• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_ARRAY_H
11 #define EIGEN_ARRAY_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
17 struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
18 {
19   typedef ArrayXpr XprKind;
20   typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
21 };
22 }
23 
24 /** \class Array
25   * \ingroup Core_Module
26   *
27   * \brief General-purpose arrays with easy API for coefficient-wise operations
28   *
29   * The %Array class is very similar to the Matrix class. It provides
30   * general-purpose one- and two-dimensional arrays. The difference between the
31   * %Array and the %Matrix class is primarily in the API: the API for the
32   * %Array class provides easy access to coefficient-wise operations, while the
33   * API for the %Matrix class provides easy access to linear-algebra
34   * operations.
35   *
36   * See documentation of class Matrix for detailed information on the template parameters
37   * storage layout.
38   *
39   * This class can be extended with the help of the plugin mechanism described on the page
40   * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
41   *
42   * \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy
43   */
44 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
45 class Array
46   : public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
47 {
48   public:
49 
50     typedef PlainObjectBase<Array> Base;
51     EIGEN_DENSE_PUBLIC_INTERFACE(Array)
52 
53     enum { Options = _Options };
54     typedef typename Base::PlainObject PlainObject;
55 
56   protected:
57     template <typename Derived, typename OtherDerived, bool IsVector>
58     friend struct internal::conservative_resize_like_impl;
59 
60     using Base::m_storage;
61 
62   public:
63 
64     using Base::base;
65     using Base::coeff;
66     using Base::coeffRef;
67 
68     /**
69       * The usage of
70       *   using Base::operator=;
71       * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
72       * the usage of 'using'. This should be done only for operator=.
73       */
74     template<typename OtherDerived>
75     EIGEN_DEVICE_FUNC
76     EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
77     {
78       return Base::operator=(other);
79     }
80 
81     /** Set all the entries to \a value.
82       * \sa DenseBase::setConstant(), DenseBase::fill()
83       */
84     /* This overload is needed because the usage of
85       *   using Base::operator=;
86       * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
87       * the usage of 'using'. This should be done only for operator=.
88       */
89     EIGEN_DEVICE_FUNC
90     EIGEN_STRONG_INLINE Array& operator=(const Scalar &value)
91     {
92       Base::setConstant(value);
93       return *this;
94     }
95 
96     /** Copies the value of the expression \a other into \c *this with automatic resizing.
97       *
98       * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
99       * it will be initialized.
100       *
101       * Note that copying a row-vector into a vector (and conversely) is allowed.
102       * The resizing, if any, is then done in the appropriate way so that row-vectors
103       * remain row-vectors and vectors remain vectors.
104       */
105     template<typename OtherDerived>
106     EIGEN_DEVICE_FUNC
107     EIGEN_STRONG_INLINE Array& operator=(const DenseBase<OtherDerived>& other)
108     {
109       return Base::_set(other);
110     }
111 
112     /** This is a special case of the templated operator=. Its purpose is to
113       * prevent a default operator= from hiding the templated operator=.
114       */
115     EIGEN_DEVICE_FUNC
116     EIGEN_STRONG_INLINE Array& operator=(const Array& other)
117     {
118       return Base::_set(other);
119     }
120 
121     /** Default constructor.
122       *
123       * For fixed-size matrices, does nothing.
124       *
125       * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
126       * is called a null matrix. This constructor is the unique way to create null matrices: resizing
127       * a matrix to 0 is not supported.
128       *
129       * \sa resize(Index,Index)
130       */
131     EIGEN_DEVICE_FUNC
132     EIGEN_STRONG_INLINE Array() : Base()
133     {
134       Base::_check_template_params();
135       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
136     }
137 
138 #ifndef EIGEN_PARSED_BY_DOXYGEN
139     // FIXME is it still needed ??
140     /** \internal */
141     EIGEN_DEVICE_FUNC
142     Array(internal::constructor_without_unaligned_array_assert)
143       : Base(internal::constructor_without_unaligned_array_assert())
144     {
145       Base::_check_template_params();
146       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
147     }
148 #endif
149 
150 #if EIGEN_HAS_RVALUE_REFERENCES
151     EIGEN_DEVICE_FUNC
152     Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
153       : Base(std::move(other))
154     {
155       Base::_check_template_params();
156       if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
157         Base::_set_noalias(other);
158     }
159     EIGEN_DEVICE_FUNC
160     Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
161     {
162       other.swap(*this);
163       return *this;
164     }
165 #endif
166 
167     #ifndef EIGEN_PARSED_BY_DOXYGEN
168     template<typename T>
169     EIGEN_DEVICE_FUNC
170     EIGEN_STRONG_INLINE explicit Array(const T& x)
171     {
172       Base::_check_template_params();
173       Base::template _init1<T>(x);
174     }
175 
176     template<typename T0, typename T1>
177     EIGEN_DEVICE_FUNC
178     EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
179     {
180       Base::_check_template_params();
181       this->template _init2<T0,T1>(val0, val1);
182     }
183     #else
184     /** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */
185     EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
186     /** Constructs a vector or row-vector with given dimension. \only_for_vectors
187       *
188       * Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
189       * it is redundant to pass the dimension here, so it makes more sense to use the default
190       * constructor Array() instead.
191       */
192     EIGEN_DEVICE_FUNC
193     EIGEN_STRONG_INLINE explicit Array(Index dim);
194     /** constructs an initialized 1x1 Array with the given coefficient */
195     Array(const Scalar& value);
196     /** constructs an uninitialized array with \a rows rows and \a cols columns.
197       *
198       * This is useful for dynamic-size arrays. For fixed-size arrays,
199       * it is redundant to pass these parameters, so one should use the default constructor
200       * Array() instead. */
201     Array(Index rows, Index cols);
202     /** constructs an initialized 2D vector with given coefficients */
203     Array(const Scalar& val0, const Scalar& val1);
204     #endif
205 
206     /** constructs an initialized 3D vector with given coefficients */
207     EIGEN_DEVICE_FUNC
208     EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2)
209     {
210       Base::_check_template_params();
211       EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
212       m_storage.data()[0] = val0;
213       m_storage.data()[1] = val1;
214       m_storage.data()[2] = val2;
215     }
216     /** constructs an initialized 4D vector with given coefficients */
217     EIGEN_DEVICE_FUNC
218     EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3)
219     {
220       Base::_check_template_params();
221       EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
222       m_storage.data()[0] = val0;
223       m_storage.data()[1] = val1;
224       m_storage.data()[2] = val2;
225       m_storage.data()[3] = val3;
226     }
227 
228     /** Copy constructor */
229     EIGEN_DEVICE_FUNC
230     EIGEN_STRONG_INLINE Array(const Array& other)
231             : Base(other)
232     { }
233 
234   private:
235     struct PrivateType {};
236   public:
237 
238     /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
239     template<typename OtherDerived>
240     EIGEN_DEVICE_FUNC
241     EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other,
242                               typename internal::enable_if<internal::is_convertible<typename OtherDerived::Scalar,Scalar>::value,
243                                                            PrivateType>::type = PrivateType())
244       : Base(other.derived())
245     { }
246 
247     EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
248     EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
249 
250     #ifdef EIGEN_ARRAY_PLUGIN
251     #include EIGEN_ARRAY_PLUGIN
252     #endif
253 
254   private:
255 
256     template<typename MatrixType, typename OtherDerived, bool SwapPointers>
257     friend struct internal::matrix_swap_impl;
258 };
259 
260 /** \defgroup arraytypedefs Global array typedefs
261   * \ingroup Core_Module
262   *
263   * Eigen defines several typedef shortcuts for most common 1D and 2D array types.
264   *
265   * The general patterns are the following:
266   *
267   * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
268   * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
269   * for complex double.
270   *
271   * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
272   *
273   * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
274   * a fixed-size 1D array of 4 complex floats.
275   *
276   * \sa class Array
277   */
278 
279 #define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix)   \
280 /** \ingroup arraytypedefs */                                    \
281 typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix;  \
282 /** \ingroup arraytypedefs */                                    \
283 typedef Array<Type, Size, 1>    Array##SizeSuffix##TypeSuffix;
284 
285 #define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size)         \
286 /** \ingroup arraytypedefs */                                    \
287 typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix;  \
288 /** \ingroup arraytypedefs */                                    \
289 typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
290 
291 #define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
292 EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
293 EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
294 EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
295 EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
296 EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
297 EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
298 EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
299 
300 EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int,                  i)
301 EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float,                f)
302 EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double,               d)
303 EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>,  cf)
304 EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
305 
306 #undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
307 #undef EIGEN_MAKE_ARRAY_TYPEDEFS
308 
309 #undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
310 
311 #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
312 using Eigen::Matrix##SizeSuffix##TypeSuffix; \
313 using Eigen::Vector##SizeSuffix##TypeSuffix; \
314 using Eigen::RowVector##SizeSuffix##TypeSuffix;
315 
316 #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
317 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
318 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
319 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
320 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
321 
322 #define EIGEN_USING_ARRAY_TYPEDEFS \
323 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
324 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
325 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
326 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
327 EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
328 
329 } // end namespace Eigen
330 
331 #endif // EIGEN_ARRAY_H
332