1 //===-- working_set.cpp ---------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of EfficiencySanitizer, a family of performance tuners.
11 //
12 // This file contains working-set-specific code.
13 //===----------------------------------------------------------------------===//
14
15 #include "working_set.h"
16 #include "esan.h"
17 #include "esan_circular_buffer.h"
18 #include "esan_flags.h"
19 #include "esan_shadow.h"
20 #include "esan_sideline.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22
23 // We shadow every cache line of app memory with one shadow byte.
24 // - The highest bit of each shadow byte indicates whether the corresponding
25 // cache line has ever been accessed.
26 // - The lowest bit of each shadow byte indicates whether the corresponding
27 // cache line was accessed since the last sample.
28 // - The other bits are used for working set snapshots at successively
29 // lower frequencies, each bit to the left from the lowest bit stepping
30 // down the frequency by 2 to the power of getFlags()->snapshot_step.
31 // Thus we have something like this:
32 // Bit 0: Since last sample
33 // Bit 1: Since last 2^2 samples
34 // Bit 2: Since last 2^4 samples
35 // Bit 3: ...
36 // Bit 7: Ever accessed.
37 // We live with races in accessing each shadow byte.
38 typedef unsigned char byte;
39
40 namespace __esan {
41
42 // Our shadow memory assumes that the line size is 64.
43 static const u32 CacheLineSize = 64;
44
45 // See the shadow byte layout description above.
46 static const u32 TotalWorkingSetBitIdx = 7;
47 // We accumulate to the left until we hit this bit.
48 // We don't need to accumulate to the final bit as it's set on each ref
49 // by the compiler instrumentation.
50 static const u32 MaxAccumBitIdx = 6;
51 static const u32 CurWorkingSetBitIdx = 0;
52 static const byte ShadowAccessedVal =
53 (1 << TotalWorkingSetBitIdx) | (1 << CurWorkingSetBitIdx);
54
55 static SidelineThread Thread;
56 // If we use real-time-based timer samples this won't overflow in any realistic
57 // scenario, but if we switch to some other unit (such as memory accesses) we
58 // may want to consider a 64-bit int.
59 static u32 SnapshotNum;
60
61 // We store the wset size for each of 8 different sampling frequencies.
62 static const u32 NumFreq = 8; // One for each bit of our shadow bytes.
63 // We cannot use static objects as the global destructor is called
64 // prior to our finalize routine.
65 // These are each circular buffers, sized up front.
66 CircularBuffer<u32> SizePerFreq[NumFreq];
67 // We cannot rely on static initializers (they may run too late) but
68 // we record the size here for clarity:
69 u32 CircularBufferSizes[NumFreq] = {
70 // These are each mmap-ed so our minimum is one page.
71 32*1024,
72 16*1024,
73 8*1024,
74 4*1024,
75 4*1024,
76 4*1024,
77 4*1024,
78 4*1024,
79 };
80
processRangeAccessWorkingSet(uptr PC,uptr Addr,SIZE_T Size,bool IsWrite)81 void processRangeAccessWorkingSet(uptr PC, uptr Addr, SIZE_T Size,
82 bool IsWrite) {
83 if (Size == 0)
84 return;
85 SIZE_T I = 0;
86 uptr LineSize = getFlags()->cache_line_size;
87 // As Addr+Size could overflow at the top of a 32-bit address space,
88 // we avoid the simpler formula that rounds the start and end.
89 SIZE_T NumLines = Size / LineSize +
90 // Add any extra at the start or end adding on an extra line:
91 (LineSize - 1 + Addr % LineSize + Size % LineSize) / LineSize;
92 byte *Shadow = (byte *)appToShadow(Addr);
93 // Write shadow bytes until we're word-aligned.
94 while (I < NumLines && (uptr)Shadow % 4 != 0) {
95 if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
96 *Shadow |= ShadowAccessedVal;
97 ++Shadow;
98 ++I;
99 }
100 // Write whole shadow words at a time.
101 // Using a word-stride loop improves the runtime of a microbenchmark of
102 // memset calls by 10%.
103 u32 WordValue = ShadowAccessedVal | ShadowAccessedVal << 8 |
104 ShadowAccessedVal << 16 | ShadowAccessedVal << 24;
105 while (I + 4 <= NumLines) {
106 if ((*(u32*)Shadow & WordValue) != WordValue)
107 *(u32*)Shadow |= WordValue;
108 Shadow += 4;
109 I += 4;
110 }
111 // Write any trailing shadow bytes.
112 while (I < NumLines) {
113 if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
114 *Shadow |= ShadowAccessedVal;
115 ++Shadow;
116 ++I;
117 }
118 }
119
120 // This routine will word-align ShadowStart and ShadowEnd prior to scanning.
121 // It does *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
122 // measures the access during the entire execution and should never be cleared.
countAndClearShadowValues(u32 BitIdx,uptr ShadowStart,uptr ShadowEnd)123 static u32 countAndClearShadowValues(u32 BitIdx, uptr ShadowStart,
124 uptr ShadowEnd) {
125 u32 WorkingSetSize = 0;
126 u32 ByteValue = 0x1 << BitIdx;
127 u32 WordValue = ByteValue | ByteValue << 8 | ByteValue << 16 |
128 ByteValue << 24;
129 // Get word aligned start.
130 ShadowStart = RoundDownTo(ShadowStart, sizeof(u32));
131 bool Accum = getFlags()->record_snapshots && BitIdx < MaxAccumBitIdx;
132 // Do not clear the bit that measures access during the entire execution.
133 bool Clear = BitIdx < TotalWorkingSetBitIdx;
134 for (u32 *Ptr = (u32 *)ShadowStart; Ptr < (u32 *)ShadowEnd; ++Ptr) {
135 if ((*Ptr & WordValue) != 0) {
136 byte *BytePtr = (byte *)Ptr;
137 for (u32 j = 0; j < sizeof(u32); ++j) {
138 if (BytePtr[j] & ByteValue) {
139 ++WorkingSetSize;
140 if (Accum) {
141 // Accumulate to the lower-frequency bit to the left.
142 BytePtr[j] |= (ByteValue << 1);
143 }
144 }
145 }
146 if (Clear) {
147 // Clear this bit from every shadow byte.
148 *Ptr &= ~WordValue;
149 }
150 }
151 }
152 return WorkingSetSize;
153 }
154
155 // Scan shadow memory to calculate the number of cache lines being accessed,
156 // i.e., the number of non-zero bits indexed by BitIdx in each shadow byte.
157 // We also clear the lowest bits (most recent working set snapshot).
158 // We do *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
159 // measures the access during the entire execution and should never be cleared.
computeWorkingSizeAndReset(u32 BitIdx)160 static u32 computeWorkingSizeAndReset(u32 BitIdx) {
161 u32 WorkingSetSize = 0;
162 MemoryMappingLayout MemIter(true/*cache*/);
163 uptr Start, End, Prot;
164 while (MemIter.Next(&Start, &End, nullptr/*offs*/, nullptr/*file*/,
165 0/*file size*/, &Prot)) {
166 VPrintf(4, "%s: considering %p-%p app=%d shadow=%d prot=%u\n",
167 __FUNCTION__, Start, End, Prot, isAppMem(Start),
168 isShadowMem(Start));
169 if (isShadowMem(Start) && (Prot & MemoryMappingLayout::kProtectionWrite)) {
170 VPrintf(3, "%s: walking %p-%p\n", __FUNCTION__, Start, End);
171 WorkingSetSize += countAndClearShadowValues(BitIdx, Start, End);
172 }
173 }
174 return WorkingSetSize;
175 }
176
177 // This is invoked from a signal handler but in a sideline thread doing nothing
178 // else so it is a little less fragile than a typical signal handler.
takeSample(void * Arg)179 static void takeSample(void *Arg) {
180 u32 BitIdx = CurWorkingSetBitIdx;
181 u32 Freq = 1;
182 ++SnapshotNum; // Simpler to skip 0 whose mod matches everything.
183 while (BitIdx <= MaxAccumBitIdx && (SnapshotNum % Freq) == 0) {
184 u32 NumLines = computeWorkingSizeAndReset(BitIdx);
185 VReport(1, "%s: snapshot #%5d bit %d freq %4d: %8u\n", SanitizerToolName,
186 SnapshotNum, BitIdx, Freq, NumLines);
187 SizePerFreq[BitIdx].push_back(NumLines);
188 Freq = Freq << getFlags()->snapshot_step;
189 BitIdx++;
190 }
191 }
192
193 // Initialization that must be done before any instrumented code is executed.
initializeShadowWorkingSet()194 void initializeShadowWorkingSet() {
195 CHECK(getFlags()->cache_line_size == CacheLineSize);
196 registerMemoryFaultHandler();
197 }
198
initializeWorkingSet()199 void initializeWorkingSet() {
200 if (getFlags()->record_snapshots) {
201 for (u32 i = 0; i < NumFreq; ++i)
202 SizePerFreq[i].initialize(CircularBufferSizes[i]);
203 Thread.launchThread(takeSample, nullptr, getFlags()->sample_freq);
204 }
205 }
206
getPeriodForPrinting(u32 MilliSec,const char * & Unit)207 static u32 getPeriodForPrinting(u32 MilliSec, const char *&Unit) {
208 if (MilliSec > 600000) {
209 Unit = "min";
210 return MilliSec / 60000;
211 } else if (MilliSec > 10000) {
212 Unit = "sec";
213 return MilliSec / 1000;
214 } else {
215 Unit = "ms";
216 return MilliSec;
217 }
218 }
219
getSizeForPrinting(u32 NumOfCachelines,const char * & Unit)220 static u32 getSizeForPrinting(u32 NumOfCachelines, const char *&Unit) {
221 // We need a constant to avoid software divide support:
222 static const u32 KilobyteCachelines = (0x1 << 10) / CacheLineSize;
223 static const u32 MegabyteCachelines = KilobyteCachelines << 10;
224
225 if (NumOfCachelines > 10 * MegabyteCachelines) {
226 Unit = "MB";
227 return NumOfCachelines / MegabyteCachelines;
228 } else if (NumOfCachelines > 10 * KilobyteCachelines) {
229 Unit = "KB";
230 return NumOfCachelines / KilobyteCachelines;
231 } else {
232 Unit = "Bytes";
233 return NumOfCachelines * CacheLineSize;
234 }
235 }
236
reportWorkingSet()237 void reportWorkingSet() {
238 const char *Unit;
239 if (getFlags()->record_snapshots) {
240 u32 Freq = 1;
241 Report(" Total number of samples: %u\n", SnapshotNum);
242 for (u32 i = 0; i < NumFreq; ++i) {
243 u32 Time = getPeriodForPrinting(getFlags()->sample_freq*Freq, Unit);
244 Report(" Samples array #%d at period %u %s\n", i, Time, Unit);
245 // FIXME: report whether we wrapped around and thus whether we
246 // have data on the whole run or just the last N samples.
247 for (u32 j = 0; j < SizePerFreq[i].size(); ++j) {
248 u32 Size = getSizeForPrinting(SizePerFreq[i][j], Unit);
249 Report("#%4d: %8u %s (%9u cache lines)\n", j, Size, Unit,
250 SizePerFreq[i][j]);
251 }
252 Freq = Freq << getFlags()->snapshot_step;
253 }
254 }
255
256 // Get the working set size for the entire execution.
257 u32 NumOfCachelines = computeWorkingSizeAndReset(TotalWorkingSetBitIdx);
258 u32 Size = getSizeForPrinting(NumOfCachelines, Unit);
259 Report(" %s: the total working set size: %u %s (%u cache lines)\n",
260 SanitizerToolName, Size, Unit, NumOfCachelines);
261 }
262
finalizeWorkingSet()263 int finalizeWorkingSet() {
264 if (getFlags()->record_snapshots)
265 Thread.joinThread();
266 reportWorkingSet();
267 if (getFlags()->record_snapshots) {
268 for (u32 i = 0; i < NumFreq; ++i)
269 SizePerFreq[i].free();
270 }
271 return 0;
272 }
273
274 } // namespace __esan
275