1 //===-- sanitizer_posix.cc ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is shared between AddressSanitizer and ThreadSanitizer
11 // run-time libraries and implements POSIX-specific functions from
12 // sanitizer_posix.h.
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_platform.h"
16
17 #if SANITIZER_POSIX
18
19 #include "sanitizer_common.h"
20 #include "sanitizer_libc.h"
21 #include "sanitizer_posix.h"
22 #include "sanitizer_procmaps.h"
23 #include "sanitizer_stacktrace.h"
24
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <sys/mman.h>
28
29 #if SANITIZER_LINUX
30 #include <sys/utsname.h>
31 #endif
32
33 #if SANITIZER_LINUX && !SANITIZER_ANDROID
34 #include <sys/personality.h>
35 #endif
36
37 #if SANITIZER_FREEBSD
38 // The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before
39 // that, it was never implemented. So just define it to zero.
40 #undef MAP_NORESERVE
41 #define MAP_NORESERVE 0
42 #endif
43
44 namespace __sanitizer {
45
46 // ------------- sanitizer_common.h
GetMmapGranularity()47 uptr GetMmapGranularity() {
48 return GetPageSize();
49 }
50
51 #if SANITIZER_WORDSIZE == 32
52 // Take care of unusable kernel area in top gigabyte.
GetKernelAreaSize()53 static uptr GetKernelAreaSize() {
54 #if SANITIZER_LINUX && !SANITIZER_X32
55 const uptr gbyte = 1UL << 30;
56
57 // Firstly check if there are writable segments
58 // mapped to top gigabyte (e.g. stack).
59 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
60 uptr end, prot;
61 while (proc_maps.Next(/*start*/nullptr, &end,
62 /*offset*/nullptr, /*filename*/nullptr,
63 /*filename_size*/0, &prot)) {
64 if ((end >= 3 * gbyte)
65 && (prot & MemoryMappingLayout::kProtectionWrite) != 0)
66 return 0;
67 }
68
69 #if !SANITIZER_ANDROID
70 // Even if nothing is mapped, top Gb may still be accessible
71 // if we are running on 64-bit kernel.
72 // Uname may report misleading results if personality type
73 // is modified (e.g. under schroot) so check this as well.
74 struct utsname uname_info;
75 int pers = personality(0xffffffffUL);
76 if (!(pers & PER_MASK)
77 && uname(&uname_info) == 0
78 && internal_strstr(uname_info.machine, "64"))
79 return 0;
80 #endif // SANITIZER_ANDROID
81
82 // Top gigabyte is reserved for kernel.
83 return gbyte;
84 #else
85 return 0;
86 #endif // SANITIZER_LINUX && !SANITIZER_X32
87 }
88 #endif // SANITIZER_WORDSIZE == 32
89
GetMaxVirtualAddress()90 uptr GetMaxVirtualAddress() {
91 #if SANITIZER_WORDSIZE == 64
92 # if defined(__aarch64__) && SANITIZER_IOS && !SANITIZER_IOSSIM
93 // Ideally, we would derive the upper bound from MACH_VM_MAX_ADDRESS. The
94 // upper bound can change depending on the device.
95 return 0x200000000 - 1;
96 # elif defined(__powerpc64__) || defined(__aarch64__)
97 // On PowerPC64 we have two different address space layouts: 44- and 46-bit.
98 // We somehow need to figure out which one we are using now and choose
99 // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL.
100 // Note that with 'ulimit -s unlimited' the stack is moved away from the top
101 // of the address space, so simply checking the stack address is not enough.
102 // This should (does) work for both PowerPC64 Endian modes.
103 // Similarly, aarch64 has multiple address space layouts: 39, 42 and 47-bit.
104 return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1;
105 # elif defined(__mips64)
106 return (1ULL << 40) - 1; // 0x000000ffffffffffUL;
107 # elif defined(__s390x__)
108 return (1ULL << 53) - 1; // 0x001fffffffffffffUL;
109 # else
110 return (1ULL << 47) - 1; // 0x00007fffffffffffUL;
111 # endif
112 #else // SANITIZER_WORDSIZE == 32
113 # if defined(__s390__)
114 return (1ULL << 31) - 1; // 0x7fffffff;
115 # else
116 uptr res = (1ULL << 32) - 1; // 0xffffffff;
117 if (!common_flags()->full_address_space)
118 res -= GetKernelAreaSize();
119 CHECK_LT(reinterpret_cast<uptr>(&res), res);
120 return res;
121 # endif
122 #endif // SANITIZER_WORDSIZE
123 }
124
MmapOrDie(uptr size,const char * mem_type,bool raw_report)125 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
126 size = RoundUpTo(size, GetPageSizeCached());
127 uptr res = internal_mmap(nullptr, size,
128 PROT_READ | PROT_WRITE,
129 MAP_PRIVATE | MAP_ANON, -1, 0);
130 int reserrno;
131 if (internal_iserror(res, &reserrno))
132 ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno, raw_report);
133 IncreaseTotalMmap(size);
134 return (void *)res;
135 }
136
UnmapOrDie(void * addr,uptr size)137 void UnmapOrDie(void *addr, uptr size) {
138 if (!addr || !size) return;
139 uptr res = internal_munmap(addr, size);
140 if (internal_iserror(res)) {
141 Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
142 SanitizerToolName, size, size, addr);
143 CHECK("unable to unmap" && 0);
144 }
145 DecreaseTotalMmap(size);
146 }
147
148 // We want to map a chunk of address space aligned to 'alignment'.
149 // We do it by maping a bit more and then unmaping redundant pieces.
150 // We probably can do it with fewer syscalls in some OS-dependent way.
MmapAlignedOrDie(uptr size,uptr alignment,const char * mem_type)151 void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type) {
152 CHECK(IsPowerOfTwo(size));
153 CHECK(IsPowerOfTwo(alignment));
154 uptr map_size = size + alignment;
155 uptr map_res = (uptr)MmapOrDie(map_size, mem_type);
156 uptr map_end = map_res + map_size;
157 uptr res = map_res;
158 if (res & (alignment - 1)) // Not aligned.
159 res = (map_res + alignment) & ~(alignment - 1);
160 uptr end = res + size;
161 if (res != map_res)
162 UnmapOrDie((void*)map_res, res - map_res);
163 if (end != map_end)
164 UnmapOrDie((void*)end, map_end - end);
165 return (void*)res;
166 }
167
MmapNoReserveOrDie(uptr size,const char * mem_type)168 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
169 uptr PageSize = GetPageSizeCached();
170 uptr p = internal_mmap(nullptr,
171 RoundUpTo(size, PageSize),
172 PROT_READ | PROT_WRITE,
173 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
174 -1, 0);
175 int reserrno;
176 if (internal_iserror(p, &reserrno))
177 ReportMmapFailureAndDie(size, mem_type, "allocate noreserve", reserrno);
178 IncreaseTotalMmap(size);
179 return (void *)p;
180 }
181
MmapFixedOrDie(uptr fixed_addr,uptr size)182 void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
183 uptr PageSize = GetPageSizeCached();
184 uptr p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)),
185 RoundUpTo(size, PageSize),
186 PROT_READ | PROT_WRITE,
187 MAP_PRIVATE | MAP_ANON | MAP_FIXED,
188 -1, 0);
189 int reserrno;
190 if (internal_iserror(p, &reserrno)) {
191 char mem_type[30];
192 internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
193 fixed_addr);
194 ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno);
195 }
196 IncreaseTotalMmap(size);
197 return (void *)p;
198 }
199
MprotectNoAccess(uptr addr,uptr size)200 bool MprotectNoAccess(uptr addr, uptr size) {
201 return 0 == internal_mprotect((void*)addr, size, PROT_NONE);
202 }
203
MprotectReadOnly(uptr addr,uptr size)204 bool MprotectReadOnly(uptr addr, uptr size) {
205 return 0 == internal_mprotect((void *)addr, size, PROT_READ);
206 }
207
OpenFile(const char * filename,FileAccessMode mode,error_t * errno_p)208 fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p) {
209 int flags;
210 switch (mode) {
211 case RdOnly: flags = O_RDONLY; break;
212 case WrOnly: flags = O_WRONLY | O_CREAT; break;
213 case RdWr: flags = O_RDWR | O_CREAT; break;
214 }
215 fd_t res = internal_open(filename, flags, 0660);
216 if (internal_iserror(res, errno_p))
217 return kInvalidFd;
218 return res;
219 }
220
CloseFile(fd_t fd)221 void CloseFile(fd_t fd) {
222 internal_close(fd);
223 }
224
ReadFromFile(fd_t fd,void * buff,uptr buff_size,uptr * bytes_read,error_t * error_p)225 bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
226 error_t *error_p) {
227 uptr res = internal_read(fd, buff, buff_size);
228 if (internal_iserror(res, error_p))
229 return false;
230 if (bytes_read)
231 *bytes_read = res;
232 return true;
233 }
234
WriteToFile(fd_t fd,const void * buff,uptr buff_size,uptr * bytes_written,error_t * error_p)235 bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
236 error_t *error_p) {
237 uptr res = internal_write(fd, buff, buff_size);
238 if (internal_iserror(res, error_p))
239 return false;
240 if (bytes_written)
241 *bytes_written = res;
242 return true;
243 }
244
RenameFile(const char * oldpath,const char * newpath,error_t * error_p)245 bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
246 uptr res = internal_rename(oldpath, newpath);
247 return !internal_iserror(res, error_p);
248 }
249
MapFileToMemory(const char * file_name,uptr * buff_size)250 void *MapFileToMemory(const char *file_name, uptr *buff_size) {
251 fd_t fd = OpenFile(file_name, RdOnly);
252 CHECK(fd != kInvalidFd);
253 uptr fsize = internal_filesize(fd);
254 CHECK_NE(fsize, (uptr)-1);
255 CHECK_GT(fsize, 0);
256 *buff_size = RoundUpTo(fsize, GetPageSizeCached());
257 uptr map = internal_mmap(nullptr, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0);
258 return internal_iserror(map) ? nullptr : (void *)map;
259 }
260
MapWritableFileToMemory(void * addr,uptr size,fd_t fd,OFF_T offset)261 void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
262 uptr flags = MAP_SHARED;
263 if (addr) flags |= MAP_FIXED;
264 uptr p = internal_mmap(addr, size, PROT_READ | PROT_WRITE, flags, fd, offset);
265 int mmap_errno = 0;
266 if (internal_iserror(p, &mmap_errno)) {
267 Printf("could not map writable file (%d, %lld, %zu): %zd, errno: %d\n",
268 fd, (long long)offset, size, p, mmap_errno);
269 return nullptr;
270 }
271 return (void *)p;
272 }
273
IntervalsAreSeparate(uptr start1,uptr end1,uptr start2,uptr end2)274 static inline bool IntervalsAreSeparate(uptr start1, uptr end1,
275 uptr start2, uptr end2) {
276 CHECK(start1 <= end1);
277 CHECK(start2 <= end2);
278 return (end1 < start2) || (end2 < start1);
279 }
280
281 // FIXME: this is thread-unsafe, but should not cause problems most of the time.
282 // When the shadow is mapped only a single thread usually exists (plus maybe
283 // several worker threads on Mac, which aren't expected to map big chunks of
284 // memory).
MemoryRangeIsAvailable(uptr range_start,uptr range_end)285 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
286 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
287 uptr start, end;
288 while (proc_maps.Next(&start, &end,
289 /*offset*/nullptr, /*filename*/nullptr,
290 /*filename_size*/0, /*protection*/nullptr)) {
291 if (start == end) continue; // Empty range.
292 CHECK_NE(0, end);
293 if (!IntervalsAreSeparate(start, end - 1, range_start, range_end))
294 return false;
295 }
296 return true;
297 }
298
DumpProcessMap()299 void DumpProcessMap() {
300 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
301 uptr start, end;
302 const sptr kBufSize = 4095;
303 char *filename = (char*)MmapOrDie(kBufSize, __func__);
304 Report("Process memory map follows:\n");
305 while (proc_maps.Next(&start, &end, /* file_offset */nullptr,
306 filename, kBufSize, /* protection */nullptr)) {
307 Printf("\t%p-%p\t%s\n", (void*)start, (void*)end, filename);
308 }
309 Report("End of process memory map.\n");
310 UnmapOrDie(filename, kBufSize);
311 }
312
GetPwd()313 const char *GetPwd() {
314 return GetEnv("PWD");
315 }
316
IsPathSeparator(const char c)317 bool IsPathSeparator(const char c) {
318 return c == '/';
319 }
320
IsAbsolutePath(const char * path)321 bool IsAbsolutePath(const char *path) {
322 return path != nullptr && IsPathSeparator(path[0]);
323 }
324
Write(const char * buffer,uptr length)325 void ReportFile::Write(const char *buffer, uptr length) {
326 SpinMutexLock l(mu);
327 static const char *kWriteError =
328 "ReportFile::Write() can't output requested buffer!\n";
329 ReopenIfNecessary();
330 if (length != internal_write(fd, buffer, length)) {
331 internal_write(fd, kWriteError, internal_strlen(kWriteError));
332 Die();
333 }
334 }
335
GetCodeRangeForFile(const char * module,uptr * start,uptr * end)336 bool GetCodeRangeForFile(const char *module, uptr *start, uptr *end) {
337 uptr s, e, off, prot;
338 InternalScopedString buff(kMaxPathLength);
339 MemoryMappingLayout proc_maps(/*cache_enabled*/false);
340 while (proc_maps.Next(&s, &e, &off, buff.data(), buff.size(), &prot)) {
341 if ((prot & MemoryMappingLayout::kProtectionExecute) != 0
342 && internal_strcmp(module, buff.data()) == 0) {
343 *start = s;
344 *end = e;
345 return true;
346 }
347 }
348 return false;
349 }
350
Create(void * siginfo,void * context)351 SignalContext SignalContext::Create(void *siginfo, void *context) {
352 auto si = (siginfo_t *)siginfo;
353 uptr addr = (uptr)si->si_addr;
354 uptr pc, sp, bp;
355 GetPcSpBp(context, &pc, &sp, &bp);
356 WriteFlag write_flag = GetWriteFlag(context);
357 bool is_memory_access = si->si_signo == SIGSEGV;
358 return SignalContext(context, addr, pc, sp, bp, is_memory_access, write_flag);
359 }
360
361 } // namespace __sanitizer
362
363 #endif // SANITIZER_POSIX
364