• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Double-precision 2^x function.
3  *
4  * Copyright (c) 2018, Arm Limited.
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 #include "math_config.h"
11 
12 #define N (1 << EXP_TABLE_BITS)
13 #define Shift __exp_data.exp2_shift
14 #define T __exp_data.tab
15 #define C1 __exp_data.exp2_poly[0]
16 #define C2 __exp_data.exp2_poly[1]
17 #define C3 __exp_data.exp2_poly[2]
18 #define C4 __exp_data.exp2_poly[3]
19 #define C5 __exp_data.exp2_poly[4]
20 #define C6 __exp_data.exp2_poly[5]
21 
22 /* Handle cases that may overflow or underflow when computing the result that
23    is scale*(1+TMP) without intermediate rounding.  The bit representation of
24    scale is in SBITS, however it has a computed exponent that may have
25    overflown into the sign bit so that needs to be adjusted before using it as
26    a double.  (int32_t)KI is the k used in the argument reduction and exponent
27    adjustment of scale, positive k here means the result may overflow and
28    negative k means the result may underflow.  */
29 static inline double
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)30 specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
31 {
32   double_t scale, y;
33 
34   if ((ki & 0x80000000) == 0)
35     {
36       /* k > 0, the exponent of scale might have overflowed by 1.  */
37       sbits -= 1ull << 52;
38       scale = asdouble (sbits);
39       y = 2 * (scale + scale * tmp);
40       return check_oflow (eval_as_double (y));
41     }
42   /* k < 0, need special care in the subnormal range.  */
43   sbits += 1022ull << 52;
44   scale = asdouble (sbits);
45   y = scale + scale * tmp;
46   if (y < 1.0)
47     {
48       /* Round y to the right precision before scaling it into the subnormal
49 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
50 	 E is the worst-case ulp error outside the subnormal range.  So this
51 	 is only useful if the goal is better than 1 ulp worst-case error.  */
52       double_t hi, lo;
53       lo = scale - y + scale * tmp;
54       hi = 1.0 + y;
55       lo = 1.0 - hi + y + lo;
56       y = eval_as_double (hi + lo) - 1.0;
57       /* Avoid -0.0 with downward rounding.  */
58       if (WANT_ROUNDING && y == 0.0)
59 	y = 0.0;
60       /* The underflow exception needs to be signaled explicitly.  */
61       force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
62     }
63   y = 0x1p-1022 * y;
64   return check_uflow (eval_as_double (y));
65 }
66 
67 /* Top 12 bits of a double (sign and exponent bits).  */
68 static inline uint32_t
top12(double x)69 top12 (double x)
70 {
71   return asuint64 (x) >> 52;
72 }
73 
74 double
exp2(double x)75 exp2 (double x)
76 {
77   uint32_t abstop;
78   uint64_t ki, idx, top, sbits;
79   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
80   double_t kd, r, r2, scale, tail, tmp;
81 
82   abstop = top12 (x) & 0x7ff;
83   if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
84     {
85       if (abstop - top12 (0x1p-54) >= 0x80000000)
86 	/* Avoid spurious underflow for tiny x.  */
87 	/* Note: 0 is common input.  */
88 	return WANT_ROUNDING ? 1.0 + x : 1.0;
89       if (abstop >= top12 (1024.0))
90 	{
91 	  if (asuint64 (x) == asuint64 (-INFINITY))
92 	    return 0.0;
93 	  if (abstop >= top12 (INFINITY))
94 	    return 1.0 + x;
95 	  if (!(asuint64 (x) >> 63))
96 	    return __math_oflow (0);
97 	  else if (asuint64 (x) >= asuint64 (-1075.0))
98 	    return __math_uflow (0);
99 	}
100       if (2 * asuint64 (x) > 2 * asuint64 (928.0))
101 	/* Large x is special cased below.  */
102 	abstop = 0;
103     }
104 
105   /* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)].  */
106   /* x = k/N + r, with int k and r in [-1/2N, 1/2N].  */
107   kd = eval_as_double (x + Shift);
108   ki = asuint64 (kd); /* k.  */
109   kd -= Shift; /* k/N for int k.  */
110   r = x - kd;
111   /* 2^(k/N) ~= scale * (1 + tail).  */
112   idx = 2 * (ki % N);
113   top = ki << (52 - EXP_TABLE_BITS);
114   tail = asdouble (T[idx]);
115   /* This is only a valid scale when -1023*N < k < 1024*N.  */
116   sbits = T[idx + 1] + top;
117   /* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1).  */
118   /* Evaluation is optimized assuming superscalar pipelined execution.  */
119   r2 = r * r;
120   /* Without fma the worst case error is 0.5/N ulp larger.  */
121   /* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp.  */
122 #if EXP2_POLY_ORDER == 4
123   tmp = tail + r * C1 + r2 * C2 + r * r2 * (C3 + r * C4);
124 #elif EXP2_POLY_ORDER == 5
125   tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
126 #elif EXP2_POLY_ORDER == 6
127   tmp = tail + r * C1 + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
128 #endif
129   if (unlikely (abstop == 0))
130     return specialcase (tmp, sbits, ki);
131   scale = asdouble (sbits);
132   /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
133      is no spurious underflow here even without fma.  */
134   return eval_as_double (scale + scale * tmp);
135 }
136 #if USE_GLIBC_ABI
137 strong_alias (exp2, __exp2_finite)
138 hidden_alias (exp2, __ieee754_exp2)
139 #endif
140