• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// TLS low level connection and record layer
6
7package runner
8
9import (
10	"bytes"
11	"crypto/cipher"
12	"crypto/ecdsa"
13	"crypto/subtle"
14	"crypto/x509"
15	"encoding/binary"
16	"errors"
17	"fmt"
18	"io"
19	"net"
20	"sync"
21	"time"
22)
23
24var errNoCertificateAlert = errors.New("tls: no certificate alert")
25var errEndOfEarlyDataAlert = errors.New("tls: end of early data alert")
26
27// A Conn represents a secured connection.
28// It implements the net.Conn interface.
29type Conn struct {
30	// constant
31	conn     net.Conn
32	isDTLS   bool
33	isClient bool
34
35	// constant after handshake; protected by handshakeMutex
36	handshakeMutex       sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
37	handshakeErr         error      // error resulting from handshake
38	wireVersion          uint16     // TLS wire version
39	vers                 uint16     // TLS version
40	haveVers             bool       // version has been negotiated
41	config               *Config    // configuration passed to constructor
42	handshakeComplete    bool
43	skipEarlyData        bool // On a server, indicates that the client is sending early data that must be skipped over.
44	didResume            bool // whether this connection was a session resumption
45	extendedMasterSecret bool // whether this session used an extended master secret
46	cipherSuite          *cipherSuite
47	earlyCipherSuite     *cipherSuite
48	ocspResponse         []byte // stapled OCSP response
49	sctList              []byte // signed certificate timestamp list
50	peerCertificates     []*x509.Certificate
51	// verifiedChains contains the certificate chains that we built, as
52	// opposed to the ones presented by the server.
53	verifiedChains [][]*x509.Certificate
54	// serverName contains the server name indicated by the client, if any.
55	serverName string
56	// firstFinished contains the first Finished hash sent during the
57	// handshake. This is the "tls-unique" channel binding value.
58	firstFinished [12]byte
59	// peerSignatureAlgorithm contains the signature algorithm that was used
60	// by the peer in the handshake, or zero if not applicable.
61	peerSignatureAlgorithm signatureAlgorithm
62	// curveID contains the curve that was used in the handshake, or zero if
63	// not applicable.
64	curveID CurveID
65	// quicTransportParams contains the QUIC transport params received
66	// by the peer.
67	quicTransportParams []byte
68
69	clientRandom, serverRandom [32]byte
70	earlyExporterSecret        []byte
71	exporterSecret             []byte
72	resumptionSecret           []byte
73
74	clientProtocol         string
75	clientProtocolFallback bool
76	usedALPN               bool
77
78	// verify_data values for the renegotiation extension.
79	clientVerify []byte
80	serverVerify []byte
81
82	channelID *ecdsa.PublicKey
83
84	tokenBindingNegotiated bool
85	tokenBindingParam      uint8
86
87	srtpProtectionProfile uint16
88
89	clientVersion uint16
90
91	// input/output
92	in, out  halfConn     // in.Mutex < out.Mutex
93	rawInput *block       // raw input, right off the wire
94	input    *block       // application record waiting to be read
95	hand     bytes.Buffer // handshake record waiting to be read
96
97	// pendingFlight, if PackHandshakeFlight is enabled, is the buffer of
98	// handshake data to be split into records at the end of the flight.
99	pendingFlight bytes.Buffer
100
101	// DTLS state
102	sendHandshakeSeq uint16
103	recvHandshakeSeq uint16
104	handMsg          []byte   // pending assembled handshake message
105	handMsgLen       int      // handshake message length, not including the header
106	pendingFragments [][]byte // pending outgoing handshake fragments.
107	pendingPacket    []byte   // pending outgoing packet.
108
109	keyUpdateSeen      bool
110	keyUpdateRequested bool
111	seenOneByteRecord  bool
112
113	expectTLS13ChangeCipherSpec bool
114
115	// seenHandshakePackEnd is whether the most recent handshake record was
116	// not full for ExpectPackedEncryptedHandshake. If true, no more
117	// handshake data may be received until the next flight or epoch change.
118	seenHandshakePackEnd bool
119
120	tmp [16]byte
121}
122
123func (c *Conn) init() {
124	c.in.isDTLS = c.isDTLS
125	c.out.isDTLS = c.isDTLS
126	c.in.config = c.config
127	c.out.config = c.config
128
129	c.out.updateOutSeq()
130}
131
132// Access to net.Conn methods.
133// Cannot just embed net.Conn because that would
134// export the struct field too.
135
136// LocalAddr returns the local network address.
137func (c *Conn) LocalAddr() net.Addr {
138	return c.conn.LocalAddr()
139}
140
141// RemoteAddr returns the remote network address.
142func (c *Conn) RemoteAddr() net.Addr {
143	return c.conn.RemoteAddr()
144}
145
146// SetDeadline sets the read and write deadlines associated with the connection.
147// A zero value for t means Read and Write will not time out.
148// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
149func (c *Conn) SetDeadline(t time.Time) error {
150	return c.conn.SetDeadline(t)
151}
152
153// SetReadDeadline sets the read deadline on the underlying connection.
154// A zero value for t means Read will not time out.
155func (c *Conn) SetReadDeadline(t time.Time) error {
156	return c.conn.SetReadDeadline(t)
157}
158
159// SetWriteDeadline sets the write deadline on the underlying conneciton.
160// A zero value for t means Write will not time out.
161// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
162func (c *Conn) SetWriteDeadline(t time.Time) error {
163	return c.conn.SetWriteDeadline(t)
164}
165
166// A halfConn represents one direction of the record layer
167// connection, either sending or receiving.
168type halfConn struct {
169	sync.Mutex
170
171	err         error  // first permanent error
172	version     uint16 // protocol version
173	wireVersion uint16 // wire version
174	isDTLS      bool
175	cipher      interface{} // cipher algorithm
176	mac         macFunction
177	seq         [8]byte // 64-bit sequence number
178	outSeq      [8]byte // Mapped sequence number
179	bfree       *block  // list of free blocks
180
181	nextCipher interface{} // next encryption state
182	nextMac    macFunction // next MAC algorithm
183	nextSeq    [6]byte     // next epoch's starting sequence number in DTLS
184
185	// used to save allocating a new buffer for each MAC.
186	inDigestBuf, outDigestBuf []byte
187
188	trafficSecret []byte
189
190	config *Config
191}
192
193func (hc *halfConn) setErrorLocked(err error) error {
194	hc.err = err
195	return err
196}
197
198func (hc *halfConn) error() error {
199	// This should be locked, but I've removed it for the renegotiation
200	// tests since we don't concurrently read and write the same tls.Conn
201	// in any case during testing.
202	err := hc.err
203	return err
204}
205
206// prepareCipherSpec sets the encryption and MAC states
207// that a subsequent changeCipherSpec will use.
208func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
209	hc.wireVersion = version
210	protocolVersion, ok := wireToVersion(version, hc.isDTLS)
211	if !ok {
212		panic("TLS: unknown version")
213	}
214	hc.version = protocolVersion
215	hc.nextCipher = cipher
216	hc.nextMac = mac
217}
218
219// changeCipherSpec changes the encryption and MAC states
220// to the ones previously passed to prepareCipherSpec.
221func (hc *halfConn) changeCipherSpec(config *Config) error {
222	if hc.nextCipher == nil {
223		return alertInternalError
224	}
225	hc.cipher = hc.nextCipher
226	hc.mac = hc.nextMac
227	hc.nextCipher = nil
228	hc.nextMac = nil
229	hc.config = config
230	hc.incEpoch()
231
232	if config.Bugs.NullAllCiphers {
233		hc.cipher = nullCipher{}
234		hc.mac = nil
235	}
236	return nil
237}
238
239// useTrafficSecret sets the current cipher state for TLS 1.3.
240func (hc *halfConn) useTrafficSecret(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) {
241	hc.wireVersion = version
242	protocolVersion, ok := wireToVersion(version, hc.isDTLS)
243	if !ok {
244		panic("TLS: unknown version")
245	}
246	hc.version = protocolVersion
247	hc.cipher = deriveTrafficAEAD(version, suite, secret, side)
248	if hc.config.Bugs.NullAllCiphers {
249		hc.cipher = nullCipher{}
250	}
251	hc.trafficSecret = secret
252	hc.incEpoch()
253}
254
255// resetCipher changes the cipher state back to no encryption to be able
256// to send an unencrypted ClientHello in response to HelloRetryRequest
257// after 0-RTT data was rejected.
258func (hc *halfConn) resetCipher() {
259	hc.cipher = nil
260	hc.incEpoch()
261}
262
263// incSeq increments the sequence number.
264func (hc *halfConn) incSeq(isOutgoing bool) {
265	limit := 0
266	increment := uint64(1)
267	if hc.isDTLS {
268		// Increment up to the epoch in DTLS.
269		limit = 2
270	}
271	for i := 7; i >= limit; i-- {
272		increment += uint64(hc.seq[i])
273		hc.seq[i] = byte(increment)
274		increment >>= 8
275	}
276
277	// Not allowed to let sequence number wrap.
278	// Instead, must renegotiate before it does.
279	// Not likely enough to bother.
280	if increment != 0 {
281		panic("TLS: sequence number wraparound")
282	}
283
284	hc.updateOutSeq()
285}
286
287// incNextSeq increments the starting sequence number for the next epoch.
288func (hc *halfConn) incNextSeq() {
289	for i := len(hc.nextSeq) - 1; i >= 0; i-- {
290		hc.nextSeq[i]++
291		if hc.nextSeq[i] != 0 {
292			return
293		}
294	}
295	panic("TLS: sequence number wraparound")
296}
297
298// incEpoch resets the sequence number. In DTLS, it also increments the epoch
299// half of the sequence number.
300func (hc *halfConn) incEpoch() {
301	if hc.isDTLS {
302		for i := 1; i >= 0; i-- {
303			hc.seq[i]++
304			if hc.seq[i] != 0 {
305				break
306			}
307			if i == 0 {
308				panic("TLS: epoch number wraparound")
309			}
310		}
311		copy(hc.seq[2:], hc.nextSeq[:])
312		for i := range hc.nextSeq {
313			hc.nextSeq[i] = 0
314		}
315	} else {
316		for i := range hc.seq {
317			hc.seq[i] = 0
318		}
319	}
320
321	hc.updateOutSeq()
322}
323
324func (hc *halfConn) updateOutSeq() {
325	if hc.config.Bugs.SequenceNumberMapping != nil {
326		seqU64 := binary.BigEndian.Uint64(hc.seq[:])
327		seqU64 = hc.config.Bugs.SequenceNumberMapping(seqU64)
328		binary.BigEndian.PutUint64(hc.outSeq[:], seqU64)
329
330		// The DTLS epoch cannot be changed.
331		copy(hc.outSeq[:2], hc.seq[:2])
332		return
333	}
334
335	copy(hc.outSeq[:], hc.seq[:])
336}
337
338func (hc *halfConn) recordHeaderLen() int {
339	if hc.isDTLS {
340		return dtlsRecordHeaderLen
341	}
342	return tlsRecordHeaderLen
343}
344
345// removePadding returns an unpadded slice, in constant time, which is a prefix
346// of the input. It also returns a byte which is equal to 255 if the padding
347// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
348func removePadding(payload []byte) ([]byte, byte) {
349	if len(payload) < 1 {
350		return payload, 0
351	}
352
353	paddingLen := payload[len(payload)-1]
354	t := uint(len(payload)-1) - uint(paddingLen)
355	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
356	good := byte(int32(^t) >> 31)
357
358	toCheck := 255 // the maximum possible padding length
359	// The length of the padded data is public, so we can use an if here
360	if toCheck+1 > len(payload) {
361		toCheck = len(payload) - 1
362	}
363
364	for i := 0; i < toCheck; i++ {
365		t := uint(paddingLen) - uint(i)
366		// if i <= paddingLen then the MSB of t is zero
367		mask := byte(int32(^t) >> 31)
368		b := payload[len(payload)-1-i]
369		good &^= mask&paddingLen ^ mask&b
370	}
371
372	// We AND together the bits of good and replicate the result across
373	// all the bits.
374	good &= good << 4
375	good &= good << 2
376	good &= good << 1
377	good = uint8(int8(good) >> 7)
378
379	toRemove := good&paddingLen + 1
380	return payload[:len(payload)-int(toRemove)], good
381}
382
383// removePaddingSSL30 is a replacement for removePadding in the case that the
384// protocol version is SSLv3. In this version, the contents of the padding
385// are random and cannot be checked.
386func removePaddingSSL30(payload []byte) ([]byte, byte) {
387	if len(payload) < 1 {
388		return payload, 0
389	}
390
391	paddingLen := int(payload[len(payload)-1]) + 1
392	if paddingLen > len(payload) {
393		return payload, 0
394	}
395
396	return payload[:len(payload)-paddingLen], 255
397}
398
399func roundUp(a, b int) int {
400	return a + (b-a%b)%b
401}
402
403// cbcMode is an interface for block ciphers using cipher block chaining.
404type cbcMode interface {
405	cipher.BlockMode
406	SetIV([]byte)
407}
408
409// decrypt checks and strips the mac and decrypts the data in b. Returns a
410// success boolean, the number of bytes to skip from the start of the record in
411// order to get the application payload, the encrypted record type (or 0
412// if there is none), and an optional alert value.
413func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, contentType recordType, alertValue alert) {
414	recordHeaderLen := hc.recordHeaderLen()
415
416	// pull out payload
417	payload := b.data[recordHeaderLen:]
418
419	macSize := 0
420	if hc.mac != nil {
421		macSize = hc.mac.Size()
422	}
423
424	paddingGood := byte(255)
425	explicitIVLen := 0
426
427	seq := hc.seq[:]
428	if hc.isDTLS {
429		// DTLS sequence numbers are explicit.
430		seq = b.data[3:11]
431	}
432
433	// decrypt
434	if hc.cipher != nil {
435		switch c := hc.cipher.(type) {
436		case cipher.Stream:
437			c.XORKeyStream(payload, payload)
438		case *tlsAead:
439			nonce := seq
440			if c.explicitNonce {
441				explicitIVLen = 8
442				if len(payload) < explicitIVLen {
443					return false, 0, 0, alertBadRecordMAC
444				}
445				nonce = payload[:8]
446				payload = payload[8:]
447			}
448
449			var additionalData []byte
450			if hc.version < VersionTLS13 {
451				additionalData = make([]byte, 13)
452				copy(additionalData, seq)
453				copy(additionalData[8:], b.data[:3])
454				n := len(payload) - c.Overhead()
455				additionalData[11] = byte(n >> 8)
456				additionalData[12] = byte(n)
457			} else {
458				additionalData = b.data[:recordHeaderLen]
459			}
460			var err error
461			payload, err = c.Open(payload[:0], nonce, payload, additionalData)
462			if err != nil {
463				return false, 0, 0, alertBadRecordMAC
464			}
465			b.resize(recordHeaderLen + explicitIVLen + len(payload))
466		case cbcMode:
467			blockSize := c.BlockSize()
468			if hc.version >= VersionTLS11 || hc.isDTLS {
469				explicitIVLen = blockSize
470			}
471
472			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
473				return false, 0, 0, alertBadRecordMAC
474			}
475
476			if explicitIVLen > 0 {
477				c.SetIV(payload[:explicitIVLen])
478				payload = payload[explicitIVLen:]
479			}
480			c.CryptBlocks(payload, payload)
481			if hc.version == VersionSSL30 {
482				payload, paddingGood = removePaddingSSL30(payload)
483			} else {
484				payload, paddingGood = removePadding(payload)
485			}
486			b.resize(recordHeaderLen + explicitIVLen + len(payload))
487
488			// note that we still have a timing side-channel in the
489			// MAC check, below. An attacker can align the record
490			// so that a correct padding will cause one less hash
491			// block to be calculated. Then they can iteratively
492			// decrypt a record by breaking each byte. See
493			// "Password Interception in a SSL/TLS Channel", Brice
494			// Canvel et al.
495			//
496			// However, our behavior matches OpenSSL, so we leak
497			// only as much as they do.
498		case nullCipher:
499			break
500		default:
501			panic("unknown cipher type")
502		}
503
504		if hc.version >= VersionTLS13 {
505			i := len(payload)
506			for i > 0 && payload[i-1] == 0 {
507				i--
508			}
509			payload = payload[:i]
510			if len(payload) == 0 {
511				return false, 0, 0, alertUnexpectedMessage
512			}
513			contentType = recordType(payload[len(payload)-1])
514			payload = payload[:len(payload)-1]
515			b.resize(recordHeaderLen + len(payload))
516		}
517	}
518
519	// check, strip mac
520	if hc.mac != nil {
521		if len(payload) < macSize {
522			return false, 0, 0, alertBadRecordMAC
523		}
524
525		// strip mac off payload, b.data
526		n := len(payload) - macSize
527		b.data[recordHeaderLen-2] = byte(n >> 8)
528		b.data[recordHeaderLen-1] = byte(n)
529		b.resize(recordHeaderLen + explicitIVLen + n)
530		remoteMAC := payload[n:]
531		localMAC := hc.mac.MAC(hc.inDigestBuf, seq, b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], payload[:n])
532
533		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
534			return false, 0, 0, alertBadRecordMAC
535		}
536		hc.inDigestBuf = localMAC
537	}
538	hc.incSeq(false)
539
540	return true, recordHeaderLen + explicitIVLen, contentType, 0
541}
542
543// padToBlockSize calculates the needed padding block, if any, for a payload.
544// On exit, prefix aliases payload and extends to the end of the last full
545// block of payload. finalBlock is a fresh slice which contains the contents of
546// any suffix of payload as well as the needed padding to make finalBlock a
547// full block.
548func padToBlockSize(payload []byte, blockSize int, config *Config) (prefix, finalBlock []byte) {
549	overrun := len(payload) % blockSize
550	prefix = payload[:len(payload)-overrun]
551
552	paddingLen := blockSize - overrun
553	finalSize := blockSize
554	if config.Bugs.MaxPadding {
555		for paddingLen+blockSize <= 256 {
556			paddingLen += blockSize
557		}
558		finalSize = 256
559	}
560	finalBlock = make([]byte, finalSize)
561	for i := range finalBlock {
562		finalBlock[i] = byte(paddingLen - 1)
563	}
564	if config.Bugs.PaddingFirstByteBad || config.Bugs.PaddingFirstByteBadIf255 && paddingLen == 256 {
565		finalBlock[overrun] ^= 0xff
566	}
567	copy(finalBlock, payload[len(payload)-overrun:])
568	return
569}
570
571// encrypt encrypts and macs the data in b.
572func (hc *halfConn) encrypt(b *block, explicitIVLen int, typ recordType) (bool, alert) {
573	recordHeaderLen := hc.recordHeaderLen()
574
575	// mac
576	if hc.mac != nil {
577		mac := hc.mac.MAC(hc.outDigestBuf, hc.outSeq[0:], b.data[:3], b.data[recordHeaderLen-2:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
578
579		n := len(b.data)
580		b.resize(n + len(mac))
581		copy(b.data[n:], mac)
582		hc.outDigestBuf = mac
583	}
584
585	payload := b.data[recordHeaderLen:]
586
587	// encrypt
588	if hc.cipher != nil {
589		// Add TLS 1.3 padding.
590		if hc.version >= VersionTLS13 {
591			paddingLen := hc.config.Bugs.RecordPadding
592			if hc.config.Bugs.OmitRecordContents {
593				b.resize(recordHeaderLen + paddingLen)
594			} else {
595				b.resize(len(b.data) + 1 + paddingLen)
596				b.data[len(b.data)-paddingLen-1] = byte(typ)
597			}
598			for i := 0; i < paddingLen; i++ {
599				b.data[len(b.data)-paddingLen+i] = 0
600			}
601		}
602
603		switch c := hc.cipher.(type) {
604		case cipher.Stream:
605			c.XORKeyStream(payload, payload)
606		case *tlsAead:
607			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
608			b.resize(len(b.data) + c.Overhead())
609			nonce := hc.outSeq[:]
610			if c.explicitNonce {
611				nonce = b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
612			}
613			payload := b.data[recordHeaderLen+explicitIVLen:]
614			payload = payload[:payloadLen]
615
616			var additionalData []byte
617			if hc.version < VersionTLS13 {
618				additionalData = make([]byte, 13)
619				copy(additionalData, hc.outSeq[:])
620				copy(additionalData[8:], b.data[:3])
621				additionalData[11] = byte(payloadLen >> 8)
622				additionalData[12] = byte(payloadLen)
623			} else {
624				additionalData = make([]byte, 5)
625				copy(additionalData, b.data[:3])
626				n := len(b.data) - recordHeaderLen
627				additionalData[3] = byte(n >> 8)
628				additionalData[4] = byte(n)
629			}
630
631			c.Seal(payload[:0], nonce, payload, additionalData)
632		case cbcMode:
633			blockSize := c.BlockSize()
634			if explicitIVLen > 0 {
635				c.SetIV(payload[:explicitIVLen])
636				payload = payload[explicitIVLen:]
637			}
638			prefix, finalBlock := padToBlockSize(payload, blockSize, hc.config)
639			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
640			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
641			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
642		case nullCipher:
643			break
644		default:
645			panic("unknown cipher type")
646		}
647	}
648
649	// update length to include MAC and any block padding needed.
650	n := len(b.data) - recordHeaderLen
651	b.data[recordHeaderLen-2] = byte(n >> 8)
652	b.data[recordHeaderLen-1] = byte(n)
653	hc.incSeq(true)
654
655	return true, 0
656}
657
658// A block is a simple data buffer.
659type block struct {
660	data []byte
661	off  int // index for Read
662	link *block
663}
664
665// resize resizes block to be n bytes, growing if necessary.
666func (b *block) resize(n int) {
667	if n > cap(b.data) {
668		b.reserve(n)
669	}
670	b.data = b.data[0:n]
671}
672
673// reserve makes sure that block contains a capacity of at least n bytes.
674func (b *block) reserve(n int) {
675	if cap(b.data) >= n {
676		return
677	}
678	m := cap(b.data)
679	if m == 0 {
680		m = 1024
681	}
682	for m < n {
683		m *= 2
684	}
685	data := make([]byte, len(b.data), m)
686	copy(data, b.data)
687	b.data = data
688}
689
690// readFromUntil reads from r into b until b contains at least n bytes
691// or else returns an error.
692func (b *block) readFromUntil(r io.Reader, n int) error {
693	// quick case
694	if len(b.data) >= n {
695		return nil
696	}
697
698	// read until have enough.
699	b.reserve(n)
700	for {
701		m, err := r.Read(b.data[len(b.data):cap(b.data)])
702		b.data = b.data[0 : len(b.data)+m]
703		if len(b.data) >= n {
704			// TODO(bradfitz,agl): slightly suspicious
705			// that we're throwing away r.Read's err here.
706			break
707		}
708		if err != nil {
709			return err
710		}
711	}
712	return nil
713}
714
715func (b *block) Read(p []byte) (n int, err error) {
716	n = copy(p, b.data[b.off:])
717	b.off += n
718	return
719}
720
721// newBlock allocates a new block, from hc's free list if possible.
722func (hc *halfConn) newBlock() *block {
723	b := hc.bfree
724	if b == nil {
725		return new(block)
726	}
727	hc.bfree = b.link
728	b.link = nil
729	b.resize(0)
730	return b
731}
732
733// freeBlock returns a block to hc's free list.
734// The protocol is such that each side only has a block or two on
735// its free list at a time, so there's no need to worry about
736// trimming the list, etc.
737func (hc *halfConn) freeBlock(b *block) {
738	b.link = hc.bfree
739	hc.bfree = b
740}
741
742// splitBlock splits a block after the first n bytes,
743// returning a block with those n bytes and a
744// block with the remainder.  the latter may be nil.
745func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
746	if len(b.data) <= n {
747		return b, nil
748	}
749	bb := hc.newBlock()
750	bb.resize(len(b.data) - n)
751	copy(bb.data, b.data[n:])
752	b.data = b.data[0:n]
753	return b, bb
754}
755
756func (c *Conn) useInTrafficSecret(version uint16, suite *cipherSuite, secret []byte) error {
757	if c.hand.Len() != 0 {
758		return c.in.setErrorLocked(errors.New("tls: buffered handshake messages on cipher change"))
759	}
760	side := serverWrite
761	if !c.isClient {
762		side = clientWrite
763	}
764	c.in.useTrafficSecret(version, suite, secret, side)
765	c.seenHandshakePackEnd = false
766	return nil
767}
768
769func (c *Conn) useOutTrafficSecret(version uint16, suite *cipherSuite, secret []byte) {
770	side := serverWrite
771	if c.isClient {
772		side = clientWrite
773	}
774	c.out.useTrafficSecret(version, suite, secret, side)
775}
776
777func (c *Conn) doReadRecord(want recordType) (recordType, *block, error) {
778RestartReadRecord:
779	if c.isDTLS {
780		return c.dtlsDoReadRecord(want)
781	}
782
783	recordHeaderLen := c.in.recordHeaderLen()
784
785	if c.rawInput == nil {
786		c.rawInput = c.in.newBlock()
787	}
788	b := c.rawInput
789
790	// Read header, payload.
791	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
792		// RFC suggests that EOF without an alertCloseNotify is
793		// an error, but popular web sites seem to do this,
794		// so we can't make it an error, outside of tests.
795		if err == io.EOF && c.config.Bugs.ExpectCloseNotify {
796			err = io.ErrUnexpectedEOF
797		}
798		if e, ok := err.(net.Error); !ok || !e.Temporary() {
799			c.in.setErrorLocked(err)
800		}
801		return 0, nil, err
802	}
803
804	typ := recordType(b.data[0])
805
806	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
807	// start with a uint16 length where the MSB is set and the first record
808	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
809	// an SSLv2 client.
810	if want == recordTypeHandshake && typ == 0x80 {
811		c.sendAlert(alertProtocolVersion)
812		return 0, nil, c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
813	}
814
815	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
816	n := int(b.data[3])<<8 | int(b.data[4])
817
818	// Alerts sent near version negotiation do not have a well-defined
819	// record-layer version prior to TLS 1.3. (In TLS 1.3, the record-layer
820	// version is irrelevant.)
821	if typ != recordTypeAlert {
822		var expect uint16
823		if c.haveVers {
824			expect = c.vers
825			if c.vers >= VersionTLS13 {
826				expect = VersionTLS12
827			}
828		} else {
829			expect = c.config.Bugs.ExpectInitialRecordVersion
830		}
831		if expect != 0 && vers != expect {
832			c.sendAlert(alertProtocolVersion)
833			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, expect))
834		}
835	}
836	if n > maxCiphertext {
837		c.sendAlert(alertRecordOverflow)
838		return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
839	}
840	if !c.haveVers {
841		// First message, be extra suspicious:
842		// this might not be a TLS client.
843		// Bail out before reading a full 'body', if possible.
844		// The current max version is 3.1.
845		// If the version is >= 16.0, it's probably not real.
846		// Similarly, a clientHello message encodes in
847		// well under a kilobyte.  If the length is >= 12 kB,
848		// it's probably not real.
849		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
850			c.sendAlert(alertUnexpectedMessage)
851			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
852		}
853	}
854	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
855		if err == io.EOF {
856			err = io.ErrUnexpectedEOF
857		}
858		if e, ok := err.(net.Error); !ok || !e.Temporary() {
859			c.in.setErrorLocked(err)
860		}
861		return 0, nil, err
862	}
863
864	// Process message.
865	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
866	ok, off, encTyp, alertValue := c.in.decrypt(b)
867
868	// Handle skipping over early data.
869	if !ok && c.skipEarlyData {
870		goto RestartReadRecord
871	}
872
873	// If the server is expecting a second ClientHello (in response to
874	// a HelloRetryRequest) and the client sends early data, there
875	// won't be a decryption failure but it still needs to be skipped.
876	if c.in.cipher == nil && typ == recordTypeApplicationData && c.skipEarlyData {
877		goto RestartReadRecord
878	}
879
880	if !ok {
881		return 0, nil, c.in.setErrorLocked(c.sendAlert(alertValue))
882	}
883	b.off = off
884	c.skipEarlyData = false
885
886	if c.vers >= VersionTLS13 && c.in.cipher != nil {
887		if typ != recordTypeApplicationData {
888			return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: outer record type is not application data"))
889		}
890		typ = encTyp
891	}
892
893	length := len(b.data[b.off:])
894	if c.config.Bugs.ExpectRecordSplitting && typ == recordTypeApplicationData && length != 1 && !c.seenOneByteRecord {
895		return 0, nil, c.in.setErrorLocked(fmt.Errorf("tls: application data records were not split"))
896	}
897
898	c.seenOneByteRecord = typ == recordTypeApplicationData && length == 1
899	return typ, b, nil
900}
901
902func (c *Conn) readTLS13ChangeCipherSpec() error {
903	if !c.expectTLS13ChangeCipherSpec {
904		panic("c.expectTLS13ChangeCipherSpec not set")
905	}
906
907	// Read the ChangeCipherSpec.
908	if c.rawInput == nil {
909		c.rawInput = c.in.newBlock()
910	}
911	b := c.rawInput
912	if err := b.readFromUntil(c.conn, 1); err != nil {
913		return c.in.setErrorLocked(fmt.Errorf("tls: error reading TLS 1.3 ChangeCipherSpec: %s", err))
914	}
915	if recordType(b.data[0]) == recordTypeAlert {
916		// If the client is sending an alert, allow the ChangeCipherSpec
917		// to be skipped. It may be rejecting a sufficiently malformed
918		// ServerHello that it can't parse out the version.
919		c.expectTLS13ChangeCipherSpec = false
920		return nil
921	}
922	if err := b.readFromUntil(c.conn, 6); err != nil {
923		return c.in.setErrorLocked(fmt.Errorf("tls: error reading TLS 1.3 ChangeCipherSpec: %s", err))
924	}
925
926	// Check they match that we expect.
927	expected := [6]byte{byte(recordTypeChangeCipherSpec), 3, 1, 0, 1, 1}
928	if c.vers >= VersionTLS13 {
929		expected[2] = 3
930	}
931	if !bytes.Equal(b.data[:6], expected[:]) {
932		return c.in.setErrorLocked(fmt.Errorf("tls: error invalid TLS 1.3 ChangeCipherSpec: %x", b.data[:6]))
933	}
934
935	// Discard the data.
936	b, c.rawInput = c.in.splitBlock(b, 6)
937	c.in.freeBlock(b)
938
939	c.expectTLS13ChangeCipherSpec = false
940	return nil
941}
942
943// readRecord reads the next TLS record from the connection
944// and updates the record layer state.
945// c.in.Mutex <= L; c.input == nil.
946func (c *Conn) readRecord(want recordType) error {
947	// Caller must be in sync with connection:
948	// handshake data if handshake not yet completed,
949	// else application data.
950	switch want {
951	default:
952		c.sendAlert(alertInternalError)
953		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
954	case recordTypeChangeCipherSpec:
955		if c.handshakeComplete {
956			c.sendAlert(alertInternalError)
957			return c.in.setErrorLocked(errors.New("tls: ChangeCipherSpec requested after handshake complete"))
958		}
959	case recordTypeApplicationData, recordTypeAlert, recordTypeHandshake:
960		break
961	}
962
963	if c.expectTLS13ChangeCipherSpec {
964		if err := c.readTLS13ChangeCipherSpec(); err != nil {
965			return err
966		}
967	}
968
969Again:
970	typ, b, err := c.doReadRecord(want)
971	if err != nil {
972		return err
973	}
974	data := b.data[b.off:]
975	max := maxPlaintext
976	if c.config.Bugs.MaxReceivePlaintext != 0 {
977		max = c.config.Bugs.MaxReceivePlaintext
978	}
979	if len(data) > max {
980		err := c.sendAlert(alertRecordOverflow)
981		c.in.freeBlock(b)
982		return c.in.setErrorLocked(err)
983	}
984
985	if typ != recordTypeHandshake {
986		c.seenHandshakePackEnd = false
987	} else if c.seenHandshakePackEnd {
988		c.in.freeBlock(b)
989		return c.in.setErrorLocked(errors.New("tls: peer violated ExpectPackedEncryptedHandshake"))
990	}
991
992	switch typ {
993	default:
994		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
995
996	case recordTypeAlert:
997		if len(data) != 2 {
998			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
999			break
1000		}
1001		if alert(data[1]) == alertCloseNotify {
1002			c.in.setErrorLocked(io.EOF)
1003			break
1004		}
1005		switch data[0] {
1006		case alertLevelWarning:
1007			if alert(data[1]) == alertNoCertificate {
1008				c.in.freeBlock(b)
1009				return errNoCertificateAlert
1010			}
1011			if alert(data[1]) == alertEndOfEarlyData {
1012				c.in.freeBlock(b)
1013				return errEndOfEarlyDataAlert
1014			}
1015
1016			// drop on the floor
1017			c.in.freeBlock(b)
1018			goto Again
1019		case alertLevelError:
1020			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
1021		default:
1022			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1023		}
1024
1025	case recordTypeChangeCipherSpec:
1026		if typ != want || len(data) != 1 || data[0] != 1 {
1027			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1028			break
1029		}
1030		if c.hand.Len() != 0 {
1031			c.in.setErrorLocked(errors.New("tls: buffered handshake messages on cipher change"))
1032			break
1033		}
1034		if err := c.in.changeCipherSpec(c.config); err != nil {
1035			c.in.setErrorLocked(c.sendAlert(err.(alert)))
1036		}
1037
1038	case recordTypeApplicationData:
1039		if typ != want {
1040			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1041			break
1042		}
1043		c.input = b
1044		b = nil
1045
1046	case recordTypeHandshake:
1047		// Allow handshake data while reading application data to
1048		// trigger post-handshake messages.
1049		// TODO(rsc): Should at least pick off connection close.
1050		if typ != want && want != recordTypeApplicationData {
1051			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
1052		}
1053		c.hand.Write(data)
1054		if pack := c.config.Bugs.ExpectPackedEncryptedHandshake; pack > 0 && len(data) < pack && c.out.cipher != nil {
1055			c.seenHandshakePackEnd = true
1056		}
1057	}
1058
1059	if b != nil {
1060		c.in.freeBlock(b)
1061	}
1062	return c.in.err
1063}
1064
1065// sendAlert sends a TLS alert message.
1066// c.out.Mutex <= L.
1067func (c *Conn) sendAlertLocked(level byte, err alert) error {
1068	c.tmp[0] = level
1069	c.tmp[1] = byte(err)
1070	if c.config.Bugs.FragmentAlert {
1071		c.writeRecord(recordTypeAlert, c.tmp[0:1])
1072		c.writeRecord(recordTypeAlert, c.tmp[1:2])
1073	} else if c.config.Bugs.DoubleAlert {
1074		copy(c.tmp[2:4], c.tmp[0:2])
1075		c.writeRecord(recordTypeAlert, c.tmp[0:4])
1076	} else {
1077		c.writeRecord(recordTypeAlert, c.tmp[0:2])
1078	}
1079	// Error alerts are fatal to the connection.
1080	if level == alertLevelError {
1081		return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
1082	}
1083	return nil
1084}
1085
1086// sendAlert sends a TLS alert message.
1087// L < c.out.Mutex.
1088func (c *Conn) sendAlert(err alert) error {
1089	level := byte(alertLevelError)
1090	if err == alertNoRenegotiation || err == alertCloseNotify || err == alertNoCertificate || err == alertEndOfEarlyData {
1091		level = alertLevelWarning
1092	}
1093	return c.SendAlert(level, err)
1094}
1095
1096func (c *Conn) SendAlert(level byte, err alert) error {
1097	c.out.Lock()
1098	defer c.out.Unlock()
1099	return c.sendAlertLocked(level, err)
1100}
1101
1102// writeV2Record writes a record for a V2ClientHello.
1103func (c *Conn) writeV2Record(data []byte) (n int, err error) {
1104	record := make([]byte, 2+len(data))
1105	record[0] = uint8(len(data)>>8) | 0x80
1106	record[1] = uint8(len(data))
1107	copy(record[2:], data)
1108	return c.conn.Write(record)
1109}
1110
1111// writeRecord writes a TLS record with the given type and payload
1112// to the connection and updates the record layer state.
1113// c.out.Mutex <= L.
1114func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
1115	c.seenHandshakePackEnd = false
1116	if typ == recordTypeHandshake {
1117		msgType := data[0]
1118		if c.config.Bugs.SendWrongMessageType != 0 && msgType == c.config.Bugs.SendWrongMessageType {
1119			msgType += 42
1120		} else if msgType == typeServerHello && c.config.Bugs.SendServerHelloAsHelloRetryRequest {
1121			msgType = typeHelloRetryRequest
1122		}
1123		if msgType != data[0] {
1124			newData := make([]byte, len(data))
1125			copy(newData, data)
1126			newData[0] = msgType
1127			data = newData
1128		}
1129
1130		if c.config.Bugs.SendTrailingMessageData != 0 && msgType == c.config.Bugs.SendTrailingMessageData {
1131			newData := make([]byte, len(data))
1132			copy(newData, data)
1133
1134			// Add a 0 to the body.
1135			newData = append(newData, 0)
1136			// Fix the header.
1137			newLen := len(newData) - 4
1138			newData[1] = byte(newLen >> 16)
1139			newData[2] = byte(newLen >> 8)
1140			newData[3] = byte(newLen)
1141
1142			data = newData
1143		}
1144	}
1145
1146	if c.isDTLS {
1147		return c.dtlsWriteRecord(typ, data)
1148	}
1149
1150	if typ == recordTypeHandshake {
1151		if c.config.Bugs.SendHelloRequestBeforeEveryHandshakeMessage {
1152			newData := make([]byte, 0, 4+len(data))
1153			newData = append(newData, typeHelloRequest, 0, 0, 0)
1154			newData = append(newData, data...)
1155			data = newData
1156		}
1157
1158		if c.config.Bugs.PackHandshakeFlight {
1159			c.pendingFlight.Write(data)
1160			return len(data), nil
1161		}
1162	}
1163
1164	// Flush buffered data before writing anything.
1165	if err := c.flushHandshake(); err != nil {
1166		return 0, err
1167	}
1168
1169	if typ == recordTypeApplicationData && c.config.Bugs.SendPostHandshakeChangeCipherSpec {
1170		if _, err := c.doWriteRecord(recordTypeChangeCipherSpec, []byte{1}); err != nil {
1171			return 0, err
1172		}
1173	}
1174
1175	return c.doWriteRecord(typ, data)
1176}
1177
1178func (c *Conn) doWriteRecord(typ recordType, data []byte) (n int, err error) {
1179	recordHeaderLen := c.out.recordHeaderLen()
1180	b := c.out.newBlock()
1181	first := true
1182	isClientHello := typ == recordTypeHandshake && len(data) > 0 && data[0] == typeClientHello
1183	for len(data) > 0 || first {
1184		m := len(data)
1185		if m > maxPlaintext && !c.config.Bugs.SendLargeRecords {
1186			m = maxPlaintext
1187		}
1188		if typ == recordTypeHandshake && c.config.Bugs.MaxHandshakeRecordLength > 0 && m > c.config.Bugs.MaxHandshakeRecordLength {
1189			m = c.config.Bugs.MaxHandshakeRecordLength
1190			// By default, do not fragment the client_version or
1191			// server_version, which are located in the first 6
1192			// bytes.
1193			if first && isClientHello && !c.config.Bugs.FragmentClientVersion && m < 6 {
1194				m = 6
1195			}
1196		}
1197		explicitIVLen := 0
1198		explicitIVIsSeq := false
1199		first = false
1200
1201		var cbc cbcMode
1202		if c.out.version >= VersionTLS11 {
1203			var ok bool
1204			if cbc, ok = c.out.cipher.(cbcMode); ok {
1205				explicitIVLen = cbc.BlockSize()
1206			}
1207		}
1208		if explicitIVLen == 0 {
1209			if aead, ok := c.out.cipher.(*tlsAead); ok && aead.explicitNonce {
1210				explicitIVLen = 8
1211				// The AES-GCM construction in TLS has an
1212				// explicit nonce so that the nonce can be
1213				// random. However, the nonce is only 8 bytes
1214				// which is too small for a secure, random
1215				// nonce. Therefore we use the sequence number
1216				// as the nonce.
1217				explicitIVIsSeq = true
1218			}
1219		}
1220		b.resize(recordHeaderLen + explicitIVLen + m)
1221		b.data[0] = byte(typ)
1222		if c.vers >= VersionTLS13 && c.out.cipher != nil {
1223			b.data[0] = byte(recordTypeApplicationData)
1224			if outerType := c.config.Bugs.OuterRecordType; outerType != 0 {
1225				b.data[0] = byte(outerType)
1226			}
1227		}
1228		vers := c.vers
1229		if vers == 0 {
1230			// Some TLS servers fail if the record version is
1231			// greater than TLS 1.0 for the initial ClientHello.
1232			//
1233			// TLS 1.3 fixes the version number in the record
1234			// layer to {3, 1}.
1235			vers = VersionTLS10
1236		}
1237		if c.vers >= VersionTLS13 || c.out.version >= VersionTLS13 {
1238			vers = VersionTLS12
1239		}
1240
1241		if c.config.Bugs.SendRecordVersion != 0 {
1242			vers = c.config.Bugs.SendRecordVersion
1243		}
1244		if c.vers == 0 && c.config.Bugs.SendInitialRecordVersion != 0 {
1245			vers = c.config.Bugs.SendInitialRecordVersion
1246		}
1247		b.data[1] = byte(vers >> 8)
1248		b.data[2] = byte(vers)
1249		b.data[3] = byte(m >> 8)
1250		b.data[4] = byte(m)
1251		if explicitIVLen > 0 {
1252			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
1253			if explicitIVIsSeq {
1254				copy(explicitIV, c.out.seq[:])
1255			} else {
1256				if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
1257					break
1258				}
1259			}
1260		}
1261		copy(b.data[recordHeaderLen+explicitIVLen:], data)
1262		c.out.encrypt(b, explicitIVLen, typ)
1263		_, err = c.conn.Write(b.data)
1264		if err != nil {
1265			break
1266		}
1267		n += m
1268		data = data[m:]
1269	}
1270	c.out.freeBlock(b)
1271
1272	if typ == recordTypeChangeCipherSpec && c.vers < VersionTLS13 {
1273		err = c.out.changeCipherSpec(c.config)
1274		if err != nil {
1275			return n, c.sendAlertLocked(alertLevelError, err.(alert))
1276		}
1277	}
1278	return
1279}
1280
1281func (c *Conn) flushHandshake() error {
1282	if c.isDTLS {
1283		return c.dtlsFlushHandshake()
1284	}
1285
1286	for c.pendingFlight.Len() > 0 {
1287		var buf [maxPlaintext]byte
1288		n, _ := c.pendingFlight.Read(buf[:])
1289		if _, err := c.doWriteRecord(recordTypeHandshake, buf[:n]); err != nil {
1290			return err
1291		}
1292	}
1293
1294	c.pendingFlight.Reset()
1295	return nil
1296}
1297
1298func (c *Conn) doReadHandshake() ([]byte, error) {
1299	if c.isDTLS {
1300		return c.dtlsDoReadHandshake()
1301	}
1302
1303	for c.hand.Len() < 4 {
1304		if err := c.in.err; err != nil {
1305			return nil, err
1306		}
1307		if err := c.readRecord(recordTypeHandshake); err != nil {
1308			return nil, err
1309		}
1310	}
1311
1312	data := c.hand.Bytes()
1313	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
1314	if n > maxHandshake {
1315		return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
1316	}
1317	for c.hand.Len() < 4+n {
1318		if err := c.in.err; err != nil {
1319			return nil, err
1320		}
1321		if err := c.readRecord(recordTypeHandshake); err != nil {
1322			return nil, err
1323		}
1324	}
1325	return c.hand.Next(4 + n), nil
1326}
1327
1328// readHandshake reads the next handshake message from
1329// the record layer.
1330// c.in.Mutex < L; c.out.Mutex < L.
1331func (c *Conn) readHandshake() (interface{}, error) {
1332	data, err := c.doReadHandshake()
1333	if err == errNoCertificateAlert {
1334		if c.hand.Len() != 0 {
1335			// The warning alert may not interleave with a handshake message.
1336			return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1337		}
1338		return new(ssl3NoCertificateMsg), nil
1339	}
1340	if err != nil {
1341		return nil, err
1342	}
1343
1344	var m handshakeMessage
1345	switch data[0] {
1346	case typeHelloRequest:
1347		m = new(helloRequestMsg)
1348	case typeClientHello:
1349		m = &clientHelloMsg{
1350			isDTLS: c.isDTLS,
1351		}
1352	case typeServerHello:
1353		m = &serverHelloMsg{
1354			isDTLS: c.isDTLS,
1355		}
1356	case typeHelloRetryRequest:
1357		m = new(helloRetryRequestMsg)
1358	case typeNewSessionTicket:
1359		m = &newSessionTicketMsg{
1360			vers:   c.wireVersion,
1361			isDTLS: c.isDTLS,
1362		}
1363	case typeEncryptedExtensions:
1364		m = new(encryptedExtensionsMsg)
1365	case typeCertificate:
1366		m = &certificateMsg{
1367			hasRequestContext: c.vers >= VersionTLS13,
1368		}
1369	case typeCompressedCertificate:
1370		m = new(compressedCertificateMsg)
1371	case typeCertificateRequest:
1372		m = &certificateRequestMsg{
1373			vers:                  c.wireVersion,
1374			hasSignatureAlgorithm: c.vers >= VersionTLS12,
1375			hasRequestContext:     c.vers >= VersionTLS13,
1376		}
1377	case typeCertificateStatus:
1378		m = new(certificateStatusMsg)
1379	case typeServerKeyExchange:
1380		m = new(serverKeyExchangeMsg)
1381	case typeServerHelloDone:
1382		m = new(serverHelloDoneMsg)
1383	case typeClientKeyExchange:
1384		m = new(clientKeyExchangeMsg)
1385	case typeCertificateVerify:
1386		m = &certificateVerifyMsg{
1387			hasSignatureAlgorithm: c.vers >= VersionTLS12,
1388		}
1389	case typeNextProtocol:
1390		m = new(nextProtoMsg)
1391	case typeFinished:
1392		m = new(finishedMsg)
1393	case typeHelloVerifyRequest:
1394		m = new(helloVerifyRequestMsg)
1395	case typeChannelID:
1396		m = new(channelIDMsg)
1397	case typeKeyUpdate:
1398		m = new(keyUpdateMsg)
1399	case typeEndOfEarlyData:
1400		m = new(endOfEarlyDataMsg)
1401	default:
1402		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
1403	}
1404
1405	// The handshake message unmarshallers
1406	// expect to be able to keep references to data,
1407	// so pass in a fresh copy that won't be overwritten.
1408	data = append([]byte(nil), data...)
1409
1410	if data[0] == typeServerHello && len(data) >= 38 {
1411		vers := uint16(data[4])<<8 | uint16(data[5])
1412		if vers == VersionTLS12 && bytes.Equal(data[6:38], tls13HelloRetryRequest) {
1413			m = new(helloRetryRequestMsg)
1414			m.(*helloRetryRequestMsg).isServerHello = true
1415		}
1416	}
1417
1418	if !m.unmarshal(data) {
1419		return nil, c.in.setErrorLocked(c.sendAlert(alertDecodeError))
1420	}
1421	return m, nil
1422}
1423
1424// skipPacket processes all the DTLS records in packet. It updates
1425// sequence number expectations but otherwise ignores them.
1426func (c *Conn) skipPacket(packet []byte) error {
1427	for len(packet) > 0 {
1428		if len(packet) < 13 {
1429			return errors.New("tls: bad packet")
1430		}
1431		// Dropped packets are completely ignored save to update
1432		// expected sequence numbers for this and the next epoch. (We
1433		// don't assert on the contents of the packets both for
1434		// simplicity and because a previous test with one shorter
1435		// timeout schedule would have done so.)
1436		epoch := packet[3:5]
1437		seq := packet[5:11]
1438		length := uint16(packet[11])<<8 | uint16(packet[12])
1439		if bytes.Equal(c.in.seq[:2], epoch) {
1440			if bytes.Compare(seq, c.in.seq[2:]) < 0 {
1441				return errors.New("tls: sequence mismatch")
1442			}
1443			copy(c.in.seq[2:], seq)
1444			c.in.incSeq(false)
1445		} else {
1446			if bytes.Compare(seq, c.in.nextSeq[:]) < 0 {
1447				return errors.New("tls: sequence mismatch")
1448			}
1449			copy(c.in.nextSeq[:], seq)
1450			c.in.incNextSeq()
1451		}
1452		if len(packet) < 13+int(length) {
1453			return errors.New("tls: bad packet")
1454		}
1455		packet = packet[13+length:]
1456	}
1457	return nil
1458}
1459
1460// simulatePacketLoss simulates the loss of a handshake leg from the
1461// peer based on the schedule in c.config.Bugs. If resendFunc is
1462// non-nil, it is called after each simulated timeout to retransmit
1463// handshake messages from the local end. This is used in cases where
1464// the peer retransmits on a stale Finished rather than a timeout.
1465func (c *Conn) simulatePacketLoss(resendFunc func()) error {
1466	if len(c.config.Bugs.TimeoutSchedule) == 0 {
1467		return nil
1468	}
1469	if !c.isDTLS {
1470		return errors.New("tls: TimeoutSchedule may only be set in DTLS")
1471	}
1472	if c.config.Bugs.PacketAdaptor == nil {
1473		return errors.New("tls: TimeoutSchedule set without PacketAdapter")
1474	}
1475	for _, timeout := range c.config.Bugs.TimeoutSchedule {
1476		// Simulate a timeout.
1477		packets, err := c.config.Bugs.PacketAdaptor.SendReadTimeout(timeout)
1478		if err != nil {
1479			return err
1480		}
1481		for _, packet := range packets {
1482			if err := c.skipPacket(packet); err != nil {
1483				return err
1484			}
1485		}
1486		if resendFunc != nil {
1487			resendFunc()
1488		}
1489	}
1490	return nil
1491}
1492
1493func (c *Conn) SendHalfHelloRequest() error {
1494	if err := c.Handshake(); err != nil {
1495		return err
1496	}
1497
1498	c.out.Lock()
1499	defer c.out.Unlock()
1500
1501	if _, err := c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0}); err != nil {
1502		return err
1503	}
1504	return c.flushHandshake()
1505}
1506
1507// Write writes data to the connection.
1508func (c *Conn) Write(b []byte) (int, error) {
1509	if err := c.Handshake(); err != nil {
1510		return 0, err
1511	}
1512
1513	c.out.Lock()
1514	defer c.out.Unlock()
1515
1516	if err := c.out.err; err != nil {
1517		return 0, err
1518	}
1519
1520	if !c.handshakeComplete {
1521		return 0, alertInternalError
1522	}
1523
1524	if c.keyUpdateRequested {
1525		if err := c.sendKeyUpdateLocked(keyUpdateNotRequested); err != nil {
1526			return 0, err
1527		}
1528		c.keyUpdateRequested = false
1529	}
1530
1531	if c.config.Bugs.SendSpuriousAlert != 0 {
1532		c.sendAlertLocked(alertLevelError, c.config.Bugs.SendSpuriousAlert)
1533	}
1534
1535	if c.config.Bugs.SendHelloRequestBeforeEveryAppDataRecord {
1536		c.writeRecord(recordTypeHandshake, []byte{typeHelloRequest, 0, 0, 0})
1537		c.flushHandshake()
1538	}
1539
1540	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
1541	// attack when using block mode ciphers due to predictable IVs.
1542	// This can be prevented by splitting each Application Data
1543	// record into two records, effectively randomizing the IV.
1544	//
1545	// http://www.openssl.org/~bodo/tls-cbc.txt
1546	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
1547	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
1548
1549	var m int
1550	if len(b) > 1 && c.vers <= VersionTLS10 && !c.isDTLS {
1551		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
1552			n, err := c.writeRecord(recordTypeApplicationData, b[:1])
1553			if err != nil {
1554				return n, c.out.setErrorLocked(err)
1555			}
1556			m, b = 1, b[1:]
1557		}
1558	}
1559
1560	n, err := c.writeRecord(recordTypeApplicationData, b)
1561	return n + m, c.out.setErrorLocked(err)
1562}
1563
1564func (c *Conn) processTLS13NewSessionTicket(newSessionTicket *newSessionTicketMsg, cipherSuite *cipherSuite) error {
1565	if c.config.Bugs.ExpectGREASE && !newSessionTicket.hasGREASEExtension {
1566		return errors.New("tls: no GREASE ticket extension found")
1567	}
1568
1569	if c.config.Bugs.ExpectTicketEarlyData && newSessionTicket.maxEarlyDataSize == 0 {
1570		return errors.New("tls: no early_data ticket extension found")
1571	}
1572
1573	if c.config.Bugs.ExpectNoNewSessionTicket {
1574		return errors.New("tls: received unexpected NewSessionTicket")
1575	}
1576
1577	if c.config.ClientSessionCache == nil || newSessionTicket.ticketLifetime == 0 {
1578		return nil
1579	}
1580
1581	session := &ClientSessionState{
1582		sessionTicket:      newSessionTicket.ticket,
1583		vers:               c.vers,
1584		wireVersion:        c.wireVersion,
1585		cipherSuite:        cipherSuite.id,
1586		masterSecret:       c.resumptionSecret,
1587		serverCertificates: c.peerCertificates,
1588		sctList:            c.sctList,
1589		ocspResponse:       c.ocspResponse,
1590		ticketCreationTime: c.config.time(),
1591		ticketExpiration:   c.config.time().Add(time.Duration(newSessionTicket.ticketLifetime) * time.Second),
1592		ticketAgeAdd:       newSessionTicket.ticketAgeAdd,
1593		maxEarlyDataSize:   newSessionTicket.maxEarlyDataSize,
1594		earlyALPN:          c.clientProtocol,
1595	}
1596
1597	session.masterSecret = deriveSessionPSK(cipherSuite, c.wireVersion, c.resumptionSecret, newSessionTicket.ticketNonce)
1598
1599	cacheKey := clientSessionCacheKey(c.conn.RemoteAddr(), c.config)
1600	_, ok := c.config.ClientSessionCache.Get(cacheKey)
1601	if !ok || !c.config.Bugs.UseFirstSessionTicket {
1602		c.config.ClientSessionCache.Put(cacheKey, session)
1603	}
1604	return nil
1605}
1606
1607func (c *Conn) handlePostHandshakeMessage() error {
1608	msg, err := c.readHandshake()
1609	if err != nil {
1610		return err
1611	}
1612
1613	if c.vers < VersionTLS13 {
1614		if !c.isClient {
1615			c.sendAlert(alertUnexpectedMessage)
1616			return errors.New("tls: unexpected post-handshake message")
1617		}
1618
1619		_, ok := msg.(*helloRequestMsg)
1620		if !ok {
1621			c.sendAlert(alertUnexpectedMessage)
1622			return alertUnexpectedMessage
1623		}
1624
1625		c.handshakeComplete = false
1626		return c.Handshake()
1627	}
1628
1629	if c.isClient {
1630		if newSessionTicket, ok := msg.(*newSessionTicketMsg); ok {
1631			return c.processTLS13NewSessionTicket(newSessionTicket, c.cipherSuite)
1632		}
1633	}
1634
1635	if keyUpdate, ok := msg.(*keyUpdateMsg); ok {
1636		c.keyUpdateSeen = true
1637
1638		if c.config.Bugs.RejectUnsolicitedKeyUpdate {
1639			return errors.New("tls: unexpected KeyUpdate message")
1640		}
1641		if err := c.useInTrafficSecret(c.in.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.in.trafficSecret)); err != nil {
1642			return err
1643		}
1644		if keyUpdate.keyUpdateRequest == keyUpdateRequested {
1645			c.keyUpdateRequested = true
1646		}
1647		return nil
1648	}
1649
1650	c.sendAlert(alertUnexpectedMessage)
1651	return errors.New("tls: unexpected post-handshake message")
1652}
1653
1654// Reads a KeyUpdate acknowledgment from the peer. There may not be any
1655// application data records before the message.
1656func (c *Conn) ReadKeyUpdateACK() error {
1657	c.in.Lock()
1658	defer c.in.Unlock()
1659
1660	msg, err := c.readHandshake()
1661	if err != nil {
1662		return err
1663	}
1664
1665	keyUpdate, ok := msg.(*keyUpdateMsg)
1666	if !ok {
1667		c.sendAlert(alertUnexpectedMessage)
1668		return fmt.Errorf("tls: unexpected message (%T) when reading KeyUpdate", msg)
1669	}
1670
1671	if keyUpdate.keyUpdateRequest != keyUpdateNotRequested {
1672		return errors.New("tls: received invalid KeyUpdate message")
1673	}
1674
1675	return c.useInTrafficSecret(c.in.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.in.trafficSecret))
1676}
1677
1678func (c *Conn) Renegotiate() error {
1679	if !c.isClient {
1680		helloReq := new(helloRequestMsg).marshal()
1681		if c.config.Bugs.BadHelloRequest != nil {
1682			helloReq = c.config.Bugs.BadHelloRequest
1683		}
1684		c.writeRecord(recordTypeHandshake, helloReq)
1685		c.flushHandshake()
1686	}
1687
1688	c.handshakeComplete = false
1689	return c.Handshake()
1690}
1691
1692// Read can be made to time out and return a net.Error with Timeout() == true
1693// after a fixed time limit; see SetDeadline and SetReadDeadline.
1694func (c *Conn) Read(b []byte) (n int, err error) {
1695	if err = c.Handshake(); err != nil {
1696		return
1697	}
1698
1699	c.in.Lock()
1700	defer c.in.Unlock()
1701
1702	// Some OpenSSL servers send empty records in order to randomize the
1703	// CBC IV. So this loop ignores a limited number of empty records.
1704	const maxConsecutiveEmptyRecords = 100
1705	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
1706		for c.input == nil && c.in.err == nil {
1707			if err := c.readRecord(recordTypeApplicationData); err != nil {
1708				// Soft error, like EAGAIN
1709				return 0, err
1710			}
1711			for c.hand.Len() > 0 {
1712				// We received handshake bytes, indicating a
1713				// post-handshake message.
1714				if err := c.handlePostHandshakeMessage(); err != nil {
1715					return 0, err
1716				}
1717			}
1718		}
1719		if err := c.in.err; err != nil {
1720			return 0, err
1721		}
1722
1723		n, err = c.input.Read(b)
1724		if c.input.off >= len(c.input.data) || c.isDTLS {
1725			c.in.freeBlock(c.input)
1726			c.input = nil
1727		}
1728
1729		// If a close-notify alert is waiting, read it so that
1730		// we can return (n, EOF) instead of (n, nil), to signal
1731		// to the HTTP response reading goroutine that the
1732		// connection is now closed. This eliminates a race
1733		// where the HTTP response reading goroutine would
1734		// otherwise not observe the EOF until its next read,
1735		// by which time a client goroutine might have already
1736		// tried to reuse the HTTP connection for a new
1737		// request.
1738		// See https://codereview.appspot.com/76400046
1739		// and http://golang.org/issue/3514
1740		if ri := c.rawInput; ri != nil &&
1741			n != 0 && err == nil &&
1742			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
1743			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
1744				err = recErr // will be io.EOF on closeNotify
1745			}
1746		}
1747
1748		if n != 0 || err != nil {
1749			return n, err
1750		}
1751	}
1752
1753	return 0, io.ErrNoProgress
1754}
1755
1756// Close closes the connection.
1757func (c *Conn) Close() error {
1758	var alertErr error
1759
1760	c.handshakeMutex.Lock()
1761	defer c.handshakeMutex.Unlock()
1762	if c.handshakeComplete && !c.config.Bugs.NoCloseNotify {
1763		alert := alertCloseNotify
1764		if c.config.Bugs.SendAlertOnShutdown != 0 {
1765			alert = c.config.Bugs.SendAlertOnShutdown
1766		}
1767		alertErr = c.sendAlert(alert)
1768		// Clear local alerts when sending alerts so we continue to wait
1769		// for the peer rather than closing the socket early.
1770		if opErr, ok := alertErr.(*net.OpError); ok && opErr.Op == "local error" {
1771			alertErr = nil
1772		}
1773	}
1774
1775	// Consume a close_notify from the peer if one hasn't been received
1776	// already. This avoids the peer from failing |SSL_shutdown| due to a
1777	// write failing.
1778	if c.handshakeComplete && alertErr == nil && c.config.Bugs.ExpectCloseNotify {
1779		for c.in.error() == nil {
1780			c.readRecord(recordTypeAlert)
1781		}
1782		if c.in.error() != io.EOF {
1783			alertErr = c.in.error()
1784		}
1785	}
1786
1787	if err := c.conn.Close(); err != nil {
1788		return err
1789	}
1790	return alertErr
1791}
1792
1793// Handshake runs the client or server handshake
1794// protocol if it has not yet been run.
1795// Most uses of this package need not call Handshake
1796// explicitly: the first Read or Write will call it automatically.
1797func (c *Conn) Handshake() error {
1798	c.handshakeMutex.Lock()
1799	defer c.handshakeMutex.Unlock()
1800	if err := c.handshakeErr; err != nil {
1801		return err
1802	}
1803	if c.handshakeComplete {
1804		return nil
1805	}
1806
1807	if c.isDTLS && c.config.Bugs.SendSplitAlert {
1808		c.conn.Write([]byte{
1809			byte(recordTypeAlert), // type
1810			0xfe, 0xff,            // version
1811			0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, // sequence
1812			0x0, 0x2, // length
1813		})
1814		c.conn.Write([]byte{alertLevelError, byte(alertInternalError)})
1815	}
1816	if data := c.config.Bugs.AppDataBeforeHandshake; data != nil {
1817		c.writeRecord(recordTypeApplicationData, data)
1818	}
1819	if c.isClient {
1820		c.handshakeErr = c.clientHandshake()
1821	} else {
1822		c.handshakeErr = c.serverHandshake()
1823	}
1824	if c.handshakeErr == nil && c.config.Bugs.SendInvalidRecordType {
1825		c.writeRecord(recordType(42), []byte("invalid record"))
1826	}
1827	return c.handshakeErr
1828}
1829
1830// ConnectionState returns basic TLS details about the connection.
1831func (c *Conn) ConnectionState() ConnectionState {
1832	c.handshakeMutex.Lock()
1833	defer c.handshakeMutex.Unlock()
1834
1835	var state ConnectionState
1836	state.HandshakeComplete = c.handshakeComplete
1837	if c.handshakeComplete {
1838		state.Version = c.vers
1839		state.NegotiatedProtocol = c.clientProtocol
1840		state.DidResume = c.didResume
1841		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
1842		state.NegotiatedProtocolFromALPN = c.usedALPN
1843		state.CipherSuite = c.cipherSuite.id
1844		state.PeerCertificates = c.peerCertificates
1845		state.VerifiedChains = c.verifiedChains
1846		state.ServerName = c.serverName
1847		state.ChannelID = c.channelID
1848		state.TokenBindingNegotiated = c.tokenBindingNegotiated
1849		state.TokenBindingParam = c.tokenBindingParam
1850		state.SRTPProtectionProfile = c.srtpProtectionProfile
1851		state.TLSUnique = c.firstFinished[:]
1852		state.SCTList = c.sctList
1853		state.PeerSignatureAlgorithm = c.peerSignatureAlgorithm
1854		state.CurveID = c.curveID
1855		state.QUICTransportParams = c.quicTransportParams
1856	}
1857
1858	return state
1859}
1860
1861// OCSPResponse returns the stapled OCSP response from the TLS server, if
1862// any. (Only valid for client connections.)
1863func (c *Conn) OCSPResponse() []byte {
1864	c.handshakeMutex.Lock()
1865	defer c.handshakeMutex.Unlock()
1866
1867	return c.ocspResponse
1868}
1869
1870// VerifyHostname checks that the peer certificate chain is valid for
1871// connecting to host.  If so, it returns nil; if not, it returns an error
1872// describing the problem.
1873func (c *Conn) VerifyHostname(host string) error {
1874	c.handshakeMutex.Lock()
1875	defer c.handshakeMutex.Unlock()
1876	if !c.isClient {
1877		return errors.New("tls: VerifyHostname called on TLS server connection")
1878	}
1879	if !c.handshakeComplete {
1880		return errors.New("tls: handshake has not yet been performed")
1881	}
1882	return c.peerCertificates[0].VerifyHostname(host)
1883}
1884
1885func (c *Conn) exportKeyingMaterialTLS13(length int, secret, label, context []byte) []byte {
1886	cipherSuite := c.cipherSuite
1887	if cipherSuite == nil {
1888		cipherSuite = c.earlyCipherSuite
1889	}
1890	hash := cipherSuite.hash()
1891	exporterKeyingLabel := []byte("exporter")
1892	contextHash := hash.New()
1893	contextHash.Write(context)
1894	exporterContext := hash.New().Sum(nil)
1895	derivedSecret := hkdfExpandLabel(cipherSuite.hash(), secret, label, exporterContext, hash.Size())
1896	return hkdfExpandLabel(cipherSuite.hash(), derivedSecret, exporterKeyingLabel, contextHash.Sum(nil), length)
1897}
1898
1899// ExportKeyingMaterial exports keying material from the current connection
1900// state, as per RFC 5705.
1901func (c *Conn) ExportKeyingMaterial(length int, label, context []byte, useContext bool) ([]byte, error) {
1902	c.handshakeMutex.Lock()
1903	defer c.handshakeMutex.Unlock()
1904	if !c.handshakeComplete {
1905		return nil, errors.New("tls: handshake has not yet been performed")
1906	}
1907
1908	if c.vers >= VersionTLS13 {
1909		return c.exportKeyingMaterialTLS13(length, c.exporterSecret, label, context), nil
1910	}
1911
1912	seedLen := len(c.clientRandom) + len(c.serverRandom)
1913	if useContext {
1914		seedLen += 2 + len(context)
1915	}
1916	seed := make([]byte, 0, seedLen)
1917	seed = append(seed, c.clientRandom[:]...)
1918	seed = append(seed, c.serverRandom[:]...)
1919	if useContext {
1920		seed = append(seed, byte(len(context)>>8), byte(len(context)))
1921		seed = append(seed, context...)
1922	}
1923	result := make([]byte, length)
1924	prfForVersion(c.vers, c.cipherSuite)(result, c.exporterSecret, label, seed)
1925	return result, nil
1926}
1927
1928func (c *Conn) ExportEarlyKeyingMaterial(length int, label, context []byte) ([]byte, error) {
1929	if c.vers < VersionTLS13 {
1930		return nil, errors.New("tls: early exporters not defined before TLS 1.3")
1931	}
1932
1933	if c.earlyExporterSecret == nil {
1934		return nil, errors.New("tls: no early exporter secret")
1935	}
1936
1937	return c.exportKeyingMaterialTLS13(length, c.earlyExporterSecret, label, context), nil
1938}
1939
1940// noRenegotiationInfo returns true if the renegotiation info extension
1941// should be supported in the current handshake.
1942func (c *Conn) noRenegotiationInfo() bool {
1943	if c.config.Bugs.NoRenegotiationInfo {
1944		return true
1945	}
1946	if c.cipherSuite == nil && c.config.Bugs.NoRenegotiationInfoInInitial {
1947		return true
1948	}
1949	if c.cipherSuite != nil && c.config.Bugs.NoRenegotiationInfoAfterInitial {
1950		return true
1951	}
1952	return false
1953}
1954
1955func (c *Conn) SendNewSessionTicket(nonce []byte) error {
1956	if c.isClient || c.vers < VersionTLS13 {
1957		return errors.New("tls: cannot send post-handshake NewSessionTicket")
1958	}
1959
1960	var peerCertificatesRaw [][]byte
1961	for _, cert := range c.peerCertificates {
1962		peerCertificatesRaw = append(peerCertificatesRaw, cert.Raw)
1963	}
1964
1965	addBuffer := make([]byte, 4)
1966	_, err := io.ReadFull(c.config.rand(), addBuffer)
1967	if err != nil {
1968		c.sendAlert(alertInternalError)
1969		return errors.New("tls: short read from Rand: " + err.Error())
1970	}
1971	ticketAgeAdd := uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0])
1972
1973	// TODO(davidben): Allow configuring these values.
1974	m := &newSessionTicketMsg{
1975		vers:                        c.wireVersion,
1976		isDTLS:                      c.isDTLS,
1977		ticketLifetime:              uint32(24 * time.Hour / time.Second),
1978		duplicateEarlyDataExtension: c.config.Bugs.DuplicateTicketEarlyData,
1979		customExtension:             c.config.Bugs.CustomTicketExtension,
1980		ticketAgeAdd:                ticketAgeAdd,
1981		ticketNonce:                 nonce,
1982		maxEarlyDataSize:            c.config.MaxEarlyDataSize,
1983	}
1984
1985	if c.config.Bugs.SendTicketLifetime != 0 {
1986		m.ticketLifetime = uint32(c.config.Bugs.SendTicketLifetime / time.Second)
1987	}
1988
1989	state := sessionState{
1990		vers:               c.vers,
1991		cipherSuite:        c.cipherSuite.id,
1992		masterSecret:       deriveSessionPSK(c.cipherSuite, c.wireVersion, c.resumptionSecret, nonce),
1993		certificates:       peerCertificatesRaw,
1994		ticketCreationTime: c.config.time(),
1995		ticketExpiration:   c.config.time().Add(time.Duration(m.ticketLifetime) * time.Second),
1996		ticketAgeAdd:       uint32(addBuffer[3])<<24 | uint32(addBuffer[2])<<16 | uint32(addBuffer[1])<<8 | uint32(addBuffer[0]),
1997		earlyALPN:          []byte(c.clientProtocol),
1998	}
1999
2000	if !c.config.Bugs.SendEmptySessionTicket {
2001		var err error
2002		m.ticket, err = c.encryptTicket(&state)
2003		if err != nil {
2004			return err
2005		}
2006	}
2007	c.out.Lock()
2008	defer c.out.Unlock()
2009	_, err = c.writeRecord(recordTypeHandshake, m.marshal())
2010	return err
2011}
2012
2013func (c *Conn) SendKeyUpdate(keyUpdateRequest byte) error {
2014	c.out.Lock()
2015	defer c.out.Unlock()
2016	return c.sendKeyUpdateLocked(keyUpdateRequest)
2017}
2018
2019func (c *Conn) sendKeyUpdateLocked(keyUpdateRequest byte) error {
2020	if c.vers < VersionTLS13 {
2021		return errors.New("tls: attempted to send KeyUpdate before TLS 1.3")
2022	}
2023
2024	m := keyUpdateMsg{
2025		keyUpdateRequest: keyUpdateRequest,
2026	}
2027	if _, err := c.writeRecord(recordTypeHandshake, m.marshal()); err != nil {
2028		return err
2029	}
2030	if err := c.flushHandshake(); err != nil {
2031		return err
2032	}
2033	c.useOutTrafficSecret(c.out.wireVersion, c.cipherSuite, updateTrafficSecret(c.cipherSuite.hash(), c.wireVersion, c.out.trafficSecret))
2034	return nil
2035}
2036
2037func (c *Conn) sendFakeEarlyData(len int) error {
2038	// Assemble a fake early data record. This does not use writeRecord
2039	// because the record layer may be using different keys at this point.
2040	payload := make([]byte, 5+len)
2041	payload[0] = byte(recordTypeApplicationData)
2042	payload[1] = 3
2043	payload[2] = 3
2044	payload[3] = byte(len >> 8)
2045	payload[4] = byte(len)
2046	_, err := c.conn.Write(payload)
2047	return err
2048}
2049