1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23
24 using namespace clang;
25 using namespace CodeGen;
26
27 static RequiredArgs
commonEmitCXXMemberOrOperatorCall(CodeGenFunction & CGF,const CXXMethodDecl * MD,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,CallArgList & Args)28 commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, const CXXMethodDecl *MD,
29 llvm::Value *This, llvm::Value *ImplicitParam,
30 QualType ImplicitParamTy, const CallExpr *CE,
31 CallArgList &Args) {
32 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
33 isa<CXXOperatorCallExpr>(CE));
34 assert(MD->isInstance() &&
35 "Trying to emit a member or operator call expr on a static method!");
36
37 // C++11 [class.mfct.non-static]p2:
38 // If a non-static member function of a class X is called for an object that
39 // is not of type X, or of a type derived from X, the behavior is undefined.
40 SourceLocation CallLoc;
41 if (CE)
42 CallLoc = CE->getExprLoc();
43 CGF.EmitTypeCheck(
44 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
45 : CodeGenFunction::TCK_MemberCall,
46 CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
47
48 // Push the this ptr.
49 Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
50
51 // If there is an implicit parameter (e.g. VTT), emit it.
52 if (ImplicitParam) {
53 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
54 }
55
56 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
57 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size(), MD);
58
59 // And the rest of the call args.
60 if (CE) {
61 // Special case: skip first argument of CXXOperatorCall (it is "this").
62 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
63 CGF.EmitCallArgs(Args, FPT, drop_begin(CE->arguments(), ArgsToSkip),
64 CE->getDirectCallee());
65 } else {
66 assert(
67 FPT->getNumParams() == 0 &&
68 "No CallExpr specified for function with non-zero number of arguments");
69 }
70 return required;
71 }
72
EmitCXXMemberOrOperatorCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE)73 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
74 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
75 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
76 const CallExpr *CE) {
77 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
78 CallArgList Args;
79 RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
80 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args);
81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
82 Callee, ReturnValue, Args, MD);
83 }
84
EmitCXXDestructorCall(const CXXDestructorDecl * DD,llvm::Value * Callee,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,StructorType Type)85 RValue CodeGenFunction::EmitCXXDestructorCall(
86 const CXXDestructorDecl *DD, llvm::Value *Callee, llvm::Value *This,
87 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE,
88 StructorType Type) {
89 CallArgList Args;
90 commonEmitCXXMemberOrOperatorCall(*this, DD, This, ImplicitParam,
91 ImplicitParamTy, CE, Args);
92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(DD, Type),
93 Callee, ReturnValueSlot(), Args, DD);
94 }
95
getCXXRecord(const Expr * E)96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
97 QualType T = E->getType();
98 if (const PointerType *PTy = T->getAs<PointerType>())
99 T = PTy->getPointeeType();
100 const RecordType *Ty = T->castAs<RecordType>();
101 return cast<CXXRecordDecl>(Ty->getDecl());
102 }
103
104 // Note: This function also emit constructor calls to support a MSVC
105 // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
107 ReturnValueSlot ReturnValue) {
108 const Expr *callee = CE->getCallee()->IgnoreParens();
109
110 if (isa<BinaryOperator>(callee))
111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
112
113 const MemberExpr *ME = cast<MemberExpr>(callee);
114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
115
116 if (MD->isStatic()) {
117 // The method is static, emit it as we would a regular call.
118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
120 ReturnValue);
121 }
122
123 bool HasQualifier = ME->hasQualifier();
124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
125 bool IsArrow = ME->isArrow();
126 const Expr *Base = ME->getBase();
127
128 return EmitCXXMemberOrOperatorMemberCallExpr(
129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
130 }
131
EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr * CE,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue,bool HasQualifier,NestedNameSpecifier * Qualifier,bool IsArrow,const Expr * Base)132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
135 const Expr *Base) {
136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
137
138 // Compute the object pointer.
139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
140
141 const CXXMethodDecl *DevirtualizedMethod = nullptr;
142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
145 assert(DevirtualizedMethod);
146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
147 const Expr *Inner = Base->ignoreParenBaseCasts();
148 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
149 MD->getReturnType().getCanonicalType())
150 // If the return types are not the same, this might be a case where more
151 // code needs to run to compensate for it. For example, the derived
152 // method might return a type that inherits form from the return
153 // type of MD and has a prefix.
154 // For now we just avoid devirtualizing these covariant cases.
155 DevirtualizedMethod = nullptr;
156 else if (getCXXRecord(Inner) == DevirtualizedClass)
157 // If the class of the Inner expression is where the dynamic method
158 // is defined, build the this pointer from it.
159 Base = Inner;
160 else if (getCXXRecord(Base) != DevirtualizedClass) {
161 // If the method is defined in a class that is not the best dynamic
162 // one or the one of the full expression, we would have to build
163 // a derived-to-base cast to compute the correct this pointer, but
164 // we don't have support for that yet, so do a virtual call.
165 DevirtualizedMethod = nullptr;
166 }
167 }
168
169 Address This = Address::invalid();
170 if (IsArrow)
171 This = EmitPointerWithAlignment(Base);
172 else
173 This = EmitLValue(Base).getAddress();
174
175
176 if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
178 if (isa<CXXConstructorDecl>(MD) &&
179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
180 return RValue::get(nullptr);
181
182 if (!MD->getParent()->mayInsertExtraPadding()) {
183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
184 // We don't like to generate the trivial copy/move assignment operator
185 // when it isn't necessary; just produce the proper effect here.
186 // Special case: skip first argument of CXXOperatorCall (it is "this").
187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
188 Address RHS = EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
189 EmitAggregateAssign(This, RHS, CE->getType());
190 return RValue::get(This.getPointer());
191 }
192
193 if (isa<CXXConstructorDecl>(MD) &&
194 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
195 // Trivial move and copy ctor are the same.
196 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
197 Address RHS = EmitLValue(*CE->arg_begin()).getAddress();
198 EmitAggregateCopy(This, RHS, (*CE->arg_begin())->getType());
199 return RValue::get(This.getPointer());
200 }
201 llvm_unreachable("unknown trivial member function");
202 }
203 }
204
205 // Compute the function type we're calling.
206 const CXXMethodDecl *CalleeDecl =
207 DevirtualizedMethod ? DevirtualizedMethod : MD;
208 const CGFunctionInfo *FInfo = nullptr;
209 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
210 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
211 Dtor, StructorType::Complete);
212 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
213 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
214 Ctor, StructorType::Complete);
215 else
216 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
217
218 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
219
220 // C++ [class.virtual]p12:
221 // Explicit qualification with the scope operator (5.1) suppresses the
222 // virtual call mechanism.
223 //
224 // We also don't emit a virtual call if the base expression has a record type
225 // because then we know what the type is.
226 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
227 llvm::Value *Callee;
228
229 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
230 assert(CE->arg_begin() == CE->arg_end() &&
231 "Destructor shouldn't have explicit parameters");
232 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
233 if (UseVirtualCall) {
234 CGM.getCXXABI().EmitVirtualDestructorCall(
235 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
236 } else {
237 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
238 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
239 else if (!DevirtualizedMethod)
240 Callee =
241 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
242 else {
243 const CXXDestructorDecl *DDtor =
244 cast<CXXDestructorDecl>(DevirtualizedMethod);
245 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
246 }
247 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
248 /*ImplicitParam=*/nullptr, QualType(), CE);
249 }
250 return RValue::get(nullptr);
251 }
252
253 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
254 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
255 } else if (UseVirtualCall) {
256 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
257 CE->getLocStart());
258 } else {
259 if (SanOpts.has(SanitizerKind::CFINVCall) &&
260 MD->getParent()->isDynamicClass()) {
261 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy, MD->getParent());
262 EmitVTablePtrCheckForCall(MD->getParent(), VTable, CFITCK_NVCall,
263 CE->getLocStart());
264 }
265
266 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
267 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
268 else if (!DevirtualizedMethod)
269 Callee = CGM.GetAddrOfFunction(MD, Ty);
270 else {
271 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
272 }
273 }
274
275 if (MD->isVirtual()) {
276 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
277 *this, CalleeDecl, This, UseVirtualCall);
278 }
279
280 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This.getPointer(),
281 /*ImplicitParam=*/nullptr, QualType(), CE);
282 }
283
284 RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)285 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
286 ReturnValueSlot ReturnValue) {
287 const BinaryOperator *BO =
288 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
289 const Expr *BaseExpr = BO->getLHS();
290 const Expr *MemFnExpr = BO->getRHS();
291
292 const MemberPointerType *MPT =
293 MemFnExpr->getType()->castAs<MemberPointerType>();
294
295 const FunctionProtoType *FPT =
296 MPT->getPointeeType()->castAs<FunctionProtoType>();
297 const CXXRecordDecl *RD =
298 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
299
300 // Get the member function pointer.
301 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
302
303 // Emit the 'this' pointer.
304 Address This = Address::invalid();
305 if (BO->getOpcode() == BO_PtrMemI)
306 This = EmitPointerWithAlignment(BaseExpr);
307 else
308 This = EmitLValue(BaseExpr).getAddress();
309
310 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This.getPointer(),
311 QualType(MPT->getClass(), 0));
312
313 // Ask the ABI to load the callee. Note that This is modified.
314 llvm::Value *ThisPtrForCall = nullptr;
315 llvm::Value *Callee =
316 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This,
317 ThisPtrForCall, MemFnPtr, MPT);
318
319 CallArgList Args;
320
321 QualType ThisType =
322 getContext().getPointerType(getContext().getTagDeclType(RD));
323
324 // Push the this ptr.
325 Args.add(RValue::get(ThisPtrForCall), ThisType);
326
327 RequiredArgs required =
328 RequiredArgs::forPrototypePlus(FPT, 1, /*FD=*/nullptr);
329
330 // And the rest of the call args
331 EmitCallArgs(Args, FPT, E->arguments());
332 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
333 Callee, ReturnValue, Args);
334 }
335
336 RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)337 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
338 const CXXMethodDecl *MD,
339 ReturnValueSlot ReturnValue) {
340 assert(MD->isInstance() &&
341 "Trying to emit a member call expr on a static method!");
342 return EmitCXXMemberOrOperatorMemberCallExpr(
343 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
344 /*IsArrow=*/false, E->getArg(0));
345 }
346
EmitCUDAKernelCallExpr(const CUDAKernelCallExpr * E,ReturnValueSlot ReturnValue)347 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
348 ReturnValueSlot ReturnValue) {
349 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
350 }
351
EmitNullBaseClassInitialization(CodeGenFunction & CGF,Address DestPtr,const CXXRecordDecl * Base)352 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
353 Address DestPtr,
354 const CXXRecordDecl *Base) {
355 if (Base->isEmpty())
356 return;
357
358 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
359
360 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
361 CharUnits NVSize = Layout.getNonVirtualSize();
362
363 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
364 // present, they are initialized by the most derived class before calling the
365 // constructor.
366 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
367 Stores.emplace_back(CharUnits::Zero(), NVSize);
368
369 // Each store is split by the existence of a vbptr.
370 CharUnits VBPtrWidth = CGF.getPointerSize();
371 std::vector<CharUnits> VBPtrOffsets =
372 CGF.CGM.getCXXABI().getVBPtrOffsets(Base);
373 for (CharUnits VBPtrOffset : VBPtrOffsets) {
374 // Stop before we hit any virtual base pointers located in virtual bases.
375 if (VBPtrOffset >= NVSize)
376 break;
377 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
378 CharUnits LastStoreOffset = LastStore.first;
379 CharUnits LastStoreSize = LastStore.second;
380
381 CharUnits SplitBeforeOffset = LastStoreOffset;
382 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
383 assert(!SplitBeforeSize.isNegative() && "negative store size!");
384 if (!SplitBeforeSize.isZero())
385 Stores.emplace_back(SplitBeforeOffset, SplitBeforeSize);
386
387 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
388 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
389 assert(!SplitAfterSize.isNegative() && "negative store size!");
390 if (!SplitAfterSize.isZero())
391 Stores.emplace_back(SplitAfterOffset, SplitAfterSize);
392 }
393
394 // If the type contains a pointer to data member we can't memset it to zero.
395 // Instead, create a null constant and copy it to the destination.
396 // TODO: there are other patterns besides zero that we can usefully memset,
397 // like -1, which happens to be the pattern used by member-pointers.
398 // TODO: isZeroInitializable can be over-conservative in the case where a
399 // virtual base contains a member pointer.
400 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Base);
401 if (!NullConstantForBase->isNullValue()) {
402 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
403 CGF.CGM.getModule(), NullConstantForBase->getType(),
404 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
405 NullConstantForBase, Twine());
406
407 CharUnits Align = std::max(Layout.getNonVirtualAlignment(),
408 DestPtr.getAlignment());
409 NullVariable->setAlignment(Align.getQuantity());
410
411 Address SrcPtr = Address(CGF.EmitCastToVoidPtr(NullVariable), Align);
412
413 // Get and call the appropriate llvm.memcpy overload.
414 for (std::pair<CharUnits, CharUnits> Store : Stores) {
415 CharUnits StoreOffset = Store.first;
416 CharUnits StoreSize = Store.second;
417 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
418 CGF.Builder.CreateMemCpy(
419 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
420 CGF.Builder.CreateConstInBoundsByteGEP(SrcPtr, StoreOffset),
421 StoreSizeVal);
422 }
423
424 // Otherwise, just memset the whole thing to zero. This is legal
425 // because in LLVM, all default initializers (other than the ones we just
426 // handled above) are guaranteed to have a bit pattern of all zeros.
427 } else {
428 for (std::pair<CharUnits, CharUnits> Store : Stores) {
429 CharUnits StoreOffset = Store.first;
430 CharUnits StoreSize = Store.second;
431 llvm::Value *StoreSizeVal = CGF.CGM.getSize(StoreSize);
432 CGF.Builder.CreateMemSet(
433 CGF.Builder.CreateConstInBoundsByteGEP(DestPtr, StoreOffset),
434 CGF.Builder.getInt8(0), StoreSizeVal);
435 }
436 }
437 }
438
439 void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)440 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
441 AggValueSlot Dest) {
442 assert(!Dest.isIgnored() && "Must have a destination!");
443 const CXXConstructorDecl *CD = E->getConstructor();
444
445 // If we require zero initialization before (or instead of) calling the
446 // constructor, as can be the case with a non-user-provided default
447 // constructor, emit the zero initialization now, unless destination is
448 // already zeroed.
449 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
450 switch (E->getConstructionKind()) {
451 case CXXConstructExpr::CK_Delegating:
452 case CXXConstructExpr::CK_Complete:
453 EmitNullInitialization(Dest.getAddress(), E->getType());
454 break;
455 case CXXConstructExpr::CK_VirtualBase:
456 case CXXConstructExpr::CK_NonVirtualBase:
457 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
458 CD->getParent());
459 break;
460 }
461 }
462
463 // If this is a call to a trivial default constructor, do nothing.
464 if (CD->isTrivial() && CD->isDefaultConstructor())
465 return;
466
467 // Elide the constructor if we're constructing from a temporary.
468 // The temporary check is required because Sema sets this on NRVO
469 // returns.
470 if (getLangOpts().ElideConstructors && E->isElidable()) {
471 assert(getContext().hasSameUnqualifiedType(E->getType(),
472 E->getArg(0)->getType()));
473 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
474 EmitAggExpr(E->getArg(0), Dest);
475 return;
476 }
477 }
478
479 if (const ArrayType *arrayType
480 = getContext().getAsArrayType(E->getType())) {
481 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddress(), E);
482 } else {
483 CXXCtorType Type = Ctor_Complete;
484 bool ForVirtualBase = false;
485 bool Delegating = false;
486
487 switch (E->getConstructionKind()) {
488 case CXXConstructExpr::CK_Delegating:
489 // We should be emitting a constructor; GlobalDecl will assert this
490 Type = CurGD.getCtorType();
491 Delegating = true;
492 break;
493
494 case CXXConstructExpr::CK_Complete:
495 Type = Ctor_Complete;
496 break;
497
498 case CXXConstructExpr::CK_VirtualBase:
499 ForVirtualBase = true;
500 // fall-through
501
502 case CXXConstructExpr::CK_NonVirtualBase:
503 Type = Ctor_Base;
504 }
505
506 // Call the constructor.
507 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating,
508 Dest.getAddress(), E);
509 }
510 }
511
EmitSynthesizedCXXCopyCtor(Address Dest,Address Src,const Expr * Exp)512 void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
513 const Expr *Exp) {
514 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
515 Exp = E->getSubExpr();
516 assert(isa<CXXConstructExpr>(Exp) &&
517 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
518 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
519 const CXXConstructorDecl *CD = E->getConstructor();
520 RunCleanupsScope Scope(*this);
521
522 // If we require zero initialization before (or instead of) calling the
523 // constructor, as can be the case with a non-user-provided default
524 // constructor, emit the zero initialization now.
525 // FIXME. Do I still need this for a copy ctor synthesis?
526 if (E->requiresZeroInitialization())
527 EmitNullInitialization(Dest, E->getType());
528
529 assert(!getContext().getAsConstantArrayType(E->getType())
530 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
531 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
532 }
533
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)534 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
535 const CXXNewExpr *E) {
536 if (!E->isArray())
537 return CharUnits::Zero();
538
539 // No cookie is required if the operator new[] being used is the
540 // reserved placement operator new[].
541 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
542 return CharUnits::Zero();
543
544 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
545 }
546
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,unsigned minElements,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)547 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
548 const CXXNewExpr *e,
549 unsigned minElements,
550 llvm::Value *&numElements,
551 llvm::Value *&sizeWithoutCookie) {
552 QualType type = e->getAllocatedType();
553
554 if (!e->isArray()) {
555 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
556 sizeWithoutCookie
557 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
558 return sizeWithoutCookie;
559 }
560
561 // The width of size_t.
562 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
563
564 // Figure out the cookie size.
565 llvm::APInt cookieSize(sizeWidth,
566 CalculateCookiePadding(CGF, e).getQuantity());
567
568 // Emit the array size expression.
569 // We multiply the size of all dimensions for NumElements.
570 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
571 numElements = CGF.EmitScalarExpr(e->getArraySize());
572 assert(isa<llvm::IntegerType>(numElements->getType()));
573
574 // The number of elements can be have an arbitrary integer type;
575 // essentially, we need to multiply it by a constant factor, add a
576 // cookie size, and verify that the result is representable as a
577 // size_t. That's just a gloss, though, and it's wrong in one
578 // important way: if the count is negative, it's an error even if
579 // the cookie size would bring the total size >= 0.
580 bool isSigned
581 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
582 llvm::IntegerType *numElementsType
583 = cast<llvm::IntegerType>(numElements->getType());
584 unsigned numElementsWidth = numElementsType->getBitWidth();
585
586 // Compute the constant factor.
587 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
588 while (const ConstantArrayType *CAT
589 = CGF.getContext().getAsConstantArrayType(type)) {
590 type = CAT->getElementType();
591 arraySizeMultiplier *= CAT->getSize();
592 }
593
594 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
595 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
596 typeSizeMultiplier *= arraySizeMultiplier;
597
598 // This will be a size_t.
599 llvm::Value *size;
600
601 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
602 // Don't bloat the -O0 code.
603 if (llvm::ConstantInt *numElementsC =
604 dyn_cast<llvm::ConstantInt>(numElements)) {
605 const llvm::APInt &count = numElementsC->getValue();
606
607 bool hasAnyOverflow = false;
608
609 // If 'count' was a negative number, it's an overflow.
610 if (isSigned && count.isNegative())
611 hasAnyOverflow = true;
612
613 // We want to do all this arithmetic in size_t. If numElements is
614 // wider than that, check whether it's already too big, and if so,
615 // overflow.
616 else if (numElementsWidth > sizeWidth &&
617 numElementsWidth - sizeWidth > count.countLeadingZeros())
618 hasAnyOverflow = true;
619
620 // Okay, compute a count at the right width.
621 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
622
623 // If there is a brace-initializer, we cannot allocate fewer elements than
624 // there are initializers. If we do, that's treated like an overflow.
625 if (adjustedCount.ult(minElements))
626 hasAnyOverflow = true;
627
628 // Scale numElements by that. This might overflow, but we don't
629 // care because it only overflows if allocationSize does, too, and
630 // if that overflows then we shouldn't use this.
631 numElements = llvm::ConstantInt::get(CGF.SizeTy,
632 adjustedCount * arraySizeMultiplier);
633
634 // Compute the size before cookie, and track whether it overflowed.
635 bool overflow;
636 llvm::APInt allocationSize
637 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
638 hasAnyOverflow |= overflow;
639
640 // Add in the cookie, and check whether it's overflowed.
641 if (cookieSize != 0) {
642 // Save the current size without a cookie. This shouldn't be
643 // used if there was overflow.
644 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
645
646 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
647 hasAnyOverflow |= overflow;
648 }
649
650 // On overflow, produce a -1 so operator new will fail.
651 if (hasAnyOverflow) {
652 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
653 } else {
654 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
655 }
656
657 // Otherwise, we might need to use the overflow intrinsics.
658 } else {
659 // There are up to five conditions we need to test for:
660 // 1) if isSigned, we need to check whether numElements is negative;
661 // 2) if numElementsWidth > sizeWidth, we need to check whether
662 // numElements is larger than something representable in size_t;
663 // 3) if minElements > 0, we need to check whether numElements is smaller
664 // than that.
665 // 4) we need to compute
666 // sizeWithoutCookie := numElements * typeSizeMultiplier
667 // and check whether it overflows; and
668 // 5) if we need a cookie, we need to compute
669 // size := sizeWithoutCookie + cookieSize
670 // and check whether it overflows.
671
672 llvm::Value *hasOverflow = nullptr;
673
674 // If numElementsWidth > sizeWidth, then one way or another, we're
675 // going to have to do a comparison for (2), and this happens to
676 // take care of (1), too.
677 if (numElementsWidth > sizeWidth) {
678 llvm::APInt threshold(numElementsWidth, 1);
679 threshold <<= sizeWidth;
680
681 llvm::Value *thresholdV
682 = llvm::ConstantInt::get(numElementsType, threshold);
683
684 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
685 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
686
687 // Otherwise, if we're signed, we want to sext up to size_t.
688 } else if (isSigned) {
689 if (numElementsWidth < sizeWidth)
690 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
691
692 // If there's a non-1 type size multiplier, then we can do the
693 // signedness check at the same time as we do the multiply
694 // because a negative number times anything will cause an
695 // unsigned overflow. Otherwise, we have to do it here. But at least
696 // in this case, we can subsume the >= minElements check.
697 if (typeSizeMultiplier == 1)
698 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
699 llvm::ConstantInt::get(CGF.SizeTy, minElements));
700
701 // Otherwise, zext up to size_t if necessary.
702 } else if (numElementsWidth < sizeWidth) {
703 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
704 }
705
706 assert(numElements->getType() == CGF.SizeTy);
707
708 if (minElements) {
709 // Don't allow allocation of fewer elements than we have initializers.
710 if (!hasOverflow) {
711 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
712 llvm::ConstantInt::get(CGF.SizeTy, minElements));
713 } else if (numElementsWidth > sizeWidth) {
714 // The other existing overflow subsumes this check.
715 // We do an unsigned comparison, since any signed value < -1 is
716 // taken care of either above or below.
717 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
718 CGF.Builder.CreateICmpULT(numElements,
719 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
720 }
721 }
722
723 size = numElements;
724
725 // Multiply by the type size if necessary. This multiplier
726 // includes all the factors for nested arrays.
727 //
728 // This step also causes numElements to be scaled up by the
729 // nested-array factor if necessary. Overflow on this computation
730 // can be ignored because the result shouldn't be used if
731 // allocation fails.
732 if (typeSizeMultiplier != 1) {
733 llvm::Value *umul_with_overflow
734 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
735
736 llvm::Value *tsmV =
737 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
738 llvm::Value *result =
739 CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
740
741 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
742 if (hasOverflow)
743 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
744 else
745 hasOverflow = overflowed;
746
747 size = CGF.Builder.CreateExtractValue(result, 0);
748
749 // Also scale up numElements by the array size multiplier.
750 if (arraySizeMultiplier != 1) {
751 // If the base element type size is 1, then we can re-use the
752 // multiply we just did.
753 if (typeSize.isOne()) {
754 assert(arraySizeMultiplier == typeSizeMultiplier);
755 numElements = size;
756
757 // Otherwise we need a separate multiply.
758 } else {
759 llvm::Value *asmV =
760 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
761 numElements = CGF.Builder.CreateMul(numElements, asmV);
762 }
763 }
764 } else {
765 // numElements doesn't need to be scaled.
766 assert(arraySizeMultiplier == 1);
767 }
768
769 // Add in the cookie size if necessary.
770 if (cookieSize != 0) {
771 sizeWithoutCookie = size;
772
773 llvm::Value *uadd_with_overflow
774 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
775
776 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
777 llvm::Value *result =
778 CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
779
780 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
781 if (hasOverflow)
782 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
783 else
784 hasOverflow = overflowed;
785
786 size = CGF.Builder.CreateExtractValue(result, 0);
787 }
788
789 // If we had any possibility of dynamic overflow, make a select to
790 // overwrite 'size' with an all-ones value, which should cause
791 // operator new to throw.
792 if (hasOverflow)
793 size = CGF.Builder.CreateSelect(hasOverflow,
794 llvm::Constant::getAllOnesValue(CGF.SizeTy),
795 size);
796 }
797
798 if (cookieSize == 0)
799 sizeWithoutCookie = size;
800 else
801 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
802
803 return size;
804 }
805
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const Expr * Init,QualType AllocType,Address NewPtr)806 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
807 QualType AllocType, Address NewPtr) {
808 // FIXME: Refactor with EmitExprAsInit.
809 switch (CGF.getEvaluationKind(AllocType)) {
810 case TEK_Scalar:
811 CGF.EmitScalarInit(Init, nullptr,
812 CGF.MakeAddrLValue(NewPtr, AllocType), false);
813 return;
814 case TEK_Complex:
815 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType),
816 /*isInit*/ true);
817 return;
818 case TEK_Aggregate: {
819 AggValueSlot Slot
820 = AggValueSlot::forAddr(NewPtr, AllocType.getQualifiers(),
821 AggValueSlot::IsDestructed,
822 AggValueSlot::DoesNotNeedGCBarriers,
823 AggValueSlot::IsNotAliased);
824 CGF.EmitAggExpr(Init, Slot);
825 return;
826 }
827 }
828 llvm_unreachable("bad evaluation kind");
829 }
830
EmitNewArrayInitializer(const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,Address BeginPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)831 void CodeGenFunction::EmitNewArrayInitializer(
832 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
833 Address BeginPtr, llvm::Value *NumElements,
834 llvm::Value *AllocSizeWithoutCookie) {
835 // If we have a type with trivial initialization and no initializer,
836 // there's nothing to do.
837 if (!E->hasInitializer())
838 return;
839
840 Address CurPtr = BeginPtr;
841
842 unsigned InitListElements = 0;
843
844 const Expr *Init = E->getInitializer();
845 Address EndOfInit = Address::invalid();
846 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
847 EHScopeStack::stable_iterator Cleanup;
848 llvm::Instruction *CleanupDominator = nullptr;
849
850 CharUnits ElementSize = getContext().getTypeSizeInChars(ElementType);
851 CharUnits ElementAlign =
852 BeginPtr.getAlignment().alignmentOfArrayElement(ElementSize);
853
854 // If the initializer is an initializer list, first do the explicit elements.
855 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
856 InitListElements = ILE->getNumInits();
857
858 // If this is a multi-dimensional array new, we will initialize multiple
859 // elements with each init list element.
860 QualType AllocType = E->getAllocatedType();
861 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
862 AllocType->getAsArrayTypeUnsafe())) {
863 ElementTy = ConvertTypeForMem(AllocType);
864 CurPtr = Builder.CreateElementBitCast(CurPtr, ElementTy);
865 InitListElements *= getContext().getConstantArrayElementCount(CAT);
866 }
867
868 // Enter a partial-destruction Cleanup if necessary.
869 if (needsEHCleanup(DtorKind)) {
870 // In principle we could tell the Cleanup where we are more
871 // directly, but the control flow can get so varied here that it
872 // would actually be quite complex. Therefore we go through an
873 // alloca.
874 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
875 "array.init.end");
876 CleanupDominator = Builder.CreateStore(BeginPtr.getPointer(), EndOfInit);
877 pushIrregularPartialArrayCleanup(BeginPtr.getPointer(), EndOfInit,
878 ElementType, ElementAlign,
879 getDestroyer(DtorKind));
880 Cleanup = EHStack.stable_begin();
881 }
882
883 CharUnits StartAlign = CurPtr.getAlignment();
884 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
885 // Tell the cleanup that it needs to destroy up to this
886 // element. TODO: some of these stores can be trivially
887 // observed to be unnecessary.
888 if (EndOfInit.isValid()) {
889 auto FinishedPtr =
890 Builder.CreateBitCast(CurPtr.getPointer(), BeginPtr.getType());
891 Builder.CreateStore(FinishedPtr, EndOfInit);
892 }
893 // FIXME: If the last initializer is an incomplete initializer list for
894 // an array, and we have an array filler, we can fold together the two
895 // initialization loops.
896 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
897 ILE->getInit(i)->getType(), CurPtr);
898 CurPtr = Address(Builder.CreateInBoundsGEP(CurPtr.getPointer(),
899 Builder.getSize(1),
900 "array.exp.next"),
901 StartAlign.alignmentAtOffset((i + 1) * ElementSize));
902 }
903
904 // The remaining elements are filled with the array filler expression.
905 Init = ILE->getArrayFiller();
906
907 // Extract the initializer for the individual array elements by pulling
908 // out the array filler from all the nested initializer lists. This avoids
909 // generating a nested loop for the initialization.
910 while (Init && Init->getType()->isConstantArrayType()) {
911 auto *SubILE = dyn_cast<InitListExpr>(Init);
912 if (!SubILE)
913 break;
914 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
915 Init = SubILE->getArrayFiller();
916 }
917
918 // Switch back to initializing one base element at a time.
919 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr.getType());
920 }
921
922 // Attempt to perform zero-initialization using memset.
923 auto TryMemsetInitialization = [&]() -> bool {
924 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
925 // we can initialize with a memset to -1.
926 if (!CGM.getTypes().isZeroInitializable(ElementType))
927 return false;
928
929 // Optimization: since zero initialization will just set the memory
930 // to all zeroes, generate a single memset to do it in one shot.
931
932 // Subtract out the size of any elements we've already initialized.
933 auto *RemainingSize = AllocSizeWithoutCookie;
934 if (InitListElements) {
935 // We know this can't overflow; we check this when doing the allocation.
936 auto *InitializedSize = llvm::ConstantInt::get(
937 RemainingSize->getType(),
938 getContext().getTypeSizeInChars(ElementType).getQuantity() *
939 InitListElements);
940 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
941 }
942
943 // Create the memset.
944 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize, false);
945 return true;
946 };
947
948 // If all elements have already been initialized, skip any further
949 // initialization.
950 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
951 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
952 // If there was a Cleanup, deactivate it.
953 if (CleanupDominator)
954 DeactivateCleanupBlock(Cleanup, CleanupDominator);
955 return;
956 }
957
958 assert(Init && "have trailing elements to initialize but no initializer");
959
960 // If this is a constructor call, try to optimize it out, and failing that
961 // emit a single loop to initialize all remaining elements.
962 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
963 CXXConstructorDecl *Ctor = CCE->getConstructor();
964 if (Ctor->isTrivial()) {
965 // If new expression did not specify value-initialization, then there
966 // is no initialization.
967 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
968 return;
969
970 if (TryMemsetInitialization())
971 return;
972 }
973
974 // Store the new Cleanup position for irregular Cleanups.
975 //
976 // FIXME: Share this cleanup with the constructor call emission rather than
977 // having it create a cleanup of its own.
978 if (EndOfInit.isValid())
979 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
980
981 // Emit a constructor call loop to initialize the remaining elements.
982 if (InitListElements)
983 NumElements = Builder.CreateSub(
984 NumElements,
985 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
986 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
987 CCE->requiresZeroInitialization());
988 return;
989 }
990
991 // If this is value-initialization, we can usually use memset.
992 ImplicitValueInitExpr IVIE(ElementType);
993 if (isa<ImplicitValueInitExpr>(Init)) {
994 if (TryMemsetInitialization())
995 return;
996
997 // Switch to an ImplicitValueInitExpr for the element type. This handles
998 // only one case: multidimensional array new of pointers to members. In
999 // all other cases, we already have an initializer for the array element.
1000 Init = &IVIE;
1001 }
1002
1003 // At this point we should have found an initializer for the individual
1004 // elements of the array.
1005 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1006 "got wrong type of element to initialize");
1007
1008 // If we have an empty initializer list, we can usually use memset.
1009 if (auto *ILE = dyn_cast<InitListExpr>(Init))
1010 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1011 return;
1012
1013 // If we have a struct whose every field is value-initialized, we can
1014 // usually use memset.
1015 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
1016 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1017 if (RType->getDecl()->isStruct()) {
1018 unsigned NumElements = 0;
1019 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1020 NumElements = CXXRD->getNumBases();
1021 for (auto *Field : RType->getDecl()->fields())
1022 if (!Field->isUnnamedBitfield())
1023 ++NumElements;
1024 // FIXME: Recurse into nested InitListExprs.
1025 if (ILE->getNumInits() == NumElements)
1026 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1027 if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
1028 --NumElements;
1029 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1030 return;
1031 }
1032 }
1033 }
1034
1035 // Create the loop blocks.
1036 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1037 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
1038 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
1039
1040 // Find the end of the array, hoisted out of the loop.
1041 llvm::Value *EndPtr =
1042 Builder.CreateInBoundsGEP(BeginPtr.getPointer(), NumElements, "array.end");
1043
1044 // If the number of elements isn't constant, we have to now check if there is
1045 // anything left to initialize.
1046 if (!ConstNum) {
1047 llvm::Value *IsEmpty =
1048 Builder.CreateICmpEQ(CurPtr.getPointer(), EndPtr, "array.isempty");
1049 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
1050 }
1051
1052 // Enter the loop.
1053 EmitBlock(LoopBB);
1054
1055 // Set up the current-element phi.
1056 llvm::PHINode *CurPtrPhi =
1057 Builder.CreatePHI(CurPtr.getType(), 2, "array.cur");
1058 CurPtrPhi->addIncoming(CurPtr.getPointer(), EntryBB);
1059
1060 CurPtr = Address(CurPtrPhi, ElementAlign);
1061
1062 // Store the new Cleanup position for irregular Cleanups.
1063 if (EndOfInit.isValid())
1064 Builder.CreateStore(CurPtr.getPointer(), EndOfInit);
1065
1066 // Enter a partial-destruction Cleanup if necessary.
1067 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
1068 pushRegularPartialArrayCleanup(BeginPtr.getPointer(), CurPtr.getPointer(),
1069 ElementType, ElementAlign,
1070 getDestroyer(DtorKind));
1071 Cleanup = EHStack.stable_begin();
1072 CleanupDominator = Builder.CreateUnreachable();
1073 }
1074
1075 // Emit the initializer into this element.
1076 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1077
1078 // Leave the Cleanup if we entered one.
1079 if (CleanupDominator) {
1080 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1081 CleanupDominator->eraseFromParent();
1082 }
1083
1084 // Advance to the next element by adjusting the pointer type as necessary.
1085 llvm::Value *NextPtr =
1086 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr.getPointer(), 1,
1087 "array.next");
1088
1089 // Check whether we've gotten to the end of the array and, if so,
1090 // exit the loop.
1091 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1092 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1093 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1094
1095 EmitBlock(ContBB);
1096 }
1097
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,Address NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)1098 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1099 QualType ElementType, llvm::Type *ElementTy,
1100 Address NewPtr, llvm::Value *NumElements,
1101 llvm::Value *AllocSizeWithoutCookie) {
1102 ApplyDebugLocation DL(CGF, E);
1103 if (E->isArray())
1104 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1105 AllocSizeWithoutCookie);
1106 else if (const Expr *Init = E->getInitializer())
1107 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1108 }
1109
1110 /// Emit a call to an operator new or operator delete function, as implicitly
1111 /// created by new-expressions and delete-expressions.
EmitNewDeleteCall(CodeGenFunction & CGF,const FunctionDecl * Callee,const FunctionProtoType * CalleeType,const CallArgList & Args)1112 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1113 const FunctionDecl *Callee,
1114 const FunctionProtoType *CalleeType,
1115 const CallArgList &Args) {
1116 llvm::Instruction *CallOrInvoke;
1117 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1118 RValue RV =
1119 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1120 Args, CalleeType, /*chainCall=*/false),
1121 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1122
1123 /// C++1y [expr.new]p10:
1124 /// [In a new-expression,] an implementation is allowed to omit a call
1125 /// to a replaceable global allocation function.
1126 ///
1127 /// We model such elidable calls with the 'builtin' attribute.
1128 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1129 if (Callee->isReplaceableGlobalAllocationFunction() &&
1130 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1131 // FIXME: Add addAttribute to CallSite.
1132 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1133 CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1134 llvm::Attribute::Builtin);
1135 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1136 II->addAttribute(llvm::AttributeSet::FunctionIndex,
1137 llvm::Attribute::Builtin);
1138 else
1139 llvm_unreachable("unexpected kind of call instruction");
1140 }
1141
1142 return RV;
1143 }
1144
EmitBuiltinNewDeleteCall(const FunctionProtoType * Type,const Expr * Arg,bool IsDelete)1145 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1146 const Expr *Arg,
1147 bool IsDelete) {
1148 CallArgList Args;
1149 const Stmt *ArgS = Arg;
1150 EmitCallArgs(Args, *Type->param_type_begin(), llvm::makeArrayRef(ArgS));
1151 // Find the allocation or deallocation function that we're calling.
1152 ASTContext &Ctx = getContext();
1153 DeclarationName Name = Ctx.DeclarationNames
1154 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1155 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1156 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1157 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1158 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1159 llvm_unreachable("predeclared global operator new/delete is missing");
1160 }
1161
1162 namespace {
1163 /// A cleanup to call the given 'operator delete' function upon
1164 /// abnormal exit from a new expression.
1165 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1166 size_t NumPlacementArgs;
1167 const FunctionDecl *OperatorDelete;
1168 llvm::Value *Ptr;
1169 llvm::Value *AllocSize;
1170
getPlacementArgs()1171 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1172
1173 public:
getExtraSize(size_t NumPlacementArgs)1174 static size_t getExtraSize(size_t NumPlacementArgs) {
1175 return NumPlacementArgs * sizeof(RValue);
1176 }
1177
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,llvm::Value * AllocSize)1178 CallDeleteDuringNew(size_t NumPlacementArgs,
1179 const FunctionDecl *OperatorDelete,
1180 llvm::Value *Ptr,
1181 llvm::Value *AllocSize)
1182 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1183 Ptr(Ptr), AllocSize(AllocSize) {}
1184
setPlacementArg(unsigned I,RValue Arg)1185 void setPlacementArg(unsigned I, RValue Arg) {
1186 assert(I < NumPlacementArgs && "index out of range");
1187 getPlacementArgs()[I] = Arg;
1188 }
1189
Emit(CodeGenFunction & CGF,Flags flags)1190 void Emit(CodeGenFunction &CGF, Flags flags) override {
1191 const FunctionProtoType *FPT
1192 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1193 assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1194 (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1195
1196 CallArgList DeleteArgs;
1197
1198 // The first argument is always a void*.
1199 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1200 DeleteArgs.add(RValue::get(Ptr), *AI++);
1201
1202 // A member 'operator delete' can take an extra 'size_t' argument.
1203 if (FPT->getNumParams() == NumPlacementArgs + 2)
1204 DeleteArgs.add(RValue::get(AllocSize), *AI++);
1205
1206 // Pass the rest of the arguments, which must match exactly.
1207 for (unsigned I = 0; I != NumPlacementArgs; ++I)
1208 DeleteArgs.add(getPlacementArgs()[I], *AI++);
1209
1210 // Call 'operator delete'.
1211 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1212 }
1213 };
1214
1215 /// A cleanup to call the given 'operator delete' function upon
1216 /// abnormal exit from a new expression when the new expression is
1217 /// conditional.
1218 class CallDeleteDuringConditionalNew final : public EHScopeStack::Cleanup {
1219 size_t NumPlacementArgs;
1220 const FunctionDecl *OperatorDelete;
1221 DominatingValue<RValue>::saved_type Ptr;
1222 DominatingValue<RValue>::saved_type AllocSize;
1223
getPlacementArgs()1224 DominatingValue<RValue>::saved_type *getPlacementArgs() {
1225 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1226 }
1227
1228 public:
getExtraSize(size_t NumPlacementArgs)1229 static size_t getExtraSize(size_t NumPlacementArgs) {
1230 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1231 }
1232
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,DominatingValue<RValue>::saved_type Ptr,DominatingValue<RValue>::saved_type AllocSize)1233 CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1234 const FunctionDecl *OperatorDelete,
1235 DominatingValue<RValue>::saved_type Ptr,
1236 DominatingValue<RValue>::saved_type AllocSize)
1237 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1238 Ptr(Ptr), AllocSize(AllocSize) {}
1239
setPlacementArg(unsigned I,DominatingValue<RValue>::saved_type Arg)1240 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1241 assert(I < NumPlacementArgs && "index out of range");
1242 getPlacementArgs()[I] = Arg;
1243 }
1244
Emit(CodeGenFunction & CGF,Flags flags)1245 void Emit(CodeGenFunction &CGF, Flags flags) override {
1246 const FunctionProtoType *FPT
1247 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1248 assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1249 (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1250
1251 CallArgList DeleteArgs;
1252
1253 // The first argument is always a void*.
1254 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1255 DeleteArgs.add(Ptr.restore(CGF), *AI++);
1256
1257 // A member 'operator delete' can take an extra 'size_t' argument.
1258 if (FPT->getNumParams() == NumPlacementArgs + 2) {
1259 RValue RV = AllocSize.restore(CGF);
1260 DeleteArgs.add(RV, *AI++);
1261 }
1262
1263 // Pass the rest of the arguments, which must match exactly.
1264 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1265 RValue RV = getPlacementArgs()[I].restore(CGF);
1266 DeleteArgs.add(RV, *AI++);
1267 }
1268
1269 // Call 'operator delete'.
1270 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1271 }
1272 };
1273 }
1274
1275 /// Enter a cleanup to call 'operator delete' if the initializer in a
1276 /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,Address NewPtr,llvm::Value * AllocSize,const CallArgList & NewArgs)1277 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1278 const CXXNewExpr *E,
1279 Address NewPtr,
1280 llvm::Value *AllocSize,
1281 const CallArgList &NewArgs) {
1282 // If we're not inside a conditional branch, then the cleanup will
1283 // dominate and we can do the easier (and more efficient) thing.
1284 if (!CGF.isInConditionalBranch()) {
1285 CallDeleteDuringNew *Cleanup = CGF.EHStack
1286 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1287 E->getNumPlacementArgs(),
1288 E->getOperatorDelete(),
1289 NewPtr.getPointer(),
1290 AllocSize);
1291 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1292 Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1293
1294 return;
1295 }
1296
1297 // Otherwise, we need to save all this stuff.
1298 DominatingValue<RValue>::saved_type SavedNewPtr =
1299 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr.getPointer()));
1300 DominatingValue<RValue>::saved_type SavedAllocSize =
1301 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1302
1303 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1304 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1305 E->getNumPlacementArgs(),
1306 E->getOperatorDelete(),
1307 SavedNewPtr,
1308 SavedAllocSize);
1309 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1310 Cleanup->setPlacementArg(I,
1311 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1312
1313 CGF.initFullExprCleanup();
1314 }
1315
EmitCXXNewExpr(const CXXNewExpr * E)1316 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1317 // The element type being allocated.
1318 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1319
1320 // 1. Build a call to the allocation function.
1321 FunctionDecl *allocator = E->getOperatorNew();
1322
1323 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1324 unsigned minElements = 0;
1325 if (E->isArray() && E->hasInitializer()) {
1326 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1327 minElements = ILE->getNumInits();
1328 }
1329
1330 llvm::Value *numElements = nullptr;
1331 llvm::Value *allocSizeWithoutCookie = nullptr;
1332 llvm::Value *allocSize =
1333 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1334 allocSizeWithoutCookie);
1335
1336 // Emit the allocation call. If the allocator is a global placement
1337 // operator, just "inline" it directly.
1338 Address allocation = Address::invalid();
1339 CallArgList allocatorArgs;
1340 if (allocator->isReservedGlobalPlacementOperator()) {
1341 assert(E->getNumPlacementArgs() == 1);
1342 const Expr *arg = *E->placement_arguments().begin();
1343
1344 AlignmentSource alignSource;
1345 allocation = EmitPointerWithAlignment(arg, &alignSource);
1346
1347 // The pointer expression will, in many cases, be an opaque void*.
1348 // In these cases, discard the computed alignment and use the
1349 // formal alignment of the allocated type.
1350 if (alignSource != AlignmentSource::Decl) {
1351 allocation = Address(allocation.getPointer(),
1352 getContext().getTypeAlignInChars(allocType));
1353 }
1354
1355 // Set up allocatorArgs for the call to operator delete if it's not
1356 // the reserved global operator.
1357 if (E->getOperatorDelete() &&
1358 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1359 allocatorArgs.add(RValue::get(allocSize), getContext().getSizeType());
1360 allocatorArgs.add(RValue::get(allocation.getPointer()), arg->getType());
1361 }
1362
1363 } else {
1364 const FunctionProtoType *allocatorType =
1365 allocator->getType()->castAs<FunctionProtoType>();
1366
1367 // The allocation size is the first argument.
1368 QualType sizeType = getContext().getSizeType();
1369 allocatorArgs.add(RValue::get(allocSize), sizeType);
1370
1371 // We start at 1 here because the first argument (the allocation size)
1372 // has already been emitted.
1373 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arguments(),
1374 /* CalleeDecl */ nullptr,
1375 /*ParamsToSkip*/ 1);
1376
1377 RValue RV =
1378 EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1379
1380 // For now, only assume that the allocation function returns
1381 // something satisfactorily aligned for the element type, plus
1382 // the cookie if we have one.
1383 CharUnits allocationAlign =
1384 getContext().getTypeAlignInChars(allocType);
1385 if (allocSize != allocSizeWithoutCookie) {
1386 CharUnits cookieAlign = getSizeAlign(); // FIXME?
1387 allocationAlign = std::max(allocationAlign, cookieAlign);
1388 }
1389
1390 allocation = Address(RV.getScalarVal(), allocationAlign);
1391 }
1392
1393 // Emit a null check on the allocation result if the allocation
1394 // function is allowed to return null (because it has a non-throwing
1395 // exception spec or is the reserved placement new) and we have an
1396 // interesting initializer.
1397 bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1398 (!allocType.isPODType(getContext()) || E->hasInitializer());
1399
1400 llvm::BasicBlock *nullCheckBB = nullptr;
1401 llvm::BasicBlock *contBB = nullptr;
1402
1403 // The null-check means that the initializer is conditionally
1404 // evaluated.
1405 ConditionalEvaluation conditional(*this);
1406
1407 if (nullCheck) {
1408 conditional.begin(*this);
1409
1410 nullCheckBB = Builder.GetInsertBlock();
1411 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1412 contBB = createBasicBlock("new.cont");
1413
1414 llvm::Value *isNull =
1415 Builder.CreateIsNull(allocation.getPointer(), "new.isnull");
1416 Builder.CreateCondBr(isNull, contBB, notNullBB);
1417 EmitBlock(notNullBB);
1418 }
1419
1420 // If there's an operator delete, enter a cleanup to call it if an
1421 // exception is thrown.
1422 EHScopeStack::stable_iterator operatorDeleteCleanup;
1423 llvm::Instruction *cleanupDominator = nullptr;
1424 if (E->getOperatorDelete() &&
1425 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1426 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1427 operatorDeleteCleanup = EHStack.stable_begin();
1428 cleanupDominator = Builder.CreateUnreachable();
1429 }
1430
1431 assert((allocSize == allocSizeWithoutCookie) ==
1432 CalculateCookiePadding(*this, E).isZero());
1433 if (allocSize != allocSizeWithoutCookie) {
1434 assert(E->isArray());
1435 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1436 numElements,
1437 E, allocType);
1438 }
1439
1440 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1441 Address result = Builder.CreateElementBitCast(allocation, elementTy);
1442
1443 // Passing pointer through invariant.group.barrier to avoid propagation of
1444 // vptrs information which may be included in previous type.
1445 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1446 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1447 allocator->isReservedGlobalPlacementOperator())
1448 result = Address(Builder.CreateInvariantGroupBarrier(result.getPointer()),
1449 result.getAlignment());
1450
1451 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1452 allocSizeWithoutCookie);
1453 if (E->isArray()) {
1454 // NewPtr is a pointer to the base element type. If we're
1455 // allocating an array of arrays, we'll need to cast back to the
1456 // array pointer type.
1457 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1458 if (result.getType() != resultType)
1459 result = Builder.CreateBitCast(result, resultType);
1460 }
1461
1462 // Deactivate the 'operator delete' cleanup if we finished
1463 // initialization.
1464 if (operatorDeleteCleanup.isValid()) {
1465 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1466 cleanupDominator->eraseFromParent();
1467 }
1468
1469 llvm::Value *resultPtr = result.getPointer();
1470 if (nullCheck) {
1471 conditional.end(*this);
1472
1473 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1474 EmitBlock(contBB);
1475
1476 llvm::PHINode *PHI = Builder.CreatePHI(resultPtr->getType(), 2);
1477 PHI->addIncoming(resultPtr, notNullBB);
1478 PHI->addIncoming(llvm::Constant::getNullValue(resultPtr->getType()),
1479 nullCheckBB);
1480
1481 resultPtr = PHI;
1482 }
1483
1484 return resultPtr;
1485 }
1486
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy)1487 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1488 llvm::Value *Ptr,
1489 QualType DeleteTy) {
1490 assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1491
1492 const FunctionProtoType *DeleteFTy =
1493 DeleteFD->getType()->getAs<FunctionProtoType>();
1494
1495 CallArgList DeleteArgs;
1496
1497 // Check if we need to pass the size to the delete operator.
1498 llvm::Value *Size = nullptr;
1499 QualType SizeTy;
1500 if (DeleteFTy->getNumParams() == 2) {
1501 SizeTy = DeleteFTy->getParamType(1);
1502 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1503 Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1504 DeleteTypeSize.getQuantity());
1505 }
1506
1507 QualType ArgTy = DeleteFTy->getParamType(0);
1508 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1509 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1510
1511 if (Size)
1512 DeleteArgs.add(RValue::get(Size), SizeTy);
1513
1514 // Emit the call to delete.
1515 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1516 }
1517
1518 namespace {
1519 /// Calls the given 'operator delete' on a single object.
1520 struct CallObjectDelete final : EHScopeStack::Cleanup {
1521 llvm::Value *Ptr;
1522 const FunctionDecl *OperatorDelete;
1523 QualType ElementType;
1524
CallObjectDelete__anone8d8cb250311::CallObjectDelete1525 CallObjectDelete(llvm::Value *Ptr,
1526 const FunctionDecl *OperatorDelete,
1527 QualType ElementType)
1528 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1529
Emit__anone8d8cb250311::CallObjectDelete1530 void Emit(CodeGenFunction &CGF, Flags flags) override {
1531 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1532 }
1533 };
1534 }
1535
1536 void
pushCallObjectDeleteCleanup(const FunctionDecl * OperatorDelete,llvm::Value * CompletePtr,QualType ElementType)1537 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1538 llvm::Value *CompletePtr,
1539 QualType ElementType) {
1540 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1541 OperatorDelete, ElementType);
1542 }
1543
1544 /// Emit the code for deleting a single object.
EmitObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType)1545 static void EmitObjectDelete(CodeGenFunction &CGF,
1546 const CXXDeleteExpr *DE,
1547 Address Ptr,
1548 QualType ElementType) {
1549 // Find the destructor for the type, if applicable. If the
1550 // destructor is virtual, we'll just emit the vcall and return.
1551 const CXXDestructorDecl *Dtor = nullptr;
1552 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1553 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1554 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1555 Dtor = RD->getDestructor();
1556
1557 if (Dtor->isVirtual()) {
1558 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1559 Dtor);
1560 return;
1561 }
1562 }
1563 }
1564
1565 // Make sure that we call delete even if the dtor throws.
1566 // This doesn't have to a conditional cleanup because we're going
1567 // to pop it off in a second.
1568 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1569 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1570 Ptr.getPointer(),
1571 OperatorDelete, ElementType);
1572
1573 if (Dtor)
1574 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1575 /*ForVirtualBase=*/false,
1576 /*Delegating=*/false,
1577 Ptr);
1578 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1579 switch (Lifetime) {
1580 case Qualifiers::OCL_None:
1581 case Qualifiers::OCL_ExplicitNone:
1582 case Qualifiers::OCL_Autoreleasing:
1583 break;
1584
1585 case Qualifiers::OCL_Strong:
1586 CGF.EmitARCDestroyStrong(Ptr, ARCPreciseLifetime);
1587 break;
1588
1589 case Qualifiers::OCL_Weak:
1590 CGF.EmitARCDestroyWeak(Ptr);
1591 break;
1592 }
1593 }
1594
1595 CGF.PopCleanupBlock();
1596 }
1597
1598 namespace {
1599 /// Calls the given 'operator delete' on an array of objects.
1600 struct CallArrayDelete final : EHScopeStack::Cleanup {
1601 llvm::Value *Ptr;
1602 const FunctionDecl *OperatorDelete;
1603 llvm::Value *NumElements;
1604 QualType ElementType;
1605 CharUnits CookieSize;
1606
CallArrayDelete__anone8d8cb250411::CallArrayDelete1607 CallArrayDelete(llvm::Value *Ptr,
1608 const FunctionDecl *OperatorDelete,
1609 llvm::Value *NumElements,
1610 QualType ElementType,
1611 CharUnits CookieSize)
1612 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1613 ElementType(ElementType), CookieSize(CookieSize) {}
1614
Emit__anone8d8cb250411::CallArrayDelete1615 void Emit(CodeGenFunction &CGF, Flags flags) override {
1616 const FunctionProtoType *DeleteFTy =
1617 OperatorDelete->getType()->getAs<FunctionProtoType>();
1618 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1619
1620 CallArgList Args;
1621
1622 // Pass the pointer as the first argument.
1623 QualType VoidPtrTy = DeleteFTy->getParamType(0);
1624 llvm::Value *DeletePtr
1625 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1626 Args.add(RValue::get(DeletePtr), VoidPtrTy);
1627
1628 // Pass the original requested size as the second argument.
1629 if (DeleteFTy->getNumParams() == 2) {
1630 QualType size_t = DeleteFTy->getParamType(1);
1631 llvm::IntegerType *SizeTy
1632 = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1633
1634 CharUnits ElementTypeSize =
1635 CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1636
1637 // The size of an element, multiplied by the number of elements.
1638 llvm::Value *Size
1639 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1640 if (NumElements)
1641 Size = CGF.Builder.CreateMul(Size, NumElements);
1642
1643 // Plus the size of the cookie if applicable.
1644 if (!CookieSize.isZero()) {
1645 llvm::Value *CookieSizeV
1646 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1647 Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1648 }
1649
1650 Args.add(RValue::get(Size), size_t);
1651 }
1652
1653 // Emit the call to delete.
1654 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1655 }
1656 };
1657 }
1658
1659 /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,Address deletedPtr,QualType elementType)1660 static void EmitArrayDelete(CodeGenFunction &CGF,
1661 const CXXDeleteExpr *E,
1662 Address deletedPtr,
1663 QualType elementType) {
1664 llvm::Value *numElements = nullptr;
1665 llvm::Value *allocatedPtr = nullptr;
1666 CharUnits cookieSize;
1667 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1668 numElements, allocatedPtr, cookieSize);
1669
1670 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1671
1672 // Make sure that we call delete even if one of the dtors throws.
1673 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1674 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1675 allocatedPtr, operatorDelete,
1676 numElements, elementType,
1677 cookieSize);
1678
1679 // Destroy the elements.
1680 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1681 assert(numElements && "no element count for a type with a destructor!");
1682
1683 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1684 CharUnits elementAlign =
1685 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
1686
1687 llvm::Value *arrayBegin = deletedPtr.getPointer();
1688 llvm::Value *arrayEnd =
1689 CGF.Builder.CreateInBoundsGEP(arrayBegin, numElements, "delete.end");
1690
1691 // Note that it is legal to allocate a zero-length array, and we
1692 // can never fold the check away because the length should always
1693 // come from a cookie.
1694 CGF.emitArrayDestroy(arrayBegin, arrayEnd, elementType, elementAlign,
1695 CGF.getDestroyer(dtorKind),
1696 /*checkZeroLength*/ true,
1697 CGF.needsEHCleanup(dtorKind));
1698 }
1699
1700 // Pop the cleanup block.
1701 CGF.PopCleanupBlock();
1702 }
1703
EmitCXXDeleteExpr(const CXXDeleteExpr * E)1704 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1705 const Expr *Arg = E->getArgument();
1706 Address Ptr = EmitPointerWithAlignment(Arg);
1707
1708 // Null check the pointer.
1709 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1710 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1711
1712 llvm::Value *IsNull = Builder.CreateIsNull(Ptr.getPointer(), "isnull");
1713
1714 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1715 EmitBlock(DeleteNotNull);
1716
1717 // We might be deleting a pointer to array. If so, GEP down to the
1718 // first non-array element.
1719 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1720 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1721 if (DeleteTy->isConstantArrayType()) {
1722 llvm::Value *Zero = Builder.getInt32(0);
1723 SmallVector<llvm::Value*,8> GEP;
1724
1725 GEP.push_back(Zero); // point at the outermost array
1726
1727 // For each layer of array type we're pointing at:
1728 while (const ConstantArrayType *Arr
1729 = getContext().getAsConstantArrayType(DeleteTy)) {
1730 // 1. Unpeel the array type.
1731 DeleteTy = Arr->getElementType();
1732
1733 // 2. GEP to the first element of the array.
1734 GEP.push_back(Zero);
1735 }
1736
1737 Ptr = Address(Builder.CreateInBoundsGEP(Ptr.getPointer(), GEP, "del.first"),
1738 Ptr.getAlignment());
1739 }
1740
1741 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
1742
1743 if (E->isArrayForm()) {
1744 EmitArrayDelete(*this, E, Ptr, DeleteTy);
1745 } else {
1746 EmitObjectDelete(*this, E, Ptr, DeleteTy);
1747 }
1748
1749 EmitBlock(DeleteEnd);
1750 }
1751
isGLValueFromPointerDeref(const Expr * E)1752 static bool isGLValueFromPointerDeref(const Expr *E) {
1753 E = E->IgnoreParens();
1754
1755 if (const auto *CE = dyn_cast<CastExpr>(E)) {
1756 if (!CE->getSubExpr()->isGLValue())
1757 return false;
1758 return isGLValueFromPointerDeref(CE->getSubExpr());
1759 }
1760
1761 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1762 return isGLValueFromPointerDeref(OVE->getSourceExpr());
1763
1764 if (const auto *BO = dyn_cast<BinaryOperator>(E))
1765 if (BO->getOpcode() == BO_Comma)
1766 return isGLValueFromPointerDeref(BO->getRHS());
1767
1768 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1769 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1770 isGLValueFromPointerDeref(ACO->getFalseExpr());
1771
1772 // C++11 [expr.sub]p1:
1773 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1774 if (isa<ArraySubscriptExpr>(E))
1775 return true;
1776
1777 if (const auto *UO = dyn_cast<UnaryOperator>(E))
1778 if (UO->getOpcode() == UO_Deref)
1779 return true;
1780
1781 return false;
1782 }
1783
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)1784 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1785 llvm::Type *StdTypeInfoPtrTy) {
1786 // Get the vtable pointer.
1787 Address ThisPtr = CGF.EmitLValue(E).getAddress();
1788
1789 // C++ [expr.typeid]p2:
1790 // If the glvalue expression is obtained by applying the unary * operator to
1791 // a pointer and the pointer is a null pointer value, the typeid expression
1792 // throws the std::bad_typeid exception.
1793 //
1794 // However, this paragraph's intent is not clear. We choose a very generous
1795 // interpretation which implores us to consider comma operators, conditional
1796 // operators, parentheses and other such constructs.
1797 QualType SrcRecordTy = E->getType();
1798 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1799 isGLValueFromPointerDeref(E), SrcRecordTy)) {
1800 llvm::BasicBlock *BadTypeidBlock =
1801 CGF.createBasicBlock("typeid.bad_typeid");
1802 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1803
1804 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr.getPointer());
1805 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1806
1807 CGF.EmitBlock(BadTypeidBlock);
1808 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1809 CGF.EmitBlock(EndBlock);
1810 }
1811
1812 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1813 StdTypeInfoPtrTy);
1814 }
1815
EmitCXXTypeidExpr(const CXXTypeidExpr * E)1816 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1817 llvm::Type *StdTypeInfoPtrTy =
1818 ConvertType(E->getType())->getPointerTo();
1819
1820 if (E->isTypeOperand()) {
1821 llvm::Constant *TypeInfo =
1822 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1823 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1824 }
1825
1826 // C++ [expr.typeid]p2:
1827 // When typeid is applied to a glvalue expression whose type is a
1828 // polymorphic class type, the result refers to a std::type_info object
1829 // representing the type of the most derived object (that is, the dynamic
1830 // type) to which the glvalue refers.
1831 if (E->isPotentiallyEvaluated())
1832 return EmitTypeidFromVTable(*this, E->getExprOperand(),
1833 StdTypeInfoPtrTy);
1834
1835 QualType OperandTy = E->getExprOperand()->getType();
1836 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1837 StdTypeInfoPtrTy);
1838 }
1839
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)1840 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1841 QualType DestTy) {
1842 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1843 if (DestTy->isPointerType())
1844 return llvm::Constant::getNullValue(DestLTy);
1845
1846 /// C++ [expr.dynamic.cast]p9:
1847 /// A failed cast to reference type throws std::bad_cast
1848 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1849 return nullptr;
1850
1851 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1852 return llvm::UndefValue::get(DestLTy);
1853 }
1854
EmitDynamicCast(Address ThisAddr,const CXXDynamicCastExpr * DCE)1855 llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
1856 const CXXDynamicCastExpr *DCE) {
1857 CGM.EmitExplicitCastExprType(DCE, this);
1858 QualType DestTy = DCE->getTypeAsWritten();
1859
1860 if (DCE->isAlwaysNull())
1861 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1862 return T;
1863
1864 QualType SrcTy = DCE->getSubExpr()->getType();
1865
1866 // C++ [expr.dynamic.cast]p7:
1867 // If T is "pointer to cv void," then the result is a pointer to the most
1868 // derived object pointed to by v.
1869 const PointerType *DestPTy = DestTy->getAs<PointerType>();
1870
1871 bool isDynamicCastToVoid;
1872 QualType SrcRecordTy;
1873 QualType DestRecordTy;
1874 if (DestPTy) {
1875 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1876 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1877 DestRecordTy = DestPTy->getPointeeType();
1878 } else {
1879 isDynamicCastToVoid = false;
1880 SrcRecordTy = SrcTy;
1881 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1882 }
1883
1884 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1885
1886 // C++ [expr.dynamic.cast]p4:
1887 // If the value of v is a null pointer value in the pointer case, the result
1888 // is the null pointer value of type T.
1889 bool ShouldNullCheckSrcValue =
1890 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1891 SrcRecordTy);
1892
1893 llvm::BasicBlock *CastNull = nullptr;
1894 llvm::BasicBlock *CastNotNull = nullptr;
1895 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1896
1897 if (ShouldNullCheckSrcValue) {
1898 CastNull = createBasicBlock("dynamic_cast.null");
1899 CastNotNull = createBasicBlock("dynamic_cast.notnull");
1900
1901 llvm::Value *IsNull = Builder.CreateIsNull(ThisAddr.getPointer());
1902 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1903 EmitBlock(CastNotNull);
1904 }
1905
1906 llvm::Value *Value;
1907 if (isDynamicCastToVoid) {
1908 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, ThisAddr, SrcRecordTy,
1909 DestTy);
1910 } else {
1911 assert(DestRecordTy->isRecordType() &&
1912 "destination type must be a record type!");
1913 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, ThisAddr, SrcRecordTy,
1914 DestTy, DestRecordTy, CastEnd);
1915 CastNotNull = Builder.GetInsertBlock();
1916 }
1917
1918 if (ShouldNullCheckSrcValue) {
1919 EmitBranch(CastEnd);
1920
1921 EmitBlock(CastNull);
1922 EmitBranch(CastEnd);
1923 }
1924
1925 EmitBlock(CastEnd);
1926
1927 if (ShouldNullCheckSrcValue) {
1928 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1929 PHI->addIncoming(Value, CastNotNull);
1930 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1931
1932 Value = PHI;
1933 }
1934
1935 return Value;
1936 }
1937
EmitLambdaExpr(const LambdaExpr * E,AggValueSlot Slot)1938 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1939 RunCleanupsScope Scope(*this);
1940 LValue SlotLV = MakeAddrLValue(Slot.getAddress(), E->getType());
1941
1942 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1943 for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(),
1944 e = E->capture_init_end();
1945 i != e; ++i, ++CurField) {
1946 // Emit initialization
1947 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1948 if (CurField->hasCapturedVLAType()) {
1949 auto VAT = CurField->getCapturedVLAType();
1950 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1951 } else {
1952 ArrayRef<VarDecl *> ArrayIndexes;
1953 if (CurField->getType()->isArrayType())
1954 ArrayIndexes = E->getCaptureInitIndexVars(i);
1955 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1956 }
1957 }
1958 }
1959