) {
305 pOut0 = hMdct->overlap.time + hMdct->ov_offset;
306 hMdct->ov_offset += hMdct->prev_nr + fl / 2;
307 } else {
308 pOut0 = output + nrSamples;
309 nrSamples += hMdct->prev_nr + fl / 2;
310 }
311 if (hMdct->prevPrevAliasSymmetry == 0) {
312 for (i = 0; i < hMdct->prev_nr; i++) {
313 FIXP_DBL x = -(*pOvl--);
314 *pOut0 = IMDCT_SCALE_DBL(x);
315 pOut0++;
316 }
317 } else {
318 for (i = 0; i < hMdct->prev_nr; i++) {
319 FIXP_DBL x = (*pOvl--);
320 *pOut0 = IMDCT_SCALE_DBL(x);
321 pOut0++;
322 }
323 }
324 hMdct->prev_nr = 0;
325
326 {
327 if (pFac != NULL) {
328 /* Note: The FAC gain might have been applied directly after bit stream
329 * parse in this case. */
330 CFac_CalcFacSignal(pOut0, pFac, fac_scale, fac_length, A, A_exp, 0,
331 isFdFac);
332 } else {
333 /* Clear buffer because of the overlap and ADD! */
334 FDKmemclear(pOut0, fac_length * sizeof(FIXP_DBL));
335 }
336 }
337
338 i = 0;
339
340 if (hMdct->prevPrevAliasSymmetry == 0) {
341 for (; i < fl / 2; i++) {
342 FIXP_DBL x0;
343
344 /* Overlap Add */
345 x0 = -fMult(*pOvl--, pWindow[i].v.re);
346
347 *pOut0 += IMDCT_SCALE_DBL(x0);
348 pOut0++;
349 }
350 } else {
351 for (; i < fl / 2; i++) {
352 FIXP_DBL x0;
353
354 /* Overlap Add */
355 x0 = fMult(*pOvl--, pWindow[i].v.re);
356
357 *pOut0 += IMDCT_SCALE_DBL(x0);
358 pOut0++;
359 }
360 }
361 if (hMdct->pFacZir !=
362 0) { /* this should only happen for ACELP -> TCX20 -> ACELP transition */
363 FIXP_DBL *pOut = pOut0 - fl / 2; /* fl/2 == fac_length */
364 for (i = 0; i < fl / 2; i++) {
365 pOut[i] += IMDCT_SCALE_DBL(hMdct->pFacZir[i]);
366 }
367 hMdct->pFacZir = NULL;
368 }
369
370 hMdct->prev_fr = 0;
371 hMdct->prev_nr = 0;
372 hMdct->prev_tl = 0;
373 hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
374
375 return nrSamples;
376 }
377
CLpd_FAC_Acelp2Mdct(H_MDCT hMdct,FIXP_DBL * output,FIXP_DBL * _pSpec,const SHORT spec_scale[],const int nSpec,FIXP_DBL * pFac,const int fac_scale,const INT fac_length,INT noOutSamples,const INT tl,const FIXP_WTP * wrs,const INT fr,FIXP_LPC A[16],INT A_exp,CAcelpStaticMem * acelp_mem,const FIXP_DBL gain,const int last_frame_lost,const int isFdFac,const UCHAR last_lpd_mode,const int k,int currAliasingSymmetry)378 INT CLpd_FAC_Acelp2Mdct(H_MDCT hMdct, FIXP_DBL *output, FIXP_DBL *_pSpec,
379 const SHORT spec_scale[], const int nSpec,
380 FIXP_DBL *pFac, const int fac_scale,
381 const INT fac_length, INT noOutSamples, const INT tl,
382 const FIXP_WTP *wrs, const INT fr, FIXP_LPC A[16],
383 INT A_exp, CAcelpStaticMem *acelp_mem,
384 const FIXP_DBL gain, const int last_frame_lost,
385 const int isFdFac, const UCHAR last_lpd_mode,
386 const int k, int currAliasingSymmetry) {
387 FIXP_DBL *pCurr, *pOvl, *pSpec;
388 const FIXP_WTP *pWindow;
389 const FIXP_WTB *FacWindowZir_conceal;
390 UCHAR doFacZirConceal = 0;
391 int doDeemph = 1;
392 const FIXP_WTB *FacWindowZir, *FacWindowSynth;
393 FIXP_DBL *pOut0 = output, *pOut1;
394 int w, i, fl, nl, nr, f_len, nrSamples = 0, s = 0, scale, total_gain_e;
395 FIXP_DBL *pF, *pFAC_and_FAC_ZIR = NULL;
396 FIXP_DBL total_gain = gain;
397
398 FDK_ASSERT(fac_length <= 1024 / (4 * 2));
399 switch (fac_length) {
400 /* coreCoderFrameLength = 1024 */
401 case 128:
402 pWindow = SineWindow256;
403 FacWindowZir = FacWindowZir128;
404 FacWindowSynth = FacWindowSynth128;
405 break;
406 case 64:
407 pWindow = SineWindow128;
408 FacWindowZir = FacWindowZir64;
409 FacWindowSynth = FacWindowSynth64;
410 break;
411 case 32:
412 pWindow = SineWindow64;
413 FacWindowZir = FacWindowZir32;
414 FacWindowSynth = FacWindowSynth32;
415 break;
416 /* coreCoderFrameLength = 768 */
417 case 96:
418 pWindow = SineWindow192;
419 FacWindowZir = FacWindowZir96;
420 FacWindowSynth = FacWindowSynth96;
421 break;
422 case 48:
423 pWindow = SineWindow96;
424 FacWindowZir = FacWindowZir48;
425 FacWindowSynth = FacWindowSynth48;
426 break;
427 default:
428 FDK_ASSERT(0);
429 return 0;
430 }
431
432 FacWindowZir_conceal = FacWindowSynth;
433 /* Derive NR and NL */
434 fl = fac_length * 2;
435 nl = (tl - fl) >> 1;
436 nr = (tl - fr) >> 1;
437
438 if (noOutSamples > nrSamples) {
439 /* Purge buffered output. */
440 FDKmemcpy(pOut0, hMdct->overlap.time, hMdct->ov_offset * sizeof(pOut0[0]));
441 nrSamples = hMdct->ov_offset;
442 hMdct->ov_offset = 0;
443 }
444
445 if (nrSamples >= noOutSamples) {
446 pOut1 = hMdct->overlap.time + hMdct->ov_offset;
447 if (hMdct->ov_offset < fac_length) {
448 pOut0 = output + nrSamples;
449 } else {
450 pOut0 = pOut1;
451 }
452 hMdct->ov_offset += fac_length + nl;
453 } else {
454 pOut1 = output + nrSamples;
455 pOut0 = output + nrSamples;
456 }
457
458 {
459 pFAC_and_FAC_ZIR = CLpd_ACELP_GetFreeExcMem(acelp_mem, 2 * fac_length);
460 {
461 const FIXP_DBL *pTmp1, *pTmp2;
462
463 doFacZirConceal |= ((last_frame_lost != 0) && (k == 0));
464 doDeemph &= (last_lpd_mode != 4);
465 if (doFacZirConceal) {
466 /* ACELP contribution in concealment case:
467 Use ZIR with a modified ZIR window to preserve some more energy.
468 Dont use FAC, which contains wrong information for concealed frame
469 Dont use last ACELP samples, but double ZIR, instead (afterwards) */
470 FDKmemclear(pFAC_and_FAC_ZIR, 2 * fac_length * sizeof(FIXP_DBL));
471 FacWindowSynth = (FIXP_WTB *)pFAC_and_FAC_ZIR;
472 FacWindowZir = FacWindowZir_conceal;
473 } else {
474 CFac_CalcFacSignal(pFAC_and_FAC_ZIR, pFac, fac_scale + s, fac_length, A,
475 A_exp, 1, isFdFac);
476 }
477 /* 6) Get windowed past ACELP samples and ACELP ZIR signal */
478
479 /*
480 * Get ACELP ZIR (pFac[]) and ACELP past samples (pOut0[]) and add them
481 * to the FAC synth signal contribution on pOut1[].
482 */
483 {
484 {
485 CLpd_Acelp_Zir(A, A_exp, acelp_mem, fac_length, pFac, doDeemph);
486
487 pTmp1 = pOut0;
488 pTmp2 = pFac;
489 }
490
491 for (i = 0, w = 0; i < fac_length; i++) {
492 FIXP_DBL x;
493 /* Div2 is compensated by table scaling */
494 x = fMultDiv2(pTmp2[i], FacWindowZir[w]);
495 x += fMultDiv2(pTmp1[-i - 1], FacWindowSynth[w]);
496 x += pFAC_and_FAC_ZIR[i];
497 pOut1[i] = x;
498
499 w++;
500 }
501 }
502
503 if (doFacZirConceal) {
504 /* ZIR is the only ACELP contribution, so double it */
505 scaleValues(pOut1, fac_length, 1);
506 }
507 }
508 }
509
510 if (nrSamples < noOutSamples) {
511 nrSamples += fac_length + nl;
512 }
513
514 /* Obtain transform gain */
515 total_gain = gain;
516 total_gain_e = 0;
517 imdct_gain(&total_gain, &total_gain_e, tl);
518
519 /* IMDCT overlap add */
520 scale = total_gain_e;
521 pSpec = _pSpec;
522
523 /* Note:when comming from an LPD frame (TCX/ACELP) the previous alisaing
524 * symmetry must always be 0 */
525 if (currAliasingSymmetry == 0) {
526 dct_IV(pSpec, tl, &scale);
527 } else {
528 FIXP_DBL _tmp[1024 + ALIGNMENT_DEFAULT / sizeof(FIXP_DBL)];
529 FIXP_DBL *tmp = (FIXP_DBL *)ALIGN_PTR(_tmp);
530 C_ALLOC_ALIGNED_REGISTER(tmp, sizeof(_tmp));
531 dst_III(pSpec, tmp, tl, &scale);
532 C_ALLOC_ALIGNED_UNREGISTER(tmp);
533 }
534
535 /* Optional scaling of time domain - no yet windowed - of current spectrum */
536 if (total_gain != (FIXP_DBL)0) {
537 for (i = 0; i < tl; i++) {
538 pSpec[i] = fMult(pSpec[i], total_gain);
539 }
540 }
541 int loc_scale = fixmin_I(spec_scale[0] + scale, (INT)DFRACT_BITS - 1);
542 scaleValuesSaturate(pSpec, tl, loc_scale);
543
544 pOut1 += fl / 2 - 1;
545 pCurr = pSpec + tl - fl / 2;
546
547 for (i = 0; i < fl / 2; i++) {
548 FIXP_DBL x1;
549
550 /* FAC signal is already on pOut1, because of that the += operator. */
551 x1 = fMult(*pCurr++, pWindow[i].v.re);
552 FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
553 pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
554 (pOut1 >= output && pOut1 < output + 1024));
555 *pOut1 += IMDCT_SCALE_DBL(-x1);
556 pOut1--;
557 }
558
559 /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
560 pOut1 += (fl / 2) + 1;
561
562 pFAC_and_FAC_ZIR += fac_length; /* set pointer to beginning of FAC ZIR */
563
564 if (nl == 0) {
565 /* save pointer to write FAC ZIR data later */
566 hMdct->pFacZir = pFAC_and_FAC_ZIR;
567 } else {
568 FDK_ASSERT(nl >= fac_length);
569 /* FAC ZIR will be added now ... */
570 hMdct->pFacZir = NULL;
571 }
572
573 pF = pFAC_and_FAC_ZIR;
574 f_len = fac_length;
575
576 pCurr = pSpec + tl - fl / 2 - 1;
577 for (i = 0; i < nl; i++) {
578 FIXP_DBL x = -(*pCurr--);
579 /* 5) (item 4) Synthesis filter Zir component, FAC ZIR (another one). */
580 if (i < f_len) {
581 x += *pF++;
582 }
583
584 FDK_ASSERT((pOut1 >= hMdct->overlap.time &&
585 pOut1 < hMdct->overlap.time + hMdct->ov_size) ||
586 (pOut1 >= output && pOut1 < output + 1024));
587 *pOut1 = IMDCT_SCALE_DBL(x);
588 pOut1++;
589 }
590
591 hMdct->prev_nr = nr;
592 hMdct->prev_fr = fr;
593 hMdct->prev_wrs = wrs;
594 hMdct->prev_tl = tl;
595 hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
596 hMdct->prevAliasSymmetry = currAliasingSymmetry;
597 fl = fr;
598 nl = nr;
599
600 pOvl = pSpec + tl / 2 - 1;
601 pOut0 = pOut1;
602
603 for (w = 1; w < nSpec; w++) /* for ACELP -> FD short */
604 {
605 const FIXP_WTP *pWindow_prev;
606
607 /* Setup window pointers */
608 pWindow_prev = hMdct->prev_wrs;
609
610 /* Current spectrum */
611 pSpec = _pSpec + w * tl;
612
613 scale = total_gain_e;
614
615 /* For the second, third, etc. short frames the alisaing symmetry is equal,
616 * either (0,0) or (1,1) */
617 if (currAliasingSymmetry == 0) {
618 /* DCT IV of current spectrum */
619 dct_IV(pSpec, tl, &scale);
620 } else {
621 dst_IV(pSpec, tl, &scale);
622 }
623
624 /* Optional scaling of time domain - no yet windowed - of current spectrum
625 */
626 /* and de-scale current spectrum signal (time domain, no yet windowed) */
627 if (total_gain != (FIXP_DBL)0) {
628 for (i = 0; i < tl; i++) {
629 pSpec[i] = fMult(pSpec[i], total_gain);
630 }
631 }
632 loc_scale = fixmin_I(spec_scale[w] + scale, (INT)DFRACT_BITS - 1);
633 scaleValuesSaturate(pSpec, tl, loc_scale);
634
635 if (noOutSamples <= nrSamples) {
636 /* Divert output first half to overlap buffer if we already got enough
637 * output samples. */
638 pOut0 = hMdct->overlap.time + hMdct->ov_offset;
639 hMdct->ov_offset += hMdct->prev_nr + fl / 2;
640 } else {
641 /* Account output samples */
642 nrSamples += hMdct->prev_nr + fl / 2;
643 }
644
645 /* NR output samples 0 .. NR. -overlap[TL/2..TL/2-NR] */
646 for (i = 0; i < hMdct->prev_nr; i++) {
647 FIXP_DBL x = -(*pOvl--);
648 *pOut0 = IMDCT_SCALE_DBL(x);
649 pOut0++;
650 }
651
652 if (noOutSamples <= nrSamples) {
653 /* Divert output second half to overlap buffer if we already got enough
654 * output samples. */
655 pOut1 = hMdct->overlap.time + hMdct->ov_offset + fl / 2 - 1;
656 hMdct->ov_offset += fl / 2 + nl;
657 } else {
658 pOut1 = pOut0 + (fl - 1);
659 nrSamples += fl / 2 + nl;
660 }
661
662 /* output samples before window crossing point NR .. TL/2.
663 * -overlap[TL/2-NR..TL/2-NR-FL/2] + current[NR..TL/2] */
664 /* output samples after window crossing point TL/2 .. TL/2+FL/2.
665 * -overlap[0..FL/2] - current[TL/2..FL/2] */
666 pCurr = pSpec + tl - fl / 2;
667 if (currAliasingSymmetry == 0) {
668 for (i = 0; i < fl / 2; i++) {
669 FIXP_DBL x0, x1;
670
671 cplxMult(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
672 *pOut0 = IMDCT_SCALE_DBL(x0);
673 *pOut1 = IMDCT_SCALE_DBL(-x1);
674 pOut0++;
675 pOut1--;
676 }
677 } else {
678 if (hMdct->prevPrevAliasSymmetry == 0) {
679 /* Jump DST II -> DST IV for the second window */
680 for (i = 0; i < fl / 2; i++) {
681 FIXP_DBL x0, x1;
682
683 cplxMult(&x1, &x0, *pCurr++, -*pOvl--, pWindow_prev[i]);
684 *pOut0 = IMDCT_SCALE_DBL(x0);
685 *pOut1 = IMDCT_SCALE_DBL(x1);
686 pOut0++;
687 pOut1--;
688 }
689 } else {
690 /* Jump DST IV -> DST IV from the second window on */
691 for (i = 0; i < fl / 2; i++) {
692 FIXP_DBL x0, x1;
693
694 cplxMult(&x1, &x0, *pCurr++, *pOvl--, pWindow_prev[i]);
695 *pOut0 = IMDCT_SCALE_DBL(x0);
696 *pOut1 = IMDCT_SCALE_DBL(x1);
697 pOut0++;
698 pOut1--;
699 }
700 }
701 }
702
703 if (hMdct->pFacZir != 0) {
704 /* add FAC ZIR of previous ACELP -> mdct transition */
705 FIXP_DBL *pOut = pOut0 - fl / 2;
706 FDK_ASSERT(fl / 2 <= 128);
707 for (i = 0; i < fl / 2; i++) {
708 pOut[i] += IMDCT_SCALE_DBL(hMdct->pFacZir[i]);
709 }
710 hMdct->pFacZir = NULL;
711 }
712 pOut0 += (fl / 2);
713
714 /* NL output samples TL/2+FL/2..TL. - current[FL/2..0] */
715 pOut1 += (fl / 2) + 1;
716 pCurr = pSpec + tl - fl / 2 - 1;
717 for (i = 0; i < nl; i++) {
718 FIXP_DBL x = -(*pCurr--);
719 *pOut1 = IMDCT_SCALE_DBL(x);
720 pOut1++;
721 }
722
723 /* Set overlap source pointer for next window pOvl = pSpec + tl/2 - 1; */
724 pOvl = pSpec + tl / 2 - 1;
725
726 /* Previous window values. */
727 hMdct->prev_nr = nr;
728 hMdct->prev_fr = fr;
729 hMdct->prev_tl = tl;
730 hMdct->prev_wrs = pWindow_prev;
731 hMdct->prevPrevAliasSymmetry = hMdct->prevAliasSymmetry;
732 hMdct->prevAliasSymmetry = currAliasingSymmetry;
733 }
734
735 /* Save overlap */
736
737 pOvl = hMdct->overlap.freq + hMdct->ov_size - tl / 2;
738 FDK_ASSERT(pOvl >= hMdct->overlap.time + hMdct->ov_offset);
739 FDK_ASSERT(tl / 2 <= hMdct->ov_size);
740 for (i = 0; i < tl / 2; i++) {
741 pOvl[i] = _pSpec[i + (w - 1) * tl];
742 }
743
744 return nrSamples;
745 }
746