1 /* -----------------------------------------------------------------------------
2 Software License for The Fraunhofer FDK AAC Codec Library for Android
3
4 © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten
5 Forschung e.V. All rights reserved.
6
7 1. INTRODUCTION
8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
11 a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
14 general perceptual audio codecs. AAC-ELD is considered the best-performing
15 full-bandwidth communications codec by independent studies and is widely
16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
17 specifications.
18
19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
20 those of Fraunhofer) may be obtained through Via Licensing
21 (www.vialicensing.com) or through the respective patent owners individually for
22 the purpose of encoding or decoding bit streams in products that are compliant
23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
24 Android devices already license these patent claims through Via Licensing or
25 directly from the patent owners, and therefore FDK AAC Codec software may
26 already be covered under those patent licenses when it is used for those
27 licensed purposes only.
28
29 Commercially-licensed AAC software libraries, including floating-point versions
30 with enhanced sound quality, are also available from Fraunhofer. Users are
31 encouraged to check the Fraunhofer website for additional applications
32 information and documentation.
33
34 2. COPYRIGHT LICENSE
35
36 Redistribution and use in source and binary forms, with or without modification,
37 are permitted without payment of copyright license fees provided that you
38 satisfy the following conditions:
39
40 You must retain the complete text of this software license in redistributions of
41 the FDK AAC Codec or your modifications thereto in source code form.
42
43 You must retain the complete text of this software license in the documentation
44 and/or other materials provided with redistributions of the FDK AAC Codec or
45 your modifications thereto in binary form. You must make available free of
46 charge copies of the complete source code of the FDK AAC Codec and your
47 modifications thereto to recipients of copies in binary form.
48
49 The name of Fraunhofer may not be used to endorse or promote products derived
50 from this library without prior written permission.
51
52 You may not charge copyright license fees for anyone to use, copy or distribute
53 the FDK AAC Codec software or your modifications thereto.
54
55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
56 that you changed the software and the date of any change. For modified versions
57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
59 AAC Codec Library for Android."
60
61 3. NO PATENT LICENSE
62
63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
65 Fraunhofer provides no warranty of patent non-infringement with respect to this
66 software.
67
68 You may use this FDK AAC Codec software or modifications thereto only for
69 purposes that are authorized by appropriate patent licenses.
70
71 4. DISCLAIMER
72
73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
75 including but not limited to the implied warranties of merchantability and
76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
78 or consequential damages, including but not limited to procurement of substitute
79 goods or services; loss of use, data, or profits, or business interruption,
80 however caused and on any theory of liability, whether in contract, strict
81 liability, or tort (including negligence), arising in any way out of the use of
82 this software, even if advised of the possibility of such damage.
83
84 5. CONTACT INFORMATION
85
86 Fraunhofer Institute for Integrated Circuits IIS
87 Attention: Audio and Multimedia Departments - FDK AAC LL
88 Am Wolfsmantel 33
89 91058 Erlangen, Germany
90
91 www.iis.fraunhofer.de/amm
92 amm-info@iis.fraunhofer.de
93 ----------------------------------------------------------------------------- */
94
95 /**************************** SBR decoder library ******************************
96
97 Author(s): Christian Griebel
98
99 Description: Dynamic range control (DRC) decoder tool for SBR
100
101 *******************************************************************************/
102
103 #include "sbrdec_drc.h"
104
105 /* DRC - Offset table for QMF interpolation. Shifted by one index position.
106 The table defines the (short) window borders rounded to the nearest QMF
107 timeslot. It has the size 16 because it is accessed with the
108 drcInterpolationScheme that is read from the bitstream with 4 bit. */
109 static const UCHAR winBorderToColMappingTab[2][16] = {
110 /*-1, 0, 1, 2, 3, 4, 5, 6, 7, 8 */
111 {0, 0, 4, 8, 12, 16, 20, 24, 28, 32, 32, 32, 32, 32, 32,
112 32}, /* 1024 framing */
113 {0, 0, 4, 8, 11, 15, 19, 23, 26, 30, 30, 30, 30, 30, 30,
114 30} /* 960 framing */
115 };
116
117 /*!
118 \brief Initialize DRC QMF factors
119
120 \hDrcData Handle to DRC channel data.
121
122 \return none
123 */
sbrDecoder_drcInitChannel(HANDLE_SBR_DRC_CHANNEL hDrcData)124 void sbrDecoder_drcInitChannel(HANDLE_SBR_DRC_CHANNEL hDrcData) {
125 int band;
126
127 if (hDrcData == NULL) {
128 return;
129 }
130
131 for (band = 0; band < (64); band++) {
132 hDrcData->prevFact_mag[band] = FL2FXCONST_DBL(0.5f);
133 }
134
135 for (band = 0; band < SBRDEC_MAX_DRC_BANDS; band++) {
136 hDrcData->currFact_mag[band] = FL2FXCONST_DBL(0.5f);
137 hDrcData->nextFact_mag[band] = FL2FXCONST_DBL(0.5f);
138 }
139
140 hDrcData->prevFact_exp = 1;
141 hDrcData->currFact_exp = 1;
142 hDrcData->nextFact_exp = 1;
143
144 hDrcData->numBandsCurr = 1;
145 hDrcData->numBandsNext = 1;
146
147 hDrcData->winSequenceCurr = 0;
148 hDrcData->winSequenceNext = 0;
149
150 hDrcData->drcInterpolationSchemeCurr = 0;
151 hDrcData->drcInterpolationSchemeNext = 0;
152
153 hDrcData->enable = 0;
154 }
155
156 /*!
157 \brief Swap DRC QMF scaling factors after they have been applied.
158
159 \hDrcData Handle to DRC channel data.
160
161 \return none
162 */
sbrDecoder_drcUpdateChannel(HANDLE_SBR_DRC_CHANNEL hDrcData)163 void sbrDecoder_drcUpdateChannel(HANDLE_SBR_DRC_CHANNEL hDrcData) {
164 if (hDrcData == NULL) {
165 return;
166 }
167 if (hDrcData->enable != 1) {
168 return;
169 }
170
171 /* swap previous data */
172 FDKmemcpy(hDrcData->currFact_mag, hDrcData->nextFact_mag,
173 SBRDEC_MAX_DRC_BANDS * sizeof(FIXP_DBL));
174
175 hDrcData->currFact_exp = hDrcData->nextFact_exp;
176
177 hDrcData->numBandsCurr = hDrcData->numBandsNext;
178
179 FDKmemcpy(hDrcData->bandTopCurr, hDrcData->bandTopNext,
180 SBRDEC_MAX_DRC_BANDS * sizeof(USHORT));
181
182 hDrcData->drcInterpolationSchemeCurr = hDrcData->drcInterpolationSchemeNext;
183
184 hDrcData->winSequenceCurr = hDrcData->winSequenceNext;
185 }
186
187 /*!
188 \brief Apply DRC factors slot based.
189
190 \hDrcData Handle to DRC channel data.
191 \qmfRealSlot Pointer to real valued QMF data of one time slot.
192 \qmfImagSlot Pointer to the imaginary QMF data of one time slot.
193 \col Number of the time slot.
194 \numQmfSubSamples Total number of time slots for one frame.
195 \scaleFactor Pointer to the out scale factor of the time slot.
196
197 \return None.
198 */
sbrDecoder_drcApplySlot(HANDLE_SBR_DRC_CHANNEL hDrcData,FIXP_DBL * qmfRealSlot,FIXP_DBL * qmfImagSlot,int col,int numQmfSubSamples,int maxShift)199 void sbrDecoder_drcApplySlot(HANDLE_SBR_DRC_CHANNEL hDrcData,
200 FIXP_DBL *qmfRealSlot, FIXP_DBL *qmfImagSlot,
201 int col, int numQmfSubSamples, int maxShift) {
202 const UCHAR *winBorderToColMap;
203
204 int band, bottomMdct, topMdct, bin, useLP;
205 int indx = numQmfSubSamples - (numQmfSubSamples >> 1) - 10; /* l_border */
206 int frameLenFlag = (numQmfSubSamples == 30) ? 1 : 0;
207 int frameSize = (frameLenFlag == 1) ? 960 : 1024;
208
209 const FIXP_DBL *fact_mag = NULL;
210 INT fact_exp = 0;
211 UINT numBands = 0;
212 USHORT *bandTop = NULL;
213 int shortDrc = 0;
214
215 FIXP_DBL alphaValue = FL2FXCONST_DBL(0.0f);
216
217 if (hDrcData == NULL) {
218 return;
219 }
220 if (hDrcData->enable != 1) {
221 return;
222 }
223
224 winBorderToColMap = winBorderToColMappingTab[frameLenFlag];
225
226 useLP = (qmfImagSlot == NULL) ? 1 : 0;
227
228 col += indx;
229 bottomMdct = 0;
230
231 /* get respective data and calc interpolation factor */
232 if (col < (numQmfSubSamples >> 1)) { /* first half of current frame */
233 if (hDrcData->winSequenceCurr != 2) { /* long window */
234 int j = col + (numQmfSubSamples >> 1);
235
236 if (hDrcData->drcInterpolationSchemeCurr == 0) {
237 INT k = (frameLenFlag) ? 0x4444445 : 0x4000000;
238
239 alphaValue = (FIXP_DBL)(j * k);
240 } else {
241 if (j >= (int)winBorderToColMap[hDrcData->drcInterpolationSchemeCurr]) {
242 alphaValue = (FIXP_DBL)MAXVAL_DBL;
243 }
244 }
245 } else { /* short windows */
246 shortDrc = 1;
247 }
248
249 fact_mag = hDrcData->currFact_mag;
250 fact_exp = hDrcData->currFact_exp;
251 numBands = hDrcData->numBandsCurr;
252 bandTop = hDrcData->bandTopCurr;
253 } else if (col < numQmfSubSamples) { /* second half of current frame */
254 if (hDrcData->winSequenceNext != 2) { /* next: long window */
255 int j = col - (numQmfSubSamples >> 1);
256
257 if (hDrcData->drcInterpolationSchemeNext == 0) {
258 INT k = (frameLenFlag) ? 0x4444445 : 0x4000000;
259
260 alphaValue = (FIXP_DBL)(j * k);
261 } else {
262 if (j >= (int)winBorderToColMap[hDrcData->drcInterpolationSchemeNext]) {
263 alphaValue = (FIXP_DBL)MAXVAL_DBL;
264 }
265 }
266
267 fact_mag = hDrcData->nextFact_mag;
268 fact_exp = hDrcData->nextFact_exp;
269 numBands = hDrcData->numBandsNext;
270 bandTop = hDrcData->bandTopNext;
271 } else { /* next: short windows */
272 if (hDrcData->winSequenceCurr != 2) { /* current: long window */
273 alphaValue = (FIXP_DBL)0;
274
275 fact_mag = hDrcData->nextFact_mag;
276 fact_exp = hDrcData->nextFact_exp;
277 numBands = hDrcData->numBandsNext;
278 bandTop = hDrcData->bandTopNext;
279 } else { /* current: short windows */
280 shortDrc = 1;
281
282 fact_mag = hDrcData->currFact_mag;
283 fact_exp = hDrcData->currFact_exp;
284 numBands = hDrcData->numBandsCurr;
285 bandTop = hDrcData->bandTopCurr;
286 }
287 }
288 } else { /* first half of next frame */
289 if (hDrcData->winSequenceNext != 2) { /* long window */
290 int j = col - (numQmfSubSamples >> 1);
291
292 if (hDrcData->drcInterpolationSchemeNext == 0) {
293 INT k = (frameLenFlag) ? 0x4444445 : 0x4000000;
294
295 alphaValue = (FIXP_DBL)(j * k);
296 } else {
297 if (j >= (int)winBorderToColMap[hDrcData->drcInterpolationSchemeNext]) {
298 alphaValue = (FIXP_DBL)MAXVAL_DBL;
299 }
300 }
301 } else { /* short windows */
302 shortDrc = 1;
303 }
304
305 fact_mag = hDrcData->nextFact_mag;
306 fact_exp = hDrcData->nextFact_exp;
307 numBands = hDrcData->numBandsNext;
308 bandTop = hDrcData->bandTopNext;
309
310 col -= numQmfSubSamples;
311 }
312
313 /* process bands */
314 for (band = 0; band < (int)numBands; band++) {
315 int bottomQmf, topQmf;
316
317 FIXP_DBL drcFact_mag = (FIXP_DBL)MAXVAL_DBL;
318
319 topMdct = (bandTop[band] + 1) << 2;
320
321 if (!shortDrc) { /* long window */
322 if (frameLenFlag) {
323 /* 960 framing */
324 bottomQmf = fMultIfloor((FIXP_DBL)0x4444445, bottomMdct);
325 topQmf = fMultIfloor((FIXP_DBL)0x4444445, topMdct);
326
327 topMdct = 30 * topQmf;
328 } else {
329 /* 1024 framing */
330 topMdct &= ~0x1f;
331
332 bottomQmf = bottomMdct >> 5;
333 topQmf = topMdct >> 5;
334 }
335
336 if (band == ((int)numBands - 1)) {
337 topQmf = (64);
338 }
339
340 for (bin = bottomQmf; bin < topQmf; bin++) {
341 FIXP_DBL drcFact1_mag = hDrcData->prevFact_mag[bin];
342 FIXP_DBL drcFact2_mag = fact_mag[band];
343
344 /* normalize scale factors */
345 if (hDrcData->prevFact_exp < maxShift) {
346 drcFact1_mag >>= maxShift - hDrcData->prevFact_exp;
347 }
348 if (fact_exp < maxShift) {
349 drcFact2_mag >>= maxShift - fact_exp;
350 }
351
352 /* interpolate */
353 if (alphaValue == (FIXP_DBL)0) {
354 drcFact_mag = drcFact1_mag;
355 } else if (alphaValue == (FIXP_DBL)MAXVAL_DBL) {
356 drcFact_mag = drcFact2_mag;
357 } else {
358 drcFact_mag =
359 fMult(alphaValue, drcFact2_mag) +
360 fMult(((FIXP_DBL)MAXVAL_DBL - alphaValue), drcFact1_mag);
361 }
362
363 /* apply scaling */
364 qmfRealSlot[bin] = fMult(qmfRealSlot[bin], drcFact_mag);
365 if (!useLP) {
366 qmfImagSlot[bin] = fMult(qmfImagSlot[bin], drcFact_mag);
367 }
368
369 /* save previous factors */
370 if (col == (numQmfSubSamples >> 1) - 1) {
371 hDrcData->prevFact_mag[bin] = fact_mag[band];
372 }
373 }
374 } else { /* short windows */
375 unsigned startWinIdx, stopWinIdx;
376 int startCol, stopCol;
377 FIXP_DBL invFrameSizeDiv8 =
378 (frameLenFlag) ? (FIXP_DBL)0x1111112 : (FIXP_DBL)0x1000000;
379
380 /* limit top at the frame borders */
381 if (topMdct < 0) {
382 topMdct = 0;
383 }
384 if (topMdct >= frameSize) {
385 topMdct = frameSize - 1;
386 }
387
388 if (frameLenFlag) {
389 /* 960 framing */
390 topMdct = fMultIfloor((FIXP_DBL)0x78000000,
391 fMultIfloor((FIXP_DBL)0x22222223, topMdct) << 2);
392
393 startWinIdx = fMultIfloor(invFrameSizeDiv8, bottomMdct) +
394 1; /* winBorderToColMap table has offset of 1 */
395 stopWinIdx = fMultIceil(invFrameSizeDiv8 - (FIXP_DBL)1, topMdct) + 1;
396 } else {
397 /* 1024 framing */
398 topMdct &= ~0x03;
399
400 startWinIdx = fMultIfloor(invFrameSizeDiv8, bottomMdct) + 1;
401 stopWinIdx = fMultIceil(invFrameSizeDiv8, topMdct) + 1;
402 }
403
404 /* startCol is truncated to the nearest corresponding start subsample in
405 the QMF of the short window bottom is present in:*/
406 startCol = (int)winBorderToColMap[startWinIdx];
407
408 /* stopCol is rounded upwards to the nearest corresponding stop subsample
409 in the QMF of the short window top is present in. */
410 stopCol = (int)winBorderToColMap[stopWinIdx];
411
412 bottomQmf = fMultIfloor(invFrameSizeDiv8,
413 ((bottomMdct % (numQmfSubSamples << 2)) << 5));
414 topQmf = fMultIfloor(invFrameSizeDiv8,
415 ((topMdct % (numQmfSubSamples << 2)) << 5));
416
417 /* extend last band */
418 if (band == ((int)numBands - 1)) {
419 topQmf = (64);
420 stopCol = numQmfSubSamples;
421 stopWinIdx = 10;
422 }
423
424 if (topQmf == 0) {
425 if (frameLenFlag) {
426 FIXP_DBL rem = fMult(invFrameSizeDiv8,
427 (FIXP_DBL)(topMdct << (DFRACT_BITS - 12)));
428 if ((LONG)rem & (LONG)0x1F) {
429 stopWinIdx -= 1;
430 stopCol = (int)winBorderToColMap[stopWinIdx];
431 }
432 }
433 topQmf = (64);
434 }
435
436 /* save previous factors */
437 if (stopCol == numQmfSubSamples) {
438 int tmpBottom = bottomQmf;
439
440 if ((int)winBorderToColMap[8] > startCol) {
441 tmpBottom = 0; /* band starts in previous short window */
442 }
443
444 for (bin = tmpBottom; bin < topQmf; bin++) {
445 hDrcData->prevFact_mag[bin] = fact_mag[band];
446 }
447 }
448
449 /* apply */
450 if ((col >= startCol) && (col < stopCol)) {
451 if (col >= (int)winBorderToColMap[startWinIdx + 1]) {
452 bottomQmf = 0; /* band starts in previous short window */
453 }
454 if (col < (int)winBorderToColMap[stopWinIdx - 1]) {
455 topQmf = (64); /* band ends in next short window */
456 }
457
458 drcFact_mag = fact_mag[band];
459
460 /* normalize scale factor */
461 if (fact_exp < maxShift) {
462 drcFact_mag >>= maxShift - fact_exp;
463 }
464
465 /* apply scaling */
466 for (bin = bottomQmf; bin < topQmf; bin++) {
467 qmfRealSlot[bin] = fMult(qmfRealSlot[bin], drcFact_mag);
468 if (!useLP) {
469 qmfImagSlot[bin] = fMult(qmfImagSlot[bin], drcFact_mag);
470 }
471 }
472 }
473 }
474
475 bottomMdct = topMdct;
476 } /* end of bands loop */
477
478 if (col == (numQmfSubSamples >> 1) - 1) {
479 hDrcData->prevFact_exp = fact_exp;
480 }
481 }
482
483 /*!
484 \brief Apply DRC factors frame based.
485
486 \hDrcData Handle to DRC channel data.
487 \qmfRealSlot Pointer to real valued QMF data of the whole frame.
488 \qmfImagSlot Pointer to the imaginary QMF data of the whole frame.
489 \numQmfSubSamples Total number of time slots for one frame.
490 \scaleFactor Pointer to the out scale factor of the frame.
491
492 \return None.
493 */
sbrDecoder_drcApply(HANDLE_SBR_DRC_CHANNEL hDrcData,FIXP_DBL ** QmfBufferReal,FIXP_DBL ** QmfBufferImag,int numQmfSubSamples,int * scaleFactor)494 void sbrDecoder_drcApply(HANDLE_SBR_DRC_CHANNEL hDrcData,
495 FIXP_DBL **QmfBufferReal, FIXP_DBL **QmfBufferImag,
496 int numQmfSubSamples, int *scaleFactor) {
497 int col;
498 int maxShift = 0;
499
500 if (hDrcData == NULL) {
501 return;
502 }
503 if (hDrcData->enable == 0) {
504 return; /* Avoid changing the scaleFactor even though the processing is
505 disabled. */
506 }
507
508 /* get max scale factor */
509 if (hDrcData->prevFact_exp > maxShift) {
510 maxShift = hDrcData->prevFact_exp;
511 }
512 if (hDrcData->currFact_exp > maxShift) {
513 maxShift = hDrcData->currFact_exp;
514 }
515 if (hDrcData->nextFact_exp > maxShift) {
516 maxShift = hDrcData->nextFact_exp;
517 }
518
519 for (col = 0; col < numQmfSubSamples; col++) {
520 FIXP_DBL *qmfSlotReal = QmfBufferReal[col];
521 FIXP_DBL *qmfSlotImag = (QmfBufferImag == NULL) ? NULL : QmfBufferImag[col];
522
523 sbrDecoder_drcApplySlot(hDrcData, qmfSlotReal, qmfSlotImag, col,
524 numQmfSubSamples, maxShift);
525 }
526
527 *scaleFactor += maxShift;
528 }
529