• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- working_set.cpp ---------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of EfficiencySanitizer, a family of performance tuners.
11 //
12 // This file contains working-set-specific code.
13 //===----------------------------------------------------------------------===//
14 
15 #include "working_set.h"
16 #include "esan.h"
17 #include "esan_circular_buffer.h"
18 #include "esan_flags.h"
19 #include "esan_shadow.h"
20 #include "esan_sideline.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 
23 // We shadow every cache line of app memory with one shadow byte.
24 // - The highest bit of each shadow byte indicates whether the corresponding
25 //   cache line has ever been accessed.
26 // - The lowest bit of each shadow byte indicates whether the corresponding
27 //   cache line was accessed since the last sample.
28 // - The other bits are used for working set snapshots at successively
29 //   lower frequencies, each bit to the left from the lowest bit stepping
30 //   down the frequency by 2 to the power of getFlags()->snapshot_step.
31 // Thus we have something like this:
32 //   Bit 0: Since last sample
33 //   Bit 1: Since last 2^2 samples
34 //   Bit 2: Since last 2^4 samples
35 //   Bit 3: ...
36 //   Bit 7: Ever accessed.
37 // We live with races in accessing each shadow byte.
38 typedef unsigned char byte;
39 
40 namespace __esan {
41 
42 // Our shadow memory assumes that the line size is 64.
43 static const u32 CacheLineSize = 64;
44 
45 // See the shadow byte layout description above.
46 static const u32 TotalWorkingSetBitIdx = 7;
47 // We accumulate to the left until we hit this bit.
48 // We don't need to accumulate to the final bit as it's set on each ref
49 // by the compiler instrumentation.
50 static const u32 MaxAccumBitIdx = 6;
51 static const u32 CurWorkingSetBitIdx = 0;
52 static const byte ShadowAccessedVal =
53   (1 << TotalWorkingSetBitIdx) | (1 << CurWorkingSetBitIdx);
54 
55 static SidelineThread Thread;
56 // If we use real-time-based timer samples this won't overflow in any realistic
57 // scenario, but if we switch to some other unit (such as memory accesses) we
58 // may want to consider a 64-bit int.
59 static u32 SnapshotNum;
60 
61 // We store the wset size for each of 8 different sampling frequencies.
62 static const u32 NumFreq = 8; // One for each bit of our shadow bytes.
63 // We cannot use static objects as the global destructor is called
64 // prior to our finalize routine.
65 // These are each circular buffers, sized up front.
66 CircularBuffer<u32> SizePerFreq[NumFreq];
67 // We cannot rely on static initializers (they may run too late) but
68 // we record the size here for clarity:
69 u32 CircularBufferSizes[NumFreq] = {
70   // These are each mmap-ed so our minimum is one page.
71   32*1024,
72   16*1024,
73   8*1024,
74   4*1024,
75   4*1024,
76   4*1024,
77   4*1024,
78   4*1024,
79 };
80 
processRangeAccessWorkingSet(uptr PC,uptr Addr,SIZE_T Size,bool IsWrite)81 void processRangeAccessWorkingSet(uptr PC, uptr Addr, SIZE_T Size,
82                                   bool IsWrite) {
83   if (Size == 0)
84     return;
85   SIZE_T I = 0;
86   uptr LineSize = getFlags()->cache_line_size;
87   // As Addr+Size could overflow at the top of a 32-bit address space,
88   // we avoid the simpler formula that rounds the start and end.
89   SIZE_T NumLines = Size / LineSize +
90     // Add any extra at the start or end adding on an extra line:
91     (LineSize - 1 + Addr % LineSize + Size % LineSize) / LineSize;
92   byte *Shadow = (byte *)appToShadow(Addr);
93   // Write shadow bytes until we're word-aligned.
94   while (I < NumLines && (uptr)Shadow % 4 != 0) {
95     if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
96       *Shadow |= ShadowAccessedVal;
97     ++Shadow;
98     ++I;
99   }
100   // Write whole shadow words at a time.
101   // Using a word-stride loop improves the runtime of a microbenchmark of
102   // memset calls by 10%.
103   u32 WordValue = ShadowAccessedVal | ShadowAccessedVal << 8 |
104     ShadowAccessedVal << 16 | ShadowAccessedVal << 24;
105   while (I + 4 <= NumLines) {
106     if ((*(u32*)Shadow & WordValue) != WordValue)
107       *(u32*)Shadow |= WordValue;
108     Shadow += 4;
109     I += 4;
110   }
111   // Write any trailing shadow bytes.
112   while (I < NumLines) {
113     if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
114       *Shadow |= ShadowAccessedVal;
115     ++Shadow;
116     ++I;
117   }
118 }
119 
120 // This routine will word-align ShadowStart and ShadowEnd prior to scanning.
121 // It does *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
122 // measures the access during the entire execution and should never be cleared.
countAndClearShadowValues(u32 BitIdx,uptr ShadowStart,uptr ShadowEnd)123 static u32 countAndClearShadowValues(u32 BitIdx, uptr ShadowStart,
124                                      uptr ShadowEnd) {
125   u32 WorkingSetSize = 0;
126   u32 ByteValue = 0x1 << BitIdx;
127   u32 WordValue = ByteValue | ByteValue << 8 | ByteValue << 16 |
128     ByteValue << 24;
129   // Get word aligned start.
130   ShadowStart = RoundDownTo(ShadowStart, sizeof(u32));
131   bool Accum = getFlags()->record_snapshots && BitIdx < MaxAccumBitIdx;
132   // Do not clear the bit that measures access during the entire execution.
133   bool Clear = BitIdx < TotalWorkingSetBitIdx;
134   for (u32 *Ptr = (u32 *)ShadowStart; Ptr < (u32 *)ShadowEnd; ++Ptr) {
135     if ((*Ptr & WordValue) != 0) {
136       byte *BytePtr = (byte *)Ptr;
137       for (u32 j = 0; j < sizeof(u32); ++j) {
138         if (BytePtr[j] & ByteValue) {
139           ++WorkingSetSize;
140           if (Accum) {
141             // Accumulate to the lower-frequency bit to the left.
142             BytePtr[j] |= (ByteValue << 1);
143           }
144         }
145       }
146       if (Clear) {
147         // Clear this bit from every shadow byte.
148         *Ptr &= ~WordValue;
149       }
150     }
151   }
152   return WorkingSetSize;
153 }
154 
155 // Scan shadow memory to calculate the number of cache lines being accessed,
156 // i.e., the number of non-zero bits indexed by BitIdx in each shadow byte.
157 // We also clear the lowest bits (most recent working set snapshot).
158 // We do *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
159 // measures the access during the entire execution and should never be cleared.
computeWorkingSizeAndReset(u32 BitIdx)160 static u32 computeWorkingSizeAndReset(u32 BitIdx) {
161   u32 WorkingSetSize = 0;
162   MemoryMappingLayout MemIter(true/*cache*/);
163   uptr Start, End, Prot;
164   while (MemIter.Next(&Start, &End, nullptr/*offs*/, nullptr/*file*/,
165                       0/*file size*/, &Prot)) {
166     VPrintf(4, "%s: considering %p-%p app=%d shadow=%d prot=%u\n",
167             __FUNCTION__, Start, End, Prot, isAppMem(Start),
168             isShadowMem(Start));
169     if (isShadowMem(Start) && (Prot & MemoryMappingLayout::kProtectionWrite)) {
170       VPrintf(3, "%s: walking %p-%p\n", __FUNCTION__, Start, End);
171       WorkingSetSize += countAndClearShadowValues(BitIdx, Start, End);
172     }
173   }
174   return WorkingSetSize;
175 }
176 
177 // This is invoked from a signal handler but in a sideline thread doing nothing
178 // else so it is a little less fragile than a typical signal handler.
takeSample(void * Arg)179 static void takeSample(void *Arg) {
180   u32 BitIdx = CurWorkingSetBitIdx;
181   u32 Freq = 1;
182   ++SnapshotNum; // Simpler to skip 0 whose mod matches everything.
183   while (BitIdx <= MaxAccumBitIdx && (SnapshotNum % Freq) == 0) {
184     u32 NumLines = computeWorkingSizeAndReset(BitIdx);
185     VReport(1, "%s: snapshot #%5d bit %d freq %4d: %8u\n", SanitizerToolName,
186             SnapshotNum, BitIdx, Freq, NumLines);
187     SizePerFreq[BitIdx].push_back(NumLines);
188     Freq = Freq << getFlags()->snapshot_step;
189     BitIdx++;
190   }
191 }
192 
193 // Initialization that must be done before any instrumented code is executed.
initializeShadowWorkingSet()194 void initializeShadowWorkingSet() {
195   CHECK(getFlags()->cache_line_size == CacheLineSize);
196   registerMemoryFaultHandler();
197 }
198 
initializeWorkingSet()199 void initializeWorkingSet() {
200   if (getFlags()->record_snapshots) {
201     for (u32 i = 0; i < NumFreq; ++i)
202       SizePerFreq[i].initialize(CircularBufferSizes[i]);
203     Thread.launchThread(takeSample, nullptr, getFlags()->sample_freq);
204   }
205 }
206 
getPeriodForPrinting(u32 MilliSec,const char * & Unit)207 static u32 getPeriodForPrinting(u32 MilliSec, const char *&Unit) {
208   if (MilliSec > 600000) {
209     Unit = "min";
210     return MilliSec / 60000;
211   } else if (MilliSec > 10000) {
212     Unit = "sec";
213     return MilliSec / 1000;
214   } else {
215     Unit = "ms";
216     return MilliSec;
217   }
218 }
219 
getSizeForPrinting(u32 NumOfCachelines,const char * & Unit)220 static u32 getSizeForPrinting(u32 NumOfCachelines, const char *&Unit) {
221   // We need a constant to avoid software divide support:
222   static const u32 KilobyteCachelines = (0x1 << 10) / CacheLineSize;
223   static const u32 MegabyteCachelines = KilobyteCachelines << 10;
224 
225   if (NumOfCachelines > 10 * MegabyteCachelines) {
226     Unit = "MB";
227     return NumOfCachelines / MegabyteCachelines;
228   } else if (NumOfCachelines > 10 * KilobyteCachelines) {
229     Unit = "KB";
230     return NumOfCachelines / KilobyteCachelines;
231   } else {
232     Unit = "Bytes";
233     return NumOfCachelines * CacheLineSize;
234   }
235 }
236 
reportWorkingSet()237 void reportWorkingSet() {
238   const char *Unit;
239   if (getFlags()->record_snapshots) {
240     u32 Freq = 1;
241     Report(" Total number of samples: %u\n", SnapshotNum);
242     for (u32 i = 0; i < NumFreq; ++i) {
243       u32 Time = getPeriodForPrinting(getFlags()->sample_freq*Freq, Unit);
244       Report(" Samples array #%d at period %u %s\n", i, Time, Unit);
245       // FIXME: report whether we wrapped around and thus whether we
246       // have data on the whole run or just the last N samples.
247       for (u32 j = 0; j < SizePerFreq[i].size(); ++j) {
248         u32 Size = getSizeForPrinting(SizePerFreq[i][j], Unit);
249         Report("#%4d: %8u %s (%9u cache lines)\n", j, Size, Unit,
250                SizePerFreq[i][j]);
251       }
252       Freq = Freq << getFlags()->snapshot_step;
253     }
254   }
255 
256   // Get the working set size for the entire execution.
257   u32 NumOfCachelines = computeWorkingSizeAndReset(TotalWorkingSetBitIdx);
258   u32 Size = getSizeForPrinting(NumOfCachelines, Unit);
259   Report(" %s: the total working set size: %u %s (%u cache lines)\n",
260          SanitizerToolName, Size, Unit, NumOfCachelines);
261 }
262 
finalizeWorkingSet()263 int finalizeWorkingSet() {
264   if (getFlags()->record_snapshots)
265     Thread.joinThread();
266   reportWorkingSet();
267   if (getFlags()->record_snapshots) {
268     for (u32 i = 0; i < NumFreq; ++i)
269       SizePerFreq[i].free();
270   }
271   return 0;
272 }
273 
274 } // namespace __esan
275